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Channel Estimation for RIS Assisted Millimeter

Wave Systems via OMP with Optimization
You You, Yufei Xue, Student Member, IEEE, Li Zhang, Senior Member, IEEE,

Xiaohu You, Fellow, IEEE, and Chuan Zhang, Senior Member, IEEE

Abstract—Reconfigurable intelligence surface (RIS) can be
deployed to assist the communications in millimeter wave
(mmWave) systems. Employing the sparsity of the mmWave chan-
nel, the compressive sensing (CS) techniques can be leveraged
to reduce the pilot overhead of the channel estimation (CE).
However, conventional CS-based algorithms are based on the
discrete grids and the difference between the real continuous
angle and its nearest grid point is called off-grid error. Off-
grid errors seriously deteriorate the CE performance. In this
paper, we propose the orthogonal matching pursuit with discrete-
continuous optimization (DC-OMP) method for RIS assisted
mmWave systems to mitigate the impact of the off-grid errors.
Simulation results show that compared with existing works, the
proposed DC-OMP can efficiently mitigate the impact of the off-
grid errors without adding much complexity.

Index Terms—Reconfigurable intelligence surface (RIS), chan-
nel estimation (CE), compressive sensing (CS), orthogonal match-
ing pursuit (OMP), optimization.

I. INTRODUCTION

THE reconfigurable intelligence surface (RIS) is regarded

as a promising technology to overcome the high prop-

agation loss of millimeter wave (mmWave) communications

[1]. To unleash the potential of RIS assisted mmWave systems,

accurate channel state information (CSI) is required. However,

the pilot overhead in the channel estimation (CE) is too high

due to the large number of passive elements without signal

processing capabilities at the RIS. Although conventional on-

grid compressive sensing (CS) technologies can be leveraged

to reduce the pilot overhead in the CE. The difference between

the real continuous angle and its nearest grid point (named

as the off-grid error) seriously deteriorates the CS based CE

performance.

CS-based RIS-assisted mmWave CE techniques can be

classified into on-grid CE [2, 3], off-grid CE [4, 5] and
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gridless CE [6]. A cascaded channel model was proposed in

[2] by exploiting the inherent sparse structure of the cascaded

channel and conventional orthogonal matching pursuit (OMP)

is used for CE. In [3], double-structured OMP (DS-OMP) was

proposed by further analyzing the double-structure sparsity of

cascaded channel. However, both OMP and DS-OMP ignore

the off-grid errors. To mitigate the impact of the off-grid errors,

discrete Fourier transform (DFT)-OMP [5] was proposed as

a two-stage CE scheme and part of the angle parameters

are optimized in the first stage. Gridless CE methods such

as the atomic norm minimization (ANM) method [6] are

proposed to radically avoid the off-grid errors. Specifically,

ANM estimates angle parameters by searching infinite atomic

set, which achieves more accurate CSI compared with on-grid

and off-grid methods. However, both DFT-OMP and ANM are

two-stage CE methods. Only part of the angles are estimated

in the first stage. As a result, the error propagation significantly

deteriorates the CE performance. Moreover, ANM [6] recovers

angle parameters by searching infinite atomic set, which costs

unacceptable complexity.

In this paper, we propose OMP with discrete-continuous

optimization (DC-OMP) for RIS-assisted mmWave systems

to mitigate the impact of the off-grid errors with relatively

low complexity. Contributions of this paper are summarized

as follows:

1). Impact of the off-grid errors on the RIS assisted

mmWave CE is analyzed. Then DC-OMP is proposed

to mitigate the CE performance deterioration due to the

off-grid errors in the RIS assisted mmWave systems.

First, OMP with a coarse grid is employed as an

initial estimation of all the angle parameters. Then the

optimization of angle parameters is formulated into a

nonlinear constrained problem which can be solved by

classical convex optimization methods.

2). Simulation results demonstrate that the proposed method

outperforms other existing CS-based off-grid CE meth-

ods considering off-grid errors in terms of the pilot

overhead, CE accuracy and complexity. Compared with

gridless CE methods, DC-OMP achieves slightly worse

normalized mean square error (NMSE) performance but

with far less pilot overhead and complexity.

