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Online Classification of Network Traffic Based on

Granular Computing
Pingping Tang, Member, IEEE, Yuning Dong, Member, IEEE, Shiwen Mao, Fellow, IEEE,

Hua-Liang Wei, and Jiong Jin, Member, IEEE,

Abstract— At present, it is still a great challenge to achieve
online classification of traffic flows due to the highly varying
network environments, e.g., unpredictable new traffic classes,
network noise and congestion. Traditional classification methods
work well in stable network environments, but may not exhibit
their performance in dynamic environments. To address online
classification issues, a granular computing based classification
model (GCCM) is developed, where the spatial and temporal flow
granules are defined to make GCCM robust against variations
and less sensitive to noise, and the correlations among flow
granules are explored to establish the granular relation matrix
(GRM). The inherent burst features between packets indicated
by GRM prompt GCCM to achieve fine classification in unstable
network environments. GCCM analyzes the burst features of
packets without inspecting the payload information, and thus
can be used to classify encrypted traffic as well as unencrypted
traffic at a fast speed. In addition, GCCM model, depending on
difference measurement D(·), is a threshold based classification,
and therefore can be used to distinguish between time-varying
classes. The validity of GCCM for online traffic classifica-
tion is examined through theoretical results. The experimental
evaluation of classification for fine and varied classes under
dynamic network environments with noise and congestion also
demonstrates its superiority in terms of classification accuracy
and real-time performance with the state-of-the-art.

Index Terms—Granular computing, granular relation matrix,
network noise, online classification, traffic flows.

I. INTRODUCTION

Network traffic is growing rapidly on a tremendous scale,

with so much variety that it is indispensable to develop an ef-

fective classification systems to implement network resources

management [1], provide technical support to guarantee qual-

ity of service [2], enforce differentiated services for users [3],

maintain and improve the network security [4], etc. According

to the 6G white paper [5], one of the first important network
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operations is traffic classification. Online traffic classification

is necessary and has become a research focus in the fields

of communications and networking [6], [7]. In recent years,

flow features (e.g., duration and mean packet size) are widely

used to distinguish between different traffic [8], [9]. However,

the rapid development of the Internet technologies poses new

challenges to online traffic classification: i) With continuous

innovation of applications, new types of traffic are fed into

the Internet [10]. When the number of classes is increased,

the differences among classes become more subtle, which

create difficulties on fine classification [11]. ii) In dynamic

networks, problems such as packet loss, retransmission, and

disorder of packets may occur at any time [12]. Thus there is

a compelling need to deal with incomplete and noisy data for

classification. iii) In ubiquitous heterogeneous environments,

the target classes are frequently changed over time [13].

For example, 3GPP (the 3rd Generation Partnership Project)

defines 4 target classes, including conversation, streaming,

interaction, and background. There are 6 classes in ITU-T

Y.1541. If a traffic flow is transformed from 3GPP to ITU-

T, the target classes will be different. These investigations

motivate us to develop a network traffic classification model

(termed GCCM), which is expected to classify traffic into fine

and time-varying classes under dynamic network environments

with noise and congestion. The major contributions of this

paper are summarized as follows.

• Granular relation matrix (GRM). GRM is proposed for

the first time in this paper. It reflects the spatial and

temporal correlation between granules. The existing flow

features, such as mean variance and kurtosis, are just a

special case of GRM (at the maximum observation scale).

On the basis of holder index α, the inherent relationship

between packets indicated by GRM can achieve fine

classification even under congestion.

• Flow granules. Based on the granular computing, flow

granules ℵv(x) and ℵt(y) are defined to make model

GCCM less sensitive to incomplete and noisy data.

The flow granules are generated by aggregating similar

neighborhood packets. The information to be processed

is aggregated packets. As a result, the missing data

and incomplete information can be effectively solved in

dynamic network environment.

• Difference measurement D(·), which is presented to mea-

sure the difference degree between matrices. Depending

on D(·), GCCM use GRM to achieve a threshold based

classification and thus is able to classify varied classes.
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TABLE I
OVERVIEW OF PREVIOUS STUDIES AND OUR WORK

Approaches [4], [15] [8], [9], [20], [21] [10] [11], [27] [13], [17], [18], [30], [31] [16], [31] [19] [22], [23] [24] [25],[26] [28], [29] GCCM

Encrypted traffic X X X X X X X X X X X

Throughput X X X X X X X

Fine classes X X X X X X X X

Varied classes X X X X X X

Noise tolerance X X X X X

Congestion X X X X X

II. RELATED WORK

A number of approaches have been proposed to imple-

ment traffic classification, e.g., the technique of deep packet

inspection (DPI). DPI approaches are based on the payload

to achieve classification, which are not affected by dynamic

network environments (e.g., new classes and congestion) [15].

DPI is more accurate than other approaches when classifying

unencrypted traffic [16]. For example, Yun et al. [4] exploited

the semantic information in protocol message formats to

identify real-world network traces. The experimental results

on BitTorrent, FTP, SMTP, etc., show that the scheme has

an average recall of about 97.4% and an average precision

of about 98.4%. However, inspection of packet payload is

time-consuming and breaches the privacy of users [9], [17]. In

addition, access to the payload is often not possible since 90%

of the traffic is encrypted [18]. Besides, it is not easy for DPI to

identify new classes or unknown classes since the keywords,

signatures, certificates, and cookies of the unknown classes

are totally unknown [10]. The applicability of DPI is hence

limited. Some methods for encrypted traffic exploited the fixed

registered ports [6]. However, port based methods became

inaccurate due to dynamic reuse of ports and new applications

with unregistered or random generated ports. In [19], Zou et

al. exploited the physical state and resource usage monitoring

to implement classification of encrypted traffic. Nevertheless,

the proposed phenotyping mechanism in [19] can only identify

five fixed classes, including aggregation, broadcast, consensus

and DGD (Distributed Gradient Descent).

At present, one of the most popular techniques for varied

classes are statistical features (SFs) [8], [9]. SFs are obtained

by analyzing the packet sizes and intervals, without inspecting

the payload information. In contrast to DPI, it thus can be used

to classify encrypted traffic as well as unencrypted traffic at

a considerable speed [20], [21]. For example, Nossenson et

al. [22] classified videos into live streaming and video on

demand (VoD) based on the SFs of packet length, information

offset, etc. Thay et al. [23] proposed a classification technique

based on the number of peer connection in both incoming and

outgoing directions within a 5-minute duration to classify P2P

traffic, including BitTorrent, Skype, SopCast, etc. However,

SFs usually do not work well for fine classification [24]. For

example, the largest packets of the SD, HD, and UD video

flows are all 1494 bytes. Other SFs, such as duration, mean

packet size and skew, are also basically the same, which are

invalid when utilized for fine classification of SD, HD, and

UD video flows [25]. When the number of classes is increased,

the differences in SFs between classes become subtle. It is of

necessity to conduct further study and explore more effective

methods. Wu et al. [26] proposed a chain and hierarchical

structure (CHS) to make up for the defects of SFs. However,

CHS has the chain effect of error propagation. When the

number of classes is increased, the number of classifiers is

increased, and thus the cumulative error on each classifier will

be greatly increased.

