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Abstract 

Spinel ferrites (SFs) with composition Cu0.5Cd0.5-xCoxFe2O4 (x = 0.0, 0.125, 0.25, 0.375, 

0.5) were prepared via the effective and low-cost sol-gel auto combustion process. X-ray 

diffraction confirmed the single-phase spinel matrix. Furthermore, with increasing Co2+ ions 

doping the lattice constant (a) was reduced and crystal size increased. The variation in two major 

absorption and vibration bands at tetrahedral and octahedral sites also confirmed the substitution 

of dopant ions in lattice sites. Moreover, the bandgap energy was measured using UV-visible 

analysis and was increased with the doping of Co2+ and was 2.44 eV for x = 0.375. At 313 K, the 

highest electrical resistivity and activation energy were 7.17 × 108  cm and 0.44 eV, 

respectively for the sample x = 0.375. The maximum dielectric constant and tangent loss was 

observed, while the Q factor was minimum for sample x = 0.375 (as clear from the graphical 

abstract). The coercivity was 536.82 Oe and saturation magnetization had a value of 128.49 

emu/g with microwave frequency 28.40 GHz for sample x = 0.375. The following results 

suggested that the sample with x = 0.375 is useful for high-frequency resonant circuits and 

multilayer chip inductors applications. 

Keywords: sol-gel auto combustion; single-phase; resistivity; magnetization; microwave. 
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Graphical Abstract  
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Highlights 

 Low-cost, and effective sol-gel auto combustion synthesis of Cu0.5Cd0.5-xCoxFe2O4. 
 The crystal size was observed at 46.61 nm and the optical bandgap was found 2.44 eV for 

sample x = 0.375. 
 The highest electrical resistivity and the activation energy were 7.17 × 108  cm and 0.44 eV 

for sample x = 0.375. 
 The maximum dielectric tangent loss and minimum Q factor were observed for x = 0.375. 
 The saturation magnetization was maximum for sample x = 0.375. 
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1 Introduction 

Spinel ferrites (SFs) have gained enormous consideration due to their unique 

characteristics including high coercivity, low eddy current loss, low magnetization, and high 

resistivity. The SFs have the general formula MFe2O4 where M is divalent ions including Mg2+, 

Cu2+, Co2+, Zn2+, and Cd2+, etc. The SFs structure is a cubic closely packed oxygen atoms 

arrangement in which the oxygen layer contains 32 octahedral (B-) and 64 tetrahedral (A-) sites 

[1]. The inversion parameter (δ) is used to describe the cation distribution, which is dependent on 

the synthesis process and composition [2]. With δ = 0, Cd2+ cations occupy A-sites, and Fe3+ 

cations occupy B-sites, bulk cadmium ferrite (CdFe2O4) is a normal spinel [3]. Cu2+ and Co2+ 

cations occupy B- sites, and only a limited quantity of Cu2+ and Co2+ ions migrate from the B- 

sites to the A- sites in copper ferrite (CuFe2O4) and cobalt ferrite (CoFe2O4), respectively. These 

are known as a partially inverted (δ → 1) spinel matrix [4, 5]. Numerous investigations have been 

done on the results of Cu [6-10], Cd [11-14], Co [15-21], Cu-Cd [22], Cu-Co [23], Co-Cd [24], 

and Cu-Cd-Co [25] ferrites. The properties of SFs are affected by dopant ions. The best of our 

research indicates that there are few reports on Cu0.5Cd0.5-xCoxFe2O4 (x = 0.0, 0.125, 0.25, 0.375, 

0.5) ferrite powder. 

The unique characteristics of low-cost copper metal and the advancement of fabrication 

methods for CuFe2O4 ferrite with distinct physical properties have opened up numerous 

possibilities for its use in different applications including photocatalysts [6], lithium-ion batteries 

[7, 8], energy storage material [9], and photoanodes for solar water oxidation [10]. Normal spinel 

matrix and nonmagnetic character can be seen in bulk CdFe2O4. Cd ferrite is used for different 

applications including photocatalytic degradation [11], ethanol sensing [12, 13], and gas sensing 

[14], whereas in the nano range, an inverted spinel matrix with improved magnetic properties has 

been observed [26]. The initial permeability and density of the ferrites increase as a result of the 

incorporation of Cd2+ ions, and the magnetic loss factor decreases [27]. Because of its high 

anisotropy constant, high coercivity, and low magnetization, CoFe2O4 ferrite is used in a variety 

of applications in medicine (for example DNA isolation [15], magnetic resonance imaging 

