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Spatial Point Pattern Analysis
Identifies Mechanisms Shaping the
Skin Parasite Landscape in
Leishmania donovani Infection
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†
, Helen Ashwin1, Najmeeyah Brown1, Audrey Romano1†,

Samuel Carmichael2, Jon W. Pitchford2 and Paul M. Kaye1*

1 York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom,
2 Departments of Biology and Mathematics, University of York, York, United Kingdom

Increasing evidence suggests that in hosts infected with parasites of the Leishmania

donovani complex, transmission of infection to the sand fly vector is linked to parasite

repositories in the host skin. However, a detailed understanding of the dispersal (the

mechanism of spread) and dispersion (the observed state of spread) of these obligatory-

intracellular parasites and their host phagocytes in the skin is lacking. Using endogenously

fluorescent parasites as a proxy, we apply image analysis combined with spatial point

pattern models borrowed from ecology to characterize dispersion of parasitized myeloid

cells (including ManR+ and CD11c+ cells) and predict dispersal mechanisms in a previously

described immunodeficient model of L. donovani infection. Our results suggest that after

initial seeding of infection in the skin, heavily parasite-infected myeloid cells are found in

patches that resemble innate granulomas. Spread of parasites from these initial patches

subsequently occurs through infection of recruited myeloid cells, ultimately leading to self-

propagating networks of patch clusters. This combination of imaging and ecological

pattern analysis to identify mechanisms driving the skin parasite landscape offers new

perspectives on myeloid cell behavior following parasitism by L. donovani and may also be

applicable to elucidating the behavior of other intracellular tissue-resident pathogens and

their host cells.

Keywords: Leishmania donovani, host cell, dispersion, dispersal, skin patches, spatial point pattern analysis

INTRODUCTION

Vector-borne kinetoplastid parasites of the Leishmania donovani complex are the causative agents
of zoonotic and anthroponotic visceral leishmaniasis (VL). Leishmania parasites occur in two
distinct stages: as extracellular promastigotes in their insect vector, hematophagous phlebotomine
sand flies (Diptera: Psychodidae: Phlebotominae) (1), and as intracellular amastigotes in the
mammalian host (2). VL is associated with 3.3 million disability-adjusted life years (DALYs) (3)
and ~20,000 annual deaths in 56 affected countries (4). There is no available prophylactic vaccine
(5) and available drugs are either expensive and/or show significant toxicity (6).
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Infection of a naïve host with Leishmania parasites occurs
through the bite of infected sand flies into the skin, the only
interface between insect vector and host. L. donovani disseminate
from the skin to deeper tissues including the spleen, liver, and
bone marrow causing systemic pathology, but the skin is
commonly asymptomatic (7). Blood parasite load (parasitemia)
is considered the main determinant and a surrogate measure of
outward transmission potential (i.e., infectiousness) in VL (8).
Other studies, however, point to the importance of the skin as an
additional reservoir of parasites. In a recent study (9), the
infectiousness of L. donovani-infected patients in India,
measured by xenodiagnoses, was found to positively correlate
with spleen parasite load as well as blood parasitemia determined
by qPCR. Of note, out of 7 infectious patients that remained
infectious after drug treatment, 6 had no detectable blood
parasitemia (9). Furthermore, microbiopsy sampling of skin in
a VL-endemic region in Ethiopia indicated that parasites can be
detected even in asymptomatic individuals, though multiple
biopsies from the same patient were often qualitatively and
quantitatively different in terms of parasite load (10). We
previously demonstrated in a RAG mouse model of VL that
despite high parasite burden in deep tissues, parasitemia was
comparatively low (2,000–2,500 parasites/ml blood or equivalent
to ~2–3 amastigotes/blood meal) and did not correlate with
outward transmission success (11). Conversely, there was a good
correlation between outward transmission and mean parasite
burden in skin (11). Collectively, these data, together with studies
in the hamster model of VL (12), in canine VL (13) and in
human post-kala azar dermal leishmaniasis (9, 14, 15) support
the need to consider skin parasite load as a potential contributor
to infectiousness across the disease spectrum attributable to the
L. donovani complex.

A confounding feature associated with sampling in many
studies relating host infectiousness to skin parasite residence is
the possibility of spatial heterogeneity in parasite distribution.
Using an immunodeficient model of L. donovani infection in
mice, we recently demonstrated that obligatory intracellular
amastigotes accumulate in patches in asymptomatic host skin,
and that this patchy landscape is a strong predictor for the
infectiousness of an asymptomatic host (11). However, a detailed
understanding of the mechanisms involved in the micro- and
macro-scale dispersion of Leishmania parasites (and, de facto, of
parasitized host cells) in the skin is lacking.

Here, we describe in detail the micro- and macro-scale
dispersion of tandem-dimer Tomato (tdTom) L. donovani

parasitized cells in the skin of 23 long-term infected RAG
mice. The absence of acquired immune pressure in RAG mice
allows underlying innate pathways controlling the dispersion of
parasitized myeloid cells to be more clearly studied. Due to the
intracellular nature of Leishmania amastigotes, their location is
equivalent with that of their host cells. Thus, detection of
amastigotes serves as a proxy for detection of parasitized
myeloid cells in vivo. We used image analysis tools to extract
data based on tdTomato signal from whole skin images (ImageJ)
and also from microscopy images of punch-biopsy skin sections
(StrataQuest; see Methods). We then adopted spatial point

pattern methodologies from ecology and other fields to
interrogate signal dispersion in silico and to make predictions
about modes of dispersal (16). Our results suggest that patches
representing infected myeloid cells form “clusters” with a larger
patch at the cluster center surrounded by smaller patches. These
clusters are consistent with reseeding L. donovani amastigotes
from a larger patch within a locally varying radius around it. Our
data therefore suggest that in the absence of acquired immunity,
these patches are the main driver of their own dispersal. This
process would also serve to enhance patch growth, as larger
patches consist of a merger of smaller patches. By translating
established mathematical models into an immunological context,
this study provides new insights into the complex mechanisms
underlying the dispersal and dispersion of L. donovani-infected
myeloid cells in the skin and exemplifies an approach that may
help understand dispersal and dispersion of phylogenetically
diverse intracellular pathogens in the skin and other tissues.

MATERIALS AND METHODS

Ethics Statement
All animal usage was approved by the University of York Animal
Welfare and Ethics Review Committee and the Ethics Review
Committee at FERA Science Ltd., and performed under UK
Home Office license (“Immunity and Immunopathology of
Leishmaniasis” Ref # PPL 60/4377).

Mouse, Leishmania, and Sand Fly Lines
C57BL/6 CD45.1.Rag2-/- (RAG) mice (originally obtained from
the National Institute of Medical Research, London, UK) were
used. All animals were bred and maintained at the University of
York according to UK Home Office guidelines. The Ethiopian
Leishmania (Leishmania) donovani strain (MHOM/ET/1967/
HU3) had been transfected with a tdTom gene (17) to generate
a tdTom-L. donovani line in another study (18). The parasites
were maintained in RAG mice by repeat-passage of amastigotes.
For both parasite passage and RAG mouse infection, tdTom-L.
donovani amastigotes were isolated from the spleens of long-
term infected RAG mice and i.v. injected at 8 × 107 amastigotes/
uninfected RAG mouse as previously described (11).

