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A B S T R A C T

The analysis of self-reports will be severely biased if they are subject to reporting heterogeneity. Moreover,
there are several types of such heterogeneity, which have all shown to be widespread in the literature. We
consider two predominant types of reporting heterogeneity: differential item functioning and middle inflation
bias. We consider and extend approaches for adjusting for each type of reporting heterogeneity in isolation and
propose models that allow for both types in combination. Monte Carlo experiments favor more complex models
(that allow for reporting heterogeneity), even when the underlying data generating process is of a simpler
form. The results suggest that failure to account for these nuances will lead to erroneous inference concerning
the analysis of self-reported data. We apply these new methods to the important area of self-reported health
outcomes.

1. Introduction

Social surveys typically contain multiple measurement instruments
in the form of self-assessments to capture the circumstances, prefer-
ences or beliefs of respondents. These include questions relating to job
and life satisfaction, satisfaction with public services, political efficacy,
work disability and health status. Available responses usually consist
of ordered categories. For example the ubiquitous self-assessed general
health measure asks respondents to rate their health using a 5-point
scale. Available response categories typically consist of poor, fair, good,
very good and excellent health.2 There are compelling reasons for such
measures being a staple feature of household surveys, most notably the
relative ease and low cost of data collection. These measures contain
valuable information from which to infer differences across individuals,
socio-economic groups or countries, and feature strongly in empirical
social science survey research.

Although widely used, self-assessments are subject to various forms
of reporting behavior. Responses to these types of questions are often
open to subjective interpretation. Even where respondents are facing
a fixed and known level of the construct under consideration, their
respective assessments can vary. Accordingly, responses will reflect

∗ Corresponding author.
E-mail address: mark.harris@curtin.edu.au (M.N. Harris).

1 The authors are grateful to Bruce Hollingsworth for comments on an earlier version of this paper. We also acknowledge extremely useful comments from
the Editor, Prof. Sushanta K. Mallick, an anonymous Associate Editor and two anonymous referees. The usual caveats apply, and any remaining errors are the
authors’ responsibility.

2 The wording of the questions and available response categories vary across surveys. For example, the UK Household Longitudinal Survey (UKHLS, 2022)
uses the categories very poor, poor, fair, good, and excellent health.

both the objective reality and a respondent’s interpretation of the

subjective scale.

Subjectivity in self-reported outcomes will not always be of concern

to the researcher. For constructs such as pain or satisfaction, an indi-

vidual’s perception is likely to be of greater relevance than attempts

at more objective measures, and accordingly, information elicited on a

person’s subjective view will be of primary interest. That is, reporting

behavior in self-assessments will be less relevant where the measured

variable reflects the underlying construct upon which we wish to

base policy recommendations. Where differential reporting behavior

exists and is purely random and confined to the outcome of interest it

could also be of limited concern, for example, in linear models where

precision but not consistency of estimates is affected. However, this

does not readily extend to non-linear models typically used to model

many survey self-assessments (see, for example, Hausman et al. 1998,

Hausman 2001).

Often researchers are interested in comparing levels of outcomes

across sub-groups of the population, for example, stratified by socio-

economic status or gender (Etilé and Milcent, 2006; Bago d’Uva et al.,

2008; Dowd and Zajacova, 2010; Au and Lorgelly, 2014; Davillas
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et al., 2019), or international comparisons where differences in cul-
tural norms and behaviors might influence reporting styles (for exam-
ple, Rice et al. 2012). There is often little compelling reason to believe,
a priori, that self-reported outcomes will be comparable across such
groups. For example, self-reported rates of work disability have been
found to differ across countries, more so than might be expected on
more objective measures of health (Kapteyn et al., 2007). More gener-
ally, since ill-health can be seen as a legitimate reason for being outside
the labor market, individuals can also seek to justify their work status
by down-reporting health. This form of reporting behavior has long
been a concern in the literature on the link between health and labor
market outcomes (for example, Bound 1991, Kerkhofs and Lindeboom
1995, Black et al. 2017). Evidence of non-random reporting behavior
and more general forms of measurement error in self-assessments of
health have been reviewed, amongst others, in Currie (2000), Crossley
and Kennedy (2002) and Lindeboom (2006).

This paper is concerned with two types of reporting behavior for
survey self-assessments on an ordered categorical scale where bias from
misreporting is of concern for inference. The first, differential item
functioning (𝐷𝐼𝐹 ), exists where the use of different response bench-
marks leads individuals with similar objective health (as in the current
example) to report differently—for example, because of different expec-
tations of health, underlying levels of optimism or pain thresholds (King
et al., 2004). Note that in the context of self-assessed health this has
also been referred to as cut-point shift or index shift (Sadana et al.,
2000; Lindeboom and van Doorslaer, 2004), state-dependent reporting
error (Kerkhofs and Lindeboom, 1995; Carro and Traferri, 2014), and
scale of reference bias (Groot, 2000). The second form of reporting
behavior is middle-inflation bias where for various reasons, individuals
concentrate responses in the middle categories of the response scale.
In the context of self-assessed health, both of these types of behaviors
could lead individuals with identical levels of underlying latent health
to respond very differently to a given survey question. Indeed, our
explicit contributions to the literature are to generalize existing ‘‘struc-
tural’’ models of misreporting and then to also combine these with those
approaches where individuals utilize different response benchmarks
(𝐷𝐼𝐹 ), into a convenient single estimation approach.

To address the issue of 𝐷𝐼𝐹 , recent research has advocated the
use of anchoring vignettes to detect and adjust for heterogeneity in
individuals’ reporting scales (Currie and Madrian, 1999; Crossley and
Kennedy, 2002; King et al., 2004; Kapteyn et al., 2007; Kristensen
and Johansson, 2008; Angelini et al., 2014). Essentially this entails
asking individuals to rate one or more of a set of vignettes, or questions
about, for example, the health status of a hypothetical person. Since all
respondents rate the same (set of) vignette(s) the responses can then
be used to anchor, or adjust, the respondent’s self-assessment of their
own health. Hence, vignettes are aimed at increasing inter-respondent
comparability by abstracting reporting behavior from the underlying
construct under investigation.

Such response heterogeneity could be considered ‘‘measurement
error at the margin’’, although recent research suggests a potentially
more systematic form of mis-measurement in self-reported data. In
particular, Greene et al. (2015) consider the distribution of self-assessed
health (𝑆𝐴𝐻), collected from a large representative sample of the
Australian population (although similar issues are found in compara-
ble surveys across the developed world). The responses to the 𝑆𝐴𝐻

question are clearly bunched around the middle category and the one
immediately to the ‘‘right’’ of this: good and very good in the range
from poor to excellent health. They argue that this paints a rather rosy
picture of the health of the population as compared to many more
objective measures (such as obesity rates, exercise rates, widespread
levels of elevated cholesterol levels, and so on) which tend to paint
a much bleaker picture (Greene et al., 2015). However, clearly this
depends on whether individuals have predominantly ‘‘inflated’’ these
responses from higher, or lower, levels. They conclude that there is a
large, 9% (prior probability) chance that a randomly selected individual

will inaccurately report into the two inflated categories; which jumps to
over 12% when posterior based probabilities are considered. Moreover,
of the 40% (39%) estimated probability for the outcome good (very
good), some 5 (4) percentage points can be attributed to inaccurate
reporting. When translated into the number of implied individuals,
these are substantive findings.

Similarly, Brown et al. (2021) consider self-reported mental health,
and explicitly the construction of the widely used GHQ-12 instrument
for such, which they found to be heavily biased away from lower levels
of mental health, which they attribute to mis-reporting. In the context
of self-reported drug use, Brown et al. (2018) also consider inaccurate
reporting. They find that true participation rates are likely to be around
double those that are self-reported for marijuana, speed and cocaine
(23%, 8% and 5%, respectively, compared to reported rates of 12%,
3% and 1%). Misreporting rates were also found to vary in proportion
to the ‘‘hardness’’ of the drug.

The general approach of Greene et al. (2015) can be extended to
provide greater flexibility. Couched in terms of a latent class model
(McLachlan and Peel, 2000), it essentially hypothesizes that there are
inherently only two types of individuals in the population: those who
answer the self-assessments accurately and; those who answer inaccu-
rately (picking one of the two ‘‘inflated’’ responses). A more generalized
approach would assume a wider range of types of individuals in the
population: operationally this will correspond to the number of discrete
outcomes available to the respondent (typically five). To allow for
the over-representation of individuals in these ‘‘middle’’ responses, it
must be that some individuals outside of these categories have erro-
neously placed themselves into them. This will be due to a number
of reasons, for example psychological ones, such as ‘‘wanting to fit
in’’ and the avoidance of extreme answers. Or respondents could be
employing a ‘‘box-ticking’’ strategy of defaulting to reporting in the
middle categories to reduce the time costs of considering conscien-
tiously the appropriateness of each available category. This can be
accommodated by considering multiple ‘‘inflation’’ equations. These
can be specified in a number of ways. For example, to model inflation
from neighboring categories only, therefore tempering from fair to
good health, or excellent to very good health; or from all available
outcome categories (including poor health) to the two middle inflated
responses. This approach is a natural generalization of Greene et al.
(2013) that offers flexibility in modeling inflated outcomes. Thus a
significant contribution of this paper is the introduction of several new
variants to these so-called ‘‘inflation models’’, as described above.3

A potential criticism of the general inflation-model approach de-
scribed above though, is that some, or all, of the clustering of obser-
vations around the middle of the scale, could actually be attributed to
heterogeneity in reporting scales as opposed to an ‘‘inflation’’ strategy.
Similarly, approaches that use anchoring vignettes alone, could be
biased if they erroneously attribute an ‘‘inflation’’ strategy to reporting
heterogeneity in response scales. The paper innovates by firstly gener-
alizing the approach of Greene et al. (2015), and then combining all
of these potential forms of reporting heterogeneity (𝐷𝐼𝐹 and middle
inflation) into single estimators. In so-doing, we propose an extremely
general estimation approach, that is well-placed to handle multiple
forms of survey-based misreporting/misclassification that have been
discussed in the literature to-date.

We demonstrate the finite sample performance of existing and
proposed models in a set of Monte Carlo experiments. Our empirical
application to health outcomes support the notion that respondents,
when self-reporting, are susceptible to both general reporting behav-
ior and artificial inflation of certain categories. Failure to account
for these nuanced reporting effects leads to erroneous inference of
health determinants. While our particular focus is the self-reporting

3 Similar extensions to single inflated outcome models, have also been
considered by Brown et al. (2020) and Sirchenko (2020), for example.
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of health, it should be noted that the approach is broadly applicable
to categorical outcomes used across the social sciences. Indeed, it will
be of use whenever the researcher is interested in self-reports on an
attitudinal Likert-type scale, which are increasingly popular, especially
in large-scale population based surveys.

