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A B S T R A C T   

Real-world flood simulators often use first-order finite volume (FV1) solvers of the shallow water equations with 
efficiency enhancements exploiting parallelisation on Graphical Processing Units (GPUs) and the use of static 
adaptivity on fixed grids. A second-order discontinuous Galerkin (DG2) solver greatly increases the accuracy in 
the predictions on uniform grids, where it is comparatively costly to run, but its practical utility as an alternative 
for flood simulations using static adaptivity is not yet assessed. This is also the case for the dynamic adaptivity 
using the multiresolution analysis (MRA) of the Haar wavelet (HW) scaling FV1 piecewise-constant solutions 
(HWFV1) and of the smoother Multiwavelets (MWs) that scales DG2 piecewise-planar solutions (MWDG2) to 
adapt the resolution of their grids over time. Therefore, dynamic MWDG2 and HWFV1 adaptivity is newly 
explored for practical real-world simulations, to find out when they yield better predictions than static DG2 and 
FV1 adaptivity. A new GPU implementation is proposed to include dynamic MWDG2 adaptivity to also assess 
how far GPU parallelisation renders its runtime practically feasible. Dynamic and static adaptivity are assessed 
for three tests involving slow, gradual to rapid flood flows with analyses of their predictive accuracy and 
computational costs with reference to uniform grid DG2 simulations at the finest resolution of the digital 
elevation model (DEM). Findings suggest favouring static FV1 adaptivity for long-duration simulations of slowly 
to gradually propagating floods and dynamic MWDG2 adaptivity to simulate events driven by rapidly propa-
gating flows. On the GPU, dynamic MWDG2 adaptivity is faster than uniform DG2, leading to a higher speedup 
ratio with higher reduction in the elements on its initial, fixed grid.   

1. Introduction 

Flood modelling is essential to understand flood flow dynamics and 
define mitigation strategies to support decision-making in flood risk 
management (Spiekermann et al., 2015). With the increasing avail-
ability of accurate raster-based terrain datasets, two-dimensional (2D) 
flood models have gained popularity for complex, field-scale flood 
inundation modelling (Hunter et al., 2008; Teng et al., 2017; Nkwu-
nonwo et al., 2020). Raster-based flood models use a numerical solver 
on a uniform resolution grid, defined by a given raster-formatted digital 
elevation model (DEM) file. Flood models used to support real-world 
flood simulations have often been based on solving the full shallow 
water equations in a first-order finite volume (FV1) Godunov-type nu-
merical solver, on exploiting parallelisation on Graphical Processing 
Units (GPUs) (Xia et al., 2019; Echeverribar et al., 2019; Zhao and 
Liang, 2022) and/or deploying static adaptivity of the grid resolution 
(BMT, 2018; Hou et al., 2018; Vacondio et al., 2017) in order to reduce 

runtime costs (Bellos et al., 2020; Saksena et al., 2020; Guo et al., 2020). 
On a uniform grid, raster-based flood models based on the second-order 
discontinuous Galerkin (DG2) solver can be built by increasing the local 
formulation’s complexity of the FV1 solver (Shaw et al., 2021), leading 
to greater quality predictions than finite volume industrial models 
(Ayog et al., 2021). The locality of the DG2 solver formulation should 
also make it a better candidate to increase the quality of the flood flow 
predictions within standard static adaptivity, but this is yet to be 
investigated for real-field simulations including the efficient generation 
of the resolution scales for the fixed grid from a thorough analysis of the 
topographical features within the DEM. 

Alternatively, modern (multi)wavelet-based solvers with dynamic 
adaptivity were formulated based upon the multiresolution analysis 
(MRA) of the Haar wavelet (HW) or the smoother Multiwavelets (MWs) 
to adapt the grid resolution in time, driven by scaled piecewise-constant 
FV1 numerical representations of the flow solutions and the DEM or 
smoother piecewise-planar DG2 representations, respectively 

* Corresponding author at: Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK. 
E-mail address: G.kesserwani@sheffield.ac.uk (G. Kesserwani).  

Contents lists available at ScienceDirect 

Advances in Water Resources 
journal homepage: www.elsevier.com/locate/advwatres 

https://doi.org/10.1016/j.advwatres.2022.104357 
Received 5 June 2022; Received in revised form 20 November 2022; Accepted 21 November 2022   

mailto:G.kesserwani@sheffield.ac.uk
www.sciencedirect.com/science/journal/03091708
https://www.elsevier.com/locate/advwatres
https://doi.org/10.1016/j.advwatres.2022.104357
https://doi.org/10.1016/j.advwatres.2022.104357


Advances in Water Resources 171 (2023) 104357

2

(Kesserwani et al., 2019; Kesserwani and Sharifian, 2020). These com-
binations will be termed as the HWFV1 and MWDG2, respectively. In 
essence, dynamic MWDG2 (respectively HWFV1) adaptivity involves 
the MRA process to generate the grid every time step and while using 
high- and low-pass filter formulae to rigorously scale and reconstruct the 
numerical representations across disparate resolutions. The (multi) 
wavelet-based dynamic adaptivity of the MRA process is practical as it 
needs only one user-specified parameter, an error threshold ε, to select 
the scales of grid resolution. Moreover, it uses the rigorous filter 
formulae to reconstruct intrinsically well-balanced solution limits to 
integrate the fluxes across heterogeneously-sized, adjacent elements as 
robust as they are integrated in the uniform grid solver counterparts 
(Haleem et al., 2015; Gerhard et al., 2015; Kesserwani et al., 2015; 
Caviedes-Voullième and Kesserwani, 2015; Caviedes-Voullième et al., 
2020). 

The serial implementation of dynamic MWDG2 (respectively 
HWFV1) adaptivity for hydraulic modelling on the central processing 
unit (CPU) was already devised and extensively validated for a series of 
synthetic and laboratory-scale test cases mostly dominated by wet areas 
(Kesserwani et al., 2019; Kesserwani and Sharifian, 2020). The findings 
identify an ε value in the magnitude of 10−3 with dynamic MWDG2 
(respectively HWFV1) adaptivity to preserve the predictive accuracy of 
the DG2 solver (respectively FV1) run on the finest uniform grid at a 
competitively affordable runtime, namely less or close to that of the FV1 
solver run on the finest uniform grid (Kesserwani and Sharifian, 2020). 
In serial, the efficiency gain of the dynamic MWDG2 adaptivity arises 
from its MRA of MWs operating on piecewise-planar representations, 
which causes more aggressive, yet sensible, grid coarsening than with 
the MRA of HW that operates on piecewise-planar representations 
within dynamic HWFV1 adaptivity. However, dynamic MWDG2 
(respectively HWFV1) adaptivity must apply the MRA process every 
time step, and this entails severe overhead costs in a serial imple-
mentation; in particular, for real-world simulations where the flooding 
inundates large dry areas. For such simulations, dynamic MWDG2 and 
HWFV1adaptivity has yet to be evaluated when reworked to run in 
parallel on the GPU, to assess the extent of their runtime affordability for 
practical flood modelling applications. 

On the other hand, the findings make a clear case for using the MRA 
of MWs, instead of that of HW, to efficiently generate a fixed grid with 
sensibly selected resolution scales (Kesserwani et al., 2019; Kesserwani 
and Sharifian, 2020). In this context, the MRA process is applied only 
once to analyse the features of the DEM. With such a static adaptivity, 
the rigorous filter formulae of the (multi)wavelet-based dynamic 
adaptivity are no longer applicable; therefore, only extrinsic 
well-balanced solution limits can be reconstructed across the 
heterogeneously-sized adjacent elements based on heuristic averaging 
on a graded grid, as in conventional adaptive grid refinement methods 
(Kesserwani and Liang, 2012a; Liang et al., 2015). Previous works 
suggested that static adaptivity with a finite volume solver is suited to 
simulate slow to gradual, fluvial flood flow propagation (Hou et al., 
2018), but have rarely assessed the ability of the (multi)wavelet-based 
MRA to generate the fixed grid. Within this scope, the work of 
Özgen-Xian et al. (2020) only explored the MRA of HW to generate 
unstructured triangular grids over which a zero-inertia flow solver was 
adapted to simulate overland flow, reporting moderate speedups. Also, 
the authors concluded that pre-processing the DEM data into topo-
graphic slopes for use as input to the MRA of HW significantly improve 
the sensibility of the predicted resolution scales for the fixed grid 
(Özgen-Xian et al., 2020). This suggests that there is a benefit from using 
the MRA of MWs as a better alternative to generate the fixed grid. This 
will be demonstrated in this work for static DG2 and FV1 adaptivity 
alongside with dynamic MWDG2 and HWFV1 adaptivity. 

The rest of the paper is organised as follows. Section 2 overviews the 
dynamic MWDG2 and HWFV1 adaptivity that uses the MRA process to 
analyse and scale their numerical solutions (DG2 piecewise-planar and 
FV1 piecewise-constant) and update the grid over time (Section 2.1). It 

follows with the description of the static DG2 and FV1 adaptivity (Sec-
tion 2.2) and, of the GPU implementation of the MRA process to enable 
GPU resident dynamic MWDG2 and HWFV1 adaptivity (Section 2.3). In 
Section 3, the (multi)wavelet-based dynamic MWDG2 and HWFV1 
adaptivity is assessed against the standard static DG2 and FV1 adaptivity 
for three field-scale test cases featured by slow, gradual and rapidly 
propagating flood flows with reference to finest uniform grid DG2 
simulations. The assessments include demonstrating the merit of the 
MRA of MWs to generate the fixed grid for static DG2 and FV1 adaptivity 
that is also the initial grid for dynamic MWDG2 and HWFV1 adaptivity. 
Section 4 provides an efficiency analysis in terms of runtime cost and 
percentage of reduction in the number of elements with respect to the 
finest uniform grid to identify when static or dynamic adaptivity can be 
used as an alternative to uniform grid flood simulators. Section 5 con-
cludes on the extent of practical utility of static and dynamical adap-
tivity in relation to the properties of the flood simulation project. 