Mouse Skin Harvest
All animal data used in this study were repurposed from 23
procedural control animals pooled from 7 different experiments.
All animals were infected in the same manner with tdTom-L.
donovani (see above), while the applied experimental conditions
were comparable and neither adversely affected parasite and
myeloid cell behavior nor contributed a significant source of
variability between animals (Figures S1A, B). Mouse skin
harvest was performed as previously described (11). Briefly,
RAG mice were sacrificed in a CO2 chamber, followed by
cervical dislocation. Animals were first shaven with electric
clippers and then treated with a depilation cream (Veet by
Reckitt, Slough, UK) for up to 3 min. The depilation cream
was scraped off and residual cream was washed off under
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running water. Mice were skinned by an abdominal double-Y
incision, removal of ears, and exclusion of paws and tail (Figure
S1C). The skin was pulled from the rump over the head and
then cut off at eye level. Excess adipose tissue was removed
with curved tweezers and skins were kept in complete RPMI
on ice until stereomicroscopic imaging and subsequent
biopsy punching.

Genomic DNA Extraction
Sixteen or 24 skin biopsies (ø 0.6 cm) were taken from each skin
as previously described (11). All genomic DNA (gDNA)
extractions were performed with either the DNeasy® Blood &
Tissue spinning column kit (Qiagen, Venlo, Netherlands) or the
DNeasy® 96 Blood & Tissue plate kit (Qiagen) according to
supplier’s protocol.

Quantitative Polymerase Chain Reaction
All quantitative real-time PCRs (qPCR) were performed as
previously described (11). Briefly, previously characterized
Leishmania-specific kinetoplastid DNA primers (Accession
number AF103738) (19) were used at a final concentration of
200 nM. Two nanograms of total gDNA extracted from skin
biopsies were used/reaction. Fast SYBR® Green Master Mix
(Applied Biosystems) was used according to supplier’s
guidelines. Reactions were run in a StepOnePlus™ thermal
cycler (Applied Biosystems, Waltham, MA, USA) with a
thermal cycle of 95°C for 20 s, a cycling stage of 40 cycles of
95°C for 3 s, 60°C for 5 s, 72°C for 20 s, and 76.5°C for 10 s (data
read at final step), followed by the standard melt curve stage.
Data were analyzed by StepOne™ Software v.2.3.

Microscopy
Fluorescent stereomicroscopy of whole skins was performed as
previously described (11). Briefly, a series of 30–40 images at 12×
magnification were taken/skin to image the whole skin area from
the hypodermal face. All images were taken under the same
conditions (exposure time: 400 ms). Image series were collated in
Adobe® Photoshop® to render a single image of the whole
mouse skin (Abode Inc., San Jose, CA, USA).

For confocal microscopy, fixation and cryo-preservation of
skin punch biopsies (ø 0.6 cm) was adapted from Accart et al.
(20) to optimize tdTomato signal and skin integrity preservation
after skin freezing and cutting (20). Skin biopsies were fixed in
2% formaldehyde in PBS for 15 min at room temperature (RT),
rinsed 3× in 15% Sucrose/PBS and incubated overnight at 4°C in
a Tris-Zinc fixative (per 100 ml: 1,211.4 mg Tris-base, 501.5 mg
ZnCl2, 500.5 mg zinc acetate dihydrate, 50.6 mg CaCL2, 15 g
sucrose dissolved in dH2O) on a shaker. The next day, biopsies
were rinsed 3x in 15% sucrose/PBS and incubated in 7.5%
porcine gelatine (300 bloom) in 15% sucrose/PBS in individual
cryo-molds at 37°C for 1 h. Biopsies were sealed upright in the
gelatine blocks by congealing at RT. Gelatine/specimen blocks
were cut down in size, flash-frozen in isopentane on dry ice,
further frozen in OCT in a cryo-mold on dry ice and stored at
−80°C. Frozen skin biopsies were longitudinally cut at 20 μm
thickness to expose all skin layers and section were placed on

super-frosted microscopy glass slides. Gelatine was removed by
slide incubation in PBS at 37°C for up to 30 min.

Antibody labeling of skin sections was adapted from Dalton
et al. (21). Briefly, slides were rinsed in PBS, permeabilized for
15 min with 0.3% Triton X-100/PBS (perm. buffer), rinsed in
PBS, blocked for 30 min with Image-iT™ FX Signal-enhancer
(Invitrogen, Waltham, MA, USA), rinsed with PBS, and further
blocked for 30 min with 5% serum + FcBlock (1:1000) in perm.
buffer. Primary antibodies were diluted in 5% BSA in perm.
buffer [CK-10 (1 μg/ml) (Abcam: ab76318)], Mannose Receptor
[1 μg/ml] (Abcam: ab64693), CD11c [5 μg/ml] (Abcam:
ab33483)] and incubated with specimen for 90–120 min at RT
(Abcam PLC, Cambridge, UK). Slides were washed 3 times in
0.5% BSA/PBS. Secondary antibodies were diluted in 5% BSA in
perm. buffer [BV421 (1 μg/ml) (BioLegend: 406410); Alexa Fluor
647 (Invitrogen: A-21451)] and incubated for at least 60 min at
RT (BioLegend, San Diego, CA, USA). Slides were washed 2
times in 0.5% BSA/PBS and once in PBS at RT. Specimens were
counterstained with 0.2 μM YOYO-1 in PBS for 30 min at RT
and washed 2 times in PBS. Slides were mounted in ProLong
Gold (ThermoFisher Scientific, Waltham, MA, USA) and left
overnight at 4°C. Slides were sealed the next day and imaged with
a 40× oil-immersion objective (400× magnification) on a fully
motorized invert LSM 880 confocal microscope with Airyscan
(Zeiss, Jena, Germany) by z-stacked tile-scanning. To overcome
high levels of background fluorescence in the skin, we exploited
the lambda mode of the Zen black software package (v. 2.3) for
linear unmixing of previously recorded fluorescent spectra.

Stereomicroscopic Image Analysis
(Macro-Scale)
All whole-skin images were analyzed with custom-build IJ1
macros in Fiji ImageJ (22). Whole RAG mouse skins measured
40.4 cm2 (RAG15) to 82.5 cm2 (RAG10) in surface area
(Table S1). In comparison, C57BL/6 mouse skins are
negligibly thin, measuring on average 0.034 cm (female) and
0.037 cm (male) in thickness (23). Thus, we dismiss tissue
thickness at the macro-scale and treated whole-skin images as
two-dimensional surfaces to simplify the analysis. Patch
detection was based on 8-bit grayscale analysis of the L.

donovani tdTomato signal in the isolated red channel. The
bright fluorescent signal of densely accumulated amastigotes
per host cell strongly enhances the fluorescent-signal far
beyond what endogenously fluorescent myeloid cells could
have achieved. The obligatory intracellular nature of
Leishmania amastigotes allowed us to use the parasite signal as
a proxy for infected myeloid cells, which allowed their
indirect detection.