2. Methods

2.1. Differential item functioning and the 𝐻𝑂𝑃𝐼𝑇 model

A graphical illustration of 𝐷𝐼𝐹 is presented in the online Appendix.
This shows two individuals with identical levels of underlying latent
health, asked to rate their health on a 5-point Likert -type scale with
response categories excellent, very good, good, fair and poor. How each
respondent divides the scale into the response categories is illustrated
by the placement of the boundaries or ‘‘cut-points’’. 𝐷𝐼𝐹 is evident
by the differing placement of cut-points across the two respondents.
Despite having the same level of latent objective health, respondent 1
reports their health as fair, while respondent 2 reports to be in good
health. The presence of 𝐷𝐼𝐹 in this example invalidates interpersonal
comparability of the general self-assessed health measure.

More formally, assume 𝑦∗ denotes true underlying health, which is a
linear function (in unknown parameters, 𝜷) of observed characteristics
𝐱; a standard normal disturbance term, 𝜀𝑦; and its relationship to certain
boundary parameters, 𝜇𝑗 :

𝑦∗ = 𝐱
′𝜷 + 𝜀𝑦, (1)

which translates into the observed 𝑗 = 0,… , 𝐽 − 1 outcomes via the
mapping

𝑦 =

⎧⎪⎨⎪⎩

0 if 𝜇−1 < 𝑦∗ ≤ 𝜇0
⋮ ⋮

𝐽 − 1 if 𝜇𝐽−2 < 𝑦∗ ≤ 𝜇𝐽−1,

(2)

where the total number of outcomes is 𝐽 (in the example above, 𝐽 = 5).
To guarantee well-defined probabilities, 𝜇−1 ≤ 𝜇1 ⋯ ≤ 𝜇𝐽−1, with 𝜇−1 =

−∞ and 𝜇𝐽−1 = ∞. Typical ordered response models (for example, the
ordered probit, 𝑂𝑃 ) assume that boundary parameters remain constant
across individuals. Heterogeneity in reporting scales can be accom-
modated by individual varying boundary parameters, 𝜇𝑗 . While there
are a number of ways to do this (for example, Terza (1985), Pudney
and Shields (2000)), many authors adopt a hierarchical ordered probit
(𝐻𝑂𝑃𝐼𝑇 ) approach, which specifies boundary parameters as

𝜇0 = 𝐳
′𝜸0;𝜇𝑗 = 𝜇𝑗−1 + exp

(
𝐳
′𝜸𝑗

)
;… (3)

where the exp (.) ensures the necessary ordering and identifies 𝛾𝑗 . For
any variables that appear in both 𝐱 and 𝐳, however, the corresponding
elements of 𝜸0 and 𝜷 are not separately identified without further
information (as the first threshold is specified linearly).

King et al. (2004) introduced the use of anchoring vignettes to allow
for identification of the 𝐻𝑂𝑃𝐼𝑇 model. Vignettes offer a method of
anchoring individual response scales when used in conjunction with the
main self-report of interest. Alongside a self-assessment, respondents
are also asked to rate a set of vignettes (𝑘 = 1,… , 𝐾) describing the
situations (for example, health states) of hypothetical people. The re-
sponse scale available to rate the 𝐾 vignettes is the same 𝑗 = 0,… , 𝐽−1

scale used for the self-report. Example vignettes are provided in the
Supplementary Materials in the online Appendix. Define the observed
response to each 𝑘 = 1,… , 𝐾 possible vignette as 𝑦(𝑘). The response to
the main assessment in Eq. (2) is now 𝑦(0). The vignette responses are
assumed to be dependent upon unobserved continuous latent measures
𝑦(𝑘)

∗
and embody the mappings

𝑦(𝑘) = 𝑗 if 𝜇(𝑘)

𝑗−1
< 𝑦(𝑘)

∗
< 𝜇

(𝑘)
𝑗

𝑘 = 1,… , 𝐾; 𝑗 = 0,… , 𝐽 − 1, (4)

with 𝜇
(𝑘)

−1
= −∞, and 𝜇

(𝑘)

𝐽−1
= ∞. Note that with multiple vignettes, an

unobserved individual-specific effect can be included in the specifica-
tion of the thresholds such that in Eq. (3) 𝜇𝑖0 = 𝐳

′
𝑖
𝜸0 + 𝑢𝑖 (Kapteyn

et al., 2007). The 𝑦(𝑘)
∗
’s are assumed to be a function of a constant and

random errors

𝑦(𝑘)
∗
= 𝛼(𝑘) + 𝜀(𝑘), (5)

with 𝜀(𝑘) ∼ 𝑁
(
0, (𝜎(𝑘))2

)
and independent of all observed covariates in

the model. Eq. (5) follows from an identifying assumption of vignette
equivalence (𝑉 𝐶) - that the underlying level of the construct of interest
described by a vignette is perceived by all respondents in the same way
and on the same unidimensional scale, except for random error; the
alternative being to extend Eq. (5) to include a function of observed
characteristics as in Eq. (1). Often the simplifying assumption that the
variance is the same across all vignettes, (𝜎(𝑘))2 = 𝜎2, is also imposed.4

Heterogeneity across the response scales is once more allowed for by
specifying the boundaries as a function of threshold variables, 𝐳, and
having the same form as Eq. (3).

The (log-)likelihood function for the 𝐻𝑂𝑃𝐼𝑇 model consists of two
distinct parts: one relating to the self-report of interest, and a second
to the vignette component of the model. Under the assumption of
normality, the respective probabilities for each ordered outcome of the
self-assessment are

Pr (𝑦 = 𝑗|𝐱) =
⎧
⎪⎨⎪⎩

Pr (𝑦 = 0|𝐱 ) = 𝛷
(
𝜇0 − 𝐱′𝜷

)
⋮

Pr (𝑦 = 𝐽 − 1|𝐱 ) = [
1 −𝛷

(
𝜇𝐽−2 − 𝐱′𝜷

)] , (6)

where 𝛷 (.) denotes the standard normal distribution function evaluated
at its argument (note that if the boundary parameters were constant
across individuals, these would simply be of the standard 𝑂𝑃 form).
The (log) density for the self-report (𝐻𝑂𝑃𝐼𝑇 ) component, for a random
sample of individuals, 𝑖 = 1,… , 𝑁 , is given by

ln𝐿[𝐻𝑂𝑃𝐼𝑇 ,𝜽] =

𝑁∑
𝑖=1

ln

𝐽−1∑
𝑗=0

𝑑𝑖𝑗
[
Pr

(
𝑦𝑖 = 𝑗 ||𝐱𝑖, 𝐳𝑖,𝐻𝑂𝑃𝐼𝑇

)]
, (7)

where 𝑑𝑖𝑗 is a binary indicator equal to one if individual 𝑖 chooses
outcome 𝑗, and zero otherwise,

∑
𝑗 𝑑𝑖𝑗 = 1, and 𝜽 is a vector of

parameters in the model. In what follows, to simplify the notation,
observation subscript 𝑖 will be omitted and 𝜽 will be implicit in the
formulations of log likelihood functions.

For the vignette component and a particular 𝑘, we have ordered
probabilities

Pr(𝑦𝑗𝑘 = 𝑗 |𝐳 ) = 𝑝𝑣
𝑗𝑘
(𝐳)

=

⎧⎪⎪⎨⎪⎪⎩

Pr
(
𝑦(𝑘) = 0 |𝐳 ) = 𝛷

([
𝜇
(𝑘)

0
− 𝛼(𝑘)

]
∕𝜎

)
, 𝑗 = 0;

Pr
(
𝑦(𝑘) = 1 |𝐳 ) =

[
𝛷
([

𝜇
(𝑘)

1
− 𝛼(𝑘)

]
∕𝜎

)
−𝛷

([
𝜇
(𝑘)

0
− 𝛼(𝑘)

]
∕𝜎

)]
, 𝑗 = 1;

⋮

Pr
(
𝑦(𝑘) = 𝐽 − 1 |𝐳 ) =

[
1 −𝛷

([
𝜇
(𝑘)

𝐽−2
− 𝛼(𝑘)

]
∕𝜎

)]
, 𝑗 = 𝐽 − 1

(8)

where the 𝜇(𝑘)
𝑗
are of the form of Eq. (3). The (log-)likelihood contribu-

tion arising from the vignettes component over 𝑘 = 1,… , 𝐾 vignettes
is

ln𝐿[𝑉 ] =

𝑁∑
𝑖=1

𝐾∑
𝑘=1

ln

𝐽−1∑
𝑗=0

𝑑
(𝑘)
𝑖𝑗

Pr
(
𝑦
(𝑘)
𝑖𝑗

= 𝑗|𝐳, 𝑉 (𝑘)
)
, (9)

where 𝑑
(𝑘)
𝑖𝑗
is now the vignette-specific indicator variable.

The second identifying assumption of the 𝐻𝑂𝑃𝐼𝑇 approach is
response consistency (𝑅𝐶) which implies that the boundary parameters
are equivalent across the self-report and the 𝐾 vignettes, such that
𝛾
(𝑘)
𝑗

≡ 𝛾
(0)
𝑗

, 𝑗 = 0,… , 𝐽 − 1; 𝑘 = 1,… , 𝐾. With independence of 𝜖𝑦

4 Imposing the assumptions of 𝑉 𝐸 and response consistency (see below)
allows the parameter 𝜎2 to be freely estimated given the normalization of scale
and location in Eq. (1); see Kapteyn et al. (2007).
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and 𝜖𝑘, the overall (log-)likelihood is the sum of these two components

ln𝐿 = ln𝐿[𝑉 ] + ln𝐿[𝐻𝑂𝑃𝐼𝑇 ], (10)

where the first term is a function of [𝜇𝑖𝑗 , 𝛼
(1),… , 𝛼(𝐾), 𝜎] and the second

is a function of [𝜇𝑖𝑗 , 𝜸𝑗 ]. The two terms are linked through the common
boundary parameters 𝜇𝑖𝑗 , and so do not factorize into two independent
models. Model identification rests on the two underlying assumption of
𝑉 𝐶 and 𝑅𝐶 (Greene and Hensher, 2010); a simple parametric test for
which has recently been proposed by Greene et al. (2020). However, it
is not clear how such a test would be applied to the models suggested
below which combine this approach for reporting behavior with other
middle inflation.

2.2. Middle inflation models of reporting heterogeneity

Recent innovations in the literature (Greene et al., 2015) consider
a much more structural form of reporting heterogeneity than that
described by the 𝐻𝑂𝑃𝐼𝑇 model with vignettes. The approach involves
explicitly allowing for the outcomes corresponding to the middle two
outcomes to be inflated: in some sense they are an over-representation
of a population’s true health status in these outcomes. For example, it
is typical to find about 70% of observations in the very good and good
categories in reports of self-assessed health. For a 5-point Likert scale,
running from poor (𝑗 = 0) to excellent (𝑗 = 4), these would correspond
to outcomes 𝑗 = 2 and 𝑗 = 3. Reasons as to why some individuals
may misreport into these middle categories include, amongst others:
a general distrust of surveys; the opportunity cost-of-time; a desire to
want to appear more socially acceptable, or to ‘‘play it safe’’. Tradi-
tional ordered response models cannot accommodate this phenomenon
or test it as a hypothesis.