Notation: Lower-case and upper-case boldface letters a and

A denote a vector and a matrix, respectively; aT denotes the

conjugate of vector a; A∗, AT and AH denote the complex

conjugate, transpose and conjugate transpose of matrix A,

respectively; diag(x) denotes the diagonal matrix with the
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vector x on its diagonal; vec(A) and vec−1(a) denote the

vectorized A and anti-vectorized a; reshape(A, p, q) makes

A a p × q matrix; < a,b >, a ⊗ b and a • b denotes the

inner product, Kronecker product and Khatri-Rao product of

a and b. The symbols || · ||2 and || · ||F denote the 2-norm and

Frobenius-norm, respectively.

II. SYSTEM MODEL

A. Channel Model

We consider a RIS assisted mmWave system with an M -

elements (M = Mx ×My) uniform planar array (UPA) RIS,

an N -antennas uniform linear array (ULA) base station (BS)

and a single antenna user. Specifically, the BS-to-RIS channel

G ∈ C
M×N can be expressed as [2]

G =

√

MN

LG

LG
∑

l1=1

δl1ar(ϑ
′
l1
, γ′

l1
)aHt (φ

′
l1
), (1)

where LG denotes the number of paths between the RIS

and BS, δl1 represents the complex gain for the l1-th path,

γ′
l1

= cos(γl1), ϑ
′
l1

= sin(γl1) cos(ϑl1) and φ′
l1

= cos(φl1).
ϑl1 (γl1 ) and ϑ′

l1
(γ′

l1
) denotes the azimuth (elevation) physical

and spatial angle of arrival (AoA) at the RIS respectively. φl1

and φ′
l1

are the physical and spatial angle of departure (AoD) at

the BS respectively, ar(·) and at(·) represent the array steering

vectors associated to the RIS and BS, respectively. For the N -

antennas ULA, at(φ
′
l1
) can be represented as

at(φ
′
l1
) =

1√
N

[

ej2πφ
′

l1

d
λ
n

]T

, (2)

where n = [0 1 . . . N − 1], λ is the carrier wavelength, d
is the antennas spacing usually satisfying d = λ/2. For the

M -elements UPA, ar(ϑ
′
l1
, γ′

l1
) can be written as

ar(ϑ
′
l1
, γ′

l1
) =

1√
M

[ej2πγ
′

l1

d
λ
mx ⊗ ej2πϑ

′

l1

d
λ
my ]T, (3)

where mx = [0 1 . . . Mx − 1], my = [0 1 . . . My − 1].
Similarly, the RIS-to-user channel h ∈ C

M can be expressed

as

h =

√

M

Lh

Lh
∑

l2=1

ξl2ar(ϑ
′
l2
, γ′

l2
), (4)

where Lh denotes the number of paths between the RIS and

user, γ′
l2

= cos(γl2), ϑ′
l2

= sin(γl2) cos(ϑl2), ϑl2 (γl2 ) and

ϑ′
l2

(γ′
l2

) denotes the azimuth (elevation) physical and spatial

AoD at the RIS, respectively.

To explore the channel sparsity in angular domain, virtual

channel representation [7] is used to express G without

considering the off-grid errors as

G = (Dx ⊗Dy)ΛDH

h = DgΛDH

h , (5)

where Dx ∈ C
Mx×MG,x

(

Dy ∈ C
My×MG,y

)

is the

dictionary of the spatial elevation (azimuth) angles at

the RIS and each of its column has a form of
1√
Mx

[ej2πγ
′

i
d
λ
mx ]T

(

1√
My

[ej2πϑ
′

j
d
λ
my ]T

)

, with γ′
i (i =

1, 2, ...,MG,x) and ϑ′
j (j = 1, 2, ...,MG,y) chosen from dis-

crete grids Tx and Ty, where MG,x and MG,y are grid points

number (grid size) of Tx and Ty, respectively. Specifically,

Tx and Ty are defined as

Tx = [−1 − 1 +
2

MG,x
. . . 1− 2

MG,x
],

Ty = [−1 − 1 +
2

MG,y
. . . 1− 2

MG,y
].

(6)

Dh ∈ C
NG×N is defined in the similar way as Dx and

Dy. Each column in Dh has a form of at(φ
′
k) with φ′

k

(k = 1, 2, ..., NG) chosen from discrete grid Th, where NG is

the grid points number (grid size) of Th. And Th is defined

as

Th = [−1 − 1 +
2

NG
. . . 1− 2

NG
]. (7)

Dg = Dx ⊗ Dy ∈ C
M×MG , and Λ ∈ C

MG×NG is a sparse

matrix with LG nonzero entries, where MG = MG,x ×MG,y.