Some of the explorations proposed behavior features to

implement traffic classification [27], [28]. Behavior features

are different from SFs. The latter suppose that the packets

are independent of each other, while the former are on the

basis of the close relationships among packets. For instance,

Chen et al. [29] found that large-size messages from the server

interacting with small-size messages from the client (and vice

versa) are frequently observed in video or P2P traffic flows

whereas rarely appear in HTTP and other types of traffic

flows, and each traffic type has distinct sequential message

pattern. Behavior features can be used to identify traffic flows.

Compared with SFs, behavior features are more adopted for

fine classification. However, behavior features usually do not

work well for traffic flows with noise. In [30], the behavior

features are based on the key packets from the first few seconds

of the flow to achieve online classification, but they may not

achieve the expected classification results if the key packets

are lost. In [31], Hybrid features, i.e., SFs plus behavior

features, are proposed to mitigate the shortcomings of SFs and

behavior features. However, the performance of classification

may not be improved by just a simple addition of features.

Fine classification of noisy traffic is still hard to deal with.

It is necessary to explore other avenues to overcome these

obstacles for online traffic classification.

Accordingly, we presented a new model GCCM to achieve

online classification of both encrypted and unencrypted traffic

for fine and varied classes, with further resilience to noise:

i) GCCM analyzes the burst features of packets, without

inspecting the payload information, and thus can be used to

classify encrypted traffic as well as unencrypted traffic at a

fast speed. ii) The burst feature of GRM proposed in this

paper reflects the spatial and temporal correlation between

granules. The inherent relationship between packets indicated

by GRM can achieve fine classification even under congestion.

iii) Besides, we explored granular computing to calculate

GRM, making GCCM less sensitive to incomplete and noisy

data. iv) In addition, the proposed model GCCM, depending

on difference measurement D(·), is a kind of threshold based

classification, and thereby can be used to identify time-varying

classes. The gaps between GCCM and other literatures can be

broadly summarized in Table I.
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Fig. 1. Block diagram for the organization of Section III.

III. THE PROPOSED MODEL GCCM

A group of scientists explored the manner of human think-

ing and learning, and proposed a new mechanism called

granular computing [32]–[34]. By studying the process of

human recognition, Zadeh [35] found that human divided an

object into granules for analysis. Pal et al. [36] also pointed out

that the contents of information that human observe, measure,

and reason are all granules. Granular computing reasons and

analyzes the relationships between granules, which can filter

out interference and noise, and handle missing or incomplete

data. Based on the principles and mechanisms of granular

computing, the framework of GCCM basically consists of four

steps as shown in Fig. 1: i) define flow granules: spatial granule

ℵv(x) and temporal granule ℵt(y); ii) explore the relationships

between granules (i.e., structure granules); iii) establish the

novel flow feature of GRM; iv) achieve classification of traffic

flows on the basis of GRM and D(·).

A. Flow Granules

In this study, the basic granules (i.e., flow granules) are

defined based on the concept of neighborhood granules.

Before proceeding, an accurate definition of flow is first

provided as follows. Traffic is composed of flows, and

the flows aggregate into traffic. Some flows are unidirec-

tional (e.g., uplink or downlink), while others are bidirec-

tional. The characteristics of uplink and downlink packets

are often quite different, which should be calculated sep-

arately. Therefore, the kth flow Fk is defined as a set

of packets with the same five-tuple. The five-tuple refers

to {SrcIP,DestIP, SrcPort,DestPort, Protocol}, where

SrcIP , DestIP , SrcPort and DestPort denote the source

IP address, destination IP address, source port, and destination

port, respectively. The flow sequence is described as

Fk , {(Pi, Ti) |i=1,2,...,Nr
} , (1)

where Pi refers to the size of the ith packet, Ti is the inter-

arrival time between the ith packet and the previous packet,

and resolution Nr refers to the number of packets in Fk. Based

on the concept of neighborhood granules proposed by Pal et

al. [36], two types of flow granules are presented: spatial and

temporal granules. The former is defined as

ℵv (x) =

j
∪

i=k

Pi ∈ U (2)

s.t. |Pi − Pi+1| < Thrv, (3)

where symbols j and k are the sequence numbers of the

packets, and the values of j and k depend on the flow data.

U refers to the complete set. If the neighborhood packets

have a similar packet size (Thrv is the threshold, and the

details about the settings of Thrv refer to Section IV-B), they

will be aggregated into the same granule ℵv(x), and thus

{ℵv(x)}|x=1,2,··· ,X can be obtained, where X is the number of

the spatial granules. Take an email flow as an example, which

is captured by packet capture software (e.g., Wireshark). {Pi}
is obtained as {60, 76, 60, 239, 84, 76, 90, 67, 83, 67, 460, · · · }.

If Thrv is set to 100, the spatial granules are

ℵv(1) =
3
∪

i=1

Pi = {P1, P2, P3} = {60, 76, 60},

ℵv(2) =
4
∪

i=4

Pi = {P4} = {239},

ℵv(3) =
10
∪

i=5

Pi = {84, 76, 90, 67, 83, 67}, etc.

Similar to spatial granule, temporal granule is defined as

ℵt (y) =

j
∪

i=k

Ti ∈ U (4)

s.t. |Ti − Ti+1| < Thrt. (5)

From (5), if the neighborhood packets have similar inter-arrival

time (Thrt is the threshold, and the details about the settings

of Thrt refer to Section IV-B), they will aggregate into the

same granule, and thus {ℵt(y)}|y=1,2,··· ,Y is obtained, where

Y is the number of the temporal granules. The members in

granules ℵv(x) and ℵt(y) are similar neighborhood packets

(i.e., the neighborhood packets have similar size or similar

inter-arrival time), so the calculation model is less sensitive to

missing data and can remove the noisy data as well, which is

one of the basic ideas of granular computing.

B. Structure Granules

By exploring the human reasoning patterns, Zadeh [35]

found that human analyze issues from various perspectives,

and can shuttle up and down at these perspectives to make

a synthetic diagnosis. Imitating such patterns, granular com-

puting decomposes or merges the granules from different

perspectives or levels (scales) to obtain structure granules.