To determine a reliable detection threshold, we applied a
three-level approach of the “Multi-Otsu-Threshold” algorithm
plugin for Fiji ImageJ to tdTom-L. donovani infected and naïve
RAG skins (24). Naïve skins rendered maximum intensity
thresholds <35, while infected skin showed a range of about
60–150 on an 8-bit grayscale. For best detection sensitivity versus
specificity balance, we chose a threshold of 70 on an 8-bit
grayscale. Furthermore, we had to define the minimum size of
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a patch. Best image resolution allowed for a pixel size of 21.47
mm × 21.47 mm = 461 mm2, which did not allow to resolve for
individual L. donovani amastigotes, which are 2–3 mm in
diameter (r2 * p = 1.52 mm2 * 3.1416 ≈ 7.1 mm2). Within a
mammalian host, L. donovani amastigotes are intracellular, most
commonly residing in macrophages (25). Thus, L. donovani
amastigote distribution can be described by their host cell
distribution. The cell body shape of macrophages and DCs is
plastic and, in tissues like the skin, is highly irregular, making it
difficult to calculate the 2D surface area of such cells. Assuming
that the overall cell surface is the same between a rounded and
irregularly shaped macrophage, accepting an average diameter of
25 mm and assuming a flat cell body shape, we can calculate an
approximate 2D cell area (r2 * p = 12.52 mm2 * 3.1416 ≈ 491 mm2)
(26). A single macrophage is therefore defined by at least 4 pixels.
We thereby defined the smallest arguable patch size as 2 × 2
macrophages (at least 9 pixels) in 2D. Thus, (3 * 21.47 mm)2 =
4,148.65 mm2 was set as the smallest possible size to define
patches in our stereomicroscopic images. Using these signal
detection and patch size thresholds on naïve RAG skins
showed false-positive detection of ≤15 small patches (<0.1
mm2), which could largely be attributed to dust particles and
other autofluorescent events (Figure S22A). Furthermore,
manual patch counting in 1 cm2 areas on infected skins was
used to assess the false-negative detection rate, showing
underestimation of very small size (<0.1 mm2; Figure S22B)
and loss of detection sensitivity at larger patch fringes,
underestimating patch areas. The macro for density-peak
detection was adapted from a publicly available protocol on
particle counting in cells (Andrew McNaughton, University of
Otago, NZ).

Furthermore, two standard plugins available for Fiji ImageJ
were used; a plugin published by Haeri & Haeri (27) for nearest
neighbor distance (NND) analysis (27) and a plugin published by
Ben Tupper to analyze patch clustering (28). For the latter, a
maximum distance of 3.9 mm between patch borders was
chosen. This value was based on the idea that an average sand
fly measures ~2 mm from proboscis tip to abdominal posterior.
If pinned down at its posterior and swung around, the proboscis
tip would describe a circle representing the most distal point
where a sand fly could bite irrespective of its orientation. Using
1.95 mm as a radius, this circular landing zone has a diameter of
3.9 mm (Figure S1D). Conceptually, any patch reaching into the
landing zone may be accessible to a sand fly without it moving
away from its landing spot. Even parasite patches bordering the
periphery of the landing zone, might allow parasites from these
patches to be incorporated in the blood pool, which has an
average diameter of ~1 mm (11).

Confocal Image Analysis (Micro-Scale)
Parasite Distance from the Epidermis Measured

by Volocity
Volocity (V.6; Quorum Technologies, Laughton, UK) was used
for amastigote to epidermis distance measurements. Individual
amastigotes were detected by eroding the tdTomato signal until
signal segments coincided with separate sets of YOYO-1-labeled

small nuclei and kinetoplasts. The epidermis was demarcated by
consolidating all Brilliant Violet 421 signals for Cytokeratin-10
(CK-10) positive areas into a single mass under exclusion of skin
appendages. CK-10 is a marker of the spinous layer located right
above the basal layer. Thus, the epidermis is about twice as thick
as indicated by CK-10. Distances were measured by taking the
shortest distance from the centroid of the tdTom amastigotes to
the edge of the CK-10 positive band. To collate distance
measurements from images from the same RAG mouse and to
compare between RAG mice, the measurements required
normalization due to variations in skin thickness. We
estimated the mean thickness of the epidermis, dermis, and
hypodermis, respectively, for each image by averaging at least
three cross measurements in different places for each layer and
then adjusted all measurements by the factor of difference
between the mean skin layer thickness and the optical skin
thickness as measured by Sabino et al. (23). While a difference
in sex did not significantly affect the macroscale analysis, at the
micro-scale, skin shows significant difference between sexes.
While epidermal thickness is comparable between male and
female C57BL/6 mice, the dermis of male C57BL/6 mice is
~1.4 times thicker than that of female mice. Conversely, the
hypodermis in female C57BL/6 mice is ~1.84 times thicker than
that of male mice. Thus, male and female B6.RAG2-/- mice are
not directly comparable.

Measurements of Parasite Localization in the Skin

Measured by StrataQuest
StrataQuest (TissueGnostics, Vienna, Austria) was used to
measure L. donovani amastigote co-localization in and
distribution of ManR+ and CD11c+ cells in the skin.
Amastigotes were detected by segmentation on the tdTomato
signal and host nuclei were detected by segmentation on a mask
of YOYO-1 signal minus tdTomato signal. Host nuclei were used
as a seed and a mask expanded based on Brilliant Violet 421
signal of ManR and Alexa Fluor 647 signal of CD11c to
determine cell type. The epidermis mask was demarcated by
consolidating the signal of Brilliant Violet 421 signal of ManR,
Dylight 650 CD11c and YOYO-1 into a grayscale image and
segmented using StrataQuest algorithms to distinguish from the
dermis. Tissue morphology was used to define masks for the
dermis and hypodermis. The tissue and cell masks were used to
determine the location of the amastigotes. Host cells were classed
as infected when at least one amastigote was found within them.
However, for technical reasons, we did not differentiate between
infected host cells by number of infecting amastigotes.

Code Availability
All Fiji ImageJ macros and R scripts used in this study were
deposited in on GitHub (https://github.com/joedoehl/
LeishSkinSPPM) and are freely available for download.

Statistics
All statistics were conducted in GraphPad PRISM v.8, SPSS v.25
(29) or Rstudio v.1.3.959 (30) running R v.4.0.2 (31). Prior to
test application, parametric test assumptions (normality by
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Shapiro–Wilk test, equal variance by Brown–Forsythe test, etc.)
were tested for all datasets. If these assumptions were not met even
after data transformation, appropriate non-parametric tests were
selected. In the case of the Quadrat test, which is based on chi-
squared, chi-squared was replaced by a Fisher’s exact test whenever
squares of the grid applied to the window of observations
had several squares with <5 or at least one square with 0
observations, which was the case for all RAG mice. Prior to
statistical analysis, all percent datasets were arcsin transformed.
Applied statistical tests are stated throughout the text and in
corresponding figure legends. Harvested mouse skins varied
considerably in size between RAG mice (40.4–82.5 cm2). For
comparison and correlation analyses between RAG mice, some
data, like total patch area, patch counts, parasite counts were
normalized to area/cm2 and counts/cm2, respectively. Where data
skewness was an issue, we used the median as a more robust
location measure. Spatial point pattern analysis was performed in
Rstudio based on the work of Baddeley and co-workers (16). The
following R packages were used for code execution: abind (32),
deldir (33), e1701 (34), ggpubr (35), goftest (36), graphics (31),
grDevices (31), polyclip (37), RandomFields (38), rlist (39), rms.gof
(40), scales (41), sp (42), sparr (43), spatstat (16), spatstat.utils (44),
stats (31), tensor (45), tidyverse (46), and utils (31). Each
observation in the analysis was verified by at least two different
tests. Running multiple test increases confidence in the result as
different tests are not always in agreement.

