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A B S T R A C T   

Despite the clinical success of hip joint replacement, the risk of revision, particularly in younger and more active 
patients, still remains a concern. To identify conditions of high wear, fatigue and potential failure modes, there is 
need to be able to replicate a range of in vivo conditions with pre-clinical testing methods in order to predict the 
range of clinical wear. In particular, edge loading of metal-on-polyethylene hip replacements has the potential to 
have impact on both surface wear and fatigue failure. The mode of edge loading explored in this study involves 
separation of the centres of the femoral head and acetabular cup during a portion of the gait cycle. Such edge 
loading can occur due to variations in translational and/or rotational positioning of the hip replacement. In this 
study, the influence of translational positioning along the medial-lateral axis (medial-lateral translational 
mismatch) combined with rotational positioning of the acetabular cup about the anterior-posterior axis (cup 
inclination angle) on the occurrence and severity of edge loading, and wear and plastic deformation, was 
investigated for size 36 mm metal-on-polyethylene total hip replacements on a ProSim EM13 electromechanical 
hip joint simulator. A two phase approach was used; a short term study where the mechanics of the hip bearing 
were assessed under a wide range of input conditions (45◦ and 65◦ cup inclination angle and 1, 2, 3, 4 mm 
medial-lateral translational mismatch); followed by wear simulation for a lower number of conditions. 

Larger medial-lateral translational mismatch conditions led to increased levels of dynamic separation between 
the femoral head and acetabular cup with the largest dynamic separation (2.4 ± 0.2 mm, mean ± 95% confi-
dence limits) measured under 4 mm translational mismatch with the 65◦ cup inclination angle conditions. The 
load at the rim at 0.5 mm of separation was also highest at this condition, as was the mean wear rate (23.0 ± 2.4 
mm3 / million cycles). 

Dynamic separation, load at the rim and wear was consistently greater with the steeper cup inclination angle 
of 65◦ compared to 45◦ for all translational mismatch conditions. Translational mismatch conditions of 3 mm and 
4 mm resulted in dynamic separation displacements >0.5 mm. At a 45◦ cup inclination angle under standard 
concentric conditions (zero translational mismatch) minimal wear and plastic deformation occurred at the rim of 
the cup, however at a 65◦ cup inclination edge contact at the rim was identified. 

Variations in rotational (cup inclination angle) and translational (medial-lateral) positioning influenced the 
magnitude of dynamic separation, severity of edge loading, and wear of metal – on - moderately cross-linked 
polyethylene hip replacements, demonstrating the importance of surgical component positioning.   

1. Introduction 

Hip replacements are one of the most successful types of total joint 
replacements, with metal-on-polyethylene being the most widely used 
bearing. These hard-on-soft bearings are showing long term success 
beyond 20 years following implantation, however the demands of 
younger and more active patients increase the need for higher 

performing and more reliable hip replacements with longer lifetimes 
[1,2]. Despite the clinical success of hip joint replacement, the risk of 
aseptic loosening, osteolysis due to wear debris, subluxation, disloca-
tion, impingement, material fracture and fatigue, still remain a concern 
and need to be reduced further to extend longevity in young and active 
patients. Loading of hip replacements and sliding contact between the 
femoral head and acetabular cup lead to wear of the implant and 
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subsequently wear debris released into the surrounding tissue may lead 
to osteolysis induced aseptic loosening of the implant [3,4]. 

The wear rates of conventional polyethylene were found to be 30–50 
mm3/million cycles in vivo and 35 mm3/million cycles in vitro using hip 
joint simulators [5,6]. Wear has been significantly reduced with the 
introduction of cross-linked polyethylene [7], with wear rates of highly 
cross linked polyethylene reported to be <10 mm3/million cycles [8], 
and moderately cross linked polyethylene 8–15 mm3/million cycles 
(ProSim pneumatic and EM13) [9]. Further, clinical studies up to 15 
years show low levels of osteolysis for cross-linked polyethylene in the 
hip [10,11]. 