Granular computing studies the inherent relationship between

granules at different perspectives or levels (scales). However,

the idea of analyzing the changes of a process in different

scales is not new. In fact, date back to at least the late 1960s,

Mandelbrot used the concept of scales to study the traits of

objects [37]. Suppose {F (t)} is a stochastic process, and the

measurement µ(ε) and the observation scale ε satisfy

µ(ε) ∝ εα. (6)

That is,

α ,
lnµ(ε)

ln ε
, (7)

where α is called the holder index or singularity index,

which has been widely used in prediction of gas emission

in mines, classification of hydrological and water resources,

anti-interference treatment of artificial scenes [38].
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According to (1), flows satisfy the definition of {F (t)|(t=i)}
proposed by Mandelbrot. In (7), ε is a continuous variable. It

needs to be sampled to apply to discrete flow sequence F [39],

and thus the structure granules are established as

α ,

{

1

m
lnµm |m=1,2,....,Z

}

(8)

s.t. µm ,

Z
m
∑

k=1

∣

∣

∣

∣

∣

m
∑

i=1

ℵ̄ (m (k − 1) + l)

∣

∣

∣

∣

∣

2

, (9)

where ℵ(·) refers to the spatial granule ℵv(x) or temporal

granule ℵt(y); ℵ̄(·) is the average of members in the flow

granule; Z = {X,Y } is the number of flow granules; and m
refers to the observation scale. The minimum scale is m = 1,

which means that each flow granule is treated as a separate

granule; the maximum scale is m = Z, which means that all

flow granules merge into one granule, corresponding to the

SF of “average packet size”. Therefore, SF is a special case

of structure granules when the observation scale reaches the

maximum. More concretely, structure granules captures the

varying process of a flow when the observation scale m is

changed from 1 to Nr.

C. Granular Relation Matrix (GRM)

In Section III-A, two types of flow granules are defined:

spatial and temporal granules. Substituting the two types of

granules into (6)–(8), two types of structure granules can be

obtained: spatial structure granule αv and temporal structure

granule αt. The former describes the changing traits of packets

size, while the latter describes the bursting traits of packets at

different scales. The two vectors are cross multiplied to obtain

the GRM, which describes the changing traits of bursty data

at different spatial and temporal scales:

C|X∗Y , αv ·αt
T, (10)

where αv is deduced from spatial granules ℵv(x)|x=1,2,··· ,X .

Here, the minimum observation scale is m = 1, while the

maximum scale is m = X . Therefore, αv has X obser-

vations. Similarly, αt is deduced from temporal granules

ℵt(y)|x=1,2,··· ,Y , and thus αt has Y observations when the

time scale is changed from 1 to Y . T is the transpose of matrix.

Therefore, the order of granular relation matrix C is X ∗ Y .

Proposition 1. Granular relation matrix C uniquely identifies

the type of the network flow.

Proof: Suppose there are two flows: Fa and Fb. For flow Fa,

the spatial and temporal structure granules are αva and αta,

respectively. For flow Fb, the spatial and temporal structure

granules are αvb and αtb. Then, the observation scale of time

for the temporal structure granules is fixed as αt|m=y0
, and

only study the changing traits of packets size αv . Here, we

aim to compute αvz of the aggregated flow Z = Fa + Fb.

According to the theory proposed by Mandelbrot, ε in (6) is

a continuous variable. Thus, (8) can be obtained by sampling

the observation scale ε as

α = {α|ln ε=m} ,

{

lim
ln ε→m

lnµ(ε)

ln ε

}

, (11)

where α is a continuous variable, and α is a vector. The

members of α are sampled from α. From (6), µa (ε) ∝ εαva ,

µb (ε) ∝ εαvb , and then

αvz = lim
ln ε→m

ln (µa (ε) + µb (ε))

ln ε
. (12)

Hence the boundaries of αvz can be deduced as

inf (αvz) = lim
ln ε→m

ln
√

2µa (ε)µb (ε)

ln ε
=

1

2
(αva + αvb) ,

(13)

sup (αvz) = lim
ln ε→m

2max (µa (ε) , µb (ε))

ln ε
= max (αva, αvb) .

(14)

In particular, when αva = αvb = αv , inf(αvz) = sup(αvz) =
αv , which indicates that, if flow Fa belongs to the same class

as flow Fb, then the aggregated flow Z = Fa +Fb will fall in

the same class. If flows Fa and Fb belong to different classes,

the spatial structure granule αvz of the aggregated flow Z
would be neither αva nor αvb. Therefore, we prove that the

vector αv , samples of αv with different scale m as in (11),

is unique under fixed temporal scale αt|m=y0
. As a result, the

orthogonal matrix of all members C = αv ·αt
T can uniquely

identify the type of network flow.

In addition, we provide a detailed description on the phys-

ical meaning of GRM here. GRM is based on the holder

index α. According to the theory proposed by Mandelbrot, α

represents the burst index of objects, and lnµm refers to the

burst amount when the observation scale is m. Based on (11),

we calculate α for the spatial granules (i.e., packet sizes) and

temporal granules (i.e., packet intervals), respectively, and thus

obtain vectors αv and αt:

αv = {αv|ln ε1=m} ,

{

lim
ln ε1→m

lnµvm(ε1)

ln ε1

}

,

αt = {αt|ln ε2=n} ,

{

lim
ln ε2→m

lnµtn(ε2)

ln ε2

}

,

where ε1 and ε2 are the observation scales, lnµvm refers to

the burst amount of packet sizes when the observation scale

is m (ln ε1 = m), and αv represents the burst index of packet

sizes. lnµtn refers to the burst amount of intervals when the

observation scale is n, and αt is the burst index of packet

intervals. αv and αt are cross multiplied to obtain GRM:

C|X∗Y , αv ·αt
T = {αv · αt|ln ε1=m,lnε2=n}

=

{

lim
ln ε1→m

lim
ln ε2→n

lnµvm(ε1) lnµtn(ε2)

ln ε1 ln ε2

}

.

For ease of understanding, the burst amount of packet sizes

lnµvm is supposed to be a green surface as shown in Fig. 2.

Consequently, its observation scale ln ε1 is also a surface.

The burst amount of intervals lnµtn is supposed to be a line

segment and hence its observation scale ln ε2 is also a line

segment. lnµvm multiplied lnµtn turns out to be a volume

and its observation scale ln ε1 ln ε2 is a small cube. That is,

lnµvmlnµtn refers to the burst amount of volume. Just as αv

represents the burst index of packet sizes and αt represents

the burst index of packet intervals, the physical meaning of

GRM is the burst index of the traffic volume.
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D. Differences Between GRMs

For a certain type of flows, they always follow a specific

communication protocol and transmission pattern, so that they

have similar variations reflecting the inherent traits. Due to this

reason, SFs (e.g., mean packet size, maximum and minimum

packets) are used to identify different flows. However, as

described in Section III-B, these SFs are static, which cannot

reflect the varying features of traffic. In contrast, GRM not

only contains the SFs, but also describes the varying features

reflecting the deeper nature. GRM depicts the traits more

comprehensively. Consequently, it can be used to achieve

accurate identification of network flows for fine classes.