(MRI) contrast agents [16], and magnetically activated medication delivery [17]) to electronics 

(for example microwave frequency [18], and optoelectronics [18], Magnetostrictive and gas 

sensors [28]). CoFe2O4 is a promising candidate for biosensors [19], heating agents of magnetic 

hyperthermia [20], targeting drug delivery carriers [21] due to the remarkable changes made to 

https://www.sciencedirect.com/topics/physics-and-astronomy/bioinstrumentation
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specific parameters including DC resistivity, particle size, saturation magnetization, and initial 

permeability by transforming the bulk material into the nanostructure. Gabal et al., [22] reported 

Cu0.5Cd0.5Fe2O4
 (Cu-Cd) ferrite synthesized by metal oxalate thermal decomposition method and 

observed a lattice constant of 8.473 Å along with an X-ray density of 5.758 g/cm3. Farooq et al., 

[23] prepared Cu0.6Co0.4Fe2O4
 (Cu-Co) ferrite using the co-precipitation route and stated a lattice 

constant of 8.401 Å. The crystallite size of 35.48 nm and X-ray density of 5.318 g/cm3 was 

observed. Moreover, the electrical resistivity of 6.48 × 108  cm and bandgap energy of 2.05 eV 

were reported. The resistivity of the Cu-Co ferrite is of the order of 108  cm used for 

telecommunication devices. Asghar et al., [24] reported that Co0.3Cd0.7Fe2O4 (Co-Cd) ferrite has 

a crystallite size of 9.284 nm. The as-synthesized Co-Cd ferrites revealed paramagnetic 

behaviour and promising candidate for high-density memory devices and transformers 

applications.  Hussain et al., [25] reported co-precipitation preparation of Cu0.5Cd0.25Co0.25Fe2O4 

(Cu-Cd-Co) ferrite and their structural, optoelectrical, magnetic, and dielectric properties. They 

reported experimental lattice constant was 8.4693 Å and the crystallite size was 31.24 nm. Also, 

the electrical resistivity is 9.902 × 107  cm and has a bandgap energy is 3.48 eV. The coercivity 

has a value of 675 Oe, and magnetization is 23.29 emu/g. Moreover, such material is useful for 

transformers, and deflection yolks. 

If the material is synthesized on a nanoscale with attention by managing the preparation 

method, the predicted change in numerous parameters for any given application can be made 

available to a greater extent. Co-precipitation route [25, 29-31], reverse micelle [32], a sol-gel 

auto-combustion (SGAC) technique [33-39], ultrasound irradiation method [40], microemulsion 

method [32], and hydrothermal route [41] are the most common synthesis methods. The SGAC 

synthesis method has shown incredible potential in the preparation of SFs. The following are 

some of the benefits of the SGAC route: (i) process initiates at low temperatures; (ii) high 

product crystallinity and purity; (iii) low processing time; (iv) good chemical homogeneity [42].  

In this article, we have reported the influence of Co2+ doping on spectral, optical, 

electrical, dielectric, and magnetic properties of Cu0.5Cd0.5-xCoxFe2O4 [Co-CCF] (x = 0.0, 0.125, 

0.25, 0.375, 0.5) SFs prepared by SGAC process. Because of low losses, high coercivity, low 

magnetization, high resistivity, good chemical stability, and high Curie temperature, Cu-Cd, Cu-

Co, and Cu-Cd-Co ferrites are one of the promising soft ferrites used in electronic devices like 
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telecommunication devices, deflection yolks, high-density memory devices, and transformers 

applications. 

2 Experimental parts 

2.1 Samples preparation method        

  The Co2+ doped Cu-Cd SFs powder was prepared through the sol-gel auto-combustion 

method with composition Cu0.5Cd0.5-xCoxFe2O4 (x = 0.0, 0.125, 0.25, 0.375, 0.5). The following 

metal nitrates including Cu(NO3)2.3H2O, Cd(NO3)2·4H2O, Co(NO3)2.6H2O, and Fe(NO3)3·9H2O 

were utilized for sample preparation. To synthesize Co-CCF SFs, nitrates and citric acid were 

taken 1:1 and separately dissolved in deionized water. The pH~7 was maintained with the 

addition of ammonia dropwise. The solution was continuously stirred and formed a gel at 573 K. 