To ensure the long term success of hip replacements and identify 
conditions of high wear, fatigue and potential failure modes, there is 
need to be able to replicate a range of in vivo conditions with pre-clinical 
testing methods in order to predict the range of clinical wear. Therefore 
hip joint simulators and simulator methods have been developed and 
used to carry out preclinical experimental simulation on hip re-
placements under a wider range of conditions [2,9,12–16]. Tradition-
ally, experimental simulation has been based on standard gait (walking 
cycle) conditions, assuming well positioned and concentric implants. 
However, separation of the femoral head from the acetabular cup has 
been observed clinically using fluoroscopy during different patient ac-
tivities, including the walking gait cycle [17]. This separation can result 
in edge loading, where the contact area between the head and the cup is 
located on the rim chamfer of the acetabular cup. Such adverse me-
chanics during activities that are frequently undertaken such as walking, 
have the potential to have impact on both surface wear and fatigue 
failure. For hard-on-soft bearings for example, edge loading may lead to 
an increase in plastic deformation, damage, cracking and wear, at the 
rim of the cup [18–20]. Indeed, edge loading in crosslinked polyethylene 
bearings may lead to increased surface wear as well as increased risk of 
fatigue or fracture in the longer term. 

Edge loading can be a result of many different factors, including 
component positioning, soft tissue reconstruction, implant design and 
patient factors. However, two different modes can be considered; one 
that involves mechanical impingement of the stem neck on the cup and 
lever out of the head from the cup, and a second that does not involve 
impingement, but involves separation of the centres of the femoral head 
and acetabular cup during a proportion of the gait cycle, which could in 
the extreme lead to subluxation. It is the latter, separation and edge 
loading without impingement that is considered in this study. The 
simulation methodology to replicate edge loading was pioneered in the 
early 2000’s by Nevelos et al. [21] who observed stripe wear on ceramic- 
on-ceramic retrievals [22]. In this methodology, a pre-defined fixed 
level of 0.5 mm separation between the head and the cup, known as 
micro-separation, was used to create the edge loading. This in vitro 
method replicated the wear rates, stripe wear pattern and bi-modal wear 
debris distribution observed clinically for ceramic-on-ceramic hip re-
placements [23]. 

More recently, rather than pre-defining the level of separation, a 
force control system has been developed, based on a (medial–lateral) 
translational mismatch between the centres of the femoral head and 
acetabular cup, and then the level of dynamic separation (usually be-
tween 0.5 and 5 mm) has been used as a measure of the severity of edge 
loading as well as wear rates [24,25]. 

Edge loading can occur due to variations in translational and/or 
rotational positioning of the hip replacement. Specifically, translational 
positioning of the femoral head and the acetabular cup can be defined as 
the position of the centres of the rotations of the acetabular cup and 
femoral head relative to each other along the medial-lateral, anterior- 
posterior and/or superior-inferior axes. Rotational positioning of the 
acetabular cup can be described as cup inclination (rotation about the 
anterior-posterior axis), version (rotation about the superior-inferior 
axis) and tilt (rotation about the medial-lateral axis). In this study, 
translational positioning along the medial-lateral axis (medial-lateral 
translational mismatch) and rotational positioning of the acetabular cup 

about the anterior-posterior axis will be investigated (cup inclination 
angle). These are also the positional variables that have been incorpo-
rated into an ISO pre-clinical hip simulator testing standard (Interna-
tional Organization for Standardization, ISO14242-4 (2018)) [26]. 

This international ISO standard describes a two part approach that 
has been developed to assess a number of component positioning vari-
ables to investigate the mechanics and then wear of hip replacements 
[24]. The rationale of this approach is to consider a wide range of var-
iables and factors to understand effects of these variables on the 
occurrence and severity of edge loading before proceeding to wear 
simulation studies, that will predict the wear under certain edge loading 
conditions chosen from the many configurations. 

This approach was used in this study to:  

o Investigate the occurrence and severity of edge loading of metal-on- 
polyethylene bearings under different levels of medial-lateral trans-
lational mismatch conditions at 45◦ and 65◦ cup inclination angles. 
These cup inclination angles were chosen as 45◦ is currently 
considered a target inclination angle during surgery, being within 
the ‘safe zone’ as defined by Lewinnek et al (1978) [27], whereas a 
65◦ cup inclination angle is considered a steep cup inclination angle 
and has been used in previous investigations [24,25].  

o Determine the wear and plastic deformation of metal-on- 
polyethylene bearings under edge loading conditions resulting 
from translational mismatch at 45◦ and 65◦ cup inclination angles. 