Spatial Point Patterns Methodology
A “spatial point pattern” is a dataset containing the spatial
locations of events or objects as points within a window of
observation. The characterization of the spatial arrangement of
these points is the main focus of spatial point pattern
methodologies. This is generally done by measuring inter-point
distances and characterizing the dispersion between points. Such
methodologies find application in a myriad of fields, including
epidemiology, revealing important spatial features not
discernable by eye (47). Of course, not all “point data” permit
analysis as a “point pattern”, particularly when sampling location
is not relevant to the ultimately studied sample property.
Conversely, datasets may represent point patterns that are not
immediately recognizable, e.g., when the objects’ physical size
exceeds technical classification as points; such limitations can be
accommodated by choosing the coordinates of the center of mass
of the objects as the point and attaching the objects’ size as an
attribute, termed mark, to the respective points (48). This
method was used in our study where the size of some observed
skin patches clearly exceeds the definition of point objects. Very
large skin parasite patches also showed great heterogeneity in
tdTomato signal density, containing multiple high-density areas.
This suggested that very large skin patches were conglomerates
of smaller patches that had coalesced forming continuous,
although heterogeneously densely parasitized, patches.

We used functions provided by the spatstat R package by
Baddeley and co-workers (16). The following definitions are all
taken from their work “Spatial Point Patterns: Methodology and

Applications with R” (16). Several functions used in our study

were derived from the empirical K-function, originally proposed
by Ripley in 1977 (49):

bK (r) =
Wj j

n(n − 1)o
n

i=1
o
n

j=1
j≠i

1  dij ≤ r
� �

eij(r)

where dij is the distance between all ordered paired points xi and
xj (dij = ||xi – xj||), r is the value of measured distances (r ≥ 0), |W|
is the area of the observation window, n(n – 1) is the total
number pairs of distinct points, 1{…} is the “indicator” notation,
which is 1 when statement “…” is true and 0 when false, and eij
(r) is an edge correction weight. Riley’s K-function implicitly
assumes that the investigated point process (X) has
homogeneous intensity and is stationary. If a point process is
suspected to be inhomogeneous, then that must be considered in
the calculation of the K-function. The standard estimator of K
can be extended to produce the inhomogeneous K-function:

K̂ inhom(r) =
1

Dp Wj joi
o
j≠i

1  dij ≤ r
� �

^l (xi)
^l (xj)

e(xi, xj; r)

where e(xi,xj;r) is an edge correct weight and l(xi) and l(xj) are
estimates of the intensity functions l(xi) and l(xj), respectively.
The constant Dp is the pth power of

D =
1

Wj joi

1
^l (Xi)

The inhomogeneous K-function assumes that the spatial scale of
interaction remains constant, while the intensity is spatially
varying. However, the spatial scale may be locally dependent.
In this case, a rescaled template process may be applied that is
locally stationary and isotropic, but shows a varying rescaling
factor between locations within the observation window. Thus,
the empirical K-function is adjusted for each pair of data points
(Xi,Xj) by calculating the rescaled distance

d∗ij =
xi − xj
�� ��

s(xi, xj)

where the rescaling factor is

s(xi, xj) =
1

2

1ffiffiffiffiffiffiffiffiffiffiffi
^l (xi)

q +
1ffiffiffiffiffiffiffiffiffiffi
^l (xj)

q

0

B@

1

CA

This means the locally scaled K-function is defined by

K̂ scaled(r) =
Wj j

n(n − 1)o
n

i=1
o
n

j=1
j≠i

1  d∗ij ≤ r
� �

eij (r)

The L-function, as proposed by Besag (49), is then derived from
the various K-function by

L(r) =

ffiffiffiffiffiffiffiffiffiffi
K(r)

p

r
; Linhom(r) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kinhom(r)

p

r
; Lscaled(r) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kscaled(r)

p

r

respectively. The pair correlation function is derived from the
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K-function as

gh(r) =
K(r + h) − K(r)

2prh + ph2

When h becomes very small, then ph2 becomes negligible and
K(r+h)−K(r)

h
becomes the derivative of the K-function with respect

to r (K’(r)). Thus, in two dimensions, the pair correlation
function can be defined by

g(r) =
K0(r)

2pr

More details can be found in Baddeley and co-workers book
“Spatial Point Patterns: Methodology and Applications with
R” (16).

RESULTS

Parasites Accumulate in Phagocytic Cells
in the Reticular Dermis
We generated confocal images of 20-μm-thick longitudinal skin
biopsy sections from four different RAG mice (RAG19-22).
Visual image inspection suggested that L. donovani amastigotes
resided primarily in the dermis (Figure 1A). For confirmation,
two distinct approaches were used. We calculated the shortest
distance measurements of individual amastigotes to the
epidermis with Volocity (Figure 1B) and conducted
computationally aided amastigote counting in each skin layer
with StrataQuest (Figure 1C) as two independent, but
confirmatory approaches for assessing amastigote localization
in the skin. The former showed that the majority of parasites
resided in the reticular dermis, which comprises the deeper 90%
of the dermis (50). The latter showed that the dermis harbored
on average ~36× and ~9× more amastigotes/mm2 than the
epidermis and hypodermis, respectively.

Leishmania amastigotes are obligatorily intracellular
parasites, residing in phagocytic cells. Not surprisingly,
therefore, infected host cells were also found predominantly in
the dermis (~29× and ~26× more frequent than in epidermis and
hypodermis, respectively; Figure 1D). Thus, parasite dispersion
was reflected in host cell dispersion. In fact, the number of
parasites/mm2 skin correlated very strongly with the number of
infected cells/mm2 (Spearman r: p < 0.0001, r = 0.9364, 95% CI:
0.8432–0.9749; Figure 1E), suggesting that the proportion of
infected cells increased with the increase in parasite burden.

In the skin, macrophages and dendritic cells (DCs) are the
most abundant phagocytic cell populations in steady state (51).
Alternatively, activated tissue-resident macrophages (TRM2s)
expressing the mannose receptor (ManR) are a preferred host
for L. major in the mammalian skin (52). CD11c is a generic DC
marker (53), although it can be expressed by tissue macrophages
under inflammatory conditions (54). Thus, ManR and CD11c
were used to detect these myeloid cell subsets (Figure 1F). We
observed that 42% (95% CI: 31%–52.7%) and 7% (95% CI: 4.7%–

9.3%) of all infected cells were ManR+ and CD11c+, respectively
(Figure 1G). Thus, while ManR+ TRM2s also appear to be

permissive host cells for L. donovani amastigotes, ~51% of all
infected cells detected were neither ManR+ or CD11c+.
Furthermore, of all ManR+ and CD11c+ cells, 19.1% (95% CI:
12.6%–25.7%) and 9.8% (95% CI: 5.5%–14.1%) were infected,
respectively (Figure 1H), leaving a large proportion of these cells
uninfected (~80.9% and ~90.2% of all ManR+ and CD11c+ cells,
respectively). These data suggest that the observed diverse
cellular tropism is not due to saturation of permissive targets
such as TRM2s.