Considering the limited scattering characteristics [2], h can

be written as

h = DgΣ, (8)

where Σ ∈ C
MG is a sparse vector with Lh nonzero entries.

However, off-grid errors can not be ignored when the virtual

channel representation is used. Accordingly, considering the

continuous angles, a more accurate virtual channel represen-

tation of G and h can be presented as Ĝ and ĥ as

Ĝ = G+EG, ĥ = h+Eh, (9)

where EG and Eh are the off-grid errors matrices in the BS-

to-RIS channel and RIS-to-user channel.

B. Problem Formulation

The received signal yt at the t-th time slot can be written

as
yt = ĥHdiag(vH

t )Ĝwtst + nt

= vH

t diag(h
H)Gwtst + nt + et,

(10)

where vt and wt are the phase shift vector and the precoding

vector, respectively. vt can be optimized by maximizing the

transmitting rate and received signal power [8]. In this letter,

without loss of generality, we assume that the phase shift

vector is random and time-varying in the CE. nt denotes the

noise in the t-th time slots and et is induced by the off-grid

errors (EG and Eh). diag(hH)G is defined as the cascaded

channel H as

H = diag(hH)G = h∗ •G
(a)
= (DgΣ)∗ • (DgΛDH

h )

(b)
= (D∗

g •Dg)
(

Σ∗ ⊗ (ΛDH

h )
)

(c)
= (D∗

g •Dg)(Σ
∗ ⊗Λ)(1⊗DH

h )

(d)
= U(Σ∗ ⊗Λ)DH

h

(e)
= UsHCSD

H

h ,

(11)

where (a) employs (5) and (8), (b) follows the property of

Khatri-Rao product, i.e., (AB)•(CD) = (A•C)(B⊗D), (c)

employs a principle of Kronecker product, i.e., AB⊗CD =
(A ⊗ B)(C ⊗ D). In (d), U = D∗

g • Dg ∈ C
M×M2

G only
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contains MG distinct columns which are the first MG columns

of U [2]. In (e), HCS = Σ∗⊗Λ, Us = U(:, 1 : MG) denotes

the matrix constructed by the first MG columns of U. In this

work, we focus on the cascaded channel estimation. The direct

channel between the BS and UE can be easily estimated by

turning off the RIS and employing various mature conventional

channel estimation methods, and thus it is ignored in this work.

Assuming the pilot signal st = 1 (t = 1, 2, ..., T ), the

received signal at the t-th time slot can be rewritten as

yt = vH

t Hwt + nt + et
(a)
=

(

wT

t ⊗ vH

t

)

vec(H) + nt + et
(b)
=

(

wT

t ⊗ vH

t

)

(D∗
h ⊗Us) vec(HCS) + nt + et.

(12)

In (a) and (b), vec(MXN) = (NT⊗M) vec(X) is employed

for yt and H, respectively. After T pilots transmission, mea-

surement matrix y = [y1 y2 . . . yT ]
T can be represented as

y
(a)
= Wv (D

∗
h ⊗Us) vec(HCS) +N+E

(b)
= Ψx+N+E,

(13)

where in (a) N = [n1 n2 . . . nt], E = [e1 e2 . . . et] and

Wv =







wT

1 ⊗ vH

1
...

wT

t ⊗ vH

t






. (14)

In (b), Ψ = Wv (D
∗
h ⊗Us), x = vec(HCS). The CE prob-

lem has been converted into a sparse signal recovery problem

and conventional CS-based algorithms can be employed to

estimate the HCS with high probability [2]. And H can be

further recovered according to (11).

However, as (13), the CE is not only affected by the noise

N, but also by the off-grid errors E. Intuitively, the off-grid

errors can be mitigated by simply increasing the grid size.

However, the complexity is increasing significantly with the

expansion of grid size in the CS-based algorithms. In addition,

the increasing coherence between columns in Ψ may lead to

the even worse CE performance.