2. Computational methods 

Flow solvers with dynamic and static adaptivity are explored as al-
ternatives to their established uniform grid DG2 and FV1 solvers (Shaw 
et al., 2021). The solvers are formulated to provide numerical solutions 
of the depth-averaged shallow water equations in a conservative form 
(Eq. (1)). 
∂tU + ∂xF(U) + ∂yG(U) = Sb(U) + Sf (U) (1)  

∂ represents a partial derivative operator, U(x, y, t) = [h, qx,qy]T is the 
vector of flow variables at time t and location (x, y) which contains the 
water depth h (m) and the discharges per unit width, qx = hu (m2s-1) and 
qy = hv (m2s-1), involving the depth-averaged horizontal velocities u 
(ms-1) and v (ms-1), respectively; F = [qx, q2xh−1 +0.5gh2, qxqyh−1] T and 
G = [qy, qxqyh−1, q2yh−1 +0.5gh2] T are the components of the physical 
flux and g (ms-2) denotes the gravity acceleration constant. Sb = [0,  −
gh∂xz,−gh∂yz]T is the topography source term vector including the bed 
slopes and the friction source term vector incorporating friction effects is 
denote by Sf = [0, −Cf u

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅u2 + v2√
,−Cf v

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅u2 + v2√
] T where Cf = gn2M/

h1/3 is a friction function in which nM (m1/6) refers to the Manning’s 
roughness parameter. 

Eq. (1) is numerically solved on a 2D spatial domain of dimension lx 
× ly. The domain is meshed using a grid made of non-overlapping, 
heterogeneously-sized square elements. The finest resolution R on this 
grid will be taken to match the raster-formatted digital elevation model 

Fig. 1. Sketch of an element, centred at (xi,j, yi,j), belonging to the finest grid, at 
DEM resolution, R. N, E, S and W mark the northern, eastern, southern and 
western interface centres and NW, NE, SW and SE mark the four vertices. 

G. Kesserwani and M.K. Sharifian                                                                                                                                                                                                          



Advances in Water Resources 171 (2023) 104357

3

(DEM). A grid element at resolution R is shown in Fig. 1, indexed by i, j 
and centred at points (xi,j, yi,j). Two categories of solvers are presented: 
(multi)wavelet-based dynamic MWDG2 and HWFV1 adaptivity, scaling 
their numerical solutions and grid resolutions in time; and, standard 
static DG2 and FV1 adaptivity, adapting their numerical solutions on a 
fixed grid. 

Dynamic MWDG2 adaptivity uses the MRA of MWs to decompose, 
analyse and assemble piecewise-planar DG2 solutions on a dynamically 
adaptive grid (Section 2.1). From dynamic MWDG2 adaptivity, that of 
HWFV1 can be obtained by degrading its formulation to use the HW to 
decompose, analyse and assemble piecewise-constant FV1 solutions 
(Section 2.1.4). The CPU implementation of dynamic MWDG2 and 
HWFV1 adaptivity can be found in Kesserwani et al. (2019) and Kes-
serwani and Sharifian (2020), with an exhaustive analysis of their per-
formance for academic and laboratory-scale test cases. As the aim is to 
assess the potential of dynamic MWDG2 and HWFV1 adaptivity for 
complex real-world flood simulation, only the (multi)wavelet-based 
MRA process is briefly overviewed (next in Section 2.1). 

(Multi)wavelet-based dynamic adaptivity will be compared with 
standard static adaptivity for three realistic test cases (Section 3). The 
initial grid for launching dynamic MWDG2 and HWFV1 adaptivity, will 
be the same as the fixed grid used with static DG2 and FV1 adaptivity 
(Section 3.1). This fixed grid will be generated by first applying the MRA 
of MWs to the DEM raster file (Section 2.1.2) and then ensuring that it is 
graded (Section 2.2.1). The descriptions of the DG2 and FV1 solvers’ 

formulation for a uniform resolution grid can be found in Shaw et al. 
(2021). Therefore, only their solution adaptation procedure on the fixed 
grid will be described for a portion with an interface shared by 
heterogeneously-sized adjacent elements (Section 2.2). A new GPU 
implementation of dynamic MWDG2 and HWFV1 adaptivity is proposed 
to make them run in parallel on the GPU (Section 2.3) and boost 
speedups with respect to the CPU counterparts (Section 4). 

2.1. Dynamic MWDG2 adaptivity 

For dynamic MWDG2 adaptivity, the discrete vector of flow vari-
ables, Uh(x,y, t), and the discrete scalar topography, zh(x,y), are shaped 
as local piecewise-planar solutions over each element starting from the 
finest uniform grid, at resolution R (Fig. 1). This is done within the 
framework of a simplified DG2 formulation, which spans piecewise- 
planar flow solutions and topography function, on a 2D truncated 
tensor-product of the scaled Legendre basis ϕ to which MWs bases are 
adapted (Kesserwani and Sharifian, 2020). With a truncated 
tensor-product basis, the simplified DG2 formulation is “slope-de-
coupled” (Kesserwani et al., 2018), and therefore operates on a similar 
stencil to that of Godunov-type finite volume flood models (Ayog et al., 
2021). On the slope-decoupled stencil, the simplified DG2 formulation 
evaluates the fluxes at the centres of the elements’ interfaces where it 
must ensure continuity of the topography function to avoid spurious 
momentum errors at wet-dry fronts crossing steep bed-slopes – a desired 
property to achieve within dynamic MWDG2 adaptivity (Cav-
iedes-Voullième et al., 2020). The simplified DG2 formulation was 
demonstrated to deliver as second-order accurate predictions as the 
classical DG2 formalism based on a full tensor-product stencil, leading to 
a speedup of 2.6 times. Moreover, it achieves superior predictions than 
finite volume Godunov-type flood models for real-field flood modelling 
without activating local slope limiting, and this boosts the speedups to 5 
times (Ayog et al., 2021), maximising efficiency for flood modelling 
applications (Shaw et al., 2021). 

As shown in Eq. (2), Uh(x,y, t) contains an equation of a plane per 
physical component, each defined by three coefficients of an average 
(denoted by subscript 0) and of two slopes in the x and y directions 
(denoted by subscripts 1x and 1y, respectively). 

Uh(x, y, t) = Ui,j⋅ϕ =

⎡

⎣

hi,j,0 hi,j,1x hi,j,1y

qxi,j,0 qxi,j,1x qxi,j,1y

qyi,j,0 qyi,j,1x qyi,j,1y

⎤

⎦⋅

⎡

⎣

1

2
̅̅̅

3
√

(

x − xi,j

)

/

R

2
̅̅̅

3
√

(

y − yi,j

)

/

R

⎤

⎦ (2) 

In Eq. (2), “ ⋅ ” stands for scalar product and therefore, Ui,j is a matrix 
containing the flow coefficients defining the piecewise-planar solutions 
for the three components of the flow vector. The piecewise-planar rep-
resentation for zh(x,y) can be produced in a similar way, 

zh(x, y) = zi,j⋅ϕ = [ zi,j,0 zi,j,1x zi,j,1y ]⋅

⎡

⎣

1

2
̅̅̅

3
√

(

x − xi,j

)

/

R

2
̅̅̅

3
√

(

y − yi,j

)

/

R

⎤

⎦ (3) 

In Eq. (3), zi,j is the vector of the topography coefficients for defining 
a piecewise-planar representation. The topography coefficients do not 
vary in time and should be carefully initialised from a DEM raster file 
(Section 2.1.1). The time-dependant flow coefficients Ui,j can be ini-
tialised (component-wise) in a similar way from the initial conditions for 
the flow variables converted into raster files. 

2.1.1. Initialisation of coefficients on the finest uniform grid 
The initialisation procedure is based on ensuring that the piecewise- 

planar topography representation, zh(x,y), remains continuous at the 
interface centres of an element (denoted by N, S, E and W, in Fig. 1). As 
demonstrated in Kesserwani et al. (2018), ensuring continuity at these 
interface centres is key to robustly evaluate the discrete fluxes and 
topography source terms, which respects the well-balanced property 
with the presence of wet-dry fronts across steep bed-slopes. Such a 
piecewise-planar topography projection can be constructed from a DEM, 
by first taking the DEM raster values to be located at the NW, NE, SW and 
SE vertices (Fig. 1), and then aggregating an average value 
zN

i,j = 0.5(zNW
i,j +zNEi,j ) at N, and similarly zEi,j, zS

i,j and zW
i,j values at S, E and 

W. From these values, the desired average, zi,j, 0, and slope coefficients, 
zi,j, 1x and zi,j, 1y, can be defined, 

zi,j,0 = 1

2

[

zE
i,j + zW

i,j

]

= 1

2

[

zN
i,j + zS

i,j

]

= 1

4

[

zNE
i,j + zNW

i,j + zSE
i,j + zSW

i,j

]

(4a)  

zi,j,1x = 1

2
̅̅̅

3
√

[

zE
i,j − zW

i,j

]

= 1

4
̅̅̅

3
√

[

zNE
i,j − zNW

i,j + zSE
i,j − zSW

i,j

]

(4b)  

zi,j,1y = 1

2
̅̅̅

3
√

[

zN
i,j − zS

i,j

]

= 1

4
̅̅̅

3
√

[

zNE
i,j − zSE

i,j + zNW
i,j − zSW

i,j

]

(4c) 

Even when there are no initial flow conditions, Eq. (4) is also applied 
to initialise zero-valued vectors for [hi,j, 0, hi,j, 1x, hi,j, 1y], [qxi,j, 0, qxi,j, 1x, 
qxi,j, 1y] and [qyi,j, 0, qyi,j, 1x, qyi,j, 1y], to initialise the matrix of flow co-
efficients Ui,j (Eq. (2)). In what follows, for simplicity of presentation, 
the MRA process, which is responsible for dynamic adaptivity, will be 
described component-wise using the scalar s ∈ {h, qx,qy,z} to represent 
the physical components of the flow vector (time-variant) and the 
topography (time-invariant). 

