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Abstract

Significance: Dementia presents a global healthcare crisis, and neuroimaging is the main

method for developing effective diagnoses and treatments. Yet currently, there is a lack of sen-

sitive, portable, and low-cost neuroimaging tools. As dementia is associated with vascular and

metabolic dysfunction, near-infrared spectroscopy (NIRS) has the potential to fill this gap.

Aim: This future perspective aims to briefly review the use of NIRS in dementia to date and

identify the challenges involved in realizing the full impact of NIRS for dementia research,

including device development, study design, and data analysis approaches.

Approach: We briefly appraised the current literature to assess the challenges, giving a critical

analysis of the methods used. To assess the sensitivity of different NIRS device configurations to

the brain with atrophy (as is common in most forms of dementia), we performed an optical

modeling analysis to compare their cortical sensitivity.

Results: The first NIRS dementia study was published in 1996, and the number of studies has

increased over time. In general, these studies identified diminished hemodynamic responses in

the frontal lobe and altered functional connectivity in dementia. Our analysis showed that tradi-

tional (low-density) NIRS arrays are sensitive to the brain with atrophy (although we see a mean

decrease of 22% in the relative brain sensitivity with respect to the healthy brain), but there is

a significant improvement (a factor of 50 sensitivity increase) with high-density arrays.

Conclusions: NIRS has a bright future in dementia research. Advances in technology – high-

density devices and intelligent data analysis—will allow new, naturalistic task designs that may

have more clinical relevance and increased reproducibility for longitudinal studies. The portable

and low-cost nature of NIRS provides the potential for use in clinical and screening tests.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.

Distribution or reproduction of this work in whole or in part requires full attribution of the original

publication, including its DOI. [DOI: 10.1117/1.NPh.10.2.023514]

Keywords: near-infrared spectroscopy; dementia; Alzheimer’s disease; functional brain

monitoring.

Paper 22064SSPER received Jul. 27, 2022; accepted for publication Jan. 13, 2023; published

online Feb. 10, 2023.

1 Introduction

Currently, 57.4 million individuals live with dementia worldwide with an estimated 152.8 million

by 2050,1 so there is an urgent need to develop early-stage biomarkers and interventions for

dementia. Defined in the International Classification of Diseases (11th Revision) (ICD-11)
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as an impairment in at least two cognitive domains of sufficient extent to cause impairments in

functioning in daily activities, symptoms of dementia include problems with memory, language,

executive function, and attention.2 The most common form of dementia is Alzheimer’s disease

(AD), followed by vascular dementia (VaD), dementia with Lewy bodies (DLB), and fronto-

temporal dementia (FTD). Aside from the individual pathophysiology of these disorders, demen-

tia is ultimately associated with large-scale neuronal loss in brain areas that support cognitive

function, though earlier cognitive impairment, likely caused by synaptic dysfunction, is thought

to occur before such widespread atrophy.3 Neither the factors that contribute to this neuronal loss

nor the possible targets for intervention are very well established. Early stages in the disease

course, such as mild cognitive impairment (MCI) or subjective cognitive decline, may be a criti-

cal period for effective intervention in the development of dementia,4 in which a conversion rate

to dementia of up to 12% a year has been observed.5During this period, pathological changes are

proposed to occur in the brain that increase the risk of progression to dementia.6 Current methods

to detect and monitor dementia, particularly in early prodromal stages such as MCI, are rapidly

developing. Recent advances include amyloid and tau brain imaging, the development of cer-

ebrospinal fluid (CSF) biomarkers for tau and amyloid, and most recently blood biomarkers, all

of which are available through the National Health Service in the UK. However, many of these

biomarkers require validation in early stages, are currently limited to AD, and are not helpful for

diagnosing VaD, DLB, or FTD. These biomarkers are also highly invasive, requiring radiation or

a lumbar puncture, are expensive, and in the case of CSF and blood measurements, do not

directly assess the target organ, i.e., the brain. Given the high misdiagnosis rates observed

in dementia, attributed to factors including a lack of resources and attitudes toward diagnosis,7

the development of accessible, low-cost, and brain-specific biomarkers is urgently needed.

