
Citation: Ganguly, P.; Fiz, N.; Beitia,

M.; Owston, H.E.; Delgado, D.; Jones,

E.; Sánchez, M. Effect of Combined

Intraosseous and Intraarticular

Infiltrations of Autologous

Platelet-Rich Plasma on Subchondral

Bone Marrow Mesenchymal Stromal

Cells from Patients with Hip

Osteoarthritis. J. Clin. Med. 2022, 11,

3891. https://doi.org/10.3390/

jcm11133891

Academic Editor: Robert Lor Randall

Received: 24 May 2022

Accepted: 1 July 2022

Published: 4 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Effect of Combined Intraosseous and Intraarticular Infiltrations
of Autologous Platelet-Rich Plasma on Subchondral Bone
Marrow Mesenchymal Stromal Cells from Patients with
Hip Osteoarthritis
Payal Ganguly 1 , Nicolás Fiz 2, Maider Beitia 3, Heather E. Owston 1 , Diego Delgado 3, Elena Jones 1,*
and Mikel Sánchez 2,3,*

1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK;
p.ganguly@leeds.ac.uk (P.G.); h.e.owston@leeds.ac.uk (H.E.O.)

2 Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Beato Tomás de Zumarraga 10,
01008 Vitoria-Gasteiz, Spain; nicolas.fiz@ucatrauma.com

3 Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Beato Tomás de Zumarraga 10,
01008 Vitoria-Gasteiz, Spain; maider.beitia@ucatrauma.com (M.B.); diego.delgado@ucatrauma.com (D.D.)

* Correspondence: e.jones@leeds.ac.uk (E.J.); mikel.sanchez@ucatrauma.com (M.S.)

Abstract: Osteoarthritis (OA) is a debilitating condition that significantly impacts its patients and
is closely associated with advancing age and senescence. Treatment with autologous platelet rich
plasma (PRP) is a novel approach that is increasingly being researched for its effects. Subchondral
bone mesenchymal stromal cells (MSCs) are key progenitors that form bone and cartilage lineages
that are affected in OA. This study investigated the changes in subchondral bone MSCs before
and after combined intraosseous (IO) and intraarticular (IA) PRP infiltration. Patient bone marrow
aspirates were collected from 12 patients (four male, eight female) aged 40–86 years old (median
59.5). MSCs were expanded in standard media containing human serum to passage 1 and analysed
for their colony-forming potential, senescence status, and gene expression. Hip dysfunction and
Osteoarthritis Outcome Score (HOOS) at baseline and 6 months post second infiltration were used to
assess the clinical outcomes; seven patients were considered responders and five non-responders.
The number of colony-forming MSCs did not increase in the post treatment group, however, they
demonstrated significantly higher colony areas (14.5% higher compared to Pre) indicative of enhanced
proliferative capacity, especially in older donors (28.2% higher). Senescence assays also suggest that
older patients and responders had a higher resistance to senescent cell accumulation. Responder
and non-responder MSCs tended to differ in the expression of genes associated with bone formation
and cartilage turnover including osteoblast markers, matrix metalloproteinases, and their inhibitors.
Taken together, our data show that in hip OA patients, combined IO and IA PRP infiltrations enhanced
subchondral MSC proliferative and stress-resistance capacities, particularly in older patients. Future
investigation of the potential anti-ageing effect of PRP infiltrations and the use of next-generation
sequencing would contribute towards better understanding of the molecular mechanisms associated
with OA in MSCs.

Keywords: osteoarthritis (OA); platelet rich plasma (PRP); mesenchymal stromal cells (MSCs); hip
OA; senescence; ageing

1. Introduction

In recent years, intraarticular (IA) infiltrations of platelet-rich plasma (PRP) have
emerged as an alternative to current treatments for knee osteoarthritis (OA) [1,2]. These
biological and autologous therapies use the patient’s own plasma and growth factors
derived from platelets, and are often combined with an autologous fibrin scaffold for regen-
erative purposes. These growth factors help restore joint homeostasis, have inductive and
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protective effects on chondrocytes, and act on the synoviocytes of the synovial membrane
by stimulating the production of hyaluronic acid (HA) and other molecules. In addition,
this cocktail of growth factors also has anti-inflammatory and bacteriostatic characteristics,
and modulate mesenchymal stromal cells (MSCs), which are known to participate in the
regeneration of cartilage. All of these properties contribute to promoting a biological
environment that slows down cartilage degeneration and relieves clinical symptoms [3].