Matrix, which physically refers to a certain transformation,

describes the movement track. For example, y = Ax, where

matrix A represents the movement track from state x to y in

space Q. If we stand in space R to observe this movement, we

have y′ = Bx′, where x′ and y′ respectively correspond to the

state of x and y in the new space R, and matrix B represents

the movement track from state x′ to y′. So we have Hx′ = x,

Hy′ = y. Then Hy′ = y = AHx′ = H(H−1
AH)x′. That

is, in space R, the movement track from state x′ to y′ can be

described by B = H
−1

AH . It can be seen that the similar

matrices of A and B = H
−1

AH essentially describe the

same movement, which are observed in different space. GRM

describes the trajectory of bursty data at different observation

scales. The similarity of two GRMs is measured as

D (Ca,Cb) ,
CaCb

T +CbCa
T

CaCa
T +CbCb

T
, (15)

where Ca and Cb refer to the GRMs of flows Fa and Fb,

respectively. Suppose the order of matrix Ca is Xa ∗ Ya, and

that of Cb is Xb ∗ Yb. When comparing Ca and Cb by (15),

the comparison should be made at the same observation

scale, so the dimensions are selected to be min(Xa, Xb)
and min(Ya, Yb). For similar matrices A and H

−1
AH ,

tr(H−1
AH) = tr(HH

−1
A) = tr(A), where tr(·) refers to

the trace of matrix. Similar matrices have the same trace. In

addition, GRM C is the cross product of spatial structure

granule αv and temporal structure granule αt. Therefore,

tr(αtα
T
v)= αtα

T
v . Then the similarity measurement matrix

in (15) is converted into a scalar, called the difference degree:

Dif (Ca,Cb) , 1−
tr
(

CaCb
T +CbCa

T
)

tr
(

CaCa
T +CbCb

T
) . (16)

According to (16), Dif(Ca,Cb)=Dif(Cb,Ca), and Dif(·)
is between 0 and 1. Dif(·) is used to measure the difference

degree between matrices. The smaller the value of Dif(·),
the smaller the difference, and the higher the similarity. In

the extreme case, Dif(Ca,Ca)=0, which means there is no

difference between the two matrices.

E. Semi-supervised Classification and Threshold Setting

Suppose there are L classes {Ml}
L

l=1, and several flows

{· · · , Fj , · · · , Fk, · · · } in each class. The centers of classes are

{Pl}
L

l=1. As described in Section III-D, Dif(·) is uniformly

distributed between 0 and 1. Therefore, the center Pl is

determined by

Pl , min
Fk∈Ml

{

max
j ̸=k,Fj∈Ml

Dif
(

CFj
,CFk

)

}

. (17)

According to (17), the difference degree between Pl and other

flows {· · · , Fj , · · · , Fk, · · · } is the smallest. In order to judge

whether a flow Fk belongs to the lth class Ml, it just needs to

calculate the difference degree between flow Fk and the class

center, i.e., Dif(CFk
,CPl

). If the difference degree is less

than or equal to the threshold, then Fk belongs to class Ml;

otherwise Fk does not belong to class Ml. That is,
{

Fk ∈ Ml, if {Dif (CFk
,CPl

) ≤ T} ,
Fk /∈ Ml, if {Dif (CFk

,CPl
) > T}.

(18)

The proposed traffic classification model is a semi-

supervised learning. The system is first trained based on man-

ually labeled samples. Then unlabeled samples are gradually

added into the learning system and are classified by (18).

When the number of samples accumulates to a certain amount,

the system parameters (e.g., threshold T ) will be adjusted.

In (18), threshold T significantly affects the performance of the

system. The maximum between-class variance (Otsu) method

is adopted to establish an adjustment mechanism for the global

optimal threshold as

T∗ = argmax
∑

i ̸=j

(

Dif2 (t;Mi ↔ Mj)
)

, (19)

where Dif(t;Mi ↔ Mj) is the difference degree between Mi

and Mj when the threshold is set to t. According to Otsu, the

maximum variance between classes implies the smallest false

rate: min(frr + far), where frr is the false rejection rate

and far is the false acceptance rate.

As in (17) and (18), the basic principle of classification is

based on k-means. In order to prevent parameter solidification,

here an improvement is made on the threshold adjustment

using the idea of genetic algorithm. According to biological

evolution theory, genes need to be crossed and mutated.

Therefore, the thresholds are randomly adjusted (i.e., the

mutation operation) to obtain new centers, and choose the

better one between the old and the new one. The procedure

of threshold adjustment is presented in Algorithm 1, where

t(e) is randomly adjusted to t(e)±∆. In the iterations, if the

difference is obviously increased, the threshold and center are

updated. Otherwise, ∆ is continuously indented by 1/2 (i.e.,

dichotomy). Thus, the iterative calculation of the threshold is

linearly convergent. The size of the convergence step is 0.5,

which means the interval will shrink by a ratio of 0.5 in each
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Algorithm 1: Setting the Threshold

1 Input: Fk|(k=1,2,··· ,Ns);
2 Output: T = t(e+ 1);
3 for unlabeled flows Fk do
4 { Calculate Dif(CFk

,CPl
);

5 Find min = min
L

Dif (CFk
,CPl

) and compare with t(e);

6 if min ≤ t (e) then
7 Put Fk into class Ml;
8 end
9 else

10 Create new class ML+1;
11 Put Fk into class ML;
12 end
13 end

14 Update centers {Pl}
L

l=1;
15 do

16 {σ(e+1), σ′(e+1)} = 1
{i,k}

∑
Dif2 ({CPi

,CFk
},CPl

);

17 if |σ(e+ 1)− σ(e)| < 0 then
18 t(e+ 1) = t(e)±∆;
19 end

20 Update centers {Pl}
L

l=1 and σ′(e+ 1);
21 while |σ′(e+ 1)− σ′(e)| > ε;
22 return T = t(e+ 1);

Algorithm 2: Classification of Traffic Flows

1 Input: flow Fk;
2 Output: Re;
3 Obtain flow sequence (Pi, Ti) by (1);
4 Partition flow sequence into subflows;
5 for subflow do
6 Calculate: // (see Section III-A)

Spatial granules ℵv(x) =
∪

Pi ∈ U ;
Temporal granules ℵt(y) =

∪
Ti ∈ U ;

7 end
8 Obtain spatial structure granules αv and temporal structure

granules αt; // (see Section III-B)
9 Establish GRM: CFk

= αv ·αt
T; // (see Section III-C)

10 for each class cl|l≤L do
11 Compare CFk

with typical GRM: Cpl ;
12 Difference between GRMs is Dif(CFk

,Cpl); //(see
Section III-D)

13 end
14 if Dif(CFk

,Cpl) ≤ Tl then
15 Re = 1; // F and Pl are of the same class
16 else
17 Re = 0; // F and Pl are of the different class
18 end
19 return Re;

iteration. In the worst case, the proposed algorithm (t(e)±∆)

degenerates back to the original k-means algorithm (t(e)).