One promising avenue of research is the relationship between dementia and cerebrovascular

and neurometabolic dysfunction as several vascular and metabolic disorders, such as hyperten-

sion and diabetes, are associated with later-life cognitive impairment.8 Aberrant changes in the

vasculature, such as arterial stiffness and increased pulsatility, are thought to lead to neuronal

damage in the watershed areas of the main cerebral arteries and are thus strongly associated with

cognitive impairment.9 Studies using positron emission tomography (PET) have also identified

decreased glucose metabolism in several brain regions across dementia subtypes,10 in which

reduced cerebral metabolism—thought to reflect reduced neuronal activity—is a significant

predictor of the conversion fromMCI to AD,11 although these changes are most likely secondary

to neuronal loss and synaptic dysfunction. Additionally, various alterations in functional con-

nectivity (FC) and brain networks have been identified in dementia using functional magnetic

resonance imaging (fMRI),12 but using these techniques in patient populations can be com-

plicated because they are highly sensitive to movement, are physically restrictive, and have

several contraindications. An alternative method to explore vascular dysfunction in dementia

is near-infrared spectroscopy (NIRS), a non-invasive neuroimaging technique that measures

the hemodynamic response by determining the relative concentration changes of oxygenated

(HbO) and deoxygenated hemoglobin (HbR).13 NIRS has numerous advantages over tradi-

tional neuroimaging methods; it has lower start-up and running costs, is nonionizing, has

fewer contraindications, has lower sensitivity to movement, has good temporal resolution, and

can be portable, potentially allowing access to people in a wide variety of settings outside

the hospital.

The first functional NIRS (fNIRS) studies in humans were published in 1993,14 with the first

dementia study published in 1996.15 Since then, the number of published dementia studies using

NIRS has gradually increased (Fig. 1). In general, these studies identified diminished hemo-

dynamic responses localized to frontal regions and widespread disordered FC across a range

of cognitive functions in dementia; however, most studies only recorded from the frontal

cortex.16 There is also evidence for both hypo- and hyper-activation in prodromal disease stages,

the latter of which is suggestive of a compensatory response in which alternate brain networks

are recruited to counteract neurodegeneration. NIRS has shown promise in being able to detect

this compensatory response, and a full systematic review of the results of all studies using NIRS

to investigate dementia was previously conducted.17 Of these studies, 30 focused on AD, 27 on

MCI, 3 on VaD, 1 on FTD, and none on DLB, with 10 studies directly comparing early-stage

cognitive decline and later-stage dementia, e.g., Refs. 18 and 19. Most of these studies used
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dual-wavelength, continuous wave NIRS to measure HbO and HbR changes, with a majority

discarding the HbR signal16 due to the HbO signal having a higher signal-to-noise ratio and a

stronger correlation with the blood-oxygen-level-dependent (BOLD) signal in fMRI. Many stud-

ies additionally measured a marker of tissue hemoglobin saturation (or “tissue oxygenation

index”) with multidistance NIRS e.g., Refs. 20 and 21. Almost all studies used sparse-channel

systems, with only one study22 performing diffuse optical tomography (DOT) imaging to pro-

duce cortical mappings of task-related activity and none using high-density NIRS systems in

conjunction with DOT.

In this paper looking at the future perspectives for the use of NIRS in dementia, we review the

challenges involved, from hardware and task design to analysis of data. The full potential of

NIRS is not known; for NIRS to become a practical, extensively used tool for dementia research

and before we can fully assess it as such, we must address these challenges first and resolve

several methodological issues. Here we address these and give suggestions for the progress that

needs to be made to maximize the potential of NIRS.

2 Improvements in Device Design Increase Cortical Sensitivity and
Wearability

The design of the NIRS device itself can dramatically affect the data quality and, therefore, the

conclusions drawn from the data. Here, the two major device design aspects, array design and

headgear design, are considered, and the implications on the resulting data are discussed.