The success of this treatment does not only lie in the characteristics of the PRP [4], but
also in its correct application. Although IA infiltrations reach the cartilage and the synovial
membrane, this route of administration does not reach the deeper layers of the subchondral
bone, thus limiting its therapeutic potential. Subchondral bone is a key element in both
maintaining the homeostasis of the joint and in the pathophysiology of OA due to its
direct communication with the cartilage [5,6]. The subchondral bone undergoes marked
alterations during OA including an increase in the cortical plate thickness along with
changes in the subchondral cortical bone mass as well as the architecture, depending upon
the stage and severity of OA progression [5]. Adding intraosseous (IO) PRP injections
to target subchondral bone can provide a more comprehensive treatment by stimulating
biological processes that lead to an environment primed for regeneration. Restoring joint
homeostasis also influences the behaviour of MSCs that coordinate bone remodelling of
the subchondral bone [7].

Indeed, treating severe knee OA with a combination of IO and IA infiltrations of PRP
have shown superior clinical outcomes at 6 and 12 months compared to IA injections of
PRP without IO infiltration. In addition, there was a significant reduction of MSCs in
the synovial fluid (SF) after treatment [8]. This decrease was not observed when patients
received only IA injections, suggesting a biological effect on subchondral bone by means of
IO infiltrations of PRP [9]. In another observational study, the combination of IA and IO
infiltrations exerted significant pain reduction and improvement in knee joint functionality
at 6 and 12 months after treatment in patients with severe knee OA [10]. Those patients
treated only with IA PRP did not show this improvement [11]. In an independent study,
the benefit provided by IO infiltration combined with IA injection of PRP to treat mild and
moderate knee joint degeneration was compared with an IA injection of PRP and of HA,
and the combination IO with IA injections of PRP resulted in superior clinical outcomes,
with sustained improvement in quality of life within 18 months after the treatment [12].
This technique was also developed for applications in hip OA [11].

Despite the good clinical response of patients to IO infiltrations of PRP, knowing the
biological mechanisms behind this improvement is essential in advancing the develop-
ment of more effective therapies. Aberrant behaviour of subchondral bone MSCs with
decreased proliferation and multipotency and increased osteoblastogenesis have been
previously reported in OA animal models and in human studies [13–16]. Another parame-
ter contributing towards the progression of OA is cellular senescence. The accumulation
of senescent cells and the presence of senescence associated secretory phenotype (SASP)
have also been described as features of OA [17]. The local clearance of senescent cells has
been shown to create a pro-regenerative environment in the joint of post traumatic OA
transgenic mice [18].

We therefore hypothesized that administering IO infiltrations of PRP combined with
IA injections in hip OA patients enhanced their subchondral bone MSC proliferation
capacity, reduced their senescence, and modified their gene expression in favour of MSC
multipotency and supporting cartilage regeneration. The present work is therefore aimed
to explore whether autologous PRP treatment had any stimulating effect on subchondral
bone MSCs in hip OA patients.

2. Materials and Methods
2.1. Patients

The investigation was performed using subchondral bone marrow aspirate (BMA)
samples from 12 patients with hip OA degrees 2 and 3 according to the Tönnis scale [19],
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and treated at the Arthroscopic Surgery Unit (UCA) with a combination of IO and IA PRP
infiltrations. The autologous PRP infiltrations were performed as described in the below
section and the time period between the two infiltrations was 14 days. Routine clinical
follow-up at 6 months after the second infiltration was used to assess the patient’s response
to treatment in this study. This follow-up included the clinical examination by the physician
as well as the Hip dysfunction and Osteoarthritis Outcome Score (HOOS) completed by
the patient at the different visits to the centre.

Positive response (referred to as ‘responders’ from now on) was defined according to
the physician assessment and a reduction in the HOOS pain score of at least 10 points from
the baseline (minimal clinically important improvement (MCII)) [20]. A HOOS pain score
of less than 10 points was classified as a negative response (referred to as ‘non-responders’
from now on). The patients’ demographics, clinical details, their medication or their
absence thereof along with their 6-month treatment response assessments are presented in
the Table 1.

Table 1. The patient demographics and clinical assessment before and after treatment.

Gender Age, Years Response Tönnis Medications

M 58 Positive 3 Unspecified treatment for arterial hypertension
F 61 Positive 2 None
F 56 Negative 3 Unspecified treatment for arterial hypertension
F 54 Negative 3 None
F 61 Positive 2 None
F 70 Positive 2 Thyroxine
M 61 Negative 2 Antihypertensives; Statins
M 40 Negative 2 None
F 55 Positive 3 None
F 64 Positive 3 None
M 56 Positive 3 Leflunomide
F 86 Negative 3 Escitalopram; Paracetamol

M: Male; F: Female.

2.2. PRP Preparation and Administration Procedure

The PRP preparation process has been previously described [10]. Briefly, venous blood
(72 mL) was withdrawn from patients in 9 mL sodium citrate 3.8% (w/v) tubes. This was
centrifuged at 580 g for 8 min at room temperature (RT) to collect the 2 mL plasma fraction
above the sedimented red blood cells (RBCs); care was taken to avoid the buffy coat layer.
PRP was activated with calcium chloride 10% (w/v) just prior to infiltration.