To account for middle inflation, Greene et al. (2015) propose a
middle-inflated ordered probit (𝑀𝐼𝑂𝑃 ) model (illustrated conceptually
in the on-line Appendix). Formally, consider a latent variable, 𝑟∗, which
represents an individual’s propensity to report accurately/inaccurately
(i.e., middle inflate). Let this latent variable be a function of a set
of observed covariates, 𝐰, with unknown weights 𝜆, and a (standard
normal) disturbance term, 𝑣 such that

𝑟∗ = 𝐰
′𝜆 + 𝑣, (11)

with 𝑣 ∼ 𝑁[0, 𝜎2𝑣 ] and 𝜎𝑣 normalized to one. When this index reaches
a critical level (normalized to zero), the individual will accordingly
report accurately (𝑟 = 1); otherwise, they will employ a ‘‘box-ticking’’
strategy. Under normality, the probability that an individual will report
‘‘accurately’’ is therefore a probit probability of the form

Pr (𝑟 = 1|𝐰) = Pr
(
𝑟∗ > 0|𝐰) = 𝛷

(
𝐰
′𝝀
)
. (12)

Conditional on being in the non-box-ticking regime, a standard forma-
tion given by Eq. (6) applies; driven by covariates 𝐱 with associated
weights 𝜷, and for now assuming constant boundary parameters (𝜇𝑗)
across respondents (as in the traditional 𝑂𝑃 model). However, for
individuals with a box-ticking propensity, they will essentially make
a binary choice between the categories good and very good. This can be
determined by a further latent variable of the form

𝑚∗ = 𝐟
′𝜹 + ℎ, (13)

where it is expected that observed covariates 𝐟 will be the same as those
driving the health equation for accurate reporters; 𝛿 are unknown coef-
ficients and; ℎ is a standard normal error term . Again, once the index
reaches a threshold value normalized to zero, this triggers the choice of
very good relative to good. Thus under independence of the stochastic
elements of the system, joint probabilities of inaccurate and of good
reporting, Pr (𝑟 = 0|𝐰) and Pr (𝑚 = 0|𝐟 ) respectively, and of inaccurate
and very good reporting, Pr (𝑟 = 0|𝐰) and Pr (𝑚 = 1|𝐟 ) respectively, will

be

Pr (𝑟 = 0, 𝑚 = 0|𝐰, 𝐟 ) = 𝛷
(
−𝐰′𝝀

)
𝛷
(
𝐟
′𝜹
)

(14)

Pr (𝑟 = 0, 𝑚 = 1|𝐰, 𝐟 ) = 𝛷
(
−𝐰′𝝀

)
𝛷
(
−𝐟 ′𝜹

)
.

Accurately reporting respondents will choose freely across the 5-point
choice set. The main outcome probabilities conditional on 𝑟 = 1 are
given in Eq. (6). Marginal probabilities based on probit models for
respondent type, 𝑟, and middle inflation outcome, 𝑚, are given by
Eqs. (12) and (15), respectively. Marginal probabilities for the observed
outcomes are determined as follows

Pr (𝑦 = 0|𝐱,𝐰, 𝐟 ) = Pr (𝑟 = 1|𝐱,𝐰, 𝐟 ) Pr (𝑦 = 0|𝑟 = 1, 𝐱,𝐰, 𝐟 )

+ Pr (𝑟 = 0|𝐱,𝐰, 𝐟 ) Pr (𝑦 = 0|𝑟 = 0, 𝐱,𝐰, 𝐟 )

However, Pr (𝑦 = 0|𝑟 = 0, 𝐱,𝐰, 𝐟 ) = 0. Collecting the remaining terms,

Pr (𝑦 = 0|𝐱,𝐰, 𝐟 ) = 𝛷
(
𝐰
′𝝀
)
𝛷
(
𝜇0 − 𝐱

′𝜷
)
. (15)

By the same logic, outcomes 𝑦 = 1 and 𝑦 = 4 arise only when 𝑟 = 1.
Thus,

Pr (𝑦 = 1|𝐱,𝐰, 𝐟 ) = 𝛷
(
𝐰
′𝝀
) [

𝛷
(
𝜇1 − 𝐱

′𝜷
)
−𝛷

(
𝜇0 − 𝐱

′𝜷
)]

, (16)

Pr (𝑦 = 4|𝐱,𝐰, 𝐟 ) = 𝛷
(
𝐰
′𝝀
) [

1 −𝛷
(
𝜇3 − 𝐱

′𝜷
)]

.

Outcomes 𝑦 = 2 and 𝑦 = 3 arise from an accurate report or a misreport.
Thus,

Pr (𝑦 = 2|𝐱,𝐰, 𝐟 ) = Pr (𝑟 = 1|𝐱,𝐰, 𝐟 ) Pr (𝑦 = 2|𝑟 = 1, 𝐱,𝐰, 𝐟 ) (17)

+ Pr (𝑟 = 0|𝐱,𝐰, 𝐟 ) Pr (𝑚 = 0|𝑟 = 0, 𝐱,𝐰, 𝐟 )

= 𝛷
(
𝐰
′𝝀
) [

𝛷
(
𝜇2 − 𝐱

′𝜷
)
−𝛷

(
𝜇1 − 𝐱

′𝜷
)]

+
[
1 −𝛷

(
𝐰
′𝝀
)] [

1 −𝛷
(
𝐟
′𝜹
)]

.

Pr (𝑦 = 3|𝐱,𝐰, 𝐟 ) = Pr (𝑟 = 1|𝐱,𝐰, 𝐟 ) Pr (𝑦 = 3|𝑟 = 1, 𝐱,𝐰, 𝐟 )

+ Pr (𝑟 = 0|𝐱,𝐰, 𝐟 ) Pr (𝑚 = 1|𝑟 = 0, 𝐱,𝐰, 𝐟 )

= 𝛷
(
𝐰
′𝝀
) [

𝛷
(
𝜇3 − 𝐱

′𝜷
)
−𝛷

(
𝜇2 − 𝐱

′𝜷
)]

+
[
1 −𝛷

(
𝐰
′𝝀
)] [

𝛷
(
𝐟
′𝜹
)]

.

Once the form of the probabilities, dependent on unknown parameters
and observed data, is known, the model can be estimated by maximum
likelihood, 𝑀𝐿, techniques where the (log-)likelihood function for the
middle-inflated (𝑀𝐼𝑂𝑃 ) model is now

ln𝐿[𝑀𝐼𝑂𝑃 ] =

𝑁∑
𝑖=1

ln

𝐽−1∑
𝑗=0

𝑑𝑖𝑗 Pr
(
𝑦𝑖 = 𝑗|𝐱𝑖, 𝐟𝑖,𝐰𝑖,𝑀𝐼𝑂𝑃

)
. (18)

2.3. Tempered inflation models of reporting heterogeneity

There is an inherent sequencing implicit in the 𝑀𝐼𝑂𝑃 model: first
an individual decides if they have a propensity to report accurately,
or not, and conditional on this decision then reports accordingly.
However, Greene et al. (2013) consider reversing this implicit ordering
using a tempered ordered probit (𝑇𝑂𝑃 ) model. Importantly, their
approach considered only three outcome choices, with hypothesized
inflation in the singleton middle outcome only. Here, assume that an
individual first has a propensity to translate their notions of their true
underlying health, 𝑦∗, into one of the five observed categories (where
the generalizations to more or less than five categories is implicit).
However, for similar reasons to those noted above with regard to
inaccurate reporting, extreme values of a preferred outcome/choice
are tempered by equations that similarly allow for a tendency for
individuals to be pulled towards the middle categories. In essence, this
is the so-called 𝑇𝑂𝑃 approach described among others by Brown et al.
(2020), Greene et al. (2013) and Sirchenko (2020).

We extend this general approach in several important ways. A
relatively simple extension, is to consider multiple, that is > 3 outcomes.
However, as explained in the case of self-elicited responses on Likert
scales, ‘‘outcome inflation’’ is unlikely to be evident in a single middle
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category, but predominantly in two (or more): in the current example,
good and very good. The combination of these factors means that such
extensions are at the same time more complicated, but also poten-
tially more flexible. With such multiple (> 3) outcomes, an ‘‘extreme
outcome’’ could be any outside of the inflated middle categories. For
example, consider a respondent who has an underlying propensity for
either good or very good. These outcomes are already in the ‘‘middle’’
so that there would be no further forces acting to pull them towards
these middle outcomes. However, consider a different respondent who
has a true propensity for the neighboring choice of excellent. Clearly
there will remain a non-zero probability that they will still choose this
outcome, but these are likely to be tempered, for some, with a pull
towards the middle outcomes.

To expand on these new developments, firstly, assume a standard
set-up for an 𝑂𝑃 model as described in Eqs. (1), (2) and (6), with
constant 𝜇𝑗 across individuals. We will label these ‘‘first stage’ prob-
abilities, Pr

(
𝑦(0) = 𝑗|𝐱, 𝑂𝑃

)
= Pr (𝑗|𝑂𝑃 ), 𝑗 = 0,… , 𝐽 −1. For individuals

with a 𝑗 = 4 (excellent) propensity, our approach simultaneously allows
for tempering towards the inflated middle outcomes, and also for the
respondent to simply ‘‘stay where they are’’ and choose excellent. Thus
conditional on this first stage propensity, a binary 𝑃𝑟𝑜𝑏𝑖𝑡 model applies
with potential outcomes: excellent, and very good. Let this tempering
equation be determined by a latent equation of the form (with observed
covariates 𝐰 with unknown weights 𝝀 and a standard normal error term
𝑢)

𝑡∗
4
= 𝐰

′𝝀4 + 𝑢4, (19)

with resultant probabilities of Pr
(
𝑦 = 4|𝑡4 = 4

)
and Pr

(
𝑦 = 3|𝑡4 = 4

)
,

where the conditioning indicates that these are tempering probabilities
from (or conditional on), the excellent (𝑦 = 4) outcome in the first stage.

For the next cells on the choice scale, the first stage probabilities
of the middle outcomes 𝑦 = 2 and 𝑦 = 3, will be left untempered:
Pr

(
𝑦 = 2|𝑡4 = 1

)
= Pr (𝑦 = 2) and likewise for 𝑦 = 3. Next, consider the

𝑗 = 1 choice, of fair. Once more, to allow for tempering from this choice,
we can envisage a latent equation of the form

𝑡∗
1
= 𝐰

′𝝀1 + 𝑢1, (20)

which will now drive this conditional choice to either fair (that is,
there is no tempering); or to the inflated neighboring outcome of good.
Again, recognizing the binary nature of these choices, Eq. (20) will
translate itself into a further 𝑃𝑟𝑜𝑏𝑖𝑡 equation with resultant probabilities
of Pr

(
𝑦 = 1|𝑡1 = 1

)
, and Pr

(
𝑦 = 2|𝑡1 = 1

)
.