Patch Landscape Is Sculpted by Parasite
Reseeding and Growth
Whole body skins from 23 untreated, tdTom-L. donovani long-
term infected (6–7 months) RAG mice (Rag1–23) were used to
analyze the dispersion of skin parasites within their phagocytic
host cell. These RAG mice had been used as control mice in
seven independent experiments (Exp 1–7) and were comparably
treated (Figures S1A–C). We used qPCR-based parasite kDNA
detection in multiple skin biopsies from each RAG mouse
matched against a standard curve to estimate parasite burden
per skin biopsy. Comparing parasite burden from biopsies across
the skin of each mouse established whether skin parasite burdens
varied geographically across the mouse skin and between mice
and the mean parasite burden per biopsy per mouse (Figure 2A
and Figure S2A). We found considerable variability in mean
parasite burden between RAG mice (Kruskal–Wallis test: p <
0.0001) and in parasite loads between biopsies from the same
RAG mouse (Figure S2A), confirming a heterogeneous parasite
dispersion in the host skin (11). Furthermore, data on the
parasite burden per biopsy showed in most cases a departure
from a normal distribution for each RAG mouse (Shapiro–Wilks
test: see Table S1) and a lack of equal variance (Brown–Forsythe
test: p < 0.0001). Thus, the median parasite burden per biopsy
was used to estimate the total parasite burden in skin for each
RAG mouse. In turn, this was used to estimate the mean parasite
burden per cm2 of skin (Table S1). Despite intravenous
inoculation of equivalent numbers of parasites, there was
considerable variability in total parasite burden in skin
between RAG mice, ranging from ~1 × 106 (RAG12) to
1.24 × 109 (RAG3) parasites per mouse (Table S1).

Akin to parasite loads, skin patch counts were also highly
variable between RAG mice, ranging from ~1.2 patches per cm2

(Rag14) to ~32.9 patches per cm2 (Rag8) and 76 (RAG14) to
2,457 (RAG10) patches per mouse (Figure 2B and Table S1). We
also measured the area of skin patches. Patches measured
~0.00004 cm2 (50× smaller than a 25G needle prick) to 53 cm2

(>80% of the mouse skin; Figures 2C, D, Figure S3 and Table

S1). Most patches were small (<0.1 mm2) and only few were large
(>1 mm2), resulting in a heavily skewed dataset (Figure S2B).
More precisely, ~84% of detected patches were 0.004 mm2

–0.099
mm2 but accounted for merely ~12.7% of the total patch area
(Figure 2E). Conversely, only ~3.3% of detected patches were >1
mm2 but accounted for ~64% of the total patch area. In an
individual mouse, these proportions were even more extreme
(Figure S4). In fact, there was a strong correlation between the
total patch area and the largest patch in any given mouse
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FIGURE 1 | Evaluation of micro-scale parasite distribution in the skin. (A) Representative tile-scan z-stacked confocal microscope image of a 20-µm-thick skin

biopsy section of the RAG19 mouse. In cyan Cytokeratin-10 (CK-10; epithelium), in blue YOYO-1 (nuclei and kinetoplasts) and in red tdTomato (L. donovani

amastigotes). The white lines demarcate the hypodermis’s upper and lower edges. Their locations were determined in raw images prior to linear unmixing when the

autofluorescence of adipocytes was still visible. (B) Violin plot of normalized L. donovani amastigote distance from the epithelium as measured by the Volocity

approach in confocal images. The number of amastigote distances measured are given above each plot. RAG19–21 were female and RAG22 was a male

B6.RAG2-/- mouse. The background color code for skin layer thickness: pink = epidermis, yellow = dermis, green = hypodermis, tan = subcutaneous tissue. The

average sand fly proboscis skin penetration depth is marked by a dot-dashed line. (C–H) Evaluation of amastigote localization in the skin by the StrataQuest

approach in confocal images. Each circle is representative for a measurement from one of 21 analyzed images across RAG19-22. (C) Parasite counts/skin layer

(Friedman test: p < 0.0001; Dunn’s post hoc test: Epi vs. Der: p < 0.0001, Epi vs. Hypo: p = 0.0407, Der vs. Hypo: p = 0.0047). (D) Counts of infected host cell/

skin layer (Friedman test: p < 0.0001; Dunn’s post hoc test: Epi vs. Der: p < 0.0001, Der vs. Hypo: p = 0.0021). (E) Correlation plot of total parasite counts/skin

section against all infected cells/skin section (Spearman r: p < 0.0001, r = 0.8766, 95% CI: 0.7091–0.9505). (F) Representative image of the ManR (cyan) and CD11c

labelling (yellow) together with the endogenously expressed tdTomato signal from L. donovani amastigotes (red) and YOYO-1-labeled nuclei (gray). (G) Percent of

detected infected Mannose Receptor positive cells of all infected cells compared to detected infected CD11c+ cells of all detected infected cells (Paired t-test: p <

0.0001, 95% CI: −33.11 to −18.02). (H) Percent of detected infected Mannose Receptor-positive cells of all detected Mannose Receptor cells compared to detected

infected CD11c+ cells of all detected CD11+ cells (paired t-test: p < 0.0001, 95% CI: −11.82 to −4.74).
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FIGURE 2 | Observational description of the skin parasite landscape. All data presented here were generated by the ImageJ-based analysis of stereomicroscopic

images. (A) Accumulative qPCR data of estimated parasite loads/biopsy from 432 biopsies (ø 0.6 cm) of 23 RAG mice. (B) Average patch counts/cm2 of skin for 23

RAG mice. (I, K) Comparison of ratios of parasitized skin by body region for 23 RAG mice (Friedman Test: p = 0.3113 and p = 0.2931, respectively).

(C) Accumulative data of the individual area of 21,904 measured patches from 23 RAG mice. (D) Representative image of detected patches in the RAG4 mouse

skin. (E) Arranged data from 21,904 individually detected patches from 23 RAG mice arranged by “A”, the ratio of patch counts/size category, and by “B”, the

contribution of size category to the overall patched area in the skin. (F) Correlation plot of total parasite patched skin by area (µm2) against the size of the biggest

parasite patch detected in each of the 23 RAG mice (both on a log-scale; Spearman r: p < 0.0001, r = 0.9792, 95% CI = 0.9496–0.9915). (G) Schematic

distribution of patches over the skin of RAG4 marked by patch area according to the categories in (E). (H) Correlation plot of 21,904 skin parasite patches by area

(µm2) from 23 RAG mice (on a log-scale) against their respective mean pixel density on an 8-bit grayscale (Spearman r: p < 0.0001, r = 0.6554, 95% CI = 0.6476–

0.6631). (I) Representative 8-bit grayscale image showing the tdTomato light intensity per pixel (RAG4). In magenta are the outlines of detected skin patches.

(J) Accumulative data of mean patch density/patch of 21,904 individually detected patches from 23 RAG mice. (K) X–Y plots of five 5-mm cross sections through

patches measuring tdTomato signal intensity/pixel on grayscale [0–255] in the RAG4 skin image. The arbitrary cutoff for patch detection set at 70 is marked in these

graphs with black dashed line. (L) Image of the RAG4 image indicating where cross sections through patches were made.
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(Spearman r: p < 0.0001, r = 0.9792, 95% CI = 0.9496–0.9915;
Figure 2F). Interestingly, we identified no preferred site of patch
accumulation, suggesting that patch dispersion may be random.
However, when we plotted patches by size category, we observed
that mid-range (red and blue symbols; 0.01–1 cm2) and large-
range (violet and green symbols; ≥1 cm2) patches were usually
surrounded by several small patches (Figure 2G, Figure S5).
Moreover, when focusing on mid-range patch dispersion, these
patches appeared to follow unidentified tracks across the skin in
several RAG mice (Figure S5). These observations suggested
that, while patch dispersion may look different between RAG
mice, dispersal is not a random process, but governed by
unknown factors in the skin. Our subsequent analysis aimed to
test this assertion.