The complete classification process of GCCM illustrated in

Algorithm 2 is summarized as follows: i) GCCM classify flow

Fk according to its bitstream as in Line 3. Our method does

not need the payload, and thus it is able to deal with encrypted

traffic flows as well as unencrypted traffic. ii) In order to

reduce the computation, flows are divided into subflows [10]

as in Line 4. More details about the settings of resolution

Nr for subflow can be obtained in Section IV-B. iii) GRM,

which is based on granules ℵv(x) and ℵt(y) as in Line 6, is

effectively cope with missing, incomplete, or noisy data.

TABLE II
DATASETS

Dataset Year Linktype Volume Flows

WIDE 2020 backbone 33GB 80K
UCI 2020 edge 29GB 46k
NJUPT 2018 edge 42GB 106k
ISP 2018 backbone 36GB 77K
UNB 2016 edge 28GB 65K
UNIBS 2009 edge 27GB 79k

IV. CONFIGURATION AND PARAMETER SETTINGS

A. Datasets and Traffic Classes

In this paper, four public datasets (i.e., UNB, UNIBS,

WIDE, and UCI) and two private datasets (i.e., NJUPT

and ISP) are used to evaluate the classification per-

formance as shown in Table II. The WIDE traces

(http://mawi.wide.ad.jp/mawi/) began on Jun, 2020 and were

taken from a US-Japan-Pacific backbone line (a 150-Mb.s

Ethernet link) that carries commodity traffic for WIDE or-

ganizations. The UCI (http://archive.ics.uci.edu/ml/index.php)

maintains 557 datasets, including the YouTube Collection

Dataset, the Spam Base Dataset, etc., from which various

types of traffic is obtained. The NJUPT traces are captured

by Wireshark in the campus network of Nanjing Univer-

sity of Posts and Telecommunications. The ISP traces are

collected at a leading Internet service provider of China

(the name of the city is omitted as required by commercial

confidentiality). This traces contains important surveillance

and conferencing videos, such as Ezviz and Gotomeeting. The

UNB trace (http://www.unb.ca/cic/research/datasets/vpn.html)

has many network applications. Researchers are allowed

to read the full payload trace. The UNIBS traces

(http://netweb.ing.unibs.it/ntw/tools/traces/index.php) are col-

lected from the edge routers of the campus network of the

University of Brescia, which include the applications such as

Edonkey, Skype, and BitTorrent.

In the field of traffic classification, one of the first important

issues is how to define the classes [40]. Most of the classes

in the prior works such as [41], [42] are application-based,

and consequently the traffic is labeled as YouTube, Facebook,

Skype, QQ, Tik Tok, WeChat, etc. However, after carefully

observing the datasets, we have figured out the following: i)

One application might generate different types of bitstreams.

For instance, WeChat generates video and audio flows. Clearly,

although they are from the same application, WeChat video

and audio need to be classified into different classes from the

perspective of network differentiated services. ii) Some appli-

cations, such as QQ and WeChat, which were developed with

a similar mechanism, often generate similar types of video

bitstreams. In summary, different applications may generate

similar types of bitstreams, while the same application may

generate different types of bitstreams. Therefore, in this paper,

we define the classes from the perspective of NRQ (Network

Resource and QoS Requirement). The mapping between the

NRQ classes and typical applications is presented in Table III.
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TABLE III
CLASSES OF NETWORK TRAFFIC

Coarse classes NRQ classes Label Typical Apps

Video Video conferencing 1 Gotomeeting
Telemedicine 2 FsMeeting
Instant messaging videos 3 QQ, WeChat
Group chat videos 4 Skype
E-commerce 5 Direct connect
Unidirectional videos 6 PPlive
Bidirectional videos 7 TVant
multidirectional videos 8 BitTorrent
BT video on demand 9 Jjvod
SD 10
HD 11 Youku, Tudou
UD 12
Video broadcast 13 UUSee
Video surveillance 14 Ezviz

Audio Audio conversation 15 QQ, WeChat
P2P audio 16 Peergine,
Online music 17 TTplayer,
Audio broadcasting 18 GoldenRadio

WB Web browsing 19 Baidu, Blogger
TC Text communication 20 Baidu, Blogger
Email Email 21 Gmail, Hotmail
File transfer FTP 22 Baidu Netdisk

P2P 23 Baidu Netdisk

B. Parameter Settings

The most important parameters in this paper are Thrv , Thrt
and resolution Nr.

i) Thresholds Thrv and Thrt, which control the size of

spatial granules and temporal granules respectively and thus

determine the capability of noise tolerance. These thresholds

are easy to set in practice. Taking an email flow as an example,

the spatial granules under different Thrv are demonstrated as

shown in Table IV. No matter what the value of Thrv is set

to, ℵv(x) has only three results. If Thrv is greater than 1000,

the size of granule will be too large: all packets are fused

into one granule, and thus the differences between granules

for classification cannot be obtained. If Thrv is lower than 10,

the size of granule will be too small. In the extreme case, each

packet is a granule and thus granular computing lost its func-

tion (note that granular computing aims at analyzing objects

with granules rather than individual elements). Therefore, the

suitable Thrv for email flows locates between 10 and 1000.

For other types of traffic, a suitable Thrv is located between 10

and a (300 < a < 1000). Therefore, threshold Thrv is finally

set to 100 in this paper. Threshold Thrt is also based on the

same simple manual observation, and finally set to 0.001 in

this paper. What needs to be especially emphasized is that the

size of granule will not increase or decrease in linear manner

with thresholds Thrv and Thrt, but in a jumping manner. As

shown in Table IV, when Thrv is set to 10 to 1000, the spatial

granules are basically the same. Therefore, the performance

of classification will not get much better when the settings of

thresholds Thrv and Thrt are further improved.

ii) Resolution Nr. The length of flows is of great difference.

Short flows, such as email, may have only a few hundreds

of Byte. Many text flows are below 1MB. Long flows (e.g.,

videos) are usually as large as several MB. Longer flows (e.g.,

streaming media) may last more than one hour. In practice,

long flows are divided into subflows to reduce the computation

TABLE IV
SETTING OF THRESHOLD

Thrv Spatial granules : ℵv(x)

1500
1300 {· · · 1194,1194,1194,1117,60,60,45,1141,82,1133,1141,· · · }
1100

1000
500
30

{· · · {1194,1194,1194,1117},{60,60,45},{1141},{82},· · · }

10
5 {· · · {1194,1194,1194},{1117},{60,60},{45},{1141},· · · }
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Fig. 3. Setting of resolution.

as shown in Algorithm 2 Line 4. The resolution of subflow is

set to Nr = 5000. These packets are enough to obtain the com-

prehensive traits of flows. Nr can certainly be further reduced.