In the case of a 5-point scale, there is the further choice of poor
(𝑗 = 0). It might be considered that this outcome is sufficiently far from
the inflated outcomes such that no, or very little tempering is likely.
Or, it might be that tempering from this extreme is still present in the
data. In our example we do not consider tempering from this outcome.
Thus overall probabilities for the tempered approach are given by

Pr(𝑦 = 𝑗|𝑇𝑂𝑃 )

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pr (𝑦 = 0|𝐱,𝐰, 𝐟 , 𝑇𝑂𝑃 ) = Pr (𝑦 = 0, 𝑇𝑂𝑃 )

Pr (𝑦 = 1|𝐱,𝐰, 𝐟 , 𝑇𝑂𝑃 ) = Pr
(
𝑦 = 1|𝑡1 = 1, 𝑇𝑂𝑃

)
Pr

(
𝑡1 = 1

)
Pr (𝑦 = 2|𝐱,𝐰, 𝐟 , 𝑇𝑂𝑃 ) = Pr (𝑦 = 2|𝑂𝑃 ) + Pr

(
𝑦 = 2|𝑡1 = 0, 𝑇𝑂𝑃

)
Pr

(
𝑡1 = 0

)
Pr (𝑦 = 3|𝐱,𝐰, 𝐟 , 𝑇𝑂𝑃 ) = Pr (𝑦 = 3|𝑂𝑃 ) + Pr

(
𝑦 = 3|𝑡4 = 0, 𝑇𝑂𝑃

)
Pr

(
𝑡4 = 0

)
Pr (𝑦 = 4|𝐱,𝐰, 𝐟 , 𝑇𝑂𝑃 ) = Pr

(
𝑦 = 4|𝑡4 = 1, 𝑇𝑂𝑃

)
Pr

(
𝑡4 = 1

)

(21)

The resulting (log-)likelihood function for the tempered (𝑇𝑂𝑃 ) model
is

ln𝐿[𝑇𝑂𝑃 ] =

𝑁∑
𝑖=1

ln

𝐽−1∑
𝑗=0

𝑑𝑖𝑗 Pr
(
𝑦𝑖 = 𝑗|𝐱𝑖, 𝐟𝑖,𝐰𝑖, 𝑇𝑂𝑃

)
. (22)

This particular form of the 𝑇𝑂𝑃 model is also summarized conceptually
in the Appendix. Note that this specification is implicitly tempering
from near neighbors only. A further generalization would be to allow

for tempering across a range of neighboring alternatives. It would
appear though, that computationally such a model would be data
demanding whilst being conceptually sound.

Identification in tempered and inflated models is achieved through
the underlying assumption of normality of the various stochastic el-
ements, along with the inherent non-linearities in the resulting joint
probabilities— see, for example, Eqs. (15)–(21). However, it is also
buttressed by imposing variable exclusion restrictions in the various
components of the models; this is discussed below in regard to variable
selection. Such identification strategies are ubiquitous amongst the full
suite of related ‘‘hurdle/inflation’’ models, that these model extensions
are based upon. Moreover, even the assumption of normality appears to
be rather benign one in such models, as evidenced in Harris and Zhao
(2007). Note that whilst the assumed independence of the stochastic
elements of the models does, as noted, help in terms of identifica-
tion issues, it is not strictly required. However, for such relatively
small sample sizes as we have, this was not deemed an appropri-
ate additional complexity to already quite ‘‘data-hungry’’ approaches.
Moreover, in general, we would recommend identification based on
exclusion restrictions whenever possible.

2.4. Inflation and tempered models with vignette reporting adjustments

The methods described above have been developed and employed
in isolation. When viewed in isolation, one could mistakenly attribute
reporting heterogeneity to say 𝐷𝐼𝐹 when in fact there was only infla-
tion heterogeneity present in the data, or vice versa. However, clearly
there exists the possibility that both forms of reporting heterogeneity
operate jointly. We combine the above approaches to account simul-
taneously for both forms of reporting behavior. That is, we extend
both the inflation models, 𝑀𝐼𝑂𝑃 and 𝑇𝑂𝑃 , described above to in-
corporate information from anchoring vignettes to adjust for reporting
heterogeneity.

To combine 𝐷𝐼𝐹 with the 𝑀𝐼𝑂𝑃 model for middle-inflation, it is
necessary to first allow the reporting-scale parameters of the 𝑀𝐼𝑂𝑃

model, 𝝁𝑀𝐼𝑂𝑃 to be person-specific, such that

𝜇𝑀𝐼𝑂𝑃
0

= 𝐳
′𝜸0 (23)

𝜇𝑀𝐼𝑂𝑃
𝑗 = 𝜇𝑗−1 + exp

(
𝐳
′𝜸𝑗

)

⋮

and as before, with the more standard 𝐻𝑂𝑃𝐼𝑇 approach, a separate
𝐻𝑂𝑃𝐼𝑇 model for the vignette responses applies. Again, enforcing
the anchoring of individual specific reporting scales via the vignettes
requires equality of the boundary parameters across the two models,
such that we maintain identical coefficients 𝜸 in both the vignettes
part of the 𝐻𝑂𝑃𝐼𝑇 model as those in the self-assessment part of the
𝐻𝑂𝑃𝐼𝑇 model.

To estimate this augmented model one simply replaces the likeli-
hood contribution arising from the 𝐻𝑂𝑃𝐼𝑇 part of the model,
ln𝐿[𝐻𝑂𝑃𝐼𝑇 ], with that from the 𝑀𝐼𝑂𝑃 , ln𝐿[𝑀𝐼𝑂𝑃 ], once the defi-
nition of the boundaries has been changed along the lines of Eq. (23)
in the latter; such that

ln𝐿[𝑉 ∕𝑀𝐼𝑂𝑃 ] = ln𝐿[𝑉 ] + ln𝐿[𝑀𝐼𝑂𝑃 ]. (24)

Again, as these two components are linked through the common
cut-point (or boundary) parameters and the overall model does not
factorize into two independent models. Conceptually, the identifying
assumption that an individual’s subjective reporting scale that repre-
sents 𝐷𝐼𝐹 is uncorrelated with their propensity to report accurately
or not. That is, an individual’s response scale represents a subjective
assessment of the location of boundaries between different levels of
health which is likely to be related to an individual’s health resilience.
This is distinct from a propensity to box-tick which is more strategic
relating to preferences over time use, a need to ‘‘fit in’’ or not to ‘‘stand
out’’ from the perceived norm, or simply a lack of understanding of the
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question asked. Accordingly, the key identifying assumption is that the
vignette responses are not similarly affected by box-ticking behaviors.

Similarly we can also nest the 𝐻𝑂𝑃𝐼𝑇 approach within the gen-
eral 𝑇𝑂𝑃 setting. Once more, we simply alter the constant cut-point
parameters to again be of the form

𝜇𝑇𝑂𝑃
0

= 𝐳
′𝜸0 (25)

𝜇𝑇𝑂𝑃
𝑗 = 𝜇𝑗−1 + exp

(
𝐳
′𝜸𝑗

)

⋮

and the likelihood function is now

ln𝐿[𝑉 ∕𝑇𝑂𝑃 ] = ln𝐿[𝑉 ] + ln𝐿[𝑇𝑂𝑃 ]. (26)

We note here that it would also be possible to allow for unob-
served heterogeneity in both structural and boundary components of
the model (Greene et al. 2014, Greene and Hensher 2010 and Greene
et al. 2015, for example); however, identification of such would be
much aided if panel data were to hand. It would also be possible to
allow all of the unobserved elements to be correlated, although this
would lead to an extremely complicated system of equations, with
likely very limited benefits.

Before moving on to the empirical results and experimental evi-
dence, it is worth noting that simply observing high frequencies in
particular categories is not prima facie evidence of reporting behavior
and/or category inflation (although it is often used as such empirically).
The key here, is that the same observationally equivalent outcome
can arise as the result of two, or more, processes. It is then down
to the model, and in particular the identifying variables, to try to
disentangle these. The identification strategy can also be informed by
any findings that unusually high frequencies in certain categories occur
for some individuals in the presence of covariates (attributes) while
smaller frequencies of that category occur for other people with similar
attributes.

We note that it is not sufficient to simply allow for bunching of
responses in particular categories via boundary shifts in (𝐶)𝐻𝑂𝑃𝐼𝑇

models, if the bunching is a result of two, or more, processes. It is simi-
larly not appropriate to model any bunching by ‘‘inflation’’ methods, if
in-fact the bunching was a result of simply boundary shifts. If these two
quite separate processes are erroneously conflated by the researcher,
whilst measures of model fit/appropriateness might appear favorable,
completely wrong inference and policy-advice will result. For example,
a solely 𝐷𝐼𝐹 -correction approach could well reallocate a cohort of
individuals into an inflated category as a ‘‘true’’ reflection of their un-
derlying subjective assessment, whereas in reality this cohort is simply
categorized by individuals who are inherent ‘‘box-tickers’’, whereby
these outcomes are quite distinct from their true self-assessments.

Importantly, as we show below in the experimental evidence, if the
assumed inflation is not present in the data, then the model works to
collapse to a simpler version which does not embody this. Furthermore,
any concerns that individuals responding, say, good or very good are
responding accurately but are simply interpreting the categories differ-
ently, will be allayed by the use of the vignettes (as described above).
A possible limitation of the suggested models here, is that vignette
questions are not always available. However, Harris et al. (2020) have
shown how it is possible to use (essentially merge in) vignettes collected
in other datasets along with the primary data of interest.

3. Empirical application

3.1. Self-reported (assessed) health outcomes

The issue of the determinants of 𝑆𝐴𝐻 has been widely studied
in the (predominantly) health economics literature. Examples and dif-
fering foci abound, but importantly include one of our key driving
sources Greene et al. (2015), as well as Bound (1991), Etilé and Milcent
(2006), Jones et al. (2010), Lalji et al. (2018), Kesavayuth et al. (2020)

and, as recent as Chen et al. (2023), as just a very small subset of such
literature. Given the importance of 𝑆𝐴𝐻 , as well as the strong potential
for such hypothesized reporting behaviors here (as evidenced by the
voluminous existing literature on such), this will form the basis of our
empirical example, as detailed below.

3.2. Data description and variable selection

We conducted an online survey on a sample of Australian respon-
dents aged 18 to 65 years recruited using a survey panel company.
The sampling strategy targeted a representative sample according to
gender-age-state of residence splits of the Australian population. Fol-
lowing an initial pilot, we collected data in two waves—the first in
April 2014 (𝑁 = 2, 007) and the second in August 2015 (𝑁 = 3, 027),
resulting in a pooled sample size of 5,034. The two waves are cross-
sectional and do not form a panel. Ethics approval was obtained by
the Monash University Human Research Ethics Committee, Monash
University Australia.

Survey respondents were asked to rate their own health, together
with the health of hypothetical individuals described in three vignettes.
The available response categories are poor, fair, good, very good, and
excellent health. The vignettes were developed to describe overall
states of health at differing levels of severity, and are provided in the
online Appendix. The hypothetical people described in the vignettes
were assigned names that were gender-matched to the respondents as
suggested by King et al. (2004). For further information on vignette
construction, see Knott et al. (2017).