Finally, after a few minutes, the gel was transformed into fluffy powder by auto-combustion. The 

combusted fluffy ferrite powder was sintering at 1023 K for 8 h and grounded to convert it into 

fine powder. This fine powder is used to perform different characterizations. The pictorial 

illustration of the synthesis procedure is given in Fig. 1. 
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Fig. 1 Pictorial representation for the synthesis of Co-CCF samples 

2.2 Characterization performed        

X-ray diffraction (XRD) spectra of Co-CCF samples were measured through Bruker 

Advance Diffractometer. Absorption band spectra were obtained using FTIR spectroscopy. A 

UV-visible spectrophotometer was employed to evaluate the optical bandgap. LCR Meter 

(IM3536 model) was employed to record the dielectric parameters at room temperature (RT). 

Keithley Electrometer Model 2400 was used to measure the resistivity using the two probes I-V 

measurement technique. To record the magnetic behaviour of the ferrites, a vibrating sample 

magnetometer (VSM), Model VSM-175 was utilized in the range of ±5000 Oe. 
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3 Results and discussion 

3.1 Structural analysis  

XRD spectra of Co-CCF powder samples are depicted in Fig. 2. The single-phase spinel 

cubic matrix was confirmed with the labeled peaks (220), (311), (222), (400), (422), and (511) 

[25, 43]. The experimental lattice constant (a) was determined and the unit cell volume (Vcell) 

using relation (1) and (2) [43], respectively. 𝑎 =  𝜆2𝑆𝑖𝑛𝜃 √ℎ2 + 𝑘2 + 𝑙2                                      (1)     

     𝑉𝑐𝑒𝑙𝑙 = 𝑎3                                                         (2) 

The determined values of “a” are given in Table 1 and value of “a” was 8.412 Å for pure Cu-Cd 

ferrites (x = 0.0), which then reduced from 8.487 Å to 8.371 Å with the insertion of Co2+ ions (x 

= 0.125 – 0.5) in the lattice. The interplanar spacing (d) and values of “Vcell” also decreased with 

the doping of Co2+ ions (Table 1). The substitution of smaller ionic radii Co2+ (0.74 Å) with 

larger ionic radii Cd2+ (0.78 Å) is responsible for the decreasing lattice constant [23]. 

Furthermore, the decline is caused by the shifting of the most conspicuous peak (311) and the 

decreasing behaviour of interplanar spacing [23]. The crystallite size (D) of the Co-CCF 

materials was estimated via the Scherrer formula [43, 44];   𝐷 =  𝐾𝜆𝛽𝑐𝑜𝑠𝜃                                                  (3)   

The “D” of the as-synthesized ferrites is seen in Table 1 and the values of “D” decreased with 

increasing the doping of Co2+ ions up to x = 0.125 and then crystallite size increased with 

increasing Co2+ concentration from x = 0.25 to x = 0.5. The pictorial representation of Co2+ 

doping versus crystallite size and lattice constant is given in Fig. 3. The intensity of diffraction 

peaks reduced with an increase in Co2+ doping, which indicates that the increase in the Co2+ ion 

content (x = 0.125) decreases the crystallite size, and further increasing the Co2+ concentration (x 

= 0.25 – 0.5) increased the crystallite size. The result revealed that a low concentration of Co2+ 

ions controls and retards the growth of the crystallite size, while high doping level of Co2+ favors 

the growth of the crystallite size at the nucleation centers, which resulted in higher crystallite size 

[45]. The hopping lengths (HA, HB) and polaron radius (γ) were determined by employing the 

relations (4), (5), and (6) [25, 43], respectively.  