III. PROPOSED METHODS

A. Impact of the off-grid errors on the CE

In order to show the impact of the off-grid errors on the

RIS assisted mmWave CE, the CE performance of conven-

tional OMP with different levels of off-grid errors are shown

in Fig. 1. Specifically, the same grid size is assumed as

MG,x = MG,y = 10 and NG = 64 for spatial angles γ′,

ϑ′ and φ′, so that the grid internals are 2/MG,x, 2/MG,y and

2/NG as shown in (6) and (7), respectively. For OMP OFF0,

OMP OFF1, OMP OFF2, OMP OFF3 and OMP OFF4, the

actual continuous spatial angles of γ′, ϑ′ and φ′ are generated

at the points which are 0, 1/16, 1/8, 1/4 and 1/2 times of

the corresponding grid internal (2/MG,x, 2/MG,y and 2/NG)

away from the nearest grid points. It can be seen that OMP

OFF0 achieves the best CE performance without the error

floor at high SNRs. CE performances become much worse

with larger off-grid errors and there are error floors for OMP

OFF1, OMP OFF2, OMP OFF3 and OMP OFF4 at high SNRs.

Therefore, for on-grid based techniques, the impact of the off-

grid errors can not be ignored and the mitigation methods are

needed to improve the CE performance.

B. Description of the proposed DC-OMP algorithm

To mitigate the impact of off-grid errors efficiently, DC-

OMP is proposed as a discrete-to-continuous optimization

method and summarized in Algorithm 1.

Algorithm 1 DC-OMP

Input: y, Ψ and sparsity S
Output: estimated channel H̃

1: Initialization: residual u0 = y and index set Υ = ∅

2: for s = 1, 2, . . . , S do

3: υs = arg max
j=1,...,N

| < us−1,kj > |
4: Calculate {φ′

s, ϑ
′
s, γ

′
s} by Algorithm 2.

5:

{

φ̃′
s, ϑ̃

′
s, γ̃

′
s

}

= arg max
φ̃′

s,ϑ̃
′

s,γ̃
′

s

f
(

φ̃′
s, ϑ̃

′
s, γ̃

′
s

)

6: k̃vs = k̃vs

(

φ̃′
s, ϑ̃

′
s, γ̃

′
s

)

7: Ωs =
[

Ωs−1, k̃vs

]

8: Υs = [Υs−1, vs]
9: D̃h(:, A, s) = a′t(φ̃

′
s)

10: Ũs(:, B, s) = diag
(

Dg(:, 1)
T
)

a′r(ϑ̃
′
s, γ̃

′
s)

11: xs = argmin
x

∥y −Ωsx∥2
12: us = y −Ωsxs

13: end for

14: for s = 1, 2, . . . , S do

15: X (1,Υs(s), s) = xs(s)
16: H̃CS(:, :, s) = reshape(X(:, :, s),MG, NG)
17: if s = 1 then

18: H̃ = Ũs(:, :, s)H̃CS(:, :, s)D̃
H

h (:, :, s)
19: end if

20: H̃ = H̃+ Ũs(:, :, s)H̃CS(:, :, s)D̃
H

h
(:, :, s)

21: end for

22: return H̃

In step 3-5, the initial estimated angles based on the discrete

grids are optimized based on the continuous dictionary. Specif-

ically, in step 3, as in conventional OMP, the most correlated

column in the sensing matrix with the received signal can

be found. The most relevant vs-th column kvs
in Ψ can be

formulated as

kvs (φ
′
s, ϑ

′
s, γ

′
s) =Wv{aHt (φ′

s)⊗
[

diag (D∗
h(:, 1)) a

T

r (ϑ
′
s, γ

′
s)
]

}.
(15)

In step 4, the initial estimated spatial angle group {φ′
s, ϑ

′
s, γ

′
s}

corresponding to kvs can be found by Algorithm 2 according

to the relationship between the angle group and the column

index. In Algorithm 2, A, C and D are defined as the index

of spatial angles φ′
s, ϑ′

s and γ′
s in grids Th, Tx and Ty,

respectively.