The inflation equation of the 𝑀𝐼𝑂𝑃 and the tempering ones of the
𝑇𝑂𝑃 could be considered to be largely driven by similar covariates;
thus we use the same set in the inflation components of both models.
These included binary variables constructed from: 1) a question at the
end of the survey asking respondents how well they understood the
questions of the survey (Understood all questions = 1 if respondents
understood all question; = 0 if not); 2) a question asking whether others
were present while the survey was being completed, since this should
influence how truthfully people respond to survey questions (No one
else present = 1 if others were not present; = 0 if others were present);
and 3) whether the financial incentives received from participating
in online surveys contributed significantly to respondents’ household
income, which could provide an indication for how seriously people
took the survey (Money received = 1 if contributed significantly to
household income; = 0 if not).

The above variables are crucial for identification and were chosen
following similar research. For example, Brown et al. (2018) considered
such variables to identify misreporting equations in a drug consumption
framework. Since the variables mostly relate to the how the particular
survey was administered, they should ostensibly affect reporting be-
havior, and not underlying health levels. Moreover, such factors are
also in accordance with a long history of literature suggesting that
they correlate strongly with misreporting/misclassification dating back
to Mensch and Kandel (1988) and more recently Kraus and Augustin
(2001) and Berg and Lien (2006). Finally, a very similar set of identify-
ing variables were shown to perform well in a similar context in Greene
et al. (2015).

The survey also contained a standard set of demographic and socioe-
conomic questions including age, gender, highest level of education,
employment, marital and migrant status. Following the literature (for
example, Contoyannis et al. 2004), these are included as covariates
in the structural (health) component of all models estimated (i.e., 𝐱).
They are also included in the boundary equations of models allowing
for 𝐷𝐼𝐹 (𝐳); and equations determining middle-inflation behaviors in
middle-inflated and tempered models (𝐰, and 𝐟). Summary statistics of
the sample are provided in the online Appendix.

With respect to self-assessed health, superficiality there appears to
be inflation within the middle categories, with nearly 70% of respon-
dents reporting very good or good health. These sample proportions
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Table 1
Regression results; 𝑂𝑃 , 𝑀𝐼𝑂𝑃 and 𝑇𝑂𝑃 .

𝑂𝑃 𝑀𝐼𝑂𝑃 𝑇𝑂𝑃

Age/10 −0.443*** (0.081) −0.44*** (0.112) −0.482*** (0.088)
(Age/10)2 0.03*** (0.009) 0.024* (0.013) 0.035*** (0.01)
Female −0.06* (0.031) −0.081* (0.042) −0.023 (0.033)
University educated 0.248*** (0.043) 0.231*** (0.06) 0.272*** (0.046)
Year 12 or certificate/diploma 0.27*** (0.055) 0.277*** (0.075) 0.27*** (0.058)
Unemployed −0.366*** (0.05) −0.362*** (0.07) −0.407*** (0.054)
Not in labour force −0.488*** (0.045) −0.521*** (0.062) −0.518*** (0.047)
Married 0.235*** (0.037) 0.277*** (0.051) 0.261*** (0.041)
Divorced/Separated/Widowed −0.016 (0.057) −0.001 (0.079) 0.001 (0.06)
Migrant 0.113*** (0.035) 0.155*** (0.051) 0.108*** (0.038)
Fixed boundary parameters:
𝜇1 −2.76*** (0.164) −2.626*** (0.224) −2.789*** (0.181)
𝜇2 −1.906*** (0.162) −1.592*** (0.234) −1.903*** (0.179)
𝜇3 −0.929*** (0.161) −0.95*** (0.249) −0.96*** (0.178)
𝜇4 0.18 (0.161) −0.311 (0.266) −0.96*** (0.178)

Binary health Tempering from
equation Fair health

Constant 0.869** (0.412) 1.064 (2.891)
Age/10 −0.443** (0.206) 0.538 (1.198)
(Age/10)2 0.041* (0.024) −0.021 (0.141)
Female −0.064 (0.082) 0.816 (0.719)
University educated 0.376*** (0.123) −0.219 (0.736)
Year 12 or certificate/diploma 0.265* (0.146) −0.509 (0.409)
Unemployed −0.492*** (0.158) −0.361 (0.802)
Not in labour force −0.142 (0.168) 0.359 (0.994)
Married 0.068 (0.121) −0.797 (0.609)
Divorced/Separated/Widowed −0.046 (0.155) 0.609 (1.523)
Migrant 0.025 (0.086) −1.228*** (0.001)
No one else present −0.378 (1.167)
Understood all questions −0.34 (0.889)
Money received 1.28 (1.08)

‘‘Accurate’’ Tempering from
Reporting equation Excellent health

Constant 0.19 (0.386) −0.144 (0.296)
Age/10 0.241 (0.186) −0.006 (0.154)
(Age/10)2 −0.023 (0.021) −0.011 (0.018)
Female −0.172** (0.069) −0.144** (0.058)
University educated −0.12 (0.097) −0.014 (0.096)
Year 12 or certificate/diploma −0.096 (0.122) 0.072 (0.113)
Unemployed 0.22* (0.121) 0.022 (0.104)
Not in labour force 0.436*** (0.107) −0.035 (0.099)
Married −0.283*** (0.088) −0.049 (0.07)
Divorced/Separated/Widowed −0.101 (0.133) −0.084 (0.125)
Migrant −0.132* (0.077) 0.002 (0.064)
No one else present −0.401** (0.165) −0.486*** (0.091)
Understood all questions 0.1 (0.091) 0.303*** (0.084)
Money received 0.265** (0.107) 0.052 (0.066)

Vuong non-nested tests:
Model 1: 𝑀𝐼𝑂𝑃 ; Model 2: 𝑇𝑂𝑃 −0.112

***𝑝 ≤ 0.01.

**𝑝 ≤ 0.05.

*𝑝 ≤ 0.1.

are very similar to those reported in Greene et al. (2015), who used
data from the Household, Income and Labour Dynamics in Australia
(𝐻𝐼𝐿𝐷𝐴) Survey, a large representative household panel.

3.3. Results

We consider a range of models. Firstly, the reference 𝑂𝑃 model
followed by the 𝑀𝐼𝑂𝑃 of Greene et al. (2015) and the 𝑇𝑂𝑃 model
based on that of Greene et al. (2013), but with tempering to the two
(hypothesized) inflated outcomes. To conserve space, we only report
a selection of parameter results for these models. These are provided
in Table 1. In the online Appendix we further report partial effects for
reporting very good and excellent health.

We first discuss briefly direct parameter estimates for the mean
functions 𝜷. Note that the self-reported health measure is increasing
in health, such that a positive (negative) coefficient means that the
probability of reporting excellent (poor) health increases with increases

in the variable. Categories of health between these two extremes can go
either way. Increasing probability of excellent health is what we mean
by ‘‘increasing health’’. There is reasonable consistency in the estimated
coefficients across models with respect to sign and significance, but
magnitudes vary. Health levels are decreasing with age (at a decreasing
rate). Respondents who have a tertiary or high school qualification
report better health than those who have not completed high school.
Unemployed respondents report worse health compared to employed
respondents (the reference group), in general, and respondents not in
the labour force, in turn, report worse health than the unemployed
(which could be due, in part, to selection out of the labour market
due to ill states of health). Marriage also appears beneficial for health;
and migrants report better health compared to respondents born in
Australia. In general, these effects appear to be in line with evidence
found elsewhere (see, for example, Contoyannis et al. 2004).

Results for the binary health equation for the middle inflation
(𝑀𝐼𝑂𝑃 ) model (Eq. (13)), indicate that age, tertiary education and
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unemployment are the main drivers behind the binary choice of report-
ing very good vs good health for the inaccurate reporters (second panel
of Table 1). Age and unemployment have a negative influence on the
likelihood of reporting very good health, while tertiary education has
a positive influence. In the reporting equation which distinguishes be-
tween accurate and inaccurate reporters, a range of both the (standard)
demographic variables and two of the identifying variables appear
significant (third panel of Table 1). Females are more likely to report
inaccurately (inflate) compared to males, as are married respondents.
Respondents who are not in the labour force are more likely to report
accurately compared to employed and unemployed respondents. Of the
identifying variables, the likelihood of reporting accurately increases
for individuals who rely on the money they receive from responding to
online surveys and decreases for individuals who did not have others
present when completing the survey. This is similar to the effect found
by Greene et al. (2015).

For the tempering equations (Eqs. (19) and (20)) of the 𝑇𝑂𝑃 model,
the first equation represents the propensity to report accurately at
fair health, as opposed to tempering towards good health (second
panel of Table 1); while the second represents the propensity to report
accurately at excellent health, as opposed to tempering towards very
good health (third panel of Table 1). Positive coefficients indicate
a greater likelihood of accurate reporting, and negative coefficients
indicate tempering toward the middle categories. The data are not
particularly reliable at distinguishing between the binary choice of
tempering between fair and good health, as evidenced by the low
significance levels in the majority of the parameter estimates for the
first tempering equation, with only migrant status being significant
(migrants are more likely than Australian-born respondents to temper
away from fair health). For the second tempering equation, female
respondents are more likely to temper away from reporting excellent
health towards very good health. The model, however, does appear
to be identified with respondents stating that others were not present
during the survey more likely to temper away from excellent health,
while those that understood all questions were less likely to do so.
The model fails to notably differentiate between the boundaries 𝜇3 and
𝜇4, effectively removing the distinction between very good and excellent
health once account for tempering has been taken. Interpretation of the
partial effects, presented and briefly discussed in the Appendix confirms
the general relationships outlined above.

In the bottom panel of Table 1 we present Vuong non-nested test
statistics where a large positive value favors the model denoted as
Model 1, and a large negative value favors the alternative, denoted
Model 2. There is evidence that this test is not appropriate for testing
inflation in such model (Wilson, 2015), such that is not used as such
here. However, comparing across the 𝑀𝐼𝑂𝑃 and the 𝑇𝑂𝑃 models,
the test is inconclusive; whilst on the other hand, information criteria
(not shown) favor the 𝑀𝐼𝑂𝑃 over 𝑇𝑂𝑃 across four measures consid-
ered: 𝐴𝐼𝐶 (Akaike, 1987), corrected 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶 (Bozdogan, 1987);
𝐵𝐼𝐶 (Schwarz, 1978); and Hannan–Quinn 𝐻𝑄𝐼𝐶 (Hannan and Quinn,
1979).

Results from the 𝑀𝐼𝑂𝑃 and 𝑇𝑂𝑃 models display evidence of
reporting heterogeneity in the form of middle inflation. We next con-
sider general reporting heterogeneity existing across the thresholds of
the 𝐻𝑂𝑃𝐼𝑇 model. Structural parameter estimates, 𝜷 are provided
in Table 2. The full set of estimated boundary coefficients, 𝜸𝑗 , are
presented in the online Appendix. Age, educational attainment, marital
status, employment and migrant status appear as predictors of reporting
behavior in the boundary equations (for 𝑗 = 0, 1 and 3). Broadly,
the results indicate that older respondents tend to make use of the
extreme categories with some individuals under reporting their level
of health by making greater use of the categories poor and fair for
a given underlying latent value of health and others over reporting
by making greater use of the excellent health category compared to
younger counterparts. Educated respondents also tend to under report

a given level of underlying health in comparison to less educated
counterparts; married respondents are less likely to make use of the
poor category compared to those who were not, while divorced or
widowed respondents were least likely to make use of the excellent
category compared to married and single respondents.