HA = 
𝑎√34        (4) 
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HB = 
𝑎√24        (5) 

γ = 12 √𝜋 𝑎35763
       (6) 

Table 1 revealed that with the addition of Co2+ ions, tetrahedral (HA) and octahedral (HB) 

hopping lengths were reduced. It may be owing to the decrease in the lattice constant of as-

synthesized Co-CCF samples. The hopping lengths and polaron radius behaved similarly and 

declined as the Co2+ doping increased.  
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Fig. 2 XRD spectra for Co-CCF samples 

Table 1 Structural parameters of Co-CCF samples 

x 
D 

(nm) 

d 

(Å) 
a 

(Å) 
δ ×10-4  

(nm-2) 

Vcell 

 (Å)3 

HA 

(Å) 
HB 

(Å) 
γp 

(Å) 
0.0 42.36 2.536 8.412 5.57 595.37 3.642 2.973 0.753 

0.125 35.76 2.558 8.487 7.81 611.31 3.674 3.000 0.760 
0.25 42.28 2.549 8.454 5.59 604.27 3.660 2.988 0.757 
0.375 46.61 2.533 8.403 4.60 593.41 3.638 2.970 0.752 
0.5 50.88 2.524 8.371 3.86 586.64 3.624 2.959 0.749 

  

 The estimated cation distribution for Co-CCF samples is shown in Table 2. The CoFe2O4 

(4% Co2+ ions reside at A- sites and 96% ions reside at B-sites) and CuFe2O4 (25% Cu2+ ions 

reside at A- sites and 75% Cu2+ ions reside at B-sites) ferrites have an inverse spinel structure 
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[46, 47]. Cd2+ ions prefer to reside on A-sites and ions of Fe3+ reside at both A- and B-sites [48]. 

The cationic radii at tetrahedral (rA) and octahedral (rB) sites were estimated via relations (7) and 

(8), respectively, and are given in Table 2. 𝑟𝐴 = (𝐶𝐶𝑢2+𝐴 )(𝑟𝐶𝑢2+) + (𝐶𝐶𝑑2+𝐴 )(𝑟𝐶𝑑2+) + (𝐶𝐶𝑜2+𝐴 )(𝑟𝐶𝑜2+) + (𝐶𝐹𝑒3+𝐴 )(𝑟𝐹𝑒3+)                (7) 𝑟𝐵 = 12 [(𝐶𝐶𝑢2+𝐵 )(𝑟𝐶𝑢2+) + (𝐶𝐶𝑜2+𝐵 )(𝑟𝐶𝑜2+) + (𝐶𝐹𝑒3+𝐵 )(𝑟𝐹𝑒3+)]                (8) 

where C is the concentration of the composition ions (Cu, Cd, Co, and Fe). The ionic radii of 

Co2+ are 0.74 Å for B-site and 0.58 Å for A-site [49]. The cationic radii of Cd2+ are 0.78 Å, for 

Fe3+ ions are 0.645 Å for B-site and 0.49 Å for A-site [49]. The Cu2+ ion has ionic radii of 0.72 Å 

for the B-site and 0.57 Å for the A-site [49]. The theoretical lattice constant (𝑎𝑡ℎ) was determined 

using relation (9) [50]; 𝑎𝑡ℎ = 83 √3 [(𝑟𝐴 + 𝑅°) + √3(𝑟𝐵 + 𝑅°)]                                                  (9) 

It was clear from Table 2 that the value of “𝑎𝑡ℎ” was reduced with the addition of dopant ions 

whereas both “a” and “ath” versus Co2+ concentration (x) are depicted in Fig. 3. The theoretical 

lattice constant values are close in agreement with the experimental lattice constant. There is a 

mismatch between the host site radius and the ionic radius of the substitute ions due to an 

increase in the lattice constant because the replacement ions fill up a large space as the dopant 

concentration increases, and the lattice constant increases as well [51]. 

 

Table 2 Estimated cation distribution, tetrahedral and octahedral radii with theoretical lattice 

constant of Co-CCF samples 

x 

Lattice site Ionic radii Theoretical lattice 

constant 

A-site B-site 
rA 

(Å) 
rB 

(Å) 
ath 

(Å) 
0 (Cu0.125Cd0.5Fe0.375)A [Cu0.375Fe1.625]B 0.645 0.661 8.307 

0.125 (Cu0.125Cd0.375Co0.005Fe0.495)A [Cu0.375Co0.12Fe1.505]B 0.609 0.666 8.265 
0.25 (Cu0.125Cd0.25Co0.01Fe0.615)A [Cu0.375Co0.24Fe1.385]B 0.573 0.672 8.226 
0.375 (Cu0.125Cd0.125Co0.015Fe0.735)A [Cu0.375Co0.36Fe1.265]B 0.537 0.678 8.187 
0.5 (Cu0.125Co0.02Fe0.855)A [Cu0.375Co0.48Fe1.145]B 0.502 0.683 8.146 
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Fig. 3 Co2+ concentration (x) versus crystallite size, experimental and theoretical lattice 

constants 

3.2 Absorption bands analysis  

 The Co-CCF sample's FTIR spectra are represented in Fig. 4 in the frequency range of 