2.1 Array Design

Traditional NIRS devices have a sparse design in which a source and detector are placed ∼3 cm

apart and the area underneath and between them is monitored. fNIRS assumes that the volume of

optical sensitivity includes the brain and therefore that hemoglobin oxygenation changes mea-

sured are brain-activity related. For a typical, healthy adult brain, this is likely true. However, in

dementia (particularly in AD), the brain can severely atrophy, manifesting as a loss of neurons

and neuronal connections (see Fig. 2), meaning that the optical array may no longer be sensitive

to absorption changes in the brain.

Fig. 1 Number of papers published as identified in a search for (“cognitive impairment” OR “cog-

nitive disorder” OR “cognitive decline” OR “vascular dementia” OR “cognitive dysfunction” OR

“neurocognitive disorder” OR “Alzheimer*” OR “dement*” OR “AD” OR “memory clinic” OR

“FTD” OR “DLB” OR “LBD”) AND (“near-infrared spectroscopy” OR “NIRS” OR “oxyhaemoglobin”

OR “tissue oxygenation index”).

Srinivasan et al.: Illuminating neurodegeneration: a future perspective on near-infrared spectroscopy. . .

Neurophotonics 023514-3 Apr–Jun 2023 • Vol. 10(2)



To ascertain whether optodes placed on the scalp are sensitive to the cortex, we modeled the

sensitivity of two different fNIRS arrays using two different head models: one for a healthy adult

brain using the Colin27 MRI template23 and one for an atrophied brain using MRI data collected

from a patient with AD from the Multimodal Imaging in Lewy Body Disorders (MILOS) study

(IRAS: 202332). Both MRI datasets were segmented using SPM1224 to produce a five-layer

head model, which was then converted to a tetrahedral volume mesh using iso2mesh.25

To model the state-of-the-art in terms of cortical sampling, we modeled the sensitivity from

an array based on the LUMO modular design (Gowerlabs Ltd, London, UK), which we term the

high-density array. In this high-density array, 12 hexagonal modules (each module containing

three sources and four detectors) were positioned on the anterior scalp overlying the frontal

cortex/lobe, yielding a total of 36 sources and 48 detectors, with over 400 channels and a

source-detector separation in the range 25 to 45 mm. For the low-density array, the center posi-

tions of each module were taken and assigned as either a source or a detector, forming an array

consisting of six sources and six detectors, with the mean nearest neighbor source-detector sep-

aration being 30 mm for the dementia head model and 32 mm for the Colin27 head model—a

sampling density typical of previous fNIRS research in dementia.

The high- and low-density arrays were registered to each head model. For each array-head

model combination (four in total), TOAST++26 was used to model near-infrared light propaga-

tion from sources to detectors, and the sensitivity to the cortex for each channel was summed to

produce a sensitivity distribution.

The results of these simulations are shown in Fig. 2. In both the atrophied and healthy brains,

there is a factor of 50 increase in cortical sensitivity using the high-density array compared with

the low-density array. There is a similar spatial distribution of cortical sensitivity between the

healthy and atrophied brain, particularly in the superior and middle frontal gyri, indicating that

high-density arrays are capable of sampling the atrophied brain in this case. (Note that further

Fig. 2 Examples of cortical sensitivity of low-density [(a), (c)] and high-density [(b), (d)] array NIRS

on a brain with severe atrophy due to AD [(a), (b)] and a healthy brain [(c), (d)].
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work needs to be done to assess NIRS brain sensitivity with different types of atrophy in different

dementia subtypes and stages and in comparison to age-matched healthy controls.)

However, in the atrophied brain, we see a mean decrease of 22.3% in the relative brain sen-

sitivity of nearest-neighbor channels of the low-density array with respect to the healthy brain.