2.1.2. MRA of MWs to generate the 2D adaptive grid 
The MRA of MWs starts from the finest uniform grid, at resolution R, 

using the initial coefficients sfine = [si,j, 0, si,j, 1x, si,j, 1y] attributed to a 
maximum resolution level L (leading to the finest resolution of the 
DEM). Now, the finest uniform grid, at resolution level L, contains (2LM) 
× (2LN) elements, M = lx/(2LR) and N = ly/(2LR), below which there are 
uniform grids with subsequently lower resolution levels of L − 1, …, 1, 
0 that forms a hierarchy with the coarsest uniform grid, at resolution 
level 0, made of M × N elements (i.e. a single element in this work, with 
M = N = 1). The MRA process first applies the encoding operation to 
extract and analyse the flow vector and topography coefficients at the 
grids with lower resolution levels, L − 1, …, 1, 0, to then apply the 
decoding operation to derive the relevant coefficients that will form the 
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2D adaptive grid. 
From the coefficients on the grid at resolution level L, sfine, the 

encoding operation can be applied to produce the coefficients on the 
grid with twice-coarser resolution at level L − 1, scoarse, and to also 
extract their vectors of the details dcoarse

H , dcoarse
V and dcoarse

D living at 
resolution level L − 1. These vectors of details belong to the basis of 
MWs, ψ, and represent the encoded difference between the scaling basis 
ϕ at resolution level L and its parent basis at resolution level L − 1 (e.g. 
as shown in Fig. 1 in Shaw et al., 2020). Therefore, dcoarse

H , dcoarse
V and 

dcoarse
D encapsulate the encoded differences in coefficients between the 

two resolution levels, L and L − 1, along the horizontal, vertical, and 
diagonal directions, respectively. Namely, scoarse, dcoarse

H , dcoarse
V and 

dcoarse
D on a parent element at resolution level L − 1 can be encoded from 

its four coefficients of their child elements at resolution level L using the 
formulae described below in Eq. (5), 
scoarse = HH0sfine

[0] + HH1sfine
[2] + HH2sfine

[1] + HH3sfine
[3] (5a)  

dcoarse
H = GA0sfine

[0] + GA1sfine
[2] + GA2sfine

[1] + GA3sfine
[3] (5b)  

dcoarse
V = GB0sfine

[0] + GB1sfine
[2] + GB2sfine

[1] + GB3sfine
[3] (5c)  

dcoarse
D = GC0sfine

[0] + GC1sfine
[2] + GC2sfine

[1] + GC3sfine
[3] (5d) 

The subscripts of the coefficients sfine
[] refer to the indexing of the four 

child elements at level L, with reference to their parent element at level 
L − 1. HH0,1, 2, 3 are 3×3 low-pass filter matrices and GA0,1, 2, 3, GB0,1, 2, 
3 and GC0,1, 2, 3 are 3×3 high-pass filter matrices. These filters were 
derived from the relationship linking ψ to ϕ at resolution level L and its 
father basis at resolution level L − 1. The explicit expressions of these 
filters are available in Kesserwani and Sharifian (2020), including the 
ones for HWFV1. 

The formulae in Eq. (5) are generalisable to any two subsequent 
resolution levels (Kesserwani and Sharifian, 2020). By recursive appli-
cation of Eq. (5), sfine at resolution level L is now compressed into a 
series of details living on the hierarchy of uniform grids at subsequently 
lower resolution levels (L − 1, …, 1, 0). These details form a tree-like 
structure and can be summed over the coefficients scoarse associated 
with the coarsest uniform grid (resolution level 0). On this hierarchy, the 
details extracted for all the physical components (flow vector and 
topography) are analysed all together. These details become increas-
ingly significant with increasing non-smoothness in any of the physical 
features but remain small otherwise. The time-invariant details of the 
topography must be reconsidered with those extracted from the flow 
vector (time-variant) to ensure that no coarsening in grid resolution is 
allowed beyond the resolution dictated by the DEM. 

The significance of all the details is measured by comparing their 
normalised magnitude to an error threshold parameter ε (user-speci-
fied). For shallow flow modelling, a value in the magnitude of ε = 10−3 

was identified appropriate with dynamic MWDG2 (respectively 
HWFV1) adaptivity to preserve the predictive accuracy of the DG2 
solver (respectively FV1) run on the finest uniform grid resolution R at a 
competitively affordable runtime, namely less or close to that of the FV1 
solver run on the finest uniform grid resolution R (Kesserwani and 
Sharifian, 2020). For realistic simulations involving real DEMs with 
largely dry portions, using stricter ε values lead to a marginal 
improvement in the accuracy (Kesserwani and Sharifian, 2020), but 
would introduce too much rise in the runtime cost up to making dynamic 
adaptivity impracticable. 

A normalised details magnitude of any component s ∈ {h, qx,qy,z} is 
computed as d

⌣

= |d|/max(1,|s0|). The term |d| denotes the maximum of 
the magnitude of the three details along the horizontal, vertical and 
diagonal directions, and |s0| is the maximum of all the average co-
efficients available on the finest uniform grid (at resolution level L). The 
normalised details are computed for all the elements on the hierarchy of 

uniform grids (with resolution levels L − 1, …, 0). Details at elements 
where d

⌣

> ε are classified as significant and should be retained, and 
such elements are flagged to produce their coefficients, via decoding 
(Kesserwani and Sharifian, 2020). These elements will be referred to as 
“leaf elements” and are such that their details on the tree of details either 
stopped being significant or, otherwise, belong to the finest grid. A 
schematic view of leaf elements on the hierarchy of grids can be found 
below in Fig. 4, as part of the GPU parallelisation (Section 2.3). 

To produce the leaf elements’ coefficients, the process of decoding is 
applied for the tree of details all over the hierarchy of grids. Decoding 
starts from applying Eq. (6) to the coefficients and their encoded details 
on the coarsest uniform grid at resolution level 0 (scoarse, dcoarse

H , dcoarse
V 

and dcoarse
D ) to create the coefficients of their four child elements on the 

grid at resolution level 1 (sfine
[0] , sfine

[1] , sfine
[2] and sfine

[3] ). 

sfine
[0] =

[

HH0
]T

zcoarse +
[

GA0
]T

dcoarse
H +

[

GB0
]T

dcoarse
V +

[

GC0
]T

dcoarse
D (6a)  

sfine
[2] =

[

HH1
]T

zcoarse +
[

GA1
]T

dcoarse
H +

[

GB1
]T

dcoarse
V +

[

GC1
]T

dcoarse
D (6b)  

sfine
[1] =

[

HH2
]T

zcoarse +
[

GA2
]T

dcoarse
H +

[

GB2
]T

dcoarse
V +

[

GC2
]T

dcoarse
D (6c)  

sfine
[3] =

[

HH3
]T

zcoarse +
[

GA3
]T

dcoarse
H +

[

GB3
]T

dcoarse
V +

[

GC3
]T

dcoarse
D (6d) 

Decoding is recursively applied, in ascending order, while adding up 
the retained details to create the coefficients on child elements (Kes-
serwani and Sharifian, 2020). The derived coefficients and the indices of 
their elements can finally be sorted and assembled on the 2D adaptive 
grid made of non-overlapping elements involving various resolutions 
between R and 2LR. 

2.1.3. Time-update of coefficients and of the 2D adaptive grid 
On the 2D adaptive grid the flow coefficients Ui,j at time level n 

should be updated to time level n + 1, by a two-stage Runge-Kutta 
scheme involving discrete spatial DG2 operators (Kesserwani et al., 
2018), as shown in Eq. (7). The flow coefficients are updated at the wet 
elements, which are detected before each time stage. 
U

n+1/2
i,j = Un

i,j + Δt L(Un) (7a)  

Un+1
i,j = 1

2

[

Un
i,j +U

n+1/2
i,j +Δt L

(

Un1/2
)

]

(7b) 

The time step Δt is calculated according to the CFL stability condition 
using the maximum stable Courant number of 0.33 (Cockburn and Shu, 
2001), and L is a 3×3 matrix including the discrete spatial operator 
vectors L0, L1x and L1y. These local operators contain robust evaluation 
of the spatial fluxes and topography gradient terms, to ensure the 
well-balanced property with wet-dry front treatments (Kesserwani and 
Sharifian, 2020). These include Riemann flux evaluation at the four 
interface centres, in Fig. 1, from the reconstructed limits of the 
piecewise-planar solutions at both sides of each interface centre using 
the HLL Riemann solver, which is one recommend choice (Kesserwani 
et al., 2008). The friction source term Sf is not explicitly included in L 
and should instead be integrated elementwise at the start of each time 
step as described in Shaw et al. (2021). 

The updated coefficients Un+1
i,j are now available on the 2D adaptive 

grid assembled at the previous time level n. The information in Un+1
i,j , i.e. 

s = [s0, s1x, s1y] with s ∈ {h, qx,qy,z}, should now be used to regen-
erate a new 2D adaptive grid. This can be done by reapplying MRA of 
MWs for adaptive grid generation (Section 2.1.2), after initialising zero 
details for the flow vector’s coefficients, s ∈ {h, qx,qy}, at the elements in 
the hierarchy of grids that did not belong to the 2D adaptive grid at time 
level n (Kesserwani and Sharifian, 2020). 
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2.1.4. Degradation to dynamic HWFV1 adaptivity 
For dynamic HWFV1 adaptivity, the discrete vector of flow variables, 

Uh(x,y, t), and the discrete scalar topography, zh(x,y), are shaped as local 
piecewise-constant solutions over each element and the basis ϕ is a 
scalar equal to 1. Each physical component of Uh(x,y, t) takes the form of 
a flat plane that is defined by one coefficient, 

Uh(x, y, t) = Ui,j⋅ϕ =

⎡

⎣

hi,j,0

qxi,j,0

qyi,j,0

⎤

⎦⋅1 =

⎡

⎣

hi,j,0

qxi,j,0

qyi,j,0

⎤

⎦ (8)  

Here, Ui,j is a vector of flow coefficients and zh(x,y) is represented in the 
same way as, 
zh(x, y) = zi,j⋅ϕ = zi,j,0⋅1 = zi,j,0 (9) 

The initialisation of coefficients on the finest uniform grid only uses 
Eq. (4a). Then, MRA of HW is applied for the 2D adaptive grid genera-
tion in a similar manner, considering simplified (scalar) expression for 
the high-pass and low-pass filters (Kesserwani and Sharifian, 2020). On 
the 2D adaptive grid, the update of the coefficients is performed using a 
forward Euler time-stepping scheme and L only includes the L0 operator 
(Eq. (10)). This operator is based on the FV1 spatial discretisation where 
the HLL solver’s Riemann flux evaluations consider piecewise-constant 
solution limits at the two sides of each interface centre. 
Un+1

i,j = Un
i,j + Δt L(Un) (10)  

The time step Δt is calculated according to the same CFL stability con-
dition as the DG2 solver but with the maximum stable Courant number 
of 0.5 (Kesserwani and Liang, 2012b). Once Un+1

i,j are produced, the 
regeneration of the 2D adaptive grid is performed as with dynamic 
MWDG2 adaptivity (Section 2.1.3). 