400–3500 cm-1. The FTIR spectra indicate two main absorption bands ~400 cm−1 and ~600 cm−1 

for the octahedral (B) site and tetrahedral (A) site [52], respectively. Fig. 4 shows variations in 

the shifting of bands and broadening of the absorption peaks with increasing Co2+ concentration 

(x). The main reason for the shift and broadening in absorption peaks are replacement of dopant 

ions in the replacement of Fe3+ ions with dopant ions at tetrahedral and octahedral sites of the 

spinel ferrites [53]. The A- and B- sites in a spinel matrix are allocated to the higher (υ1) and 

lower (υ2) frequency bands, having ranges (513 – 539 cm-1) and (419 – 472 cm-1), respectively 

(Table 3). The absorption bands are ~1600 cm−1 due to H–O–H group and absorbing ~2350 cm-

1 is attributed to atmospheric CO2 [54]. The force constant (K) was determined by employing the 

equation (10) [55]; 

K = 4𝜋2 𝑣2𝑐2𝑚    (10) 

‘c’ is the speed of the light (3×1010 cm/s), ‘υ’ is the absorption band for both sites, and ‘m’ is the 

reduced mass (2.601 × 10-23 g) [54]. The force constant at tetrahedral (K1) and octahedral (K2) 

sites increased with the increasing Co2+ concentration (as seen in Table 3) due to the movement 

of O2- ions towards Fe3+ ions at lattice sites as a result of charge imbalance caused by Fe3+ ion 
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migration from A– to B– sites. This movement causes a decrease in bond length and, as a result, 

an increase in the force constant [56]. 

 

Table 3 Absorption bands and force constants of as-
prepared samples 

x 
υ1  

(cm-1) 

υ2  

(cm-1) 

K1 × 105  

(dyne cm-1) 
K2 × 105  

(dyne 

cm-1) 

0.0 513 419 2.43 1.62 
0.125 527 461 2.56 1.96 
0.25 531 462 2.61 1.97 
0.375 533 463 2.63 1.99 
0.5 539 472 2.68 2.05 
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Fig. 4 FTIR spectra for Co-CCF samples 

 

3.3  Vibrational modes analysis  

Raman patterns were measured in the range of 200 to 800 cm-1 and depicted in Fig. 5(a-

d) for samples x = 0.0, 0.125, 0.25, and 0.375, respectively. According to group theory, the 
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vibrational modes of spinel/inverse spinel cubic structure owned by the (F d -3 m) space group, 

are below [57]; 𝛤 = 𝐴1𝑔(𝑅) + 𝐸𝑔 (𝑅) + 𝑇1𝑔 + 3𝑇2𝑔(𝑅) + 2𝐴2𝑢 + 2𝐸𝑢 + 5𝑇1𝑢(𝐼𝑅) + 2𝑇2𝑢  (11) 

where A1g, Eg, and 3T2g are fundamental active Raman modes. The observed values of all 

the Raman modes in the as-prepared Co-CCF samples are given in Table 4. The vibrational band 

“𝑇1𝑔(1)” and “𝐴1𝑔” were found in the range of 292.73 – 299.08 cm-1 and 664.31 – 688.45 cm-1 

respectively belonging to the tetrahedral site. The octahedral site vibrational bands “𝐸𝑔”, 𝑇1𝑔(2) 

and 𝑇1𝑔(3) lie in the range of 328.77 – 386.91 cm-1, 468.87 – 478.19 cm-1, and 540.98 – 615.40 cm-

1, respectively. 
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Fig. 5(a-d) Raman spectra for Co-CCF samples 

 

Table 4 Raman modes for Co-CCF samples 

x 

Raman shift (cm-1) 

T2g (1) Eg T2g (2) T2g (3) A1g 

Tetrahedral (A)  
site  

Octahedral (B)  
site  

Tetrahedral (A)  
site  

0.0 292.73 386.91 478.19 540.98 666.68 
0.125 297.56 336.40 473.90 541.05 664.31 
0.25 293.61 328.77 469.47 615.40 681.11 