In step 5, the initial estimated angle group {φ′
s, ϑ

′
s, γ

′
s}

from Algorithm 2 is further optimized to mitigate the impact

of the off-grid errors. It is known that the largest coherence

corresponding to the vs-th column is only corresponding to the
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Algorithm 2 Angle group {φ′
s, ϑ

′
s, γ

′
s} estimation

Input: vs, Th, Tx and Ty

Output: {φ′
s, ϑ

′
s, γ

′
s}

1: B = mod(vs,MG)
2: if B ̸= 0 then

3: A = vs−B
MG

+ 1; D = mod(B,MG,y)
4: if D ̸= 0 then

5: C = B−D
MG,y

+ 1
6: else

7: C = B
MG,y

; D = MG,y

8: end if

9: else

10: A = vs

MG
; C = MG,x; D = MG,y

11: end if

12: γ′
s = Ty(D); ϑ′

s = Tx(C); φ′
s = Th(A)

13: return {φ′
s, ϑ

′
s, γ

′
s};

discrete grid points. In fact, if continuous angles are consid-

ered, there may exist a larger coherence which corresponds to

the continuous angles near the discrete grid points (not exactly

on the grids). Thus, to mitigate the off-grid errors, the opti-

mized angle group
{

φ̃′
s, ϑ̃

′
s, γ̃

′
s

}

can be obtained by solving

a nonlinear constrained continuous optimization problem. The

objective function can be defined as the coherence as

f
(

φ̃′
s, ϑ̃

′
s, γ̃

′
s

)

= | < kvs

(

φ̃′
s, ϑ̃

′
s, γ̃

′
s

)

,us−1 > |. (16)

Then, the nonlinear constrained continuous optimization prob-

lem can be formulated as

max
φ̃′

s,ϑ̃
′

s,γ̃
′

s

f
(

φ̃′
s, ϑ̃

′
s, γ̃

′
s

)

s.t.











|φ′
s − φ̃′

s| ⩽ 1
2NG

|ϑ′
s − ϑ̃′

s| ⩽ 1
2MG,x

|γ′
s − γ̃′

s| ⩽ 1
2MG,y

.

(17)

Then, some classical convex optimization methods such as

SQP and the Newton method can be employed to find the

optimized angle group
{

φ̃′
s, ϑ̃

′
s, γ̃

′
s

}

efficiently. Steps 6 to 21

are explained as follows:

• In step 6: the initial chosen column kvs (φ
′
s, ϑ

′
s, γ

′
s) is

updated to kvs

(

φ̃′
s, ϑ̃

′
s, γ̃

′
s

)

. In this way, the sensing

matrix corresponding to the discrete grids is updated to

a sensing matrix with continuous angles.

• In step 7-8: the index set and chosen column set are

updated by Ωs =
[

Ωs−1, k̃vs

]

and Υs = [Υs−1, vs].

• In step 9-10: the three-dimension (3D) dictionaries are

updated as D̃h(:, A, s) = a′t(φ̃
′
s) and Ũs(:, B, s) =

diag
(

Dg(:, 1)
T
)

a′r(ϑ̃
′
s, γ̃

′
s).

• In step 11-12: the cascaded channel gains and the

updated residuals are calculated, respectively.

• In step 14-21: the sparse cascaded channel H̃CS can

be constructed as H̃CS = vec−1(xs) after step 13.

And H̃CS is further constructed to H in angular domain

through some matrix transformations. Ũs, H̃CS and D̃h

are all 3D matrix, where Ũs(x, y, z) denotes the x-th

row, y-th column and z-th layer element in Ũs, with

H̃CS and D̃h following the same rule. Each layer of

H̃CS contains a non-zero point and its value is the

cascaded channel gain and its column index and row

index indicates the corresponding the column vector in

Ũs and the row vector in D̃h. In the s-th iteration

of step 14-21, one cascaded channel are calculated

as Ũs(:, :, s)H̃CS(:, :, s)D̃
H

h
(:, :, s). For S-sparse matrix

H̃CS, H in the angular domain can be fully recovered

after S times iteration.

IV. SIMULATION RESULTS

In this section, the simulation results are presented to

evaluate the performance of our proposed methods. All simu-

lation results are averaged over 1000 channel realizations. The

number of elements at the RIS and number of antennas at the

BS are set as M = 64 and N = 64 respectively with grid

size MG = 100 and NG = 64. The channel gains δl1 and ξl2
follow CN (0, 1) and the paths number LG = Lh = 3. All

physical angles including ϑ, γ and φ are randomly generated

from (−π
2 ,

π
2 ]. NMSE is defined as

NMSE = E

[

∥H̃−H∥2F/∥H∥2F
]

, (18)

and SNR is defined as 1/σ2 with the noise nt ∼ CN (0, σ2).
In this section, the proposed DC-OMP is compared with

the existing works including the on-grid method: OMP [2],

discrete optimization method: two-grid OMP [9], two-stage

methods: DFT-OMP [5] and gridless method ANM [6].