Within the dynamic MWDG2 and HWFV1 adaptivity, the filter 
formulae (Eqs. 5 and 6) are applied every time step within the MRA 
process to reconstruct intrinsic well-balanced solution limits for any 
matching resolution required across the heterogeneously-sized adjacent 
elements. The reconstruction procedure is generally applicable without 
grading (Fig. 2a) the 2D adaptive grid (Kesserwani and Sharifian 2020). 

2.2. Static DG2 and FV1 adaptivity on a fixed, graded grid 

Static DG2 and FV1 adaptivity operates on a fixed, or static, grid on 
which elementwise update of the flow coefficients is achieved as 
described previously, respectively via Eqs. (7) and (10). The 2D adaptive 
grid is thus generated once, after applying the MRA of MWs (only once) 
to analyse the time-invariant topography coefficients (Section 2.1.2). 
Compared to the grid generated from using the MRA of HW, that 
generated from using the MRA of MWs sensibly boosts the resolution 
coarsening (Kesserwani et al., 2019; Kesserwani and Sharifian, 2020) 
and will be preferred to run the DG2 and FV1 solvers on a graded grid 

(shown later in Section 3.1), which ensures that no element is more than 
one resolution level finer or coarser than its neighbouring elements 
(Fig. 2b). The grading of the fixed grid is necessary within the static 
adaptivity, as the MRA process is switched off over time, which makes 
the rigorous filter formulae not applicable.1 After grading, conventional 
adaptive grid refinement treatments can be applied to reconstruct 
extrinsic well-balanced solution limits at both side of the interface 
separating the heterogeneously-sized adjacent elements (detailed next 
in Section 2.2.1). 

2.2.1. Averaging of solution limits across adjacent elements of different 
sizes 

Without grading, the grid could include adjacent elements of 
different sizes, where the numerical solutions are more than one reso-
lution level apart from each side of the elements’ interface. An example 
is shown in Fig. 2a, where the red elements are two resolution levels 
finer than the neighbouring blue element. At both sides of the finer 
element interface centres, precisely well-balanced solution limits can be 
unproblematically evaluated to integrate the fluxes within the update 
steps (Eqs. 7 or 10), and thereby ultimately update the flow coefficients 
at the finer interface elements. However, the challenge arises when 
updating the flow coefficients at the coarse interface element: From its 
right side (Fig. 2a), there is no rigorous way to aggregate the local so-
lution limits along the finer element interface into a precisely well- 
balanced local solution limit at the coarse element interface centre. 
With grading, this challenge can be reduced to estimating a coarse res-
olution limit by heuristic averaging from the limits available at the 
centres of the finer interface elements (from the right side) following the 
common reported procedure in conventional adaptive grid refinement 
techniques (Borthwick et al., 2000; Popinet, 2003; Kesserwani and 
Liang, 2012a; Donat et al., 2014; BMT (2018); Ghazizadeh et al., 2020; 
Dunning et al., 2020). For example, as shown in Fig. 2b, the required 
solution limit, at the right side, is averaged from the solution limits at the 
interface centres of the two finer elements (yellow points). This aver-
aging is exact for flat, piecewise-constant solution representations, as 
with the FV1 solver, taking the same value along each of the small 
element interfaces, including at the centres. With uneven 
piecewise-planar solution representations, as with the DG2 solver, the 
averaging is heuristic as it only considers the values at the centres of 
each of the small element interfaces, any of which may be different than 
the other values along a small element interface. The heuristic nature of 
the averaging process within the DG2 solver may manifest in local 
inaccuracies in the predictions when there is high variability in a flow 
variable (shown in Section 3). 

2.3. GPU parallelisation with dynamic adaptivity 

To effectively parallelise (multi)wavelet-based dynamic adaptivity 
on the GPU, ensuring coalesced memory access and avoiding warp 
divergence are essential NVIDIA, 2021). In CUDA programming, data of 
the coefficients and details should reside in GPU memory that is 
accessed by threads, or workers. Threads should access contiguous 
memory locations for coalescing, and batches of 32 threads, or warps, 
must avoid the execution of differing instructions to avoid divergence. 
These requirements are not difficult to achieve when parallelising FV1 
and DG2 on a uniform grid with equally-sized elements (Shaw et al., 
2021). Similar can be said to the updates (Eqs. 7 and (10) within dy-
namic HWFV1 and MWDG2 adaptivity, as matching resolution repre-
sentations is a priori ensured from the filter formulae (Eqs. 5 and 6). 
Therefore, it suffices to describe how these requirements can be met for 
the MRA process that is responsible for achieving the dynamic 

Fig. 2. Schematic layout of non-homogeneous interfaces shared between 
neighbouring elements at different levels: (a) non-graded grid, where a coarse 
element (in blue) is adjacent to one- and two-level finer elements (in yellow and 
red, respectively); (b) graded grid, where a coarse element (in blue) can only be 
adjacent to one-level finer elements (in yellow). The yellow and red points 
denote the fine element interface centres, and the blue point denotes the coarse 
element interface centres. At these points, the limits of the local solutions are 
required for Riemann flux evaluations. 

1 Applying the rigorous filter formulae (Eqs. 5 and 6) would lead to spurious 
freezing the fluxes in time, across the interface, as the details of the flow vector 
do not get updated over time. 
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adaptivity every time step (Section 2.1.2). To do so, the recursive op-
erations featured in the MRA process must be reworked; namely to 
ensure coalescing during the encoding of details and the decoding of leaf 
elements’ data, and to avoid warp divergence when identifying the 
indices of the leaf elements. These will be described for a hierarchy of 
grids up to L=3, without loss of generality. The algorithmic imple-
mentation of the MRA process on the GPU is presented in Chowdhury 
et al. (2022), which is newly extended to encompass dynamic MWDG2 
adaptivity. 

Coalescing has been ensured by spanning the hierarchy of grids using 
Z order curves to continuously index all the elements living within the 
hierarchy. For each grid in the hierarchy, a Z order curve is created by 
following the so-called Morton code of each grid element, by first 
interleaving the bits of the indices X and Y of the element in binary 
representation (Fig. 3a) and then converting of the resulting bit inter-
leaved index to decimal form as shown in Fig. 3b (Sagan, 1994; Bader, 
2013; Baert et al., 2013; Chowdhury et al., 2022). Z order curves are 
created for every grid in the hierarchy starting from the coarsest to the 
finest resolution grid to end up with a continuous span of the element 
indices all over the hierarchy (Fig. 3c). With this span, the coefficients 
and details needed for encoding and decoding are now resident in 
adjacent memory locations (zoomed-in portion in Fig. 3c). Although the 
leaf elements’ coefficients and indices are available on the hierarchy, the 
coefficients must be fetched to assemble the adaptive grid in parallel on 
the GPU, and this can only be achieved by simultaneous traversal of the 
tree of details. 

Simultaneous tree traversal has been achieved based on the algo-
rithm presented by Karras (2012), initially designed for computer 
graphic applications. The algorithm is applied to simultaneously climb 
the tree of details after continuous indexing of Z order curves, as shown 
in Fig. 4a. The starting point is to launch as many threads as the number 
of elements on the finest uniform grid, namely 23×23=64 threads. The 
threads are tasked to start simultaneous traversal from the single 
element on the coarsest grid. Each thread attempts to climb to the 

element on the finest grid indexed with the decimal converted from the 
Morton code (Fig. 4a). During the simultaneous traversal, by checking 
against the tree of details, a thread stops as soon as it reaches a leaf 
element and records its index in memory. An example can be seen in the 
hierarchy in Fig. 4a-4b, where a thread will attempt to reach the element 
with index 45 climbing along the elements with indices {0, 2, 11, 45} to 
stop at the leaf element with index 45 and record it in memory. In doing 
so, warp divergence is avoided because adjacent threads perform similar 
traversals due to the continuous indexing of the Z curves spanning the 
hierarchy of grids, and many of the threads climb to the same leaf ele-
ments without reaching any element on the finest grid. For example, as 
indicated in Fig. 4a-4b, four threads climb up the elements with indices 
0, 2 and 11, one by one, to finally settle for the elements with indices 
{45, 46, 47, 48} located on the finest grid. In contrast, sixteen threads 
settle for the leaf element with index 1, which does not belong to the 
finest grid, each of them recording the same index 1 in memory and this 
results in duplicates. 

After the parallel tree traversal, an array of indices is recorded in 
memory including the duplicate indices, shown in Fig. 4b. These 
duplicate indices are then scrutinised by the threads to also identify and 
record the indices of the four elements neighbouring the leaf elements 
from the east, west, north and south. For example, the thread that has 
already recorded the leaf element with index 1 (at the bottom right of 
the array of 16 elements with index 1), will then be tasked to record the 
indices of the leaf element’s direct neighbours, namely the indices 1, 47, 
1 and 14 shown in Fig. 4b. The indices of the four neighbour elements 
are also stored in memory, in turn resulting in duplicates. 