0.375 299.08 337.52 468.87 611.57 688.45 

 

3.4 Optical bandgap energy analysis  
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To calculate the optical bandgap energy of Co-CCF samples Tauc’s plots were used and 

are depicted in Fig. 6(a-e). The optical bandgap energy (Eg) was estimated using Tauc’s equation 

[50, 58];  (𝛼ℎ𝜐)2 =  𝐵 (𝐸𝑔 –  ℎ𝜐)     (12) 

where “B” is the proportionality constant, “hν” is light energy, and “α” is the absorption 

coefficient.  In spinel ferrites, the optical bandgap energy values depend on the lattice constant, 

with a decrease in the bandgap energy values being correlated with an increase in the lattice 

constant and vice versa [59, 60]. In the present case, the lattice constant decreased with the 

increasing the Co2+ ions concentration, which is related to an increase in optical bandgap energy. 

The optical bandgap values were observed at 1.77 eV, 1.80 eV, 2.29 eV, 2.44 eV, and 2.62 eV 

for Co2+ concentration enhanced from x = 0.0 to x = 0.5 in Co-CCF samples. Fig. 6(a-e) also 

revealed that the values of “Eg” were increased with the doping of Co2+ in the CCF lattice.  
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Fig. 6(a-e) Tauc’s plots for Co-CCF samples 

3.5 Current-voltage (I-V) analysis  

The characteristics of certain materials by which they create hindrances in flow electrons 

are called electrical resistivity and are calculated using [61]; 𝜌 =  𝑅𝐴𝐿     (13) 

where “R” was calculated as R = 1/slope from current-voltage curves, “A” is the area and “L” 

referred to the thickness of prepared pellets. In solids, resistivity is highly sensitive to its defect 

formation and stoichiometric composition [61]. Fig. 7 depicted the Arrhenius plots. The 
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temperature at which the nature of material changes is called Curie temperature (TC) and is given 

in Table 5. Fig. 7 shows in the ferro region (low-temperature region) the resistivity was 

maximum for x = 0.0 and in the para region (high-temperature region) the maximum resistivity 

was found for sample x = 0.375. The process known as Vervey's hopping is used to explain this 

resistivity behaviour. According to that process, spinel ferrites conduct due to electronic 

exchange between Fe2+ and Fe3+ ions located on the B- site. The distance between ions and 

activation energy has a huge impact on the hopping process. When compared to the distance 

between two metal ions on the A- and B- sites, the two metal ions at B-site are substantially 

closer to each other. As a result, hopping between two metal ions on the same site is significantly 

easier than hopping between two distinct sites. As a result, there is no hopping between the A- 

and B- sites since Fe3+ ions only exist at B- site and Fe2+ ions are accommodated on the B- site 

[61]. For the activation energy of samples, the slope of each resistivity curve (as illustrated in 

Fig. 7) was taken, and the relation (14) [50] was used to determine the activation energy.  𝐸𝑎 = 2.303 × 𝑘𝐵 × 1000 × 𝑠𝑙𝑜𝑝𝑒 (𝑒𝑉)    (14) 

The activation energy in SFs originates from the charge carrier's mobility and is affected 

by dopant ion replacement in the lattice. The activation energy and hopping process are 

inextricably related, and the resistivity follows the same pattern as the activation energy [62]. 

The activation energy and resistivity were reduced with the substitution of Co2+ ions (as seen in 

Table 5 and Fig. 8) at 313 K (room temperature). Fig. 9(a) and Fig. 9(b) represent the Co2+ 

concentration (x) versus resistivity at low temperature (383 K – 503 K) and resistivity at high 

temperature (523 K – 773 K). It was noted from Fig. 9(a) and Fig. 9(b) that at low and high 

temperatures the resistivity was maximum at Co2+ concentration x = 0.375.  