The administration of PRP included three different injections in different anatomical
locations performed in the operating room. First, one PRP IA injection was conducted,
followed by two PRP IO injections, according to the technique described by Fiz et al. [11].
Briefly, sedation of the patient was induced with a single dose of normal saline solution
as well as a single dose of midazolam (0.03–0.05 mg/kg) and fentanyl (3.2 mg/kg) in the
peripheral vein; a single or repeated dose of propofol was also administered (1–2 mg/kg),
depending on the duration of the infiltration. An IA injection guided by ultrasound was
conducted using an 18-gauge needle oriented in the same direction as the anterolateral-
distal arthroscopic portal. With a 30◦ of joint flexion to facilitate the infusion of the PRP
infiltration, 8 mL of PRP was injected into the joint space.

Next, with the guidance of a fluoroscope, an anterior–posterior view of the hip joint
was reached in order to perform the first IO infiltration into acetabulum. The trocar was
placed in the cranial–caudal direction, parallel to the horizontal plane and at an inclination
of 20◦. Once the trocar was introduced into the lateral acetabular wall and situated 1 cm
from the articular line, 5 mL of PRP was injected. Finally, the second IO injection was
performed into the femoral head whose point of entry was situated 1 cm lateral to the
sartorial muscle. The femoral head was approached at the union of the femoral neck
and head, with the trocar orientated in the anterolateral–distal direction. The trocar was
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introduced 1 cm below from the articular surface, and 5 mL of PRP was injected. Prior to
infiltration, 5 mL of BMA was collected from femoral head subchondral bone for this study
and labelled as ‘Pre’ (before treatment). During the first few hours after treatment, assisted
walking with crutches and a minimal initial load was recommended due to the intervention
itself. The next day, the patient could bear weight and take analgesics (acetaminophen)
as required for pain, with limited physical activity. The same procedure was performed
14 days after the first treatment, and another 5 mL of BMA was collected and labelled as
‘Post’ (after treatment).

2.3. Bone Marrow Aspirate Sample Processing and the Establishment of MSC Cultures

All BMA samples (5 mL) were processed as previously described [21] Following the
lysis of RBCs using ammonium chloride, and after washing the cell pellet twice with 10 mL
of PBS, the nucleated cells were re-suspended in complete MSC media (StemMACS™ MSC
Expansion media, Miltenyi Biotec, Bisley, UK) in a volume equivalent to the original BMA,
then seeded in a 6-well plate (Corning, New York, NY, USA ) at 750 µL/well containing 1 mL
of StemMACS™ media to enable MSC attachment. After 48 h, the media were changed to
low glucose DMEM supplemented with antibiotics and 10% human serum (Sigma-Aldrich,
Dramstadt, Germany) for MSC expansion to passage 1 (p1). We have previously shown
that the expansion of MSCs, particularly in FCS-containing media, affects their colony
characteristics and gene expression profiles, while the use of human serum leads to a better
preservation of their native characteristics [22,23]. Half media changes were performed
twice weekly, and the cells were trypsinised and expanded when approximately 60–70%
confluent. P1 MSCs were then frozen at −80 ◦C in aliquots and used for further analysis,
as described below.

2.4. Colony-Forming Unit-Fibroblast (CFU-F) Assay and Colony Analysis

The colony-forming unit-fibroblast (CFU-F) assay was used to quantify the highly-
proliferative colony-forming cells in p1 cultures [24] and to compare their proportions in
Pre- and Post-p1 MSC cultures. For the assay, the frozen vials were first defrosted and
revived in StemMACS™ media with no further culture expansion. Cell seeding densi-
ties for the CFU-F assay were optimised using 1000, 2000, and 5000 cells/100 mm per
Petri dish (Corning) from three randomly selected p1 cultures to generate a minimum of
30 colonies/dish for the quantification of colonies. Based on these optimisation results, all
of the remaining p1 cultures were seeded at 5000 cells/dish and the data were presented
relative to 5000 seeded cells. In brief, 5000 cells were seeded in duplicate in the 100 mm
Petri dishes in 10 mL of StemMACS™ media for 48 h in an incubator at 37 ◦C and 5% CO2.
After 48 h, StemMACS™ media were aspirated and the dish was washed with 10 mL of
PBS. After the wash, 10 mL of DMEM (ThermoFisher, Waltham, MA, USA) containing
10% human serum (DMEM + HS) was added to each of the Petri dishes and half of the
media were changed once a week. On day 14, the media were aspirated, the colonies were
fixed using 3.7% formaldehyde (Fisher Scientific, NewHampshire, USA), and stained with
1% (w/v) methylene blue (Sigma-Aldrich). A colony was defined as consisting of at least
50 cells. After staining, the dishes were scanned, and the number of colonies were counted
and averaged followed by investigating the colony areas [14].