The recorded duplicate indices of the leaf elements and their four 
neighbours are then removed from memory using stream compaction 
(Billeter et al., 2009). After compaction, the remaining indices that are 
unique to the leaf elements, relevant to form the 2D adaptive grid, are 
identified together with those of their four neighbouring elements. The 
leaf elements’ coefficients and indices are then used to fetch the 2D 
adaptive, as shown in Fig. 4c, on which elementwise update of the 

Fig. 3. (a) A demonstration on a 4×4 grid of how the bits of the indices X and Y in binary representation are interleaved; (b) The decimal form of the bit interleaved 
indices on the same 4×4 grid leading to Z order curves; and (c) Morton codes generated from Z order curves spanning the hierarchy of grids. The zoomed-in portion 
shows the coefficients and details on a parent element and the coefficients on its four children elements, which are resident in adjacent memory locations. 
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coefficients is applied. This completes the process for dynamic HWFV1 
adaptivity. However, another step remains needed to complete the 
process with dynamic MWDG2 adaptivity, namely after the first 
Runge-Kutta stage (Eq. (7a)) to ensure that the coefficients at the leaf 
elements’ neighbours are also up to date prior to applying the second 
Runge-Kutta stage (Eq. (7b)). This can be achieved by re-encoding the 
coefficients obtained after the first Runge-Kutta stage. Arguably, 
running dynamic adaptivity on the GPU comes at a price of storing in 
memory, at all times, the entire data arrays spanning the hierarchy of 
grids, which could entail enormous memory load with increase in size of 
the domain area and/or in the fineness in the DEM resolution. 

3. Results and discussion 

Dynamic MWDG2 and HWFV1 adaptivity is benchmarked against 
static DG2 and FV1 adaptivity on the same fixed grid that is also used to 
start dynamic adaptivity (Section 3.1). The benchmarking is aimed to 
evaluate how far their simulated results are close to a reference DG2 
simulation performed on a uniform grid using the finest DEM resolution, 
R (uniform DG2). Three field-scale test cases are selected with a uniform 
Manning roughness parameter, involving initially dry areas. The simu-
lations with dynamic adaptivity used an ε = 10−3 to adapt grid resolu-
tion over time based on the details of both the flow variables and the 
topography (Section 2.1). In all the simulations, the maximum resolu-
tion level, L, is selected to match the resolution, R, of the DEM. The CPU- 
based solvers were run on a 3.2GHz Intel i7–8700 using a single CPU 

core, while the GPU-based solvers were run on an Nvidia Quadro RTX 
4000, for a total simulation time, Ts. The selected test cases, their flow 
characteristics, and associated simulation parameters are summarised in 
Table 1. 

Fig. 4. Description of the parallel tree traversal algorithm. (a) Climbing the hierarchy after continuous indexing of Z order curves up to leaf elements (red, yellow and 
blue coloured); (b) Leaf elements’ indices recorded by the threads after climbing. There are duplicate indices for elements not belonging to the finest grid, which have 
to be removed after reusing them to detect the indices of the leaf elements’ four neighbours; and, (c) Assembly of the unique indices of the leaf elements making up 
the 2D adaptive grid. 

Table 1 
The selected field-scale test cases to benchmark dynamic MWDG2 and HWFV1 
adaptivity against static DG2 and FV1 adaptivity.  

Test Case Source Characteristics L R 
(m) 

nM Ts 
(hr) 

Carlisle 2005 
flooding 

Fewtrell 
et al., 
2011;  
Neal et al., 
2009 

Gradually 
propagating flood 
at city scale from 
multiple fluvial 
inflows. Post- 
event 
measurements for 
validation 

10 5 0.055 68 

Hypothetical 
flood 
propagation 
and 
inundation in 
Thamesmead 

Liang 
et al., 
2008;  
Wang and 
Liang, 
2011 

Slowly 
propagating flood 
from defence 
failure at district 
scale 

10 10 0.035 10 

Flood wave 
along a valley 

Neelz and 
Pender, 
2013 

Rapidly to 
gradually 
propagating flood 

11 10 0.04 30  
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The closeness of the results simulated from the four solvers to the 
reference uniform DG2 simulation, or measured data, is evaluated using 
the mean error and root-mean-square error (RMSE). These error metrics 
are recommended for point data evaluations (Nguyen et al., 2016), and 
are computed as follows: 

mean error =
∑n

i=1

(

p − pref

)

Ns

,RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

[

p − pref

]2

Ns

√

(11)  

where p refers to the predicted flow variable (water depth, or level, or 
velocity), pref indicates the reference or measured variable, and Ns is the 
number of data points. For quantitative comparison of flood inundation 
extent predictions, the hit rate (H), false alarm (F) and critical success 
index (C) metrics are recommended (Wing et al., 2017; Hoch and Trigg, 
2019). H measures how much the reference flood extent is covered by 
the simulated flood extent, with H=1 indicating full coverage and H=0 
otherwise. F measures how much of the simulated flood extent is outside 
of the reference flood extent, with F=0 indicating that there is no 
simulated portion outside of the reference flood extent and F=1 indi-
cating that all the simulated flood extent is outside the reference flood 
extent. The C metric combines H and F to weigh how much of the sum of 
the simulated and the reference flood extents is covered by the simulated 
flood extent. C=1 indicates full coverage and C=0 otherwise. 

3.1. Selection of the initial grid for the simulations 

To perform a fair comparison amongst dynamic MWDG2 and 
HWFV1 adaptivity and static DG2 and FV1 adaptivity, simulations 
should start from the same fixed grid that refers to the grid predicted by 
MWDG2 with grading, as justified in the following. Since all simulations 
started over dry areas, the initial grids predicted by the MRA of HW and 
MWs, within dynamic HWFV1 and MWDG2 adaptivity, respectively, 
were selected based on the details of the DEMs for each of the three test 
cases (Table 1). They are here analysed compared to the fixed grid 
predicted by the MRA of MWs after grading. Fig. 5 shows the percentage 
of resolutions selected for grids predicted by the MRA of MWs (with and 
without grading) and that of HW covering the whole study areas. The 
grids predicted by the MRA of HW are more refined, by selecting the 
highest resolution, over most of the domain area in all the test cases 
(black bars in Fig. 5). In contrast, the grids predicted by the MRA of MWs 
(without grading) allow for coarser resolutions, only using the finest 
resolution over 65 %, 58 % and only 20 % over the domain area for the 
three test cases, respectively (red bars in Fig. 5). The grids predicted by 
the MRA of MWs (with grading) have finer portions, covering 80% of the 
domain area with the finest resolution for the first two cases and 37% for 
the third test case (green bars in Fig. 5). Compared to the predicted grids 
by the MRA of HW, those predicted with the MRA of MWs (with grading) 
still allow coarser resolution, providing better allocation of resolutions 
for the initial grids. Therefore, all the initial grids predicted by dynamic 
HWFV1 adaptivity are not as efficient as a choice to start the simulations 

compared to the fixed grid predicted by the MRA of MWs (with grading) 
that will be used instead to start dynamic HWFV1 adaptivity. 

The grids predicted by the MRA of MWs with and without grading 
are compared in Fig. 6 for the three test cases considering zoomed-in 
portions (framed in Figs. 7, 11 and 14 appearing below). Both the 
non-graded and graded grids are seen able to retain the finest resolutions 
along sharp topographic features, while allowing coarsening in the areas 
with smooth topographies. As expected, the non-graded grids have 
coarser resolutions than the graded grids, which were used hereafter to 
run the simulations with static DG2 and FV1 adaptivity and to start the 
simulations with dynamic MWDG2 and HWFV1 adaptivity. 

3.2. Carlisle 2005 flooding 

This test case is characterised by gradually propagating flood at city 
scale from multiple fluvial inflows. Because it has post-event measure-
ments for validation, it is investigated first to validate the adaptive and 
non-uniform grid solvers for real-world flood simulation. The study area 
is shown in Fig. 7, covering about 14.5 km2 of the city of Carlisle. The 
three-day-long flooding is initiated from three inflow hydrographs at the 
upstream points of Rivers Eden, Petteril and Caldew with a maximum 
flow rate of 1200 m3 s−1 (shown at the right panels of Fig. 7). Surveyed 
maximum free-surface elevations are available at 217 wrack marks and 
46 water level points (black dots and red crosses in Fig. 7). These will be 
compared against the maximum free-surface elevations simulated by 
uniform DG2 and the four solvers (i.e. with dynamic MWDG2 and 
HWFV1 adaptivity and with static DG2 and FV1 adaptivity). In addition, 
water depth time series will be recorded at 15 sampling points (blue 
squares in Fig. 7), including at the three gauges of Sheepmount, 
Botcherby Bridge and Denton Holme for which in-situ water depth 
measurements are available to further support the validation of the 
solvers. 

The four solvers are first verified by comparing their maximum free- 
surface elevation predictions against the measured data at the water 
level and wrack mark points. Fig. 8 includes the histogram errors 
generated by the differences in free-surface elevation between simulated 
and observed data at the measurement points (x-axis of Fig. 8), and the 
RMSE and mean error for each solver simulation. The uniform DG2 
solver is the most accurate solver by having an RMSE of 0.29 and a mean 
error of −0.05. Also, its histogram error peak is in the vicinity of 0 with 
the least skewness compared to the other solvers. This indicates that the 
DG2 simulations on the uniform grid at the finest resolution R (uniform 
DG2) can be reliably used as the reference solution in the next two test 
cases that lack validation data. Dynamic MWDG2 adaptivity exhibits the 
closest histograms to those of uniform DG2 with RMSE of 0.37 and mean 
error of −0.09, which compare well with the errors reported in other 
studies (Neal et al., 2009; Horritt et al., 2010; Fewtrell et al., 2011). 
Static DG2 adaptivity leads to a slightly higher RMSE error of 0.39 and a 
mean error of 0.12, and its histogram errors are centred at −0.1, 
implying an underprediction tendency for the free-surface elevation. 