 

Table 5 Electrical parameters of Co-CCF samples 

Co2+ 

content 

(x) 

Resistivity 

× 108 at 

313 K 

(Ω cm) 

Curie 

Temperature  

(K) 

Activation 

energy 

(eV) 

0.0 18.21 323 0.74 
0.125 4.46 343 0.48 
0.25 4.58 343 0.45 

0.375 7.17 353 0.44 
0.5 1.15 333 0.38 
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Fig. 7 Arrhenius plots of Co-CCF samples 
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Fig. 8 Co2+ concentration (x) versus resistivity at 313 K and activation energy 
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Fig. 9 Co2+ concentration (x) versus (a) log of resistivity at low temperature (383 K – 503 K) 

and (b) log of resistivity at high temperature (523 K – 773 K) 

 

3.6 Dielectric analysis 

The dependency of the Co-CCF sample's dielectric constant (ε’) on frequency is shown in 

Fig. 10(a). The value of ε’ was reduced by enhancing the frequency. The high value of ε’ was 

related to the contributions from space charge, interface, and ionic polarization at lower 

frequencies. At high frequencies, the dielectric constant showed frequency-independent 

behaviour because of the instability of dipoles to obey the rapid alteration of the applied field. 

The reduction in the ε’ with rising frequency is due to the theory of Koop and Maxwell–Wagner 

[63]. Fig. 10(b) indicates the dielectric tangent loss (tan δ) and frequency relation for Co-CCF 

samples. The values of “tan δ” revealed a similar trend to the values of ε’. With increasing 

frequency, the “tan δ” was reduced and at low frequency, the “tan δ” has a maximum value as 

compared to high frequency. The dielectric loss is induced by impurities, defects, and grain 

boundaries, in the spinel matrix, and is linked with a lag in polarization with respect to the 

applied field [63]. 
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Fig. 10 log of frequency versus (a) dielectric constant (b) tangent loss (c) ac conductivity (d) 

Quality factor for Co-CCF samples  

Fig. 10(c) revealed that at low frequency the ac conductivity is independent of frequency 

and at high frequency, there is frequency-dependent behavior of conductivity. The ac 

conductivity (σac) of Co-CCF samples is given via equation [63]; 

σac = 2πf tan δ      (15) 

The Maxwell-Wagner two-layer model described the frequency dependence behavior of 

conductivity. This model revealed that the grain boundary is further prominent at low 

frequencies, that’s why the hopping frequency of the electrons among cations is small at low 

frequencies. With a rise in frequency, more active conductive grains facilitate the electron 

hopping process between Fe2+ and Fe3+ ions. Consequently, the conductivity rises with a rising in 

frequency [63]. Quality factor (Q factor) was the evaluation of the relation between deposited 
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energy and the rate of energy dissipation in definite electrical constituents and gadgets, hence 

describing their effectiveness. Fig. 10(d) describes the frequency dependence quality factor of 

Co-CCF samples. Fig. 10(d) revealed that the Quality factor increased with the applied 

frequency. The higher Q factor ferrites are useful for high-frequency resonant circuits and 

multilayer chip inductor applications [64]. The tangent loss and Q factor at low (1600 to 12800 

Hz) and high (100 to 500 kHz) frequencies are depicted in Fig. 11(a-b) and Fig. 11(c-d), 

respectively measured at RT. In our current series of Co-CCF samples, the sample with 

concentration x = 0.5 has a greater Q factor and tangent loss was minimum for x = 0.5 at low and 

high frequencies. Therefore, it is better to use for high-frequency resonant circuits and multilayer 

chip inductors applications. 
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3.7 Magnetic analysis 

The M-H loops for the Co2+ doped CCF powder at RT are revealed in Fig. 12(a). The 

magnetic parameters are listed in Table 6. The replacement of non-magnetic ions in SFs causes a 

change in MS, which reaches a maximum with increasing dopant ion concentration and decreases 

with further increasing concentration of substitute ions. Moreover, the distribution of cations 

affects also the nonlinear variation of the MS because the net magnetic moment at a given site is 

determined by the percentage of the cation present there and their magnetic moment [65]. The 

saturation magnetization (MS) was 90.61 emu/g for the pure CCF sample (x = 0.0) and for Co2+ 

doping x = 0. 5 the MS was 120.85 emu/g. The variation in saturation magnetization of SFs 

results from the different metal ion magnetic moments at the B- and A- sites in a cubic structure. 

The nonmagnetic Cd2+ (0 μB) occupy the A-site [66], and highly magnetic Co2+ (3 μB) divalent 

cation and Fe3+ (5 μB) preferably occupy the A- and B- sites [66]. In SFs, structural parameters 

including crystallite size, density, and porosity affect the value of MS for a specific composition 

[65, 67]. It was clear from Table 1 that the crystallite size was 46.61 nm and saturation 

magnetization was 128. 49 emu/g for x = 0.375 sample. The impact of cationic position and their 

stoichiometry in certain lattice sites is linked to large values of remanent magnetization (Mr) and 

coercivity (HC) [68]. The change in HC depends upon crystallite size, domain structure, 

anisotropy, and porosity. The increased in HC is attributed to the increase in the anisotropy [69]. 