2. Materials and methods 

Size 36 mm metal-on-polyethylene hip replacements (Moderately 
Cross linked UHMWPE (Ultra-High-Molecular-Weight-Polyethylene) 
Marathon™, DePuy Synthes Joint Reconstruction, Leeds, UK) were 
studied on a ProSim EM13 electromechanical hip joint simulator 
(Simulation Solutions, Stockport, UK). The polyethylene cups were 
backed by a metallic shell (PINNACLE®, DePuy Synthes Joint Recon-
struction, Leeds, UK) and the cobalt-chrome heads (Articuleze®, DePuy 
Synthes Joint Reconstruction, Leeds, UK) were placed onto vertical 
spigots with a 12/14 taper. 

The ProSim EM13 electromechanical hip joint simulator is a multi- 
axis multi-station machine capable of simulating a gait cycle as 
defined by ISO14242-1 [28]. Flexion/extension (+25◦/− 18◦), abduc-
tion/adduction (− 4◦/+7◦) and internal/external (+2◦/− 10◦) rotations 
were applied to the femoral head. The acetabular cup was positioned 
superiorly to the femoral head and the axial load applied vertically 
through the centre of the acetabular cup. The simulator allows the 
acetabular cup to self-align with the femoral head in all three axes of 
translation. However, a spring system in the medial-lateral axis allowed 
the introduction of medial-lateral translational mismatch between the 
femoral head and the acetabular cup centres [25]. 

This study was split into two parts:  

• Part 1: A short term study where the mechanics of the hip bearing 
were investigated under a wide range of input conditions. The dy-
namic separation between the head and cup during gait and the 
maximum load at the rim during separation were assessed.  

• Part 2: Studies of wear and deformation, where wear simulation was 
carried out at a smaller range of different cup inclination angles and 
medial-lateral translational mismatch conditions. 

For the mechanical studies (part one), six metal-on-polyethylene 
bearings were used. The cups were inclined at in vivo equivalent an-
gles of 45◦ (n = 3) and 65◦ (n = 3) with 1, 2, 3, 4 mm medial-lateral 
translational mismatch. The rotational positioning of the cup was set 
by using cup holders which were inclined at the required cup inclination 
angle. The translational mismatch was set by displacing the cup and 
therefore it’s bearing centre away from the head bearing centre along 
the medial-lateral axis by the required level of mismatch. As 
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translational mismatch was investigated in the ML plane only, the 
version angle was fixed for all cases. 

For all studies three-axes of rotation conditions were applied in 
accordance with ISO14242-1 [28], with all rotations being applied to 
the femoral head. A twin peak 3kN vertical load was applied with a 70 N 
swing phase load through the acetabular cup to represent standard gait 
loading conditions. The test frequency was 1 Hz, and 128 data points 
were collected during the gait cycle. 

The dynamic separation along the medial-lateral axis was measured 
during the gait cycle using a linear variable displacement transducer 
(LVDT). The axial and medial loads were measured using a bespoke six 
axis load cell positioned above the acetabular cup during the gait cycle 
(Simulation Solutions, Stockport, UK) [25]. The load outputs were 
analysed to determine the rim load at 0.5 mm of dynamic separation. 
The load at the rim was not determined for dynamic separation dis-
placements lower than 0.5 mm due to the uncertainty of measurements 
at low level of displacements. 

For the mechanical study (part one), each condition ran for 500 
cycles. For the wear simulation (part two), two million cycles or three 
million cycles were run for the different conditions considered in this 
study (Table 1). 

The lubricant used for all testing was 25% new-born calf serum 
supplemented with 0.03% (v/v) sodium azide to minimise bacterial 
growth. For the wear simulation, the simulator was stopped at approx-
imately every 330,000 cycles for a clean and change of lubricant. 
Components were removed from the simulator approximately every one 
million cycle and cleaned in accordance with a standard operating 
procedure for gravimetric and geometric measurements to be carried 
out. Gravimetric wear was determined using a microbalance (Mettler 
Toledo XP205 analytical balance, Greifensee, Switzerland) which had a 
readability of 0.01 mg. The change in mass was converted to volumetric 
wear using a density of 0.934 × 10− 3 g/mm3 for UHMWPE. Unlike hard 
bearings such as metals and ceramics, polyethylene deforms under 
loading. Creep is permanent plastic deformation of the polyethylene 
component as a result of loading. Coordinate measurement machines 
have been used to show that the majority of the polyethylene creep 
deformation occurs within the first two million cycles of in vitro hip 
simulation [7,8]. A coordinate measurement machine (Legex 322, 
Mitutoyo, Japan) was used to produce three-dimensional surface maps 
of the polyethylene cups. The coordinate measurement machine output 
data were imported into Redlux software (Southampton, UK) to produce 
surface plots of the cups and to measure the penetration depths (as a 
result of wear and creep) on the cups. 