A. Performance Analysis

In Fig. 2, NMSE performances with varying SNR and 220

pilots are shown. It can be found that the proposed DC-

OMP can significantly improve the CE performance compared

with OMP. Two-grid OMP shows superiority to OMP but the

optimized estimated angles are still chosen from the discrete

grids. So the proposed DC-OMP with continuous optimization

outperforms. DFT-OMP performs better than two-grid OMP

but worse than DC-OMP. Because DFT-OMP is a two-stage

CE method which experiences some performance loss due to

the error propagation. Then the combination of other angle

parameters and channel gains are estimated in the second

stage by the OMP estimator. As a result, DFT-OMP is worse

than DC-OMP which optimizes all angle parameters together.

ANM completely avoids the off-grid errors and is able to

achieve remarkable CE performance at high SNR ranges by

searching the angles in an infinite set. But the unaffordable

complexity makes it impractical for RIS assisted mmWave CE.

Moreover, ANM is also a two-stage CE method which suffers

from the error propagation. It is worth noticing that DC-OMP

has slightly worse performance in low SNR ranges because

the stronger noise has a negative impact on the selection of

the most correlated column, thus leading to lower tolerance to

noises compared with DFT-OMP and ANM.

In Fig. 3, NMSE performances are shown when SNR =
10 dB with varying T . It can be found that the NMSE of DC-

OMP, OMP, two-grid OMP and ANM decrease progressively

with the increasing T . DC-OMP can greatly reduce NMSE
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with the different off-grid errors
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Fig. 3. NMSE performance v.s. pilotsT

compared with OMP and save more than 50% pilots compared

with two-grid OMP when NMSE = −8 dB. As a two-stage

CE method, DFT-OMP requires fewer overall pilots (pilots

used in two stages) to reach the error floor and achieves better

NMSE CE performance in low-T regime. However, as Fig.3

shown, the error floor of DFT-OMP appears early at the low-T
regime with much worse achievable NMSE CE performance

because of the error propagation between the two stages. As a

result, compared with DFT-OMP, DC-OMP can achieve more

remarkable NMSE CE performance with more pilots. It can

also be found that the CE performance of ANM extremely

relies on the accuracy of the AoD estimated in the first stage.

As a result, if an insufficient number of pilots are used in the

first stage, ANM may fail to estimate the AoD at BS. Thus,

more pilots should be considered in the first stage of ANM

to guarantee a very accurate estimation. Fig. 3 shows that,

to achieve a desirable NMSE performance, the proposed DC-

OMP can significantly reduce the pilot overhead compared

with the benchmarks except for ANM.

B. Complexity Analysis

For complexity analysis, considering that DC-OMP and

OMP have the same order of complexity, we use runtime cal-

culated by MATLAB R2021a to provide a rough comparison

between them (SNR = 10 dB and T = 220). The runtime

of OMP is assumed as 1, the corresponding results of other

benchmarks can be found in Table I. It can be found that the

complexity of DC-OMP is slightly higher than the benchmarks

(except for ANM, ANM has a lot higher computational com-

plexity) but with the remarkable performance improvement.

V. CONCLUSION

In this paper, we proposed a cascaded channel estimation

method DC-OMP for RIS assisted mmWave systems to mit-

igate the impact of the off-grid errors. Simulation results

demonstrate that the proposed DC-OMP can successfully

mitigate the off-grid problem. In comparison with existing

methods, it is able to achieve significantly improved CE perfor-

mance without introducing much computational complexity.

TABLE I
COMPLEXITY OF THE PROPOSED METHOD AND BENCHMARKS

Algorithm Complexity Runtime

OMP [2] O(TNGMG) 1.0

Two-grid OMP [9] O(TNM + TNGMG) 8.5

DFT-OMP [5] O(N2 + 8DLG)a 1.0

ANM [6] O
(

(N + Tstage-1)3.5
)b

45.0

DC-OMP (proposed) O(TNGMG) 11.7

a
D (D ≫ M) is the overgrid size used in the second stage;

b
Tstage-1 (Tstage-1 ≫ LG) is the pilots number used in the first stage.
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