This is comparable to the decrease in sensitivity in the high-density array (reduction in relative

brain sensitivity for 25 to 40 mm channels in the high-density array is 20.4%). The decrease in

relative brain sensitivity of the low-density array will lead to partial volume effects in which

apparent differences in function may be due to changes in anatomy. This is particularly a prob-

lem for comparisons between subjects with dementia and healthy controls and for longitudinal

studies in which progressive atrophy over time is expected to occur. Crucially, though, the aim of

the high-density array is to provide a high level of sensitivity to the cortex, which is demonstrated

in the atrophied brain in Fig. 2. This permits an image reconstruction approach to be taken to

recover changes in cortical hemoglobin concentration while avoiding the partial volume issues

that present substantial limitations for a channel-space analysis of activation in the atrophied

brain.

These results highlight the importance of using high-density DOT (HD-DOT). HD-DOT is an

imaging technique in which fNIRS data, collected using a high-density array, is combined with a

model of light transport—produced using a structural prior of the subject’s head structure—to

produce a three-dimensional image localizing hemoglobin concentration changes to the cortex.

Overlapping channel measurements (i.e., channels that exhibit sensitivity profiles that partially

sample the same volume) in HD-DOT arrays increase the spatial resolution,27 improving the

precision of functional mapping. A range of source–detector separations allows for depth dis-

crimination, permitting a tomographic approach to study depth-dependent responses, which is

important when there is an increased distance of the cortex from the scalp surface due to atrophy.

Finally, the inclusion of short separation channels, which predominantly sample nonbrain tissue,

enables contamination from scalp hemodynamics to be removed from the cortex-originating

functional signal.

Another advantage of DOT is its use of anatomical head structures to model light transport.

An anatomically-accurate structural prior increases the accuracy of resulting images,28 producing

images that are inherently registered to cortical anatomy and enabling improved image inter-

pretation. There is a need for up-to-date, patient-specific data when studying patients whose

brains are undergoing atrophy. As can be seen in Fig. 2, there are clear differences in gyrification

between the atrophied brain and the brain of a healthy younger adult. Thus, the use of a healthy

adult brain for patients with brain atrophy will lead to potential misinterpretations of where

activation is localized, so patient-specific structural priors are imperative. Further, given the

progressive nature of atrophy in dementia, brain structure will be altered over time, so structural

priors derived from a recent MRI scan of a patient are needed. Though MRI scanning is needed

to acquire structural data, it will only need to be performed once to allow for multiple HD-DOT

scans, such as when performing continuous or longitudinal monitoring over a period (depending

on the rate of atrophy).

In the future, it would be ideal to remove the requirement for subject-specific head models.

This method is successful in neurodevelopmental NIRS studies of infants in which there are

similar challenges in terms of a vulnerable population who are not easy to MRI scan, as well

as neuroanatomical challenges that occur between longitudinal measurements. One approach to

this would be to produce an atlas of the dementia brain at various stages of progression by aver-

aging structural MRI data taken from many individuals with dementia. Alternatively, another

approach is to have a database of head models of subjects with dementia at various stages

of progression and with varying head shapes and sizes, and a best matching model can be found

for a particular individual based on such characteristics. The challenge moving forward is to

systematically determine how to employ a nonsubject-specific head model that minimizes the

increase in localization error relative to using subject-specific anatomy.

2.2 Headgear Design

Adaptations need to be made to NIRS device designs to improve accessibility for people

with dementia. This is a population with reduced mobility, a high probability of having
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contraindications, and greater frailty. Traditional methods such as computerized tomography

(CT) or MRI techniques only provide a snapshot of a patient’s status without accounting for the

well-established fluctuations in symptomatology, particularly present in DLB.29As such, devices

used to study dementia populations must be able to be worn for continuous monitoring to capture

these fluctuations and provide dynamic and richer information of a patient’s vascular state.

Devices therefore should also be wearable, robust to movement, portable for use in care homes

or at the bedside, comfortable, and easy to use.