Fig. 5. The percentage of the resolutions selected for grids predicted by the MRA of MWs and HW over the study area along with the fixed grids obtained after 
grading those predicted by the MRA of MWs: (a) Carlisle 2005 flooding, (b) hypothetical flood in Thamesmead and (c) flood wave along the valley. Note that the 
number of elements associated with coarser resolution levels, > 20 in (a), > 40 in (b), and > 80 in (c), were negligible (thus not visible). 
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Dynamic HWFV1 adaptivity and static FV1 adaptivity resulted in RMSEs 
of 0.52 and 0.47, and mean errors of −0.43 and −0.32, respectively. 
These, together with the fact that their histogram errors are centred 
around 0.4 and 0.2, suggest that the FV1-based solvers, on their grids 
involving non-uniform resolutions, tend to significantly overpredict the 
free-surface elevation compared to the measurements for this test case. 

The water level time series recorded at 15 sampling points are 
compared in Fig. 9. As shown earlier in Fig. 7, these samplings points are 
distributed over the whole study area, three of which are in the river 
channels (Sheepmount, Botcherby Bridge and Denton Holme), six in the 
urban areas (Pallet yard, Substation, Brown Bros, Bus depot, Water mark 
1 and Water mark 2), and six others in the rural areas (Building 1, and 

Fig. 6. Initial grids predicted by the MRA of MWs without grading (left) compared to those with grading, or the so-called fixed grid for static adaptivity (right): (a) 
Carlisle 2005 flooding, (b) hypothetical flood in Thamesmead and (c) flood wave along the valley. The grids are shown on the framed portion of the study areas for 
each test case (specified later in Figs. 7, 11 and 14, respectively). 
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Watermarks 3 to 7). The DG2-based solvers yield water level predictions 
that have the best agreement with the reference solution, irrespective of 
the locations of the sampling points. In contrast, the FV1-based solvers 
significantly overpredict water depths at all the staging points. This 
difference in the predictions is in line with the analysis of Fig. 8 and 
alternative studies (Liu and Pender, 2013; Shaw et al., 2021). It mainly 
arises from the differences in the accuracy-order, amongst the solvers, in 
the representation of flow and terrain data. The DG2-based solvers use 

piecewise-planar representations for the flow variables, the topography 
and the friction integration, whereas the FV1-based solvers use 
piecewise-constant representations. Therefore, the predictions from the 
FV1-based solvers would be more impacted by the growth of numerical 
diffusion, compared to those from the DG2-based solvers (Ayog et al., 
2021; Shaw et al., 2021). This impact is particularly magnified with the 
FV1-based solvers because they have coarse resolution portions on their 
grids, at which larger numerical diffusion accumulate, yet affecting the 

Fig. 7. Carlisle 2005 flooding (Section 3.2): The 14.5 km2 study area and the positions of the sampling, water level and wrack mark points. In-situ water depth time 
series are available at three sampling points denoted by asterisks. The arrows show the positions where the inflow hydrographs are imposed at the upstream of Rivers 
Eden, Petteril and Caldew. The dotted line shows the subset area where the generated grids are compared. Map data ©2020 OpenStreetMap. 

Fig. 8. Carlisle 2005 flooding (Section 3.2). RMSE, mean error and histogram errors calculated from the difference between the simulated and measured maximum 
free-surface elevations at 217 wrack marks and 46 water level points. 
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overall predictions (i.e., for this long-duration simulation over a large 
and rough area). This observation can also be supported by looking at 
the predictions by uniform FV1 at the finest resolution R (Fig. 9), which 
are closer to reference solution that those by FV1-based adaptivity. As in 
Zhao and Liang (2022), uniform FV2 (Ayog et al., 2021) at the finest 
resolution R does not improve the uniform FV1 predictions, indicating 
that resolution coarsening of piecewise-constant representations is the 
key factor that deteriorated the predictions. 

Fig. 10 includes the maximum flood extent predictions by the solvers 
with dynamic and static adaptivity along with the reference predictions 
by uniform DG2. The flood extent predicted by the dynamic MWDG2 

adaptivity is the closest to the reference extent, with the lowest F of 
0.005 and the highest C of 0.98. Static DG2 adaptivity also shows a good 
agreement with the reference extent, with a C of 0.95, with slight 
underpredictions in limited areas close to the urban banks of rivers 
Caldew and Petteril. The FV1-based solvers lead to the widest flood 
extent compared to the reference extent, most notably over the urban 
area in the west of river Caldew. This is reflected in their lowest C, of 
0.89 resulting from dynamic HWFV1 adaptivity and 0.90 resulting from 
static FV1 adaptivity. 

When modelling water level and flood extent for gradually propa-
gating floods across urban and rural areas over long periods, Static DG2 

Fig. 9. Carlisle 2005 flooding (Section 3.2). Water level time-series predicted by the solvers with static and dynamic adaptivity compared those predicted by uniform 
DG2 at 15 sampling points (marked in Fig. 7). The in-situ measured water depths are shown for the first three sampling points. 
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adaptivity seems to lead to accurate enough predictions. These pre-
dictions marginally improve with dynamic MWDG2 adaptivity, making 
it a compelling alternative. amongst the FV1-based solver, static FV1 
adaptivity overpredicts the reference predictions with no major 
improvement seen by instead using HWFV1’s dynamic adaptivity. The 
performance of these solvers is further compared next for test cases with 
smaller areas and shorter simulation times with a more elaborate anal-
ysis that includes velocity predictions over smoother topographies with 
lower Manning parameters. 

3.3. Hypothetical flood propagation and inundation in thamesmead 

The test case involves a slowly propagating flood from a hypothetical 
defence failure over complex terrain in the Thamesmead district. The 
flood is assumed to occur from a breach along a 150m long defence 
structure, through which water breaches from river Thames into a 9 km 
× 4 km floodplain. An aerial view of the floodplain is shown in Fig. 11, 
along with the location of the inflow breach and four sampling points 
G1, G2, G3 and G4 where water level and velocity time series are 

Fig. 10. Carlisle 2005 flooding (Section 3.2). Maximum flood extents predicted by the solvers with static and dynamic adaptivity compared those predicted by 
uniform DG2, including the hit rate (H), false alarm (F) and critical success index (C) values computed against the reference predictions (uniform DG2). Map data 
©2020 Google. 
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recorded. The inflow discharge lasts for 10 hr with a peak of 200 m3 s−1, 
reached during the second to the fourth hour of flooding (see Fig. 11). 
The flood wave is expected to pass a narrow channel that cuts through a 
railway embankment located across most of the domain from southwest 
to northeast. 

Fig. 12 includes the water level and velocity time series recorded at 
G1 to G4 for the adaptive and non-uniform grid solvers and from the 

reference solution. The RMSE values comparing the predicted time se-
ries against the reference time series are listed in Table 2. The water 
levels predicted by both DG2-based solvers are reasonably close to the 
reference solution, with RMSEs being less than 0.02. Static FV1 adap-
tivity is also shown to closely predict the reference water level time 
series, with small deviations leading to RMSEs limited to 0.08. Dynamic 
HWFV1 adaptivity, however, shows more obvious deviations by 

Fig. 11. Hypothetical flood propagation and inundation in Thamesmead (Section 3.3). 9km × 4km study area including the positions of the sampling points and the 
hypothetical breach in the flood defence structure with the specified inflow hydrograph. The dotted line shows the subset area where the generated grids are 
compared. Map data ©2020 OpenStreetMap. 

Fig. 12. Hypothetical flood propagation and inundation in Thamesmead (Section 3.3). Water level and velocity time-series predicted the solvers with static and 
dynamic adaptivity compared those predicted by uniform DG2 at sampling points G3 and G4 (close to the inflow), and points G1 and G2 (away from the inflow). The 
water levels are referenced to the mean sea level. 
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overpredicting the water levels at points G4 and G3, which are closer to 
the inflow, while at G2 and G1 where the flow is relatively slower, it 
leads to delayed arrival times. These deviations are also reflected in 
higher RMSEs up to 0.14. The different behaviour of dynamic HWFV1 
adaptivity compared to with static FV1 adaptivity likely occurred from 
the accumulation of thresholding errors that becomes significant due to 
deeper traversal across resolution levels on a grid that has more refined 
portions. As shown in Kesserwani and Sharifian (2020), excess in the 
refined portions on the grid within the dynamic HWFV1 adaptivity arise 
from the first-order, piecewise-constant representations, and using a 
stricter ε value will introduce further refinements without adding 
notable gain in the predictive accuracy. 

In terms of the velocity, dynamic MWDG2 adaptivity leads to almost 
identical predictions to those from the reference uniform DG2 solver 
with negligible RMSEs limited to 0.02. Static DG2 adaptivity, however, 

Table 2 
Hypothetical flood propagation and inundation in Thamesmead (Section 3.3). 
RMSEs for the predicted water level (m) and velocity (m s−1) time-series 
measured against the predictions made by the uniform DG2 solver.    

Dynamic adaptivity Static adaptivity   
MWDG2 HWFV1 DG2 FV1 

Water level G1 0.013 0.136 0.011 0.076  
G2 0.007 0.090 0.004 0.060  
G3 0.002 0.103 0.017 0.050  
G4 0.002 0.052 0.002 0.008 

Velocity G1 0.017 0.052 0.027 0.033  
G2 0.003 0.063 0.011 0.033  
G3 0.004 0.099 0.078 0.109  
G4 0.002 0.023 0.028 0.022  

Fig. 13. Hypothetical flood propagation and inundation in Thamesmead (Section 3.3). Final flood inundation maps predicted by the solvers with static and dynamic 
adaptivity compared those predicted by uniform DG2, including the hit rate (H), false alarm (F) and critical success index (C) values computed against the reference 
predictions (uniform DG2). 
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shows small deviations at all four points. These deviations are expected 
as static DG2 adaptivity could be affected by the errors from the heu-
ristic nature in averaging the slope coefficients (discussed in Section 
2.2.1), which are expected to be more present in the velocity predictions 
as the velocity has a more sensitive variability than the water level. This 
can also be supported by the fact that the highest deviation is observed 
at G3, which recorded higher velocities resulting in a higher error, an 
RMSE of 0.078. Static FV1 adaptivity predicts the reference velocities at 
G4, with an RSME of 0.022, but underpredicts the velocity at the other 
three points with RMSEs up to 0.109. Compared to static FV1 adaptivity, 
dynamic HWFV1 adaptivity performs equally well at points G4 and G3 
but shows more pronounced underpredictions at the farther points G1 
and G2. 