In general the sign and significance of the coefficient estimates
in the structural part of the 𝐻𝑂𝑃𝐼𝑇 model follow those of the 𝑂𝑃

with the exception of age effects (which becomes insignificant; but
note that the marginal effects are significant and consistent with the
𝑂𝑃 model) and divorced or widowed respondents (where the negative
effect becomes significant at the 5% level under the 𝐻𝑂𝑃𝐼𝑇 ). The
role of marriage and unemployment on health are not as large in the
𝐻𝑂𝑃𝐼𝑇 compared to the 𝑂𝑃 model, however, the effects of education
and migrant status are larger. The differences in estimates illustrate the
role that 𝐷𝐼𝐹 plays in the structural parameters.

The above results are strongly suggestive of reporting behavior
in self-reports of health. We combine the models to control for both
middle inflation and general forms of reporting behavior as outlined
in Section 2.4, and refer to these as 𝑉 ∕𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃 where 𝑉

indicates the HOPIT model (via vignettes). Results are presented in
Table 2. Both the inflation model for the 𝑉 ∕𝑀𝐼𝑂𝑃 and tempering
equations for 𝑉 ∕𝑇𝑂𝑃 contain significant effects for one or more of
the identifying variables which operate in the same direction as for
the single versions of these models described above. On the whole, the
direction and significance of the model covariates follow a similar pat-
tern to those for the corresponding𝑀𝐼𝑂𝑃 and 𝑇𝑂𝑃 models of Table 1.
The Vuong tests are unable to distinguish between the 𝑉 ∕𝑀𝐼𝑂𝑃 and
𝑉 ∕𝑇𝑂𝑃 models (information criteria again favor the 𝑉 ∕𝑀𝐼𝑂𝑃 over
𝑉 ∕𝑇𝑂𝑃 ).

Partial effects for reporting very good and good are presented in
the Appendix. For the 𝐻𝑂𝑃𝐼𝑇 model we no longer observe the bal-
ance that was present for the 𝑂𝑃 model across the probabilities of
reporting very good and excellent health, reflecting the effects of the
heterogeneous boundary parameters. For the 𝑉 ∕𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃

models again we see that the probabilities of reporting very good health
are much larger in absolute terms than the probabilities of reporting
excellent health, though they are somewhat mediated by the effects of
the heterogeneous boundary equations.

We further compute and compare summary measures, represented
by partial average predicted probabilities. When correcting for report-
ing heterogeneity it is intuitive to consider the outcome probabilities
purged of reporting heterogeneity and how these compare to the esti-
mated probabilities from the standard ordered probit model. Table 3
contains the ordered probit probabilities, estimated average proba-
bilities for the 𝐻𝑂𝑃𝐼𝑇 model accounting for 𝐷𝐼𝐹 , together with
estimated average probabilities purged of variations in reporting behav-
ior across models that consider both types of reporting heterogeneity
(𝑉 ∕𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃 ). The bottom panel reports estimates from the
ordered probit model relative to these (purged) probabilities (averaged
over the sample—see Section 4 for a description).

Substantive variation is evident across the estimated probabilities.
Compared to the ordered probit results, accounting for 𝐷𝐼𝐹 only
(𝐻𝑂𝑃𝐼𝑇 ) leads to an increase in estimated probabilities in the excel-
lent (by 8%) and fair categories (by 24%). The remaining categories
see a decrease in average estimated probabilities, with some decreasing
by more than 20%. Overall, it appears that between 17% (in the case
of the 𝑉 ∕𝑇𝑂𝑃 ) and 22% (for the 𝑉 ∕𝑀𝐼𝑂𝑃 ) of responses in the good
and very good categories were artificially inflated. That is, without
a tendency towards inflation these responses would have reported a
different outcome. After purging of reporting behavior, the propor-
tion of respondents in the good category decreased by 22% for the
𝑉 ∕𝑀𝐼𝑂𝑃 , and 16% for the 𝑉 ∕𝑇𝑂𝑃 ; while the proportion in the very
good category declined by 23% for the 𝑉 ∕𝑀𝐼𝑂𝑃 , and 18% for the
𝑉 ∕𝑇𝑂𝑃 model. The proportion of respondents in the categories for
excellent and fair health increased by 52% and 41% for the 𝑉 ∕𝑀𝐼𝑂𝑃
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Table 2
Regression results; 𝐻𝑂𝑃𝐼𝑇 , 𝑉 ∕𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃 .

𝐻𝑂𝑃𝐼𝑇 𝑉 ∕𝑀𝐼𝑂𝑃 𝑉 ∕𝑇𝑂𝑃

Constant 2.451*** (0.212) 2.267*** (0.235) 2.395*** (0.218)
Age/10 −0.108 (0.096) −0.189* (0.113) −0.202* (0.104)
(Age/10)2 0.004 (0.011) 0.007 (0.013) 0.012 (0.012)
Female −0.055 (0.036) −0.079* (0.042) −0.012 (0.04)
University educated 0.304*** (0.051) 0.305*** (0.061) 0.3*** (0.055)
Year 12 or certificate/diploma 0.353*** (0.065) 0.356*** (0.076) 0.339*** (0.070)
Unemployed −0.278*** (0.06) −0.279*** (0.068) −0.327*** (0.066)
Not in labour force −0.472*** (0.053) −0.511*** (0.063) −0.438*** (0.058)
Married 0.116*** (0.044) 0.167*** (0.051) 0.139*** (0.048)
Divorced/Separated/Widowed −0.137** (0.068) −0.066 (0.08) −0.109 (0.072)
Migrant 0.263*** (0.042) 0.257*** (0.05) 0.236*** (0.047)

Binary health Tempering from
equation Fair health

Constant 0.744 (0.538) 0.498 (1.008)
Age/10 −0.374 (0.273) −0.034 (0.476)
(Age/10)2 0.036 (0.032) 0.005 (0.053)
Female −0.039 (0.102) 0.194 (0.181)
University educated 0.31** (0.154) −0.094 (0.243)
Year 12 or certificate/diploma 0.259 (0.205) 0.09 (0.368)
Unemployed −0.58** (0.258) 0.131 (0.284)
Not in labour force 0.012 (0.181) 0.939 (0.657)
Married −0.015 (0.136) −0.178 (0.234)
Divorced/Separated/Widowed −0.166 (0.235) 0.021 (0.304)
Migrant −0.006 (0.105) −0.304 (0.19)
No one else present 0.223 (0.309)
Understood all questions −0.068 (0.209)
Money received 0.151 (0.18)

’’Accurate’’ Tempering from
Reporting equation Excellent health

Constant 0.341 (0.491) 0.398 (0.785)
Age/10 0.302 (0.241) 0.344 (0.413)
(Age/10)2 −0.027 (0.028) −0.035 (0.05 )
Female −0.223** (0.09) −0.388** (0.159)
University educated −0.048 (0.135) −0.029 (0.269)
Year 12 or certificate/diploma 0.072 (0.178) 0.146 (0.325)
Unemployed 0.362* (0.196) 0.615 (0.461)
Not in labour force 0.381*** (0.144) 0.237 (0.267)
Married −0.28** (0.114) −0.26 (0.19)
Divorced/Separated/Widowed 0.009 (0.197) −0.092 (0.4)
Migrant −0.229** (0.098) −0.162 (0.172)
No one else present −0.554*** (0.212) −0.907*** (0.295)
Understood all questions 0.127 (0.109) 0.518*** (0.17)
Money received 0.346*** (0.106) 0.159 (0.173)

Vuong non-nested tests:
Model 1: 𝑉 ∕𝑀𝐼𝑂𝑃 ; Model 2: 𝑉 ∕𝑇𝑂𝑃 0.523

***𝑝 ≤ 0.01.

**𝑝 ≤ 0.05.

*𝑝 ≤ 0.1.

model, and by 48% and 34% for the 𝑉 ∕𝑇𝑂𝑃 model, respectively.
The proportion of respondents in the poor category of the 𝑉 ∕𝑀𝐼𝑂𝑃

model also increased by 39%. These differences between standard and
purged predicted probabilities are substantial and emphasize the need
to adjust for reporting behavior when aiming for meaningful inference
on population health status.

4. Experimental evidence

To examine the finite sample performance of the set of models
we carry out three Monte Carlo experiments. The first considers the
ability of standard test statistics to select the correct specification.
The second extends the first to include the anchoring vignettes in the
model specification. The third considers an alternative to the normal
distribution as the base platform for the data generating process.

We simulate data under the data-generating processes (𝐷𝐺𝑃𝑠) for
the various ordered probit specifications; standard ordered probit (𝑂𝑃 ),
middle inflated (𝑀𝐼𝑂𝑃 ), and tempered (𝑇𝑂𝑃 ). These three are also
augmented with the anchoring vignettes (𝐻𝑂𝑃𝐼𝑇 , 𝑉 ∕𝑀𝐼𝑂𝑃 , 𝑉 ∕𝑇𝑂𝑃 )
as described earlier. To generate data under each scenario, we begin

Table 3
𝑆𝐴𝐻 probabilities purged of inaccurate reporting.

Predicted probabilities Probabilities purged of
inaccurate reporting

SAH 𝑂𝑃 HOPIT V/MIOP V/TOP

𝑆𝐴𝐻 excellent 0.128 0.139 0.195 0.189
𝑆𝐴𝐻 very good 0.340 0.318 0.261 0.280
𝑆𝐴𝐻 good 0.330 0.319 0.259 0.276
𝑆𝐴𝐻 fair 0.151 0.187 0.213 0.203
𝑆𝐴𝐻 poor 0.052 0.038 0.072 0.053

Probabilities relative to 𝑂𝑃

SAH HOPIT V/MIOP V/TOP

𝑆𝐴𝐻 excellent 1.086 1.524 1.479
𝑆𝐴𝐻 very good 0.935 0.768 0.824
𝑆𝐴𝐻 good 0.967 0.785 0.836
𝑆𝐴𝐻 fair 1.238 1.412 1.344
𝑆𝐴𝐻 poor 0.731 1.388 1.010

with parsimonious specifications of the models considered in the em-
pirical examples described in Section 3. We use the observed outcome
data and covariates to estimate each model separately. The estimated
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parameters are then used as the true values in the respective simulated
𝐷𝐺𝑃𝑠. Each model was then simulated 1,000 times by re-drawing only
the stochastic components (and consequent outcomes) for each 𝐷𝐺𝑃 .
On occasion, constant terms were perturbed to yield a more natural
distribution of observed outcomes for the model under consideration.
For example, in a replication in which the 𝑀𝐼𝑂𝑃 is ‘‘correct’’, if
the 𝐷𝐺𝑃 for the model produced very little inflation, then additional
inflation was achieved by perturbing the relevant constant term (in 𝐰

in Eq. (11)).