2.3 Device Conclusion

The results of our optical modeling analysis highlight the importance of using HD-DOT for

higher sensitivity, localization of anatomy, and high spatial resolution. Given that optical sen-

sitivity decreases with depth, longitudinal comparisons of brain activity from the same patient

with conventional fNIRS may suggest changes in function that are reflective of the patient’s

changing anatomy rather than genuine functional changes. Further to this, if high-density or

DOT systems are not used, it is imperative that the subject has a recent anatomical (CT or

MRI) scan that can confirm that there is no significant atrophy in the region beneath the

NIRS optodes. It is also important that a comfortable device is used to increase acceptance

in a vulnerable population and improve tolerance for longer, more ecologically valid

studies.

3 Toward Naturalistic Study Design

Most studies using NIRS in dementia have primarily focused on frontal cortex activation tasks,

such as verbal fluency tasks to test word retrieval30 and n-back tasks to test working memory

function.31 In fact, the majority exclusively record from frontal regions, despite AD and DLB

predominantly affecting posterior cortices.32 Several studies have explored resting state oxy-

genation via tissue oxygenation index (e.g., Ref. 33), and a handful of studies investigated the

influence of symptomatic medication on brain oxygenation (e.g., Ref. 34). Although such stud-

ies have shown clear alterations in certain cognitive domains between dementia and healthy

aging,16 how these alterations relate to clinically relevant outcomes, such as prognosis, treatment

response, and potential subgroups, is unclear. A new breed of studies with higher ecological

validity are discussed here.

3.1 Ecologically Valid Study Designs

As a major advantage of NIRS is its lower sensitivity to movement compared with other neuro-

imaging methods, dementia patients can be tested during more intensive or naturalistic tasks

such as motor tasks; this includes any task that requires speech, as movement of the mouth

causes issues for research with both MRI and electroencephalogram (EEG). This is particularly

pertinent as many dementia subtypes present with motor deficits, such as DLB, Parkinsonian

dementia,35 and FTD.36 NIRS systems can also be portable and therefore used to perform

continuous monitoring in patients’ homes to assess the cognitive fluctuations associated with

dementia.29 Fiberless NIRS systems offer the ability to study cognitive activity during real-

world, naturalistic tasks.37 For example, dual-task walking paradigms are often used to inves-

tigate the effects of aging on prefrontal activity, e.g., Ref. 38. In the same vein, NIRS systems are

highly compatible with virtual reality (VR) systems, enabling the exploration of more natural-

istic environments and dynamic conditions.39 NIRS studies integrated with VR have been per-

formed to measure prospective memory, which has been shown to be impaired in mild AD

patients who were asked to interact with a virtual, immersive town.40 Immersive VR settings

allow the user to manipulate the virtual environment freely, a feature that can be leveraged to

design naturalistic tasks that would provide meaningful insights into memory loss.41 These

integrated studies offer the potential to perform region-of-interest analyses on a broad range of

multimodal data collected during multiple VR task designs, facilitating machine learning (ML)

and holistic analysis methods on these augmented datasets.
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3.2 Functional Connectivity

Although a few studies have explored FC using NIRS (e.g., Refs. 42 and 43), these analyses

were done with small channel numbers, low-density systems, or without subject-specific image

reconstruction.44 Cognitive decline in amnestic MCI (aMCI) and AD is typically addressed using

static (spatiotemporally invariant) FC models, in which reduced connectivity is observed in

aMCI/mild AD patients.45 However, studies utilizing dynamic FC maps have found that the

temporal variability of FC is discontinuous in aMCI and AD patients compared with healthy

controls.46 Subtler alterations in FC may be identified across symptomatology profiles and

clinical subgroups, using seed-based approaches and highly detailed topographical maps of

brain activation, enabled by HD-DOT.47 Additionally, NIRS can easily be compared with other

modalities and even used in conjunction with them, such as by combining EEG and NIRS19 or

PET and NIRS.48

3.3 Study Design Conclusion

Current fNIRS studies have demonstrated functional dysfunction in dementia, but how this

relates to clinically relevant outcomes is yet to be determined. By taking advantage of the wear-

ability of NIRS, improvements in task design with more naturalistic or resting state experiments

may allow for the recovery of clinically important biomarkers.