However, with a smaller number of packets, the difference

degree of GRMs for the same type of flows will become

larger, leading to unstable classification. Here, video flows are

used to study the impact of resolution Nr on GRMs. The

flows are segmented into subflows with different resolutions

Ni = {20000, 10000, 8000, 5000, 2000, 1000, 500, 100}. The

difference degrees of GRMs under Nr = Ni are calculated

by Dif(Cj ,Ck)|(Nr=Ni). As shown in Fig. 3, when Nr =
N1 = 20000, the difference degree of GRMs for all subflows

Dif(Cj ,Ck) ∼ 0.011 ± 0.002, which is highly stable. With

the decrease of Nr, the difference degree of GRMs becomes

relatively more unstable. Especially, when Nr = N8 = 100,

Dif (Cj ,Ck) ∼ 0.413 ± 0.107. The difference degree of

GRMs for subflows becomes huge, which will cause great

instability in classification. We repeatedly tested and verified

the above situation with other classes of long flows, and the

results are basically similar. Therefore, the resolution for long

flows is set to Nr = N4 = 5000, which not only ensures the

stability of classification, but also only requires a small amount

of computation and less storage space. For short flows (e.g.,

the email flow), the GRM features are the same whether the

resolution is 2000, 3000, or other. In order to take into account

long flows (upward compatibility), the resolution is finally set

to 5000 for all flows.

C. Metrics of traffic classification

Precision, recall and F1-score are commonly used to mea-

sure the accuracy of traffic classification model [6]. Here we

also use them to evaluate the classification performance.
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• Precision: the number of flows correctly classified as a

class divided by the total number of flows classified as

that class.

• Recall: the number of flows classified as a class divided

by the total of flows actually belonging to that class.

• F1-score: be defined as a harmonic mean of precision

and recall as follows.

F1 = 2 ·
precision · recall

precision+ recall
. (20)

V. PERFORMANCE EVALUATION

A. Evaluating the GRM of a Single Flow

In this experiment, a single video flow generated by Youku

is used to demonstrate how to calculate the GRM. By packet

capture software (i.e., Wireshark), we obtain the size and

arrival time of each packet of flow Fk:{(470, 2.649745), (462,

2.650173), (1494, 2.650256), · · · , (68, 359.282943), (1494,

359.434729), (1494, 359.493700)}, and thus get Ti, Pi as

in (1). Then, the following three steps are executed.

(Step i): Scanning Ti, Pi to obtain the flow granules. According

to (2)–(3) and (4)–(5), the neighborhood members are aggre-

gated to form the spatial and temporal granules:

ℵv(x) ={{470, 462}, {1494}, · · · , {68}, {1494, 1494}},

ℵt(y) ={{0.000428, 0.00083, 0.00045}, · · · , {0.151786},

{0.05897}}.

(Step ii): Observing the above flow granules at various scales

to form structure granules. For different observation scales

m = 1, 2, · · · , ⌈logNr⌉, the structure granules αv and αt

are generated by (8)–(9):

αv = {32.345, 27.299, 25.560, 24.677, 24.159,

23.814, 23.567, 23.379, 23.225},

αt = {9.326, 7.229, 5.198, 4.704, 3.382,

2.152, 1.016, 0.926, 0.824}.

(Step iii): Generating GRM. According to (10), GRM is finally

calculated to be C = αvαt
T. The corresponding 3D surface

of C is shown in Fig. 4.

As shown in the first step, the spatial and temporal granules

have different dimensions, so the dimensions of their corre-

sponding structure granules are also different, which conse-

quently causes the GRMs to have different orders. That is,

for CX∗Y , the values of X and Y are different. As discussed

in Section III-D, the two GRMs should be compared at the

same observation scale. Thus, the dimensions are selected to

be m = 1, 2, · · · , ⌈logNr⌉ for all flow granules.

B. Dealing with the noise

Based on granular computing, flow granules makes GCCM

less sensitive to missing, incomplete, or noisy data. Here, we

take the spatial granules of an email flow as an example to

demonstrate how flow granules eliminates the noise. The raw

data {Pi} captured by Wireshark is

{60, 76, 60, 239, 84, 76, 90, 67, 83, 67, 460, 1456, · · · }, (21)

Suppose P6 is lost and P7 is varied by noise. That is, (21) is

changed into:

{60, 76, 60, 239, 84,✚✚❩❩76, 170, 67, 83, 67, 460, 1456, · · · }, (22)

Based on the technique of granular computing in (2), the

spatial granules of the raw data and noisy data are

{{60, 76, 60}, {239}, {84, 76, 90, 67, 83, 67}, · · · }, (23)

{{60, 76, 60}, {239}, {84, 170, 67, 83, 67}, · · · }, (24)

After the averaging processing according to (9), we have

{{65, 65, 65}, {239}, {78, 78, 78, 78, 78, 78}, · · · }, (25)

{{65, 65, 65}, {239}, {94, 94, 94, 94, 94}, · · · }, (26)

In order to display the deviations in burst features between the

raw data and the noisy data, we draw the burst amount between

packet sizes (i.e., the absolute value of difference between

two adjacent packet sizes) as shown in Figs. 5(a) and 5(b).

Compared with the burst shape of (21) in Fig. 5(a) (the raw

data), the burst shape of (22) in Fig. 5(b) (containing noisy

data) is changed a lot, which will lead to some differences in

burst index α. Actually, the proposed technique of granules

will also lead to some deviations to the raw data in burst index

as shown in Fig. 5(c). However, without granules, the noise

will generate even greater deviations in burst index as shown

in Fig. 5(b). By using flow granules, the burst shape of (26)

in Fig. 5(d) remains consistent with that of (25) in Fig. 5(c),

and thus their burst index α are basically the same. That is,

the proposed flow granules can deal with such incomplete and

noisy data.

C. Performance of GCCM

Generally, classification models can be divided into two

major categories: i) Probability based models (e.g., random

forest). These models predict the probability that samples

belong to a class. The output is the probability. ii) Target

based models (e.g., k-means). These models directly figure out

whether a sample belongs to a class or not. There are many

metrics to evaluate the performance of a classification model.

Note that ROC and AUC are based on probability models.

Therefore, the commonly used metrics of precision, recall, and

F1-score are exploited to demonstrate the performance.

First, 3000 flows are randomly selected from NJUPT, in-

cluding video, audio, web browsing (WB), text communication
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(a) The burst of the raw data. (b) The burst of the noisy data. (c) Handle the raw data with granules. (d) Eliminate the noise with granules.

Fig. 5. Dealing with noise by flow granules. Figs. 5(a) and 5(b) represent the burst shape of the raw data and the noisy data, respectively. The noise generates
obvious deviations in burst shape. Figs. 5(c) and 5(d) show the burst shape of the raw data and the noisy data by using the technique of granular computing.
These two burst shapes are basically the same. Flow granules can deal with noise.