Mean values and 95% confidence limits were calculated, trends and 
descriptive statistics were used to describe the majority of the data. 
Statistical analysis of the wear rates was carried out using a two-way 
ANOVA (two independent variables of medial-lateral translational 
mismatch and cup inclination angle) with significance levels taken at p 
< 0.05. 

The data associated with this article are openly available through the 
University of Leeds data repository [29]. 

3. Results 

Larger medial-lateral translational mismatch conditions led to 

increased levels of dynamic separation between the femoral head and 
acetabular cup with the largest dynamic separation (2.4 ± 0.2 mm, 
mean ± 95% confidence limits) measured under 4 mm translational 
mismatch with the 65◦ cup inclination angle conditions (Fig. 1). Mini-
mal separation (<0.5 mm) was observed at the 1 mm translational 
mismatch conditions. Translational mismatches of 3 mm and 4 mm 
resulted in dynamic separation displacements >0.5 mm. Dynamic sep-
aration was consistently greater with the steeper cup inclination angle of 
65◦ compared to 45◦ for all translational mismatch conditions. 

Higher loads at the rim were recorded under conditions with higher 
inputs of translational mismatch. The load at the rim at 0.5 mm of 
separation was higher for the 65◦ cup inclination angle compared with a 
45◦ cup inclination angle conditions with the highest load recorded 
under 4 mm translational mismatch with the steep cup inclination angle 
condition (Fig. 2). The load at the rim was not determined for dynamic 
separation displacements lower than 0.5 mm due to the uncertainty of 
measurements at low level of displacements, and hence were not 
determined for the 1 mm and 2 mm translational mismatch conditions. 

The mean wear rates of polyethylene significantly increased as the 
level of medial-lateral translational mismatch increased (p < 0.01, two 
way ANOVA) (Fig. 3). Increasing the cup inclination angle from 45◦ to 
65◦ caused a significant increase in wear (p < 0.04, two way ANOVA). 
The lowest mean wear rates measured were at 0 mm translational 
mismatch at 45◦ cup inclination angle (12.9 ± 3.8 mm3 / million cycles) 
and the highest mean wear rates occurred at 4 mm translational 
mismatch with the steep cup inclination angle conditions (23.0 ± 2.4 
mm3 / million cycles). There was no interaction between cup inclination 
angle and translational mismatch (p > 0.81). 

Under standard concentric conditions (0 mm translational 
mismatch) with inclination angle of 45◦, the wear area was confined 
within the spherical part of the acetabular cup (Fig. 4). As the cup 
inclination angle increased to 65◦, the wear area intersected with the rim 
(chamfer) of the acetabular cup, however, the maximum penetration 
was still within the spherical bearing surface. However, when a trans-
lational mismatch was introduced between the head and the cup under 
steep cup inclination angle, the maximum penetration occurred at the 
rim (chamfer) of the acetabular cup (Fig. 4). The largest maximum 
penetration depth occurred at 4 mm translational mismatch for cups 
inclined at 65◦ (Fig. 5). At three million cycles, the penetration (wear 
and deformation) was greater at the edge of the cup at 65◦ compared to 
45◦ cup inclination angles. There was larger penetration at the edge of 
the cup when 4 mm translational mismatch was applied compared with 
2 mm translational mismatch for the same cup inclination angle. 

4. Discussion 

A two stage preclinical testing approach has been applied to study 
the effect of variations in rotational (cup inclination) and translational 
(medial-lateral) positioning on metal-on-polyethylene bearings on the 
occurrence and severity of edge loading and the resulting wear and 
plastic deformation. This is the first study to investigate the relative 
effects of combinations of cup inclination angle and medial-lateral 
translational mismatch on the biomechanics and wear of metal-on- 
polyethylene hip replacements. 

Higher levels of translational mismatch and steeper cup inclination 
angles led to increased dynamic separation and load at the rim (Figs. 1 
and 2); such high levels increase the risk of cup damage (that is; wear, 
plastic deformation, fatigue and cracking). The higher wear rates at 4 
mm translational mismatch corresponded with the increased loading at 
the rim and higher severity of edge loading observed at this translational 
mismatch condition. At a 45◦ cup inclination angle under standard 
concentric conditions (zero translational mismatch) minimal wear and 
deformation occurred at the rim of the cup, however at a 65◦ cup 
inclination edge contact at the rim was identified (Fig. 4). Wear (Fig. 3) 
increased significantly with increasing cup inclination angle (p < 0.04) 
and with increasing medial-lateral translational mismatch (p < 0.01). 