Fig. 13 contrasts the flood inundation maps predicted by the four 
solvers to the reference map after the 10-hour simulations. Dynamic 
MWDG2 adaptivity yields the closest predictions to the reference extent 
with the highest C of 0.93. Static DG2 adaptivity leads to slight under-
predictions, at the southern areas of the domain, leading to a close 
agreement with the reference extent with a C of 0.91. The FV1-based 
solvers predict the reference extent less accurately with a C of 0.89 
achieved by static FV1 adaptivity and a lower C of 0.82 achieved by 
dynamic HWFV1 adaptivity, suggesting the latter predicts a narrower 
extent (i.e. in the south and westernmost regions, also confirmed by its 
lowest H of 0.89). 

For this test case, static DG2 adaptivity is able to provide accurate 
enough predictions for water level and flood extent, but can fall short in 
predicting velocities, leading to increasingly deviated predictions with 
higher velocities. Dynamic MWDG2 adaptivity, however, provides the 
best quality predictions to those of the reference uniform DG2 solver, for 
the velocities as well as the water levels and flood extent. The opposite is 
observed for the predictions made by the FV1-based solvers: static FV1 
adaptivity predicts flood extents, water level and velocity time series 
that are closer to the reference predictions than those predicted by dy-
namic HWFV1 adaptivity. The latter, given its relatively more refined 

grid (analysed next in Fig. 16), leads to accumulation of thresholding 
errors that can impact its predictions over time to make them less ac-
curate than those of static FV1 adaptivity. This suggests favouring static 
FV1 adaptivity over dynamic HWFV1 adaptivity for modelling slowly 
propagating floods over a real DEM for a long duration simulation, and 
dynamic MWDG2 adaptivity over static DG2 adaptivity to acquire the 
most accurate predictions. The solvers are next compared for a test case 
involving rapid to gradual flood flow propagation. 

3.4. Flood wave along a valley 

The performance of the dynamic MWDG2 and HWFV1 adaptivity 
versus static DG2 and FV1 adaptivity is finally compared for reproduc-
ing a scenario that involves a rapidly propagating flow turning to a 
gradually propagating flow. The flood wave arises from an inflow that 
enters the upstream of a 17.0 km × 0.8 km valley and propagates 
downstream. Fig. 14 shows the terrain of the valley including 7 sampling 
points that are typically used to compare water level and velocity time 
series. As shown in Fig. 14, the inflow hydrograph has a high peak 
discharge of 3000 m3 s−1, lasting for less than 2 hr. During the first 3.5 
hr, the flood wave undergoes a rapidly propagating flow stage to then 
become in a stage of gradually rapidly propagating flow as the water 
flows downhill, filling in the topographic depressions to reach the larger 
pond located downstream. The latter stage begins at about 5 hr to last 
until 30 hr, during which the flow slows down by the friction to 
approach a steady-state. 

Fig. 15 includes the water level and velocity time series recorded for 
the four solvers with dynamic and static adaptivity at the sampling 
points and those produced by the reference uniform DG2 solver. 
Following other studies (cited in Table 1), the time series are analysed 
for points 1, 3 and 5 located at the upstream, middle, and downstream of 
the topographic depressions. The RMSE values from the predicted time 
series with respect to those of the reference solution are included in 
Table 3. 

Fig. 14. Flood wave along a valley (Section 3.4). The study areas including the topography of the valley and the positions of the sampling points; along with the 
inflow hydrograph imposed at the vicinity of the southwestern end. 
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The velocity time series (Figs. 15d-15f) are recorded for up to 5 hr 
and are discussed first to analyse the performance of the solvers during 
the rapidly propagating flow stage. Dynamic MWDG2 adaptivity pre-
dicted the reference velocities perfectly, leading to the smallest RMSEs 
limited to 0.06. This is notably observed at point 3, where the solver 
with dynamic MWDG2 adaptivity is the only one that perfectly trails the 
small transient variations, appearing after 1 hr. These velocity variations 
were detected with the uniform FV2 solver simulation in Ayog et al. 
(2021) on the finest DEM resolution, but dynamic MWDG2 adaptivity 
could capture them despite the presence of coarser resolution portions 
on its grid. Static DG2 adaptivity performs equally well at point 1 
(Fig. 15d), where the earliest arrival time is recorded. At point 5 
(Fig. 15e), it is able to partly capture the small transient variations, but 
overly predicts the reference velocity leading to an RMSE of 0.104. At 
Point 5 (Fig. 15f), where the flood is driven by the topography and 
friction effects, static DG2 adaptivity predicts comparable velocities up 
to 3.5 hr, but its predictions are affected by numerical disturbances af-
terwards. In line with the past observations, made for Fig. 12, these 
spurious disturbances can be attributed to the heuristic nature of aver-
aging slope coefficients (Section 2.2.1). The FV1-based solvers lead to 
good predictions at points 1 and 5 in good agreement with the reference 
velocities. Both fail to capture the small-scale velocity variations at point 
3, leading to RMSEs up to 0.28, but dynamic HWFV1 adaptivity shows a 

better performance in capturing velocity peaks, suggesting that it can 
still be a good choice for short duration simulations of highly dynamic 
flows. 

Water level time series are compared in Figs. 15a-15c to analyse the 
performance of the solvers during the gradually propagating flow stage. 
Again, dynamic MWDG2 adaptivity leads to the best agreement with the 
reference water levels at all three points with RMSEs less than 0.08. 
Static DG2 adaptivity only closely predicts the reference water level at 
point 1 but tends to underpredict it at point 3, leading to the highest 
RMSE of 0.295. This underprediction is intensified at point 5, which is 
likely due to the impact of the spurious numerical disturbances arising in 
the velocity predictions. The FV1-based solvers predict closely the 
reference water levels at point 1, but dynamic HWFV1 adaptivity shows 
an overprediction tendency at points 3 and 5 (by 0.2m). This tendency 
seems to only occur in the long run after the flow stagnates to steady- 
state, where the accumulation of thresholding errors from the deeper 
traversal across resolution levels becomes irrelevant. 

When modelling flows with rapid to gradual transitions, this test case 
suggests that static DG2 adaptivity is not the best choice. As observed in 
Section 3.3, its velocity predictions can be disturbed by averaging errors 
that tend to grow when the flow decelerates, causing underpredicted 
water levels. Dynamic MWDG2 adaptivity comes in as a viable alter-
native to preserve the highest quality possible of the reference pre-
dictions no matter if the flow is gradual or rapid. Static FV1 adaptivity, 
although not as good on velocity predictions, is still a good option to get 
acceptable water level predictions during the gradually propagating 
flow stage. Dynamic HWFV1 adaptivity could only perform better over 
the short period of rapidly propagating flow; in the long run, it can be 
affected by the accumulation of thresholding errors, inflicting less ac-
curate water levels, thus may not be a better alternative to static FV1 
adaptivity for long duration simulation of decelerating floods. 

4. Efficiency analysis 

The efficiency of the solvers is analysed in terms of reduction in the 
number of elements over that on the uniform grid at the finest resolution 
R, speedups from the runtime achieved on a single CPU core to identify 
the difference between static and dynamic adaptivity costs, and the 

Fig. 15. Flood wave along a valley (Section 3.4). Water level and velocity time-series predicted the solvers with static and dynamic adaptivity compared those 
predicted by uniform DG2 at sampling points 1, 3 and 5. 

Table 3 
Flood wave along a valley (Section 3.4). RMSEs for the predicted water level (m) 
and velocity (m s−1) time-series measured against the predictions made by the 
uniform DG2 solver.    

Dynamic adaptivity Static adaptivity   
MWDG2 HWFV1 DG2 FV1 

Water level Point 1 0.037 0.024 0.036 0.052  
Point 3 0.082 0.107 0.295 0.054  
Point 5 0.020 0.142 0.353 0.050 

Velocity Point 1 0.005 0.020 0.013 0.021  
Point 3 0.023 0.286 0.104 0.237  
Point 5 0.061 0.095 0.084 0.072  
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extent of runtime cost reduction with dynamic adaptivity for the GPU 
implementation. The percentages of reduction in the number of ele-
ments are evaluated using Eq. (12).  

The reductions are first evaluated for the fixed grid used with static 
DG2 and FV1 adaptivity and then for the 2D adaptive grids predicted by 
dynamic MWDG2 and HWFV1 adaptivity during the simulations. These 
evaluations are shown in Fig. 16 for the three simulated scenarios: 
“Carlisle 2005 flooding”, the “Hypothetical flood in Thamesmead” and 
the “Flood wave along a valley” (Section 3.2-3.4). In the first two sce-
narios, the DEMs are more complex, including urban features, than that 
of the third scenario. Because of this, less reduction in the number of 
elements is achieved on the fixed grid in the first two scenarios, 13 % 
and 9 %, respectively, compared to the third scenario where the 
reduction is around 47 %. This results in lower speedups with DG2 and 
FV1 static adaptivity with reference to the uniform DG2 solver, informed 
by the analysis of CPU runtimes listed in Table 4. Namely, for the sce-
nario with 9 % reduction, speedup ratios of 5.4 and 1.7 were achieved, 
respectively, which increased to 7.5 and 2.8 for the scenario with 13 % 
reduction and to 25.7 and 6.5 for the scenario with 47 % reduction. The 
enhancement in the speedups by moving from static DG2 and FV1 
adaptivity to dynamic MWDG2 and HWFV1 adaptivity are found to be 
0.9 and 2.6 for the scenario with 9 % reduction, 1.8 and 1.9 for the 
scenario with 13 % reduction, 2.7 and 5.7 for the scenario with 47 % 

reduction, respectively. This speedup analysis indicates that the larger 
the reduction in elements the more the speedup gain with static adap-
tivity and more enhancement in speedup would be gained by moving to 

dynamic adaptivity. As dynamic adaptivity started from the fixed grids 
(used with static adaptivity), this analysis implies that the key parameter 
to look at when weighing the expected, or baseline, speedup is the 
reduction in elements with respect to the finest uniform grid. The higher 
the reduction, the more the merit from deploying dynamic adaptivity to 
reduce the runtime cost. Therefore, making the choice of when to use 
static or dynamic adaptivity depends on the properties of the test, first in 
relation to the features of the DEM and then to the nature of the flood 
flow. This is discussed next in particular for dynamic MWDG2 adaptivity 
to identify when it would be a fast enough alternative to uniform DG2 in 
spite of running the GPU implementation. 