4 Need for Standardized, Intelligent, and Automated Data Analysis

One of the biggest challenges in NIRS experiments is the treatment of the data. It is relatively

easy to collect data, but to handle it appropriately and draw meaningful conclusions is challeng-

ing. We reviewed the current methods used in dementia NIRS studies and look toward a future

in which standardized analysis removes subjectivity—potentially with automated, intelligent

computing.

4.1 Preprocessing

Signal preprocessing is a crucial step in removing noise and extracting useful hemodynamic

information from the NIRS data. The vast majority of NIRS studies, including those on

dementia, involve similar preprocessing steps. First, raw light intensity signals are converted

into changes in HbO and HbR concentrations using the modified Beer–Lambert Law.

Physiological sources of noise are commonly removed using a Butterworth bandpass filter with

zero-phase filtering to account for phase distortion49 and baseline shifts are often eliminated via

detrending algorithms (e.g., Ref. 50). Motion correction methodologies vary greatly across

NIRS studies in dementia. Most dementia studies exclude trials involving motion artifacts

(e.g., Ref. 51), whereas others attempt to perform motion correction using wavelet-based motion

artifact removal by decomposing the NIRS signals in the wavelet domain and extracting wavelet

detail coefficients (e.g., Refs. 44 and 52).

4.2 Traditional Statistical Analysis

Almost all NIRS studies in dementia employ traditional statistical analysis methods. Most com-

monly, tests of significance using simple statistics, such as t-tests, are used to identify differences

in signal metrics across conditions. Activation refers to the increases in relative HbO concen-

tration, and the significance of activation is often determined via per-channel t-tests across

patient groups (e.g., Ref. 53). Paired t-tests have been used to compare group mean brain acti-

vation levels at different time steps, typically before and after a treatment course or intervention

(e.g., Refs. 54 and 55). Analysis of variance (ANOVA) tests, both one-way (e.g., Ref. 56) and

two-way (e.g., Refs. 57 and 58), are also often used for group-level comparisons of mean acti-

vation or tissue oxygenation index. Correlation analyses between behavioral data, such as the

correct answer ratio within tasks, and the degree of brain activation are typically performed using
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Pearson’s correlation coefficient (e.g., Refs. 59 and 60). When multiple statistical tests are per-

formed, a Bonferroni correction is typically applied to prevent family-wise errors (e.g., Ref. 61).

4.3 Machine Learning and Multivariate Analysis

The wide range of neuroimaging modalities used to characterize dementia in the past decades,

coupled with nonimaging clinical data from electronic medical records, has led to the generation

of large-scale patient datasets.62 These large volumes of data can augment traditional methods used

to characterize dementia progression through the introduction of ML analysis techniques. ML has

a range of applications in dementia research, including predictive modeling of the relationship

between input variables and clinical diagnoses, and pattern recognition within the data to study

disease progression fromMCI to AD.63,64 A large portion of neuroimaging studies use ML to train

a model that performs discriminative classification between different patient groups, the most

common being classification between AD and healthy controls, but also including classification

of MCI from AD and healthy controls, though with generally lower classification accuracies.65

Although no dementia research has been performed using HD-DOT and ML, there is a clear

opportunity for the high-density recording and localization afforded by HD-DOT to allow for

multivariate analysis looking at spatiotemporal dynamics of cortical representations. HD-DOT

offers higher spatial resolutions than traditional multichannel NIRS, which lends itself to

increased image quality. This offers the possibility of applying convolutional neural networks

(CNNs) directly on reconstructed brain images, rather than on statistical representations derived

from NIRS channel data (e.g., t-maps).