A natural question relates to the role that the normality assumption
might play in the statistical outcomes. For example, excess kurtosis
might be manifested through greater prevalence of the extreme out-
comes. To examine the likely consequences of non-normality on the
performance of the test statistics, we modified the 𝑉 ∕𝑀𝐼𝑂𝑃 model.
The latent stochastic elements of the model are generated as non-
normal (Type 1 Extreme Value) variates, but the estimator remains based
on the normal log-likelihood. This provides a robustness check of the
estimator against skewness and kurtosis in the conditional distribution
of the latent outcomes. The 𝑉 ∕𝑀𝐼𝑂𝑃 model was chosen for this
exercise for parsimony and because it was the preferred specification
in our empirical example.

Models that rely on vignettes, 𝐻𝑂𝑃𝐼𝑇 , 𝑉 ∕𝑀𝐼𝑂𝑃 , 𝑉 ∕𝑇𝑂𝑃 and
Non-normal 𝑉 ∕𝑀𝐼𝑂𝑃 , can be regarded as having multiple outcomes
(self-reported health plus the vignette outcomes). This will be reflected
in larger likelihood contributions compared to the simpler non-nested
counterparts; 𝑂𝑃 , 𝑀𝐼𝑂𝑃 , and 𝑇𝑂𝑃 . Accordingly, for each replicate
drawn under a given simulated 𝐷𝐺𝑃 , we estimate all the available
models within its class (𝑂𝑃 , 𝑀𝐼𝑂𝑃 , 𝑇𝑂𝑃 for ordered probit 𝐷𝐺𝑃𝑠;
and separately 𝐻𝑂𝑃𝐼𝑇 , 𝑉 ∕𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃 for vignette 𝐷𝐺𝑃 vari-
ants). Our performance indicator is the proportion of 1,000 replicates
that information criterion correctly selects as the true model under each
𝐷𝐺𝑃 . We consider a range of criteria based on information metrics:
𝐴𝐼𝐶; 𝐶𝐴𝐼𝐶; 𝐵𝐼𝐶 and;𝐻𝑄𝐼𝐶. We also consider Vuong tests for models
that are not nested in the usual parameter-restriction sense, and report
the power performance of the Vuong test in selecting the null model
under the 𝐷𝐺𝑃 against alternatives. As with the information criteria
this is also undertaken for models within the same class as the 𝐷𝐺𝑃 .
The proportion of Monte Carlo replicates for which the information
criterion selects the correct model under the assumed 𝐷𝐺𝑃 are pre-
sented in the top panel of Table A6 in the Appendix; the bottom panel
reports the proportion of replicates where the model under the 𝐷𝐺𝑃 is
preferred against the within-class alternative using the Vuong test.

Information criteria select the true model under the assumed 𝐷𝐺𝑃

for the vast majority of replicates. The only exception is 𝐶𝐴𝐼𝐶 for the
𝑉 ∕𝑀𝐼𝑂𝑃 with non-normal error. This model is generated with Type
1 Extreme Value errors, but estimated assuming normally distributed
errors. Under this criterion the corresponding 𝑉 ∕𝑀𝐼𝑂𝑃 model is se-
lected in the majority of replicates indicating robustness to skewness
and kurtosis in the error. Unsurprisingly, the 𝐴𝐼𝐶 performs marginally
worse than other criteria when considering the most parsimonious
within-class model under the 𝐷𝐺𝑃 (𝑂𝑃 , and 𝐻𝑂𝑃𝐼𝑇 ) due to the
relatively small penalty placed on the additional number of parameters
in the 𝑀𝐼𝑂𝑃 and 𝑇𝑂𝑃 model versus 𝑂𝑃 , and 𝑉 ∕𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃

versus the𝐻𝑂𝑃𝐼𝑇 model. Overall, the Vuong test favors the𝑀𝐼𝑂𝑃 and
𝑇𝑂𝑃 models when these form the 𝐷𝐺𝑃 . Within the vignette class of
models, when the 𝐷𝐺𝑃 is 𝑉 ∕𝑀𝐼𝑂𝑃 , the Vuong test favors this model
over the 𝑉 ∕𝑇𝑂𝑃 model. When 𝑉 ∕𝑇𝑂𝑃 forms the 𝐷𝐺𝑃 it is favored
over 𝑉 ∕𝑀𝐼𝑂𝑃 in 55% of replicates and inconclusive across 45%. When
Type 1 Extreme Value errors are included in the 𝑉 ∕𝑀𝐼𝑂𝑃 under the
𝐷𝐺𝑃 , but estimated assuming normality, the 𝑉 ∕𝑀𝐼𝑂𝑃 is favored for
the majority of replicates (64% versus 36%) when the alternative is
𝑉 ∕𝑇𝑂𝑃 .

As for the empirical application in Section 3 we also compare
the predicted probabilities from the various estimated models against
probabilities generated under each 𝐷𝐺𝑃 . For all estimated models,

Table 4
Monte Carlo: Difference between predicted purged probabilities and true purged
probabilities.

Estimation Model

Models without Models with
vignettes vignettes

𝐷𝐺𝑃 𝑀𝐼𝑂𝑃 𝑇𝑂𝑃 𝐻𝑂𝑃𝐼𝑇 𝑉 ∕𝑀𝐼𝑂𝑃 𝑉 ∕𝑇𝑂𝑃

𝑂𝑃 0.0450 0.0108 0.0002 0.0048 0.0035
𝑀𝐼𝑂𝑃 0.0098 0.0178 0.0940 0.0148 0.0462
𝑇𝑂𝑃 0.0342 0.0120 0.0108 0.0588 0.0001
𝐻𝑂𝑃𝐼𝑇 0.0770 0.0638 0.0001 0.0020 0.0013
𝑉 ∕𝑀𝐼𝑂𝑃 0.0226 0.0402 0.0410 0.0001 0.0384
𝑉 ∕𝑇𝑂𝑃 0.0300 0.0194 0.0448 0.0464 0.0002
Non-Normal 0.0054 0.0432 0.0360 0.0079 0.0152

predicted probabilities are purged of reporting heterogeneity effects.
For the inflation models, these are the probabilities arising solely from
the 𝑂𝑃 component of the model. For models with 𝐷𝐼𝐹 that rely on
vignettes for identification, we evaluate the underlying 𝑂𝑃 model at
fixed boundary parameters to provide predicted probabilities purged of
reporting heterogeneity. This is achieved by evaluating the boundary
equations at the sample means of the boundary covariates. For the
models with both inflation and vignette components, these approaches
were jointly applied. Probabilities are evaluated at an individual level
and averaged over individuals and Monte Carlo replicates.

The purpose of comparing estimated purged probabilities with those
produced under the 𝐷𝐺𝑃 is twofold. Firstly, to check that the true
models perform appropriately when the assumed 𝐷𝐺𝑃 is correct, and
secondly, to investigate the performance of models where the assumed
𝐷𝐺𝑃 is incorrect. When incorrect, it is of interest to ascertain the likely
finite sample performance of the more complex (middle-inflation and
𝐷𝐼𝐹 ) models, when in fact, no such behavior is present in the 𝐷𝐺𝑃 . For
example, if a middle inflation model (𝑀𝐼𝑂𝑃 ) essentially collapses to a
simple 𝑂𝑃 when the latter is true, this implies that the former model is
a ‘safe option’ in the sense that model over-specification does not bias
predicted probabilities. On the other hand, it is also of interest to gauge
the performance of models assuming no reporting heterogeneity when
in fact it is present in some form or another.

Table 4 compares the purged probabilities predicted by the esti-
mated models indicated by the column headers when the true 𝐷𝐺𝑃

is the model labeled in the row (probabilities are purged by not in-
cluding the heterogeneous inflation component.) We computed the five
outcome probabilities for the true 𝐷𝐺𝑃 and the estimated model, then
obtained the mean absolute differences in the five cell probabilities for
the categorical outcomes. Values as large as 0.040 seem indicative of
misspecification. Moving across the columns in each row, the figures
display the ability of each estimated model to match (or not) the
probabilities generated by the same background 𝐷𝐺𝑃 . Thus, as might
be expected, the column labeled models tend to predict best when they
are, in fact, the correct model for the 𝐷𝐺𝑃 (results shown in bold).

As expected, estimation models that follow the true 𝐷𝐺𝑃 model
tend to perform best among competing models. When the 𝐷𝐺𝑃 is an
𝑂𝑃 (topmost row), that is when middle-inflation and 𝐷𝐼𝐹 are not
present, all models except 𝑀𝐼𝑂𝑃 perform well (results in italics).
Interestingly, the more complex 𝐻𝑂𝑃𝐼𝑇 model appears to outperform
others when considering differences in probabilities. When middle-
inflation is present but not 𝐷𝐼𝐹 (i.e., the 𝑀𝐼𝑂𝑃 model), the 𝐻𝑂𝑃𝐼𝑇

and 𝑉 ∕𝑇𝑂𝑃 models perform poorly. When the 𝐷𝐺𝑃 is 𝑇𝑂𝑃 all models
except 𝑉 ∕𝑀𝐼𝑂𝑃 perform well. When the 𝐻𝑂𝑃𝐼𝑇 model represents
the 𝐷𝐺𝑃 , estimation of the 𝑂𝑃 and𝑀𝐼𝑂𝑃 models that do not account
for 𝐷𝐼𝐹 do poorly. For 𝐷𝐺𝑃𝑠 that exhibit both 𝐷𝐼𝐹 and middle-
inflation bias (𝑉 ∕𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃 ) all models perform poorly in
predicting true purged probabilities except for the associated estimation
models themselves (𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑀𝐼𝑂𝑃 when the 𝐷𝐺𝑃 is 𝑉 ∕𝑀𝐼𝑂𝑃 ,
and 𝑇𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃 when the 𝐷𝐺𝑃 is 𝑉 ∕𝑇𝑂𝑃 ). Finally, under the



Economic Modelling 124 (2023) 106277

11

W. Greene et al.

non-Normal 𝐷𝐺𝑃 , the 𝑉 ∕𝑀𝐼𝑂𝑃 , which is associated with the true
𝐷𝐺𝑃 and the 𝑀𝐼𝑂𝑃 and 𝑉 ∕𝑇𝑂𝑃 all perform reasonably well.

Table A7 in the accompanying Appendix presents 𝑅𝑀𝑆𝐸𝑠 for the
difference between predicted and ‘true’ purged probabilities. The gen-
eral pattern observed in Table 4 is replicated. Overall, more complex
versions of the models under the 𝐷𝐺𝑃 tend to perform better than their
less complex counterparts, indicating that over-specification of these
models can be beneficial.