We observed that patches had higher tdTomato signal at their
center compared to their periphery. Since tdTomato amastigotes
are approximately of equal brightness, it is reasonable to
associate the brighter signal at the patch center with higher
amastigote density. A grayscale pixel analysis in the red channel
to measure tdTomato signal intensity per pixel (Figure 2I,
Figure S6) showed that most mean grayscale values per patch
were close to the cutoff of 70 (Figure 2J, Figure S2C). However,
when patch area was correlated with their respective average
grayscale value, it showed a strong correlation (Figure 2H;
Spearman r: p < 0.0001, r = 0.6554, 95% CI = 0.6476–0.6631).
This suggested that as patches grew outward, they became more
densely populated with amastigotes. Cross-section analysis of
tdTomato signal intensity in selected patches showed volcano-
like graphs with steep shoulders, suggesting that the amastigote
bulk is concentrated at the center of a patch and then thins out
quickly at the patch periphery (Figures 2K, L).

We also observed that larger patches contained multiple areas
of high tdTomato signal (Figure S6). Correlating patch area and
density peaks per patch suggested that all mid-range and larger
patches had multiple density peaks (Spearman r: p < 0.0001,
r = 0.3831, 95% CI = 0.3714–0.3947; Figure 3A). The statistically
weak correlation was explained by the broad base of small
patches with only one or two peaks. Accumulation of density
peaks per patch only became apparent when patch areas
exceeded 1 mm2 (>106 μm2). This suggested that smaller
expanding patches grew into one another to form bigger
patches. Furthermore, large patches indicated areas where
initial parasite seeding had been higher and/or earlier.

Furthermore, we investigated the relationships between mean
parasite burden/cm2, patch counts/cm2 and total patch area/cm2

by correlation plot analysis. Mean parasite burden/cm2

correlated strongly with total patch area/cm2 of skin,
suggesting that increases in total skin parasite burden would
also increase total patch area and thus may be the driver of patch
growth (Figure 3B; Spearman r: p < 0.0001, r = 0.7589, 95%
CI = 0.4948–0.8947). Patch counts/cm2 correlated only
moderately with parasite burden/biopsy (Figure 3C; Spearman
r: p = 0.0021, r = 0.5741, 95% CI = 0.1997–0.8022), suggesting
that increases in skin parasite burden was more closely related to
patch expansion than new patch seeding. Conversely, when total
patch area/cm2 was correlated with the patch count/cm2, it

showed a very strong positive correlation (Figure 3D;
Spearman r: p < 0.0001, r = 0.8656, 95% CI: 0.6984–0.9432),
suggesting that the proportion of parasitized host skin is largely
determined by the number of observed patches. Correlating the
median of patch areas per skin for each RAG mouse to the total
patch counts per skin, we found a moderately negative
correlation (Figure 3E; Spearman r: p = 0.006, r = −0.5148,
95% CI = −0.7701 to −0.1175), which suggested that the more
patches a RAG mouse skin had the more of these patches were
likely to be small (<0.1 mm2).

While data skewness is an underlying characteristic of skin
parasite dispersion for any given sample, skewness cannot be
directly inferred onto a population. To test whether the observed
sample skewness was a general population feature, we divided
sample skewness by the standard error of skewness (SES) (55).
The resulting test statistic being outside the interval [-2, 2] infers
that data skewness was a population property (Table S1). For
instance, total patch area per skin was very strongly correlated
with the degree of skewness in the patch area data (Figure 3F;
Spearman r: p < 0.0001, r = 0.8686, 95% CI = 0.7044–0.9445),
suggesting that as patchiness increased in the skin, mid-range
patches give way to a few large patches surrounded by many
small patches. This appears to be a common population feature,
given the correlation of the test statistic to the total patch area/
skin was even stronger than compared to the sample skewness
(Figure 3G; Spearman r: p < 0.0001, r = 0.9279, 95% CI =
0.8311–0.9701).

The Skin Patch Landscape Is
Heterogeneously Clustered
We previously established that the skin parasite dispersion
pertained to concepts of landscape epidemiology (11). Thus,
we applied methodologies of spatial point pattern analysis
commonly used in landscape epidemiology to characterize
further the dispersion of parasites and their myeloid host cells
in skin and identify potential modes of their dispersal (16). We
converted our patch data into spatial point patterns by mapping
the center of mass of each patch to a window characterized by the
respective RAG skin outline (Figure 4A, Figure S7 and
Table S2). After verifying the absence of point duplications,
characteristics of patches (e.g., area and density) could optionally
be reintroduced to the pattern as a mark (Figure 4B and Figure

S8). Focusing on patch area, we calculated the intensity of point
distributions (equivalent to dispersion) with or without a mark
and graphically represented the measured point pattern
intensities (Figures 4C, D and Figures S9, S10). Alternatively,
we calculated the intensity per cm2, which is akin to the number
of patches per cm2 and found that both methods corroborated
one another (Tables S1, S2). As shown in Figure 4C (without
area mark), intensity showed the distribution of patches by
center of mass location, whereas in Figure 4D (with area
mark), intensity showed the distribution of patches by size in
the skin (see also Figures S9, S10). Both intensities showed a
clear departure from a homogeneous distribution. To gain
further understanding of how patches related to one another,
we performed a cluster analysis, choosing 3.9 mm as the
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maximum distance between patch borders (see Methods). This
showed small patches clustering strongly around larger patches
(Figure 4E and Figure S11), confirming our previous
observation from Figure 2F (see also Figure S5). Furthermore,

this analysis showed the formation of networks of closely
clustered patches, which may enhance the likelihood of
parasite pickup by a biting sand fly without having to densely
parasitize the whole skin (Figure 4E and Figure S11).

A B C

E FD

G

FIGURE 3 | Correlation plots. All data presented here were generated by the ImageJ-based analysis of stereomicroscopic images. (A) Correlation plot of 21,904

skin parasite patches by area (µm2) from 23 RAG mice against the number of high-density peaks per individual patch (both on a log-scale; Spearman r: p < 0.0001,

r = 0.3831, 95% CI = 0.3714–0.3947). (B) Correlation plot of total parasite patched skin by area (µm2) normalized to 1 cm2 of skin against parasite burden/cm2 for

each of the 23 RAG mice (both on a log-scale; Spearman r: p < 0.0001, r = 0.7589, 95% CI = 0.4948–0.8947). (C) Correlation plot of total skin parasite patch

counts normalized to 1 cm2 of skin against mean parasite burden per punch biopsy for each of the 23 RAG mice (on a log-scale; Spearman r: p = 0.0021,

r = 0.5741, 95% CI = 0.1997–0.8022). (D) Correlation plot of total parasite patched skin by area (µm2) normalized to 1 cm2 of skin (on a log-scale) against total skin

parasite patch counts normalized to 1 cm2 of skin for each of the 23 RAG mice (Spearman r: p < 0.0001, r = 0.8656, 95% CI: 0.6984–0.9432). (E) Correlation plot

of the median patch area (µm2) against total skin parasite patch counts for each of the 23 RAG mice (Spearman r: p = 0.006, r = −0.5148, 95% CI = −0.7701 to

−0.1175). (F) Correlation plot of total parasite patched skin by area (µm2; on a log-scale) against the skewness of parasite patch area data for each of the 23 RAG

mice (Spearman r: p < 0.0001, r = 0.8686, 95% CI = 0.7044–0.9445). (G) Correlation plot of total parasite patched skin by area (µm2; on a log-scale) against the

test statistic that infers skewness to the population for each of the 23 RAG mice (Spearman r: p < 0.0001, r = 0.9279, 95% CI = 0.8311–0.9701).
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FIGURE 4 | Spatial point pattern analysis of skin parasite patch distribution. All graphs are examples for spatial point pattern analysis based on the RAG4 data.