Over time, the number of elements on the dynamic HWFV1 and 
MWDG2 adaptivity increases leading to an expected reduction in their 
efficiency. Dynamic HWFV1 adaptivity uses a much higher number of 
elements than dynamic MWDG2 adaptivity in all the scenarios. In the 
first two, it leads to grids that have less than 5 % reduction in elements 
over the fine uniform grid, confirming its impracticality for simulating 
slow to gradually propagating floods over a long duration. In the third 
scenario, HWFV1’s grid reaches 13 to 20 % reduction in elements. In all 
the scenarios, dynamic MWDG2 adaptivity offers a greater reduction in 
elements while leading to more accurate predictions (Sections 2.3 and 
2.4) while remaining faster to run than the uniform DG2 simulations 
(Table 4). Dynamic MWDG2 adaptivity’s speedup ratios for the CPU 
simulations are around 1.5 for the first two scenarios, and higher, 
around 2.3, for the third one that has more reduction in the number of 
elements on the initial grid. Nonetheless, the costs for the MWDG2 runs 
on a single CPU core are unfeasibly large for practical simulations over 
largely dry areas, hindered by its need to regenerate the 2D adaptive grid 
in serial every time step. With the proposed GPU implementation for 
dynamic MWDG2 and HWFV1 adaptivity, their runtimes are reduced 
significantly and remain smaller than the runtimes required by uniform 
DG2 simulation on the GPU (Table 4). However, dynamic HWFV1 
adaptivity leads to predictions that are somewhat less competitive than 
those made by static FV1 adaptivity (Sections 2.3 and 2.4) and is not as 
valid as an option compared to dynamic MWDG2 adaptivity. Compared 
to the single core CPU runs, MWDG2 on the GPU achieved gains in 
speedup of around 41, 30, and 53.5 times for the three scenarios, 
respectively. Dynamic MWDG2 adaptivity also leads to runtimes that are 
much less than the clock time and the runtimes of uniform DG2 on the 
GPU, namely achieving speedups of 1.05, 1.75 and 3.67 respectively. 
Less speedups are expected for the first two scenarios given the relatively 
less reduction on their initial grids compared to the third scenario. 
Consequently, using dynamic MWDG2 adaptivity on the GPU can still be 
more efficient than uniform DG2 on the GPU for flood simulations; 
however, the extent of its efficiency gain primarily depends on how 
much reduction in the number of elements is achieved on the initial grid 
with respect to the finest uniform grid of the DG2 solver, and secondarily 
on the dynamic transients involved in the flood in question. The more 
the reduction and the stronger the flow’s dynamics, the more the effi-
ciency gain from using dynamic MWDG2 adaptivity. 

5. Summary, conclusions and recommendations 

Real-world flood simulators often use first-order finite volume (FV1) 
solvers of the shallow water equations with efficiency enhancements to 

Fig. 16. Reduction in the number of grid elements by dynamic MWDG2 
adaptivity (long dashed lines), dynamic HWFV1 adaptivity (short dashed lines) 
and the fixed grids (solid lines) used with static DG2 and FV1 adaptivity with 
respect to the uniform grids using the finest resolution. These are shown for the 
three test cases of “Carlisle 2005 flooding” (black), “Hypothetical flood prop-
agation and inundation in Thamesmead” (blue) and “Flood wave along a val-
ley” (red). 

Reduction of elements (%) = Elements No. on the uniform grid − Elements No. on the adaptive grid

Elements No. on the uniform grid
× 100 (12)   
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include parallelisation on Graphical Processing Units (GPUs) and static 
adaptivity on a fixed grid. A second-order discontinuous Galerkin (DG2) 
solver greatly increases the accuracy in the predictions but is costly to 
run on uniform grids and its potential for use as an alternative to finite 
volume based solvers with static adaptivity was newly investigated. 
Alternative solvers with (multi)wavelet-based dynamic adaptivity have 
been developed that adapt and scale local DG2 and FV1 numerical so-
lutions, while applying the multiresolution analysis (MRA), to select the 
2D adaptive grid over time. The MRA of Multiwavelets (MWs) with DG2 
piecewise-planar solutions leads to dynamic MWDG2 adaptivity, and 
that of the Haar wavelet (HW) with FV1 piecewise-constant solutions to 
dynamic HWFV1 adaptivity. The performance of dynamic adaptivity 
was also newly explored for practical real-world simulations, to find out 
when they yield more accuracy than static adaptivity, and how far the 
runtimes of dynamic adaptivity become affordable when the MRA of 
MWs and HW is re-worked to run on the GPU. 

Therefore, the predictive capabilities of dynamic MWDG2 and 
HWFV1 adaptivity were compared to static DG2 and FV1 adaptivity for 
complex, real-world flooding scenarios. The static DG2 and FV1 adap-
tivity used a fixed grid achieved by applying the MRA of MWs to the 
(time-invariant) features of digital elevation model (DEM). The fixed 
grid had to be graded to be able to adapt the DG2 and FV1 flow solutions 
across the interfaces with adjacent, heterogeneously-sized grid ele-
ments. The graded, fixed grid was also the initial grid used to run dy-
namic adaptivity for a fair assessment of performance. Dynamic 
MWDG2 and HWFV1 adaptivity and static DG2 and FV1 adaptivity were 
applied to reproduce three field-scale flood simulation case studies, 
involving real topographies and different flows from slow to rapidly 
propagating. Their predictive accuracy was evaluated by measuring the 
closeness of their predictions to the reference predictions made by 
uniform grid DG2 solver simulations using the finest DEM resolution 
(uniform DG2). The evaluations included qualitative and quantitative 
analysis of maximum water levels, water levels/velocities time-series, 
spatial flood maps, and an efficiency analysis considering reduction in 
the number of elements during a simulation, and runtime costs on a 
single CPU core to complete the simulation, and the speedup gained 
with dynamic MWDG2 and HWFV1 adaptivity by using the GPU par-
allelised versions. 

The evaluations show that static adaptivity is a better choice than 
dynamic adaptivity to simulate slow to gradually propagating flood 
flows. For such flows, the static adaptivity yields closer predictions to 
the reference uniform DG2 predictions and is faster to run than dynamic 
adaptivity that is hindered by the overhead costs of the MRA. Amongst 
static DG2 and FV1 adaptivity, that of DG2 seems to be the best choice to 
capture small-scale time variations in the velocities and more accurate 
flood maps. Static FV1 adaptivity, though not as accurate as static DG2 
adaptivity, is still a valid alternative to acquire similar water level pre-
dictions at reduced runtimes. As for dynamic MWDG2 and HWFV1 
adaptivity, it remains less expensive to run than the reference uniform 
DG2 solver on a single CPU core but gain major speedups on the GPU, 
where their simulation times become less than the clock times. The 
piecewise-constant representations within dynamic HWFV1 adaptivity 
yields to more refinement on the 2D adaptive grid, causing accumula-
tion of thresholding errors from the MRA of HW across a deeper tree 
traversal. In the long run, this manifests in overly predicted water levels, 

making dynamic HWFV1 adaptivity, or even a second-order finite vol-
ume variant that uses the MRA of HW with piecewise-constant repre-
sentations, not ideal for long duration simulations with slowly 
propagating flows. 

Dynamic MWDG2 adaptivity yields the best quality predictions, for 
both water levels and velocities, and its 2D adaptive grid involves more 
sensible resolution coarsening as the flow remains in a state of gradual to 
slow propagation. For a rapidly propagating flow, dynamic MWDG2 
adaptivity seems to excel in closely reproducing the predictive accuracy 
of the reference, uniform DG2 predictions where any other choice for the 
adaptivity underperform: static DG2 adaptivity became affected by 
spurious disturbances whereas static FV1 adaptivity could not closely 
replicate the reference velocity predictions. In terms of speedup over the 
reference uniform DG2 simulations on the GPU, dynamic MWDG2 
adaptivity always remained faster but the speedup rate of dynamic 
adaptivity is mainly dependant on the reduction in the number of ele-
ments on the fixed grid relative to the finest uniform grid. This suggests 
that GPU parallelisation with dynamic MWDG2 adaptivity is useful to 
maximise accuracy and efficiency when simulating flood events driven 
by a fast flow propagation (e.g. tsunamis or dam-breaks) for uniform 
resolution DEMs leading to at least 15 % reduction in the number of 
elements on its initial, fixed grids. 
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Table 4 
The runtime cost (in hours) of running the three test cases with respective solvers on CPU/GPU.   

Static adaptivity Dynamic adaptivity   
FV1 DG2 HWFV1 MWDG2 Uniform DG2  
CPU CPU CPU GPU CPU GPU CPU GPU 

Carlisle 2005 flooding 136 362 265 1.7 682 16.7 1024 17.5 
Hypothetical flood in Thamesmead 2.8 8.7 7.4 0.04 9.6 0.32 15.1 0.56 
Flood wave along a valley 5.6 22 32 0.26 61 1.14 144 4.19  
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can be accessed by contacting the UK Environment Agency. The CPU 
codes for static DG2 and FV1 adaptivity can be shared upon request, and 
those of dynamic MWDG2 and HWFV1 adaptivity are available on 
Zenodo (Sharifian and Kesserwani, 2020). The GPU implementation of 
the fixed grid generator and of dynamic MWDG2 and HWFV1 adaptivity 
have been incorporated into the open-source LISFLOOD-FP8.1 hydraulic 
modelling packages and will be available in the next version release 
(10.5281/zenodo.4073011). For the purpose of open access, the author 
has applied a Creative Commons Attribution (CC BY) licence to any 
Author Accepted Manuscript version arising. 
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