Both traditional ML analyses and, to a lesser degree, deep learning analyses have been

applied to NIRS imaging data to classify between different dementia stages. Finding discrimi-

native NIRS features to classify different stages of AD (mild AD, moderate-severe AD) from

healthy controls has been a recent problem, with accuracies around 60% using only NIRS fea-

tures in multiclass classification, which is lower than with features extracted from other imaging

modalities, such as EEG.19 In contrast, classification accuracies above 70% have been achieved

for binary classification tasks using traditional linear discriminant analysis (LDA) and support

vector machine (SVM) classifiers to distinguish between MCI and healthy controls, for

example.66

CNNs have been trained on spatial and temporal feature maps as input images from both MCI

and healthy controls, yielding average classification accuracies of 80% using temporal features

and higher classification accuracies using spatial and spatiotemporal features overall.67 CNNs

have also been trained using both t-maps and correlation maps, achieving classification accu-

racies of over 90% on binary tasks to classify MCI from healthy controls.68 Recently, long short-

term memory (LSTM) networks and combined CNN-LSTM models have demonstrated very

high accuracies of around 85% on multiclass AD NIRS datasets, compared with a wide variety

of traditional ML models, exemplifying the value of applying complex, multilayer models on

NIRS data.67 The predictive success of the models described above demonstrates the effective-

ness of both signal and image biomarkers in the early detection of AD, though further work is

required to identify discriminative features to perform diagnosis between less clearly delineated

stages of both AD and other forms of dementia.

4.4 Data Analysis Conclusion

As is the case for the wider NIRS field, preprocessing (and importantly, reporting of methods)

needs to be standardized to ensure consistency across studies and pave the way for multicenter

studies with large numbers of patients to produce impactful results. Automation and the use of

ML tools, even from the pre-processing stage, may improve the interpretation and understanding

of the increasingly complex data captured by NIRS devices.

5 Outlook for NIRS in Dementia Research

The existing literature shows that NIRS is a promising tool to study the progression of neuro-

vascular dysfunction in people with dementia. Advances in NIRS device design (particularly
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wearable HD-DOT) and data analysis have allowed for more complex, ecologically valid experi-

ments, which could improve the clinical relevance of the data. For example, sleep disorders are

common in dementia, and wearable NIRS devices allow sleep studies to be carried out in the

patient’s home.

Looking further into the future, developments in optical technologies are pushing NIRS beyond

hemoglobin oxygenation monitoring. Metabolism is known to decrease as dementia progresses,

and it is possible to measure metabolic activity via cytochrome-c-oxidase with broadband

NIRS69 or via cerebral metabolic rate of oxygen by combining NIRS with diffuse correlation

spectroscopy.70 It may be possible to measure other dementia-specific parameters, such as amyloid

beta deposits in-vivo via NIR fluorescence71 or CSF concentration72 to observe glymphatic system

fluctuations or the level of brain atrophy. The assessment of CSF biomarkers related to neurode-

generation, using broadband NIRS spectral analysis, may also be feasible.73 Additionally, optical

modeling using time resolved NIRS has demonstrated measurable differences in photon diffusion

as a result of CSF thickness variations,74 making it a promising method for studying dementia

progression. Finally, unique spectral features, identified using broadband NIRS and attributed

to the biochemical and structural differences present in those with AD75 offer a novel method for

investigating the pathophysiology of dementia as a whole. These advances are exciting, and

we look forward to the next generation of NIRS studies in dementia.

To conclude, there is a need for suitable neuroimaging tools in dementia research that can

capture the dynamic functional, vascular and/or metabolic changes associated with dementia in

an unintrusive manner. The recent successes of fNIRS in neurodevelopmental research, in which

it is vital to capture subtle longitudinal changes, give promise for the use of NIRS at the other end

of the life spectrum - neurodegeneration. We look optimistically to a future in which improve-

ments in the design of NIRS devices and methods have led to fNIRS becoming a well-

established and well-regarded tool that dementia researchers and clinicians can use to build

an understanding of this complex disease.
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