(A) Spatial point pattern of skin parasite patches based on center of mass of each detected patch without respective marks. (B) Spatial point pattern of skin parasite

patches based on center of mass of each detected patch with respective patch area mark. (C) Patch intensity representation of skin parasite patches based on

center of mass of each detected patch without respective marks. (D) Patch intensity representation of skin parasite patches based on center of mass of each

detected patch with respective patch area mark. (E) Representation of a cluster analysis output linking all patches whose patch borders are ≤3.9 mm into a network.

(F) Graphical representation of the isotropy test showing the theoretical Poisson process (red dotted line), the RAG4 data (black solid line), and the global envelopes

(gray). (G) Graphical representation of correlation-stationary test based on a locally scaled K-function. The two graphs show the separate distribution analysis of the

left and right half of the point shown in panel (A). (H) Scaled L-function showing the theoretical Poisson process (red dotted line), the RAG4 data (black solid line),

and the global envelopes (gray). (I) Pair correlation function showing the theoretical Poisson process (red dotted line) and the RAG4 data (black solid line). (J) Data

points independence test based on K-function of the data residuals, showing the theoretical Poisson process (red dotted line), the RAG4 data (black solid line), and

the upper (green) and lower limits (blue) of the confidence intervals of the theoretical Poisson process. (K) Data points independence test based on nearest-neighbor

(G-) function of the data residuals, showing the theoretical Poisson process (red dotted line), the RAG4 data (black solid line), and the upper (green) and lower limits

(blue) of the confidence intervals of the theoretical Poisson process.
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These observations suggested that patch dispersion is likely to
be neither homogeneous nor random. To formally test for
homogeneity of patch distributions, a quadrat test based on the
Fisher’s exact test was applied, which rejected homogeneity for
all patch distributions (p = 0.001; Table S2). Thus, an
inhomogeneous Poisson point process (IPP) was used as a null
hypothesis. Analogous to a homogeneous Poisson point process,
an IPP is assumed to be correlation-stationary (the pair
correlation between two spots in the window depends only on
their relative positions) and isotropic (the distribution is
unaffected by the pattern orientation). However, isotropism
was rejected for about half of all patch patterns (Figure 4F and
Figure S12); RAG14 did not produce a reliable test result due to
its sparse number of patches. To assess correlation-stationarity,
we split the point patterns into two portions of equal numbers of
observations and applied the inhomogeneous K-function, which
is derived from Ripley’s K-function, to each half of the pattern.
The analysis showed considerable disagreement between the two
plots for several mice indicating that the whole point pattern was
not correlation-stationary (Figure S13). In addition, the
inhomogeneous K-function showed considerable disagreement
between different applied border corrections, which suggested
that an IPP was a bad fit to describe patch patterns. In addition,
we rejected a Poisson distribution for our patch patterns based
on a Quadrat Count test (Table S2). These disagreements
suggested that the spatial scale of point interactions, which is
assumed to be constant by the inhomogeneous K-function (16),
was locally variable for our patch patterns. Thus, by assuming a
point process that was locally stationary and isotropic but
showed a varying rescaling factor between locations in the
skin, we could use a locally scaled K-function to rerun the
correlation-stationary test. Although not perfect, agreement
between the two plots per mouse and between different border
corrections was significantly improved (Figure 4G and
Figure S14), suggesting that patch distribution was
locally scaled.

We proceeded with the scaled L-function, derived from
Besag’s L-function, to determine if patches were evenly spaced
(regular), randomly spaced (independent), or clustered
(Figure 4H and Figure S15). While the fitted data (black solid
line) generally departed from the hypothetical random
distribution toward a clustered one (black solid line above
dotted red line), only RAG11, RAG13, RAG14, and RAG23
showed a clear departure from the global simulation envelops of
a hypothetical random distribution (gray shaded area) toward
clustering. To confirm these results, we used the pair correlation
function (PCF). The scaled PCF analysis showed for most mice,
patch patterns departed from the theoretical random distribution
(dotted red line) toward a clustered point process (black line
above the red dotted line), in particular, at short distances
between patches (Figure 4I and Figure S16). With increased
distances between patches, some point patterns showed an
approximation to more point independence. Applying the K-
and nearest-neighbor (G-) function to the point pattern residuals
showed a clear departure of independence toward clustering at
shorter distances, indicating positive point dependence [black

line outside the upper confidence intervals (dotted green line)]
for both tests (Figures 4J, K and Figures S17, S18).

Modeling the Point Process Behind Patch
Patterns Suggests Influence of Covariates
To gain further mechanistic insights into patch distribution, we
used a model that accounted for positive point (patch)
dependence (clustering) and was tolerant to a locally varying
distribution scale. We used different cluster processes (Cauchy,
Matérn, Thomas and Variance-Gamma) as described by
Baddeley et al. [“spatstat” (16)] that assume cluster formation
based on a parental point distribution that seeded the observed
points around themselves within a radius, which is variable
between clusters due to the locally scaled nature of cluster
distribution. This assumption is reflected in our data showing
that small patches cluster around mid-range and large patches
(Figures 2F, 4E and Figures S5, S11).

Thirteen of the 23 patch distributions were best fitted by a
Matérn cluster process, while the other 10 were best fitted by a
Thomas cluster process. The Matérn cluster process assumes
a uniform distribution of offspring around the parental point,
while the Thomas cluster process assumes offspring to be
randomly displaced from the parental point (16). Checking the
parameters selected by the model showed that they were within a
reasonable range, confirming model validity (Table S3). This was
further confirmed by the scaled L-function of the selected fitted
models for each patch pattern (Figure 5A and Figure S19). The
L-functions of the fitted models closely resembled the L-
functions from the point pattern analyses (Figure 4H and
Figure S15). Furthermore, we used the selected fitted models
to run 4 simulations each to see if the outcome would resemble
the distributions in the original data (Figure 5B and Figure S20).
With a few exceptions, like RAG3, the simulation outputs
provided a good representation of the original patch dispersion
data (Figure 4A and Figure S7).

Based on these findings, we can deduce how the dispersal of
parasites and their myeloid host cells may operate. Both the
Matérn and Thomas cluster processes assume points of origin
that seed new points within a set radius to create an observed
clustered point dispersion. In a locally scaled setting, as it is the
case for our patch distribution, this radius is locally varying in
length and thus distinct for each patch cluster. Analogously, after
initial skin infection, the dispersal of patches may be explained
by existing patches locally seeding new patches around
themselves, while growing outward, creating a self-propagating
network of patch clusters in the skin (Figure 6 and Figure S21).

DISCUSSION

It is known that heterogeneity in skin parasite dispersion provides
a mechanism to enhance host infectiousness to sand fly vectors
(11). Here, we have provided evidence for the underlying
mechanisms driving this heterogeneity. To our knowledge, this
is the first study to make use of spatial point pattern
methodologies (16) in this way. The Matérn and Thomas
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cluster processes, which were identified to best describe how
dispersion of patches of parasites and their infected myeloid host
cells occurred, both assume points of origin that seed new points
within locally varying radii clustering around them. Based on this
analysis, we therefore propose that existing patches locally seed
new patches around themselves, giving rise to patch clusters with
a central large patch. Since patches are densely parasitized, these
patch networks would increase the chance of high parasite loads
being acquired by a sand fly and eliminate the need for parasitism
of the entire skin. Indeed, our conservatively chosen tdTomato
signal and patch size thresholds may underestimate very small
patches leading to patch networks that are denser than reported
here, further enhancing outward transmission potential.