Table 1 
Wear study conditions (part two).  

Translational 
mismatch (mm) 

Inclination angle (in vivo 
equivalence) 

Number of 
cycles 

Number of 
repeats 

0 45◦ 2 million 3 
65◦ 2 million 3 

2 45◦ 3 million 6 
65◦ 3 million 6 

4 45◦ 3 million 6 
65◦ 3 million 6  
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The increased loads, contact and severity of edge loading at the rim 
explains the increase in wear and deformation at the rim at these steeper 
and higher mismatch conditions. Increased penetration (wear and 
deformation) under edge loading near the rim of the cup (Fig. 5) may 
lead to cracking and fatigue failure in longer term studies with oxidative 
degradation of the polyethylene, and should therefore be avoided. 

This study did not simulate or represent oxidative degradation and 

ageing of the UHMWPE which can occur in the body over long periods of 
time. This needs to be incorporated into future work in conditions that 
more closely represent those found in the body. Such degradation can 
adversely affect both surface wear, and fatigue wear and fatigue failure. 

Further developments in polyethylene materials such as antioxidant 
UHMWPE have been shown to improve the mechanical properties of 
polyethylene in comparison to cross linked polyethylene whilst not 

Fig. 1. Dynamic separation (mean ± 95% confidence limits, n = 3) of 36 mm diameter metal-on-moderately crosslinked UHMWPE bearings at 45◦ and 65◦ cup 
inclination angles with 1, 2, 3 and 4 mm of medial-lateral translational mismatch. 

Fig. 2. Load at the rim at 0.5 mm of dynamic sepa-
ration (mean ± 95% confidence limits, n = 3) of 36 
mm diameter metal-on-moderately crosslinked 
UHMWPE bearings at 45◦ and 65◦ cup inclination 
angles with 3 and 4 mm of medial-lateral trans-
lational mismatch (The load at the rim was not 
determined for dynamic separation displacements 
lower than 0.5 mm due to the uncertainty of mea-
surements at low level of displacements, and hence 
were not determined for the 1 mm and 2 mm trans-
lational mismatch conditions).   
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comprising wear resistance [30]. Understanding their performance 
under conditions explored in this study would be of interest. Edge 
loading is a condition that is relevant to all bearing types and material 
combinations. The consequence of edge loading, however, is different 
for different material combinations. In this study of unaged metal-on- 
polyethylene these consequences appear to have been limited to a 
two-fold increase in wear rates and plastic deformation on the rim of the 
acetabular cup. Whereas, the consequences for other bearing materials, 
such as ceramic-on-ceramic, were a many fold increase in wear rates and 
stripe wear mechanisms that have been linked to audible squeaking 
[24,25]. Furthermore, the consequences in metal-on-metal bearings 
have been the most severe with many fold increase in wear rate, wear 
debris and metal ion release that have been linked with severe implant 
failure clinically [16,31–33]. 

This study has specifically studied the effects of cup inclination angle 

and medial-lateral translational positioning. In reality, translational 
positioning variation may occur in all three axes, making this experi-
mental model a simplified model of the clinical scenario. The other 
rotational and translational positioning factors (for example, version 
angle and anterior-posterior translation) may affect the tribological 
performance of hip replacement, and will be studied in future. 

5. Conclusion 

Variations in rotational (cup inclination angle) and translational 
(medial-lateral) positioning influenced the magnitude of dynamic sep-
aration, severity of edge loading, and wear of metal – on - moderately 
cross-linked polyethylene hip replacements, demonstrating the impor-
tance of surgical component positioning. 

Fig. 3. Wear rates (mean ± 95% confidence limits) of 36 mm diameter metal-on-moderately crosslinked UHMWPE bearings at 45◦ and 65◦ cup inclination angles 
with 0 mm (n = 3), 2 mm (n = 6) and 4 mm (n = 6) of medial-lateral translational mismatch. 

Fig. 4. Combined wear and deformation of 36 mm diameter metal-on-moderately crosslinked UHMWPE bearings at 45◦ and 65◦ cup inclination angles with 0 (i.e. 
standard concentric condition), 2 and 4 (mm) of medial-lateral translational mismatch at three million cycles. Negative values indicate penetration on the cup. 
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