Finally, reflecting the fact that the analyst’s primary concern will
be estimation of relevant partial effects (𝑃𝐸s), we consider the esti-
mation of the single 𝑃𝐸 of 𝑎𝑔𝑒 and 𝑎𝑔𝑒2 in our parsimonious spec-
ification. These are compared to the true value (𝑃𝐸𝑗) by taking the
bias to be: 𝑏𝑖𝑎𝑠𝑗 = 𝐸(𝑃𝐸𝑗 ) − 𝑃𝐸𝑗 ; and then percentage absolute bias:(
𝑏𝑖𝑎𝑠𝑗∕|𝑃𝐸𝑗 |

)
×100, where 𝑗 indicate the response category. In this way

we can ascertain not only the percentage bias, but whether 𝑃𝐸𝑗 over
(under) estimates 𝑃𝐸𝑗 (with positive and negative values, respectively,
due to the fact that

∑
𝑗 𝑃𝐸𝑗 = 0). Note that these biases are not strictly

comparable across 𝐷𝐺𝑃 s though, as the true 𝑃𝐸 will differ. Table 5
reports the results. Unsurprisingly, biases are smallest for those models
corresponding to the true 𝐷𝐺𝑃 ; for example, the simple 𝑂𝑃 model
clearly performs best in the top panel (and so on). However, the more
complex models have relatively little bias, such that they can be consid-
ered ‘safe options’ even if over-specified here. The possible exception to
this is the𝐻𝑂𝑃𝐼𝑇 model, with relatively high (percentage biases of 30,
43 and 54%). Under the 𝑀𝐼𝑂𝑃 𝐷𝐺𝑃 the 𝑂𝑃 model appears severely
biased, and to a lesser extent the 𝐻𝑂𝑃𝐼𝑇 as well. The 𝑇𝑂𝑃 model
fares well apart from those for 𝑗 = 0, 3; whilst the vignette versions of
both the𝑀𝐼𝑂𝑃 and 𝑇𝑂𝑃 models, perform very well (with the singular
exception of 𝑉 ∕𝑇𝑂𝑃3). For the 𝑇𝑂𝑃 𝐷𝐺𝑃 , most approaches, including
the null model, appear to struggle to accurately estimate 𝑃𝐸1. Outside
of this the under-specified 𝑂𝑃 appears to perform rather well, and the
𝑀𝐼𝑂𝑃 is on a par with the null model. Although the 𝐻𝑂𝑃𝐼𝑇 model
here appears to suffer somewhat from the misspecification, the𝐻𝑂𝑃𝐼𝑇

versions of both the inflated models perform very well.
For experiments where 𝐷𝐼𝐹 is introduced, we see that for all of

the models where this is not accounted for (𝑂𝑃 , 𝑀𝐼𝑂𝑃 and 𝑇𝑂𝑃 ),
they all appear to be quite severely biased, with the 𝑀𝐼𝑂𝑃 appearing
to fare best of the three. However, remarkably both the vignettes
augmented versions of the 𝑀𝐼𝑂𝑃 and 𝑇𝑂𝑃 models perform well, and
not much worse than the null model. A similar story arises when the
𝐷𝐺𝑃 is 𝑉 ∕𝑀𝐼𝑂𝑃 with the 𝐻𝑂𝑃𝐼𝑇 model performing reasonably well
compared to those not allowing for 𝐷𝐼𝐹 , whilst the 𝑉 ∕𝑇𝑂𝑃 model
performs exceptionally well, almost on a par with the null model.
Finally, similarly for the 𝑉 ∕𝑇𝑂𝑃 𝐷𝐺𝑃 , the non-𝐷𝐼𝐹 models tend to
perform quite poorly, whilst the𝐻𝑂𝑃𝐼𝑇 works well, and the 𝑉 ∕𝑀𝐼𝑂𝑃

has performance just shy of the null model.
In summary the findings, as before, tend to suggest that without

𝐷𝐼𝐹 both of the inflated model versions tend to quite accurately
estimate the 𝑃𝐸s, even when being over-specified. The same cannot
be said of the under-specified 𝑂𝑃 model, when there is some form
of middle-inflation. The 𝐷𝐼𝐹 -augmented inflation models similarly
perform extremely well here, even when quite clearly over-specified.
When 𝐷𝐼𝐹 is introduced into the 𝐷𝐺𝑃 , not allowing for such proves
very costly. Once more the 𝐷𝐼𝐹 -augmented inflation models perform
extremely well here, regardless of the precise 𝐷𝐺𝑃 : thus reinforcing
the previous findings that these can be considered very ‘safe options’
across-the-board.

5. Conclusion

This paper examines the analysis of self-reports of health, with a
focus on reporting behavior brought about through differential item
functioning, 𝐷𝐼𝐹 , (the use of different thresholds that separate the
reported levels of the self-assessment) and the adoption of a ‘‘box-
ticking’’ strategy leading to inflation of the middle categories of the

Table 5
Monte Carlo: absolute percentage partial effect bias by outcome.

𝐷𝐺𝑃 Model 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4

𝑂𝑃

𝑂𝑃 11.0 13.0 5.7 −8.8 −11.6
𝐻𝑂𝑃𝐼𝑇 −42.8 53.5 1.6 4.6 −30.1
𝑀𝐼𝑂𝑃 16.8 11.4 2.6 −7.0 −13.0
𝑇𝑂𝑃 11.3 15.5 2.8 −7.7 −13.2
𝑉 ∕𝑀𝐼𝑂𝑃 −14.1 34.5 9.9 −8.4 −20.5
𝑉 ∕𝑇𝑂𝑃 −28.4 40.8 17.3 −2.4 −29.2

𝑀𝐼𝑂𝑃

𝑂𝑃 215.9 134.2 −75.9 −601.8 73.1
𝐻𝑂𝑃𝐼𝑇 63.0 107.5 −54.6 −222.1 42.0
𝑀𝐼𝑂𝑃 1.9 2.1 0.7 26.8 −5.5
𝑇𝑂𝑃 202.0 −11.2 −29.1 406.0 −5.6
𝑉 ∕𝑀𝐼𝑂𝑃 −30.8 18.4 −3.7 48.9 −4.4
𝑉 ∕𝑇𝑂𝑃 89.1 −3.4 −12.8 222.5 −7.5

𝑇𝑂𝑃

𝑂𝑃 2.1 76.3 −15.9 1.5 −8.6
𝐻𝑂𝑃𝐼𝑇 −71.4 258.7 −19.4 7.3 −40.9
𝑀𝐼𝑂𝑃 11.6 80.1 −11.9 −11.9 7.2
𝑇𝑂𝑃 8.6 83.9 −10.1 −9.9 −1.4
𝑉 ∕𝑀𝐼𝑂𝑃 1.8 106.0 −9.6 −14.2 3.9
𝑉 ∕𝑇𝑂𝑃 −18.0 87.6 11.1 −20.2 0.7

𝐻𝑂𝑃𝐼𝑇

𝑂𝑃 128.7 3.5 −129.4 17.4 20.5
𝐻𝑂𝑃𝐼𝑇 −0.2 −0.1 0.4 0 −0.1
𝑀𝐼𝑂𝑃 126.8 −13.4 −12.6 −0.2 17.0
𝑇𝑂𝑃 125.7 1.6 −129.3 23.2 8.8
𝑉 ∕𝑀𝐼𝑂𝑃 3.0 0.3 0.6 −0.1 −1.7
𝑉 ∕𝑇𝑂𝑃 3.1 0.7 −1.5 −0.1 −1.2

𝑉 ∕𝑀𝐼𝑂𝑃

𝑂𝑃 79.3 −14.7 −45.5 −3.4 33.0
𝐻𝑂𝑃𝐼𝑇 −76.1 −0.9 39.7 16.1 −24.7
𝑀𝐼𝑂𝑃 100.5 −14.9 −63.3 5.1 22.4
𝑇𝑂𝑃 70.2 −15.9 −72.3 23.0 9.0
𝑉 ∕𝑀𝐼𝑂𝑃 1.8 1.1 −17.1 3.8 1.4
𝑉 ∕𝑇𝑂𝑃 −52.9 2.8 21.5 −1.3 2.0

𝑉 ∕𝑇𝑂𝑃

𝑂𝑃 142.4 −9.9 −98.7 10.1 38.9
𝐻𝑂𝑃𝐼𝑇 −43.5 −0.9 −2.1 1.8 9.2
𝑀𝐼𝑂𝑃 152 −16.9 −46.1 −1.6 33.4
𝑇𝑂𝑃 142.3 −8.4 −101.3 15 29.6
𝑉 ∕𝑀𝐼𝑂𝑃 7.2 11.4 −38.5 4.1 −2.6
𝑉 ∕𝑇𝑂𝑃 0.0 1.3 −2.7 −1.6 2.4

health variable. We consider and extend various models to address
these forms of reporting in isolation, and propose models that allow
for both types in combination.

The use of anchoring vignettes has gained popularity in the social
sciences as a means to anchor self-reported data to some common
scale to remove 𝐷𝐼𝐹 and increase cross-respondent comparability.
For example, Kapteyn et al. (2007) apply the 𝐻𝑂𝑃𝐼𝑇 approach to
anchor self-reports of work disability in The Netherlands to the scale
adopted by Americans when drawing inference on comparable levels of
underlying disability across the two countries. The approach is useful
in identifying and correcting for general forms of reporting behavior by
linking 𝐷𝐼𝐹 to observed levels of respondent characteristics. However,
the approach excludes more nuanced reporting brought about by ‘‘box-
ticking’’ that leads to the artificial inflation of specific categories. In
the case of subjective health, this type of reporting is suggested by the
observation that the distribution of self-reported health is most often
bunched around the middle categories, indicating a more favorable
distribution of health than might be inferred from more objective
measures. Identifying such behavior is strengthened through exclusion
restrictions using variables related to the implementation of the survey
instrument and specific to the circumstances of the individual when
responding to subjective questions (both widely available in survey
data). We extend these models and combine them to provide greater
flexibility in modeling reporting behavior of either or both types exists
in data.

In an empirical application we find convincing evidence for the
existence of both types of reporting behavior in the widely-used generic
measure of self-assessed health. After adjusting for these apparent
nuances in reporting, we find that health levels on average are rather
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different than the raw self-reported data suggest. For example, in our
preferred specifications, there is evidence that the observed categories
of very good and good health are overestimated by 17% to 22% respec-
tively. When adjusting for reporting behavior, we find a much higher
proportion of respondents in the neighboring categories of excellent
and fair health. Monte Carlo results, where we define objective health,
clearly imply that the more flexible modeling approaches perform well,
and collapse to the simpler versions when over-specified. These findings
suggest that it is not simply the case of more flexible approaches fitting
the data better. In practice, when no objective measures are available,
it is only possible to probabilistically determine the likely magnitude
and/or presence of such reporting behavior. Estimation and inference
will, however, provide researchers an appropriate level of confidence
in their findings. This is supported by the results of our Monte Carlo
experiments where effectively zero levels of inaccurate reporting was
found when the data was generated with none.

While our motivating example is to health, self-reported data is
ubiquitous in social science research and the methods described are
equally applicable to other outcomes where systematic reporting be-
havior is likely to be present. Applied research should be alert to
the presence of reporting behavior when rely on self-reports, espe-
cially at an individual level, and the distorting effect that this can
have on distribution of reported outcomes. This is likely to be most
important in evaluating interventions, where ignoring such behavior
could lead to erroneous inference of treatment effects. It will also
be relevant in comparative research considering the distribution of
subjective outcomes across social groups, regions or countries where
systematic heterogeneity in reporting behavior, brought about through
differences in preferences, expectations and norms is appreciable.
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