In vivo, Leishmania amastigotes reside in phagocytic cells in
the dermis, primarily macrophages (56). Therefore, parasite
dispersion is linked to host cell dispersion, a subject on which
scant information is available. In the steady-state dermis,
macrophages and DCs are the primary phagocytic cell
populations (51). Interestingly, macrophages and DCs have
very particular distributions in steady-state skin. Branched DCs
are predominantly interstitially localized directly underneath the
dermal–epidermal junction (57, 58). Macrophages are
commonly found below these DCs, mostly interstitially. Deeper
in the reticular dermis, both cell types associate perivascular to
blood vessels rather than lymphatic vessels and DCs here are
more rounded. Among the different macrophage populations in
the skin, it was shown that ManR+ TRM2s are important as long-
term L. major host cells (52). In addition, the rate of parasite
infection in ManR+ TRM2s (~45%) correlated strongly with the
severity of skin pathology and parasite survival in the host. The
rate of infection in DCs was much lower (22.5%), indicating a
preference of L. major for ManR+ TRM2s (52). In our study, the
observed infection rates for both cell types with L. donovani were

less than half of this (~19.1% and 9.8%, respectively), but L.
donovani similarly showed a preference for ManR+ TRM2s over
DCs (5:1). These cells constituted almost 50% of all infected host
cells. Conversely, 50% of host cells belonged to neither group;
presumably, other myeloid-derived phagocyte populations (56).
Interestingly, the majority of ManR+ TRM2s and CD11c+ DCs
(~80.9% and ~90.2%, respectively) were uninfected in the
analyzed skin sections, despite the high number of parasites
present in some of the sections. This raised the question of why
the small proportion of infected host cells should be clustered
close together and also indicates that observed cellular tropism is
not due to saturation of preferred targets.

Furthermore, our analysis suggested that the process of
forming patches may be influenced by yet-to-be-identified
covariates. One covariate may be proximity to blood vessels as
ManR+ TRM2s often colocalize to them in the dermis, where they
can pick up macromolecules from the blood (52, 59). Given that
parasitized phagocytic cells in circulation may have properties
associated with apoptotic cells (60), it is possible that TRMs
capture parasitized host cells by efferocytosis, thus seeding new
skin sites for patch formation. Alternatively, infected phagocytes
in circulation could exit the vasculature by extravasation at sites
of sub-clinical inflammation. Either mechanism could explain
why mid-range patch distribution appeared to follow
unidentified lines in the skin and why there was no preferred
location for parasite accumulation in the skin. Furthermore,
proximity to blood vessels may also enhance access to
nutrients from the circulation for parasitized phagocytic cells
and thus indirectly promote parasite proliferation. Also, parasite
proximity to blood vessels would improve their chances to be
found by a probing sand fly. Future analysis could potentially
confirm blood vessel association of parasite patches by proximity
measurements. Three-dimensional (e.g., light sheet) microscopic

A B

FIGURE 5 | Basic model evaluation of skin parasite patch distribution. (A) Scaled L-function showing the theoretical Poisson process (red dotted line), the RAG4

predicted model data (black solid line), and the global envelopes (gray). (B) Four model simulations based on the Matérn cluster process for RAG4.
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imaging data would be needed to achieve this. This and other
covariates that may affect the establishment of parasite niches
can be integrated in the future into the Matérn and Thomas
cluster process models to determine their influence on the
dispersal and dispersion of parasites and their myeloid host cells.

Independent of the means of initial skin seeding of parasites,
our data indicate that the accumulation of infected myeloid cells
into patches could be analogous mechanistically to phagocyte
migration during granulomatous inflammation. For example,
early in the process of L. donovani-dependent granuloma
formation in the liver, uninfected Kupffer cells (KCs) migrate
towards a granuloma-initiating infected KC resulting in a
heterogeneous distribution of KCs and their condensation and
subsequent infection at the granuloma core (18, 61). Conversely,

studies in zebrafish embryos infected with Mycobacterium

marinum highlight the innate capacity of phagocytes to exit
granulomas (62), an innate feature of the phagocytic cell
response to infection that appears to be obscured in fully
immunocompetent mouse models of granulomatous
inflammation (61). Our RAG mouse model of skin infection
similarly lacks the confounding effects of an adaptive immune
response, providing a similarly unique window on processes
driving innate myeloid cell aggregation and a platform on which
to build increasing levels of immune complexity. It remains to be
determined to what extent patches form because of the inherent
migratory properties of phagocytic cells and/or modification of
such properties by intracellular amastigotes. Manipulation of
phagocyte function by intracellular Leishmania has been well-

FIGURE 6 | Proposed mechanism for the dispersal of patches of L. donovani-infected myeloid cells. (Step 1) After an initial seeding event of Leishmania amastigote-

infected host cells (in red) in the skin from the circulation, uninfected phagocytic cells (in purple) in the skin are attracted to the infected cells. (Step 2) These recruited

myeloid cells form a type of innate granuloma in which suitable uninfected myeloid cells are gradually infected. This results in the formation of a primary patch of

infected myeloid cells. (Step 3) As these patches keep growing, they seed new patches within a radius “r” around themselves, potentially by escape of infected

myeloid cells or via transient release of free amastigotes. This process then keeps repeating itself, forming self-propagating networks of patch “clusters”. The image

was created with BioRender.com.
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described (63) though few studies have addressed phagocyte
migratory potential. Similarly, while phagocyte heterogeneity in
skin is well described (see above), the mechanisms regulating
mobility of these cells in their natural 3D-environment remain
poorly understood.

The notion that new patches are seeded primarily from
existing patches is supported by the observation that larger
patches were surrounded by smaller patches that emerged
within limited distances from the larger patches, resulting in
patch clustering. If, akin to parasite dispersion, parasite dispersal
is also linked to its host cells, then, mechanistically, patch
clustering could occur by escape of infected host cells from
these “innate granuloma”-like parasite patches as was
demonstrated in M. marinum-infected zebrafish embryos (64).
Conversely, parasites could be redistributed to uninfected host
cells within a limited radius from patches by amastigote release
from ruptured host cells or by intercellular passage.
Macrophages are known to form a variety of open-ended
tunneling nanotubes (TNT) between one another at a distance
and such structures have been implicated in the spread of several
respiratory viruses and HIV-1 (65–67). We know of no formal
evidence, however, to show that Leishmania parasites are
transported between macrophages via TNTs.

The cores of patches are very dense with parasites and heavily
infected host cells, but the patch fringes are much less heavily
parasitized, suggesting that parasites proliferating strongly
within a patch are then pushed outward. Mandell and Beverley
(68) observed that not all amastigotes in the host skin proliferate
at the same rate and described two distinct amastigote
populations; one that was dormant, the other proliferative (68).
Thus, patches may represent areas where amastigotes are
proliferative, while inter-patch space could mark areas of
dormant amastigotes. Whether host cell metabolism
stimulates/supports amastigotes to proliferate in the
mammalian host skin (69) remains to be determined.

In summary, through spatial point pattern analysis combined
with systematic image analysis, we provide a novel mechanistic
framework to explain how the dispersal of L. donovani-infected
myeloid cells occurs in the absence of the constraints imposed by
acquired immunity.
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