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In 1923, the Philosophical Transactions published G. I.
Taylor’s seminal paper on the stability of what we
now call Taylor–Couette flow. In the century since the
paper was published, Taylor’s ground-breaking linear
stability analysis of fluid flow between two rotating
cylinders has had an enormous impact on the field of
fluid mechanics. The paper’s influence has extended
to general rotating flows, geophysical flows and
astrophysical flows, not to mention its significance in
firmly establishing several foundational concepts in
fluid mechanics that are now broadly accepted. This
two-part issue includes review articles and research
articles spanning a broad range of contemporary
research areas, all rooted in Taylor’s landmark paper.

This article is part of the theme issue ‘Taylor–
Couette and related flows on the centennial of Taylor’s
seminal Philosophical Transactions paper (part 2)’.

In a remarkable paper published in the Philosophical
Transactions A a century ago, G. I. Taylor connected
theory and experiment in his ground-breaking investiga-
tion of flow between differentially rotating concentric
cylinders [1]. The paper is sometimes described as
the first convincing proof of the applicability of
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mathematical approaches to predict stability as well as proof of the fundamental correctness of the
Navier–Stokes equations and the no-slip boundary condition [2], which are foundational concepts
in modern fluid mechanics.

Taylor’s 1923 paper has inspired several generations of researchers in fields ranging from
nonlinear dynamics to astrophysics. Not only does Taylor–Couette flow display remarkable
vortical patterns that are easily generated and visualized, it is a test bed for studies probing
fundamental aspects of fluid flow as well as practical engineering applications.

Part 1 of this two-part theme issue explored contemporary topics related to Taylor–
Couette flow including turbulent, convective and two-phase flows as well as extensions to
magnetohydrodynamic, ferrofluidic and viscoelastic flows and flow geometries that are closely
related to the Taylor–Couette problem [3–18]. Part 2 of this theme issue continues with review
articles and research articles having their origin in Taylor’s 1923 paper. Like Part 1, contributions
in Part 2 come from an international community of leading researchers studying fluid flows that
all connect back to Taylor’s 1923 pioneering work published in the Philosophical Transactions.

This issue starts with several papers that consider much the same problem as Taylor did,
but with an emphasis on turbulence rather than the linear onset of instability. Feldmann
et al. [19] review the different routes to turbulence in the classical problem. Wang et al. [20]
present numerical results in the supercritical turbulent spiral regime. Merbold et al. [21] conduct
experiments in a relatively unexplored parameter space, namely the very wide gap case with
cylindrical radius ratio ri/ro = 0.1. Most of their resulting flow states are also turbulent.

As in Part 1, we have several papers on the interaction of Taylor–Couette flow with convection,
but with one crucial difference. The papers in Part 1 imposed a temperature gradient in the
cylindrically radial direction, which corresponds to a radial force field playing a role like that
of gravity. By contrast, the papers here impose gradients in the axial direction, matching gravity
in a typical laboratory setting. Lopez et al. [22] review Taylor–Couette flows in stably stratified
configurations. Closely related to this is the paper by Meletti et al. [23], who present numerical
work on the so-called strato-rotational instability. This is an intriguing phenomenon whereby
the imposed differential rotation can be in the Rayleigh-stable regime, and the stratification by
itself would also be stable, but the combination of the two is nevertheless unstable. By contrast,
Masuda et al. [24] impose unstable axial temperature gradients, and then study how the resulting
convection interacts with the underlying Taylor–Couette flows.

Ji & Goodman [25] present a review of magnetohydrodynamic Taylor–Couette flows, with a
particular emphasis on the magnetorotational instability and attempts to obtain various versions
of it in liquid metal experiments. Both the magnetorotational instability and the strato-rotational
instability are believed to be important in understanding the dynamics of astrophysical accretion
discs, so experiments specifically targeting this regime are of considerable interest.

As was the case in Part 1, the Taylor–Couette problem can be extended by considering
fluids that are more complex than Newtonian fluids. Bai et al. [26] and Moazzen et al. [27] both
present experimental results using viscoelastic fluids. Lopez & Altmeyer [28] consider viscoelastic
fluids numerically, and obtain arrow-shaped rotating waves. Panwar et al. [29] conduct
experiments involving oil-in-water emulsions in Taylor–Couette flows. Kang & Mirbod [30]
present a numerical study of non-colloidal suspensions in a Taylor–Couette flow.

Finally, and again as in Part 1, there are a variety of systems and geometries that are not
strictly Taylor–Couette flows as such, but are nevertheless closely related. Nagata [31] presents
theoretical comparisons of very narrow gap Taylor–Couette flow and rotating plane Couette
flow. Krivonosova et al. [32] consider spherical Couette flow, the flow between differentially
rotating spheres. After a brief review of the subject, they investigate the effect of noise on some
of the resulting flow states. Sharma et al. [33] numerically study two lid-driven flow systems and
confirm the presence of a Taylor–Görtler-like instability in those geometries.

This two-part theme issue is a fitting tribute to celebrate the centennial of Taylor’s foundational
paper in the Philosophical Transactions. It is clear that the study of Taylor–Couette flow will
continue to provide a basis for a broad range of important and fundamental research topics for
many decades to come.
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