(TC), FTP, and email, with 500 flows for each class. The 2-

fold cross-validation is carried out on these flows. The final

result is obtained by averaging the results of 20 runs, which is

presented in Table VI. The proposed method works well for

each type of traffic. The highest F1 is 97.25%, and the average

F1 reaches 95.95%. Even the worst F1 is still above 94%.

Table V presents the confusion matrix of the classification

results, where we have aggregated the results across all 20

runs. The small differences observed between Tables VI and V

are due to the average of ratios not necessarily being equal to

the ratio of sums. The ratio of video flows being identified

as video is 95.43%, and the ratios of video flows being

misidentified as audio, WB, TC, FTP, and email are 0.48%,

1.25%, 0.29%, 2.29%, and 0.26%, respectively. The ratio of

audio flows being identified as audio is 97.14%, and the

ratios of audio flows being misidentified as video, WB, TC,

FTP, and email are 0.26%, 1.94%, 0.11%, 0.34%, and 0.21%,

respectively. From Table V, we can also compute the frr
(= 1− pre.) of video, audio, WB, TC, FTP, and email flows

as 4.57%, 2.86%, 5.29%, 4.75%, 2.93%, 4.68%, respectively,

and the far (= 1−rec.) for the six types of flows are 3.55%,

3.09%, 6.05%, 4.47%, 3.25%, and 4.65%, respectively. These

results are consistent with the Otsu scheme given in (19),

which can avoid the local worst case.

Genuinely, these sums and averages in Tables VI and V

cannot reflect the differences between each run, so the 95%

confidence intervals are plotted as error bars in Fig. 6 to

demonstrate the differences between each run. Here, we pro-

vide the overall accuracy of GCCM in classifying video, audio,

WB, TC, FTP, and email flows from different dadasets. For

example, the overall F1, precision and recall for UNIBS are

95.13%, 93.53% and 96.62%, respectively; the corresponding

deviations are 1.71%, 2.29% and 2.12%. It can be seen that: i)

GCCM shows a stable classification performance with slight

deviation. ii) When different datasets are tested as shown in

Fig. 6, the classification results do not exhibit much difference.

Therefore, Section V-D will not discuss the classification

performance under different datasets.

D. Comparisons

We further test several state-of-the-art schemes, including

FSM [10], FSIP [9], SFNN [8], and DPI [4]. Application

generates traffic under specific communication protocol and

transmission pattern, etc., so traffic flows always have different

TABLE V
CONFUSION MATRIX (%)

Class Video Audio WB TC FTP Email Pre.

Video 9543 48 125 29 229 26 95.43
Audio 26 9714 194 11 34 21 97.14
WB 102 196 9471 91 26 114 94.71
TC 11 18 145 9525 24 277 95.25
FTP 194 22 12 38 9707 27 97.07
Email 18 26 134 277 13 9532 95.32

Rec. 96.45 96.91 93.95 95.53 96.75 95.35

UNIBS UNB NJUPT ISP WIDE UCI
0.3

0.4

0.5
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0.7

0.8

0.9

1

1.1
F1
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Rec.

Fig. 6. Classification performance of GCCM.

shapes. In [10], the fractal characteristics were used to describe

the shape of the flow and thus to facilitate classification.

Wu et al. [9] proposed the method FSIP to classify network

flows, where instance purification aims to remove redundant

SFs and thus obtaining an effective feature set to achieve

accurate classification. In [8], Kornycky et al. made use of the

well-known vector quantization algorithm SFNN to investigate

traffic classification for encrypted WLAN data. Yun et al. [4]

exploited the DPI, i.e., the semantic information in protocol

message formats, to identify real-world network traces.

The classification results are presented in Table VI. Some

methods show wonderful performance for certain classes, e.g.,

the F1 of SFNN for Audio is 99.35%. It can be seen that DPI,

based on the payload to achieve classification, is relatively

more accurate than other methods. Most of the recall values

of DPI are higher than other methods. The mean F1-scores

are 95.9%, 95.64%, 95.29%, 94.34%, and 97.6% for GCCM,
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Fig. 7. Classification performance for fine classes.

FSM, FSIP, SFNN, and DPI respectively. In general, all these

methods achieve good performance. This is mainly because

there are only six coarse classes in this experiment. In next

subsection, the classification performance of the five schemes

for 23 fine classes will be further tested.

E. Fine Classification

In order to verify whether these schemes can adapt to fine

classification, more classes, e.g., video streaming and online

music (more details on the fine classes can be obtained in

Table III), are randomly selected from the datasets, with 500

flows for each class. In Fig. 7, the x-axis represents the

label classe and the y-axis is the F1-score. Note that F1 is

the harmonic mean of precision and recall. A high F1 score

indicates high precision and recall. Therefore, the precision

and recall results are no longer presented in the remainder of

Section V.

As shown in Fig. 7, the DPI scheme exploits the semantic

information of the payload to identify traffic, and thus is

relatively more accurate than other methods when classifying

unencrypted traffic. However, it cannot work for encrypted

flows from classes 7 to 23. The F1-scores of SFNN for the 23

classes are around 0.8, and that of FSIP is slightly higher. FSIP

removes redundant SFs and thus obtains an effective feature set

to achieve accurate classification. However, FSIP implements

feature purification under given classes. Consequently, those

extracted SFs are only effective for a specific set of classes.

If the classes change, the classification system needs to be

completely retrained. In contrast, the average F1 of FSM is as

high as 0.9, which is comparable to that of GCCM. The fractal

characteristics are different from the commonly used tradi-

tional SFs (e.g., the mean, variance, and kurtosis of packets) in

that they capture the non-linear characteristics of traffic, which

do not change much as the classes of flows is increased, and

thus they work well in fine classification. However, FSM can

only work well for flows under smooth network conditions. In

dynamic network environments, especially when noise occurs,

the fractal characteristics are changed, resulting in a decline

in classification performance.

2 4 6 8 10 12 14 16 18 20 22
Label of the Classes

0

0.2

0.4

0.6

0.8

1

F1

GCCM
FSM
FSIP
SFNN
DPI

Fig. 8. Classification performance under congestion and noise.

F. Adaptability to Variations

This subsection continues to use the flows as in Section V-E.

In order to simulate network noise and congestion, we make

some random adjustments of packet loss and delay for the

original traces. In practice, there are two main technical

reasons for packet loss rate exceeding 5%: hardware failures

and network attacks. The research of this paper aims at neither

hardware failure nor network attack detection. Therefore, The

packet loss rate is set within 5% to simulate the variable

network environment with normal congestion. Note that traffic

will be interfered and varied during transmission, i.e., network

noise. To simulate noisy data, we further modify and add some

extra packets. In each flow, the intensity of packet modification

is also controlled within 5%. Then these flows are used to test

whether the above classification methods have resilience to

noise and tolerance to congestion.

As shown in Fig. 8, DPI, based on the payload to achieve

classification, is not affected by network dynamics (e.g.,

congestion and traffic noise). Therefore, DPI is more accurate

than other approaches when classifying unencrypted traffic.