The increased in crystallite size also responsible for the increase in coercivity [70]. The sample's 

remanent magnetization was minimum for x = 0.0 and maximum for x = 0.0375. Furthermore, 

the maximum coercivity was 709.52 Oe for x = 0.5. The squareness ratio (SQ = Mr/Ms) was 

enhanced with the substitution of Co2+ in the CCF sample. The “SQ” ratio, which ranges from 0 

to 1, determines whether various sorts of inter-grain group exchanges are absent or exist. 

According to the literature, SQ < 0.5 indicates particle magnetostatic interaction. While SQ = 0.5 

applies to coherently rotating, randomly oriented, non-interacting particles, and 1 > SQ > 0.5 

indicates the presence of exchange coupling particles [71]. It was observed from Table 6 that the 

SQ ratio for all the samples has less than 0.5 which indicates the existence of particle 

magnetostatic interaction. The magnetic anisotropy (𝐾 =  𝐻𝑐× 𝑀𝑠0.96 ) [52] is significantly affected by 

rising Co2+ in the CCF lattice. With the addition of Co2+, the anisotropy constant was increased, 

indicating that the magnetic dipoles are more aligned in each direction [72, 73]. The initial 

permeability (𝜇𝑖 =  𝑀𝑠2×𝐷𝐾 ), where D is crystallite size [52] was maximum for x = 0.125 sample. 
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The applied field versus microwave frequency (𝜔𝑚 = 8𝜋2𝑀𝑠𝛾) plots are depicted in Fig. 12(b), 

where γ = 2.8 MHz/Oe is a gyromagnetic fraction [34, 74-77]. The “𝜔𝑚” is directly proportional 

to the “MS”, as shown by the above relation, and it was clear higher the value of “MS”, the 

greater will be the value of “𝜔𝑚”. The values of “𝜔𝑚” are reported in Table 6 and for x = 0.0 

(20.03 GHz), while for x = 0.5 the value of “𝜔𝑚” was 26.71 GHz and had a maximum value of 

28.40 GHz for x = 0.375. 

Table 6 Magnetic parameters of as-prepared samples 

x 
Ms 

(emu/g) 

Mr 

(emu/g) 

HC  

(Oe) 
SQ 

K 

(erg/cm3) 
μi 

ωm 

(GHz) 

0.0 90.61 21.62 74.88 0.238 7067.58 49.21 20.03 
0.125 126.73 24.38 69.94 0.192 9232.80 62.20 28.02 
0.25 113.65 30.06 156.06 0.264 18475.22 29.55 25.12 
0.375 128.49 60.96 536.82 0.474 71850.00 10.71 28.40 
0.5 120.85 59.48 709.52 0.492 89318.22 8.31 26.71 
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Fig. 12(a) Hysteresis loops for Co2+ doped CCF samples (b) applied field versus microwave 

frequency  

4 Conclusions 

 Co-CCF SFs were prepared using the SGAC process and the development of a single-

phase spinel cubic crystalline matrix was confirmed via XRD analysis. The crystal size was 

46.61 nm for x = 0.375. The A- and B- sites in a spinel matrix are allocated to the higher (υ1) and 

lower (υ2) frequency bands, having ranges (513 – 539 cm-1) and (419 – 472 cm-1), respectively. 

The change in the structural parameters, absorption, and vibrational bands have confirmed the 
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replacement of Co2+ in the CCF lattice. Moreover, the optical bandgap was 2.44 eV and the 

resistivity has large values in the order of 108  for Co2+ doping x = 0.375. The dielectric tangent 

loss and constant showed decreasing behaviour with the rising frequency and both have 

minimum values with a high Q factor at x = 0.375. The microwave frequency and saturation 

magnetization values for x = 0.375 was 28.40 GHz and 128.49 emu/g, respectively with a 

coercivity was 536.82 Oe. These results suggested that the sample with concentration x = 0.375 

is a good candidate for high-frequency resonant circuits and multilayer chip inductors 

applications.  
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