However, it cannot work for the encrypted traffic. FSIP, SFNN

and FSM present obvious decrease in F1-score. These SFs

and fractal characteristics, which are obtained in a friendly

network environment, does not work well in an adversarial

network environment. Take video flow as an example. In a

good network environment, the fractal characteristics τ(q)
(q=1,2,3,4,5) are 1.395, 4.715, 5.265, 7.152, and 9.609, re-

spectively. While in the bad network environment, they are

changed to 1.203, 4.158, 5.594, 7.863 and 9.472, respectively.

Actually, the fractal characteristics τ(q) for the flows are

always varying under different network environments, which

results in unstable classification results. The F1-scores of the

proposed scheme are around 0.8, consistently higher than

the scores of other baseline methods. GCCM analyzes deep

into the trajectory of change for different flows, and the

neighborhood granules can effectively deal with noisy and

missing data. Therefore, GCCM is more suitable and robust

for online classification in dynamic network environments.
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TABLE VI
COARSE CLASSIFICATION RESULTS

Class
GCCM FSM [10] FSIP [9] SFNN [8] DPI [4]

F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec.

Video 95.97 94.95 96.78 96.08 96.77 95.39 95.75 96.87 94.63 97.49 96.93 98.06 95.87 93.03 98.91
Audio 96.78 96.63 97.02 95.35 96.67 94.11 95.87 97.55 94.26 99.35 99.37 99.34 99.27 99.19 99.35

WB 94.21 95.12 93.09 95.88 96.28 95.48 95.03 94.34 95.79 86.35 88.60 84.21 98.18 98.97 97.39
TC 95.53 95.27 96.12 94.12 93.26 94.97 94.82 93.81 95.93 98.81 99.17 98.45 99.12 98.34 99.90

FTP 97.25 97.35 96.92 95.63 95.53 95.82 95.54 95.42 95.66 91.69 90.23 93.20 97.07 99.52 94.73
Email 95.64 95.74 95.39 96.76 96.89 96.63 94.71 93.58 95.85 92.35 91.95 92.76 96.23 98.29 94.26

G. Time and Space Complexities

In this subsection, 1000 flows are used to evaluate the

classification time. As shown in Fig. 9, it takes GCCM 1.527s

for 6 classes, 1.653s for 12 classes, and 1.769s for 20 classes.

It can be seen that GCCM has lower computation times

than FSM, FSIP, SFNN and DPI. The results illustrated in

Fig. 9 agree with the theoretical analysis in Table VII. The

computation of GCCM is mainly involved in:

• Data preprocessing. Flow granules are formed in this

step. According to (2)–(3) and (4)–(5), flow granules can

be obtained by just scanning the flow sequence, so the

computational complexity is O(Nr), where Nr is the

resolution of the flow sequence.

• Obtaining structure granules. Calculations of αv and αt

need O(Nr(logm)). Here, the observation scale is set to

m = ⌈logNr⌉ as in Section V-A, so the time complexity

is O(Nr(log(logNr))) ≈ O(Nr).
• Generating GRM. The computation required to generate

the two-dimensional matrix GRM is O((logNr)
2).

• Classifying flow. The main computation of this step is to

calculate the difference degree Dif(CFk
,CPl

) between

flow Fk and center Pl. Note that tr(αtαv
T)= αtαv

T, so

the calculation of (16) is greatly simplified. The dimen-

sion of structure granules equals to the observation scale

⌈logNr⌉, and thus the time complexity is O(L logNr),
where L is the number of classes.

Therefore, the complexity of classifying flow Fk is O(Nr+
(logNr)

2 + L logNr) ≈ O(LNr). Here, the overall time

complexity is mainly dependent on the calculation of structure

granules. Classification of Nt flows will result in computation

of O(LNrNt). In order to calculate the difference degree

Dif(CFk
,CPl

) between flow Fk and center Pl, their cor-

responding GRMs need to be stored. The observation scale

is set at m = ⌈logNr⌉. Accordingly, the required space for

GRMs is O((logNr)
2). There are L centers, plus Nt flows,

so the overall space complexity is O((L+Nt)(logNr)
2).

According to the previous experiments, parameters Ns, Nt,

and Nr are fixed. Here, we only pay attention to variable

parameters. As shown in Table VII, the time and space

complexities of GCCM and FSM depend only on L, while

those of the other methods depend not only on L, but also on

other factors (e.g., J and Nf ). As the number of classes (i.e.,

L) is increased from 6 to 20, J will also increase as a result.

Therefore, GCCM has the lowest time and space complexity.

GCCM FSM FSIP SFNN DPI
1

1.5

2

2.5

3

3.5

4

T
im

e 
(s

)

6 classes
12 classes
20 classes

Fig. 9. Comparison of classification time.

TABLE VII
COMPARISON OF TIME AND SPACE COMPLEXITY

Time Complexity Space Complexity

GCCM O(LNrNt) O((L+Nt)(log(Nr))2)
FSM O(LNr log(Nr/s)Nt) O((L+Nt)Nr log(Nr))
FSIP O(J2LNsNt) O(JL(Ns +Nt))
SFNN O(JLN2

f
NsNt) O(JNf (Ns +Nt))

DPI O(IKLNtW ) O(KL+NtW )

Parameters I: no. of iterations J : no. of features
K: no. of keywords L: no. of classes
Nf : no. of feature values Nr : resolution of flows
Ns: no. of sample flows Nt: no. of testing flows
S: no. of segments W : no. of grams

VI. CONCLUSIONS

In this paper, we conducted an in-depth analysis of traffic

classification, and found that the existing flow features are in-

adequate for online classification under highly varying network

environments. Taking the behavior features as an example,

they are based on the sequential message pattern between

packets, making it challenging to work well for traffic with

missing data. GRM is presented to address this issue, which

included two core stages. Firstly, two types of flow granules

were defined to make the model less sensitive to noise and

missing data. Therefore, it can work well in poor network

environments. Secondly, the spatial and temporal correlations

between flow granules are explored to establish GRM, where

the relationship between packets was not isolated but closely

correlated. Many SFs can be treated as a special case of GRM.

GRM describes the flows more comprehensively, and thus can

classify the flows more accurately.
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However, there are some issues that need to be further

explored in the future: i) High dimensional granular rela-

tion matrix (HGRM). This paper only established a two-

dimensional GRM from the perspective of time and space.

We hope to explore other useful observations to build a

HGRM to further improve the classification accuracy. ii) The

application scope of GCCM. GCCM can be applied to a series

of classification tasks, such as classification of encrypted,

unencrypted, unknown, and even anomaly traffic flows as long

as they have certain flow shapes. For the traffic flows that

have time-varying shapes (e.g., some malware traffic), we will

further explore novel flow features and design a new model

to achieve good identification in our future work.
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