Colony areas are considered as indicative of the proliferative capacities of colony-forming
MSCs [25,26]. In brief, scanned images were analysed using ImageJ software (version 1.53q,
NIH). The images were converted to ‘grey scale’ and all of the colonies were given an outline
manually; colony areas were calculated by the software based on a 100 mm (dish diameter)
scale. The analysis was performed on the Pre and Post cultures and subsequently correlated
with donor age, treatment response, and other laboratory measurements.

2.5. Senescence Assay

The accumulation of senescent cells including MSCs is considered as one of the cellular
mechanisms behind OA pathology [17,18]. To measure the proportions of senescent cells in
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p1 Pre and Post MSC cultures, the gold-standard histochemical senescence-associated beta
galactosidase (SA-β-gal) assay was performed according to the manufacturer’s protocol
(Sigma-Aldrich), as previously described [15,27]. P1 MSCs were defrosted and 4 × 104 cells
from each sample were plated in duplicate wells of a 6-well plate overnight for adhesion
in 1.5 mL of StemMACS™ media. The next day, the media were aspirated and cells were
washed in PBS, then 1.5 mL of fixation buffer was added to the plates and incubated for
6–7 min at RT. The cells were then rinsed three times with PBS and stained using 1 mL of the
staining mixture prepared as per the manufacturer’s protocol. The dishes were then sealed
in parafilm and incubated at 37 ◦C without CO2 overnight. The following day, the cells
were observed for the presence of blue (or SA-β-gal positive cells) under light microscopy.
A minimum of 100 total cells/well were counted by three independent observers (PG, EJ,
and HO); the data were averaged, and the percentage of blue stained cells was presented
as the percentage of total counted cells.

2.6. Gene Expression

The study of gene expression (GE) in p1 MSCs was performed in order to evaluate any
transcriptional changes in the cells related to proliferation/senescence, multipotentiality,
osteo- and chondrogenesis as well as cartilage remodelling and support for cartilage an-
abolism [26]. For GE, revived p1 cells were lysed using lysis buffer (Norgen Biotek, Ontario,
Canada) and the cell lysate was frozen at −80 ◦C. RNA extractions for all samples were
performed as per the manufacturer’s protocol using columns provided by the manufacturer.
RNA quantity and quality was assessed using a Nanodrop spectrophotometer. The RNA
was then frozen at −80 ◦C until cDNA preparation. cDNA was prepared by adding the
reverse transcriptase master mix (Fluidigm) to the RNA samples in the thermocycler (5 min
at 25 ◦C, 30 min at 42 ◦C, 5 min at 85 ◦C, and then held at 4 ◦C). On completion, the
cDNA was pre-amplified [26,28] with pooled Taqman assays and the pre-amplification (PA)
reaction mix using a 14-cycle protocol (2 min at 95 ◦C, 15 s at 95 ◦C, 4 min at 60 ◦C, and
then held at 4 ◦C). Finally, the PA samples were added to the 48.48 GE Fluidigm Integrated
Fluid Circuit (IFC) along with 48 Taqman probes (listed in Supplementary Table S1) and
loaded onto the Biomark platform as per the manufacturer’s instructions. HPRT1 was used
as a reference gene.

2.7. Statistical Analysis

All data were analysed using Graph Pad Prism software (version 9.0). For any given set
of data, Gaussian distribution was first tested using the Shapiro–Wilk and the Kolmogorov–
Smirnov tests for normality. Paired tests (Pre versus Post) were used to analyse the data
where possible, otherwise non-parametric tests were used. The Spearman correlation test
was used to study the correlations with patient ages.

3. Results
3.1. Patients Characteristics and Response to Treatment

Twelve patients diagnosed with hip OA participated in this study. Of these, four
were men and eight were women and their median age was 59.5 years old (range 40–86)
(Table 1). Seven out of 12 patients responded well to treatment and five patients were
considered non-responders (Table 1). Among the males, the response rate was 50% (2/4).
In females, the response rate was 62.5% (5/8). The Tönnis score of all patients ranged
between 2 and 3, irrespective of the treatment response. When the cohort was split based
on age (using 60 years old as a cut-off point), the response rate in the older group was
66.7% (4/6) compared to 50% (3/6) in the younger patients. There were very few patients
with concomitant medication, as seen in Table 1. COX-2 inhibitors were not taken as it is
recommended not to take them during this PRP treatment.
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3.2. Platelet-Rich Plasma Characterization

The median PRP platelet concentration was 355.5 × 103 platelets/µL (CI: 276 to
398), with a concentration factor of 1.96 (CI: 1.83 to 2.14) above the baseline. Negligible
amounts of RBCs or leukocytes were present (Table 2) and the PRP was classified as 13-00-11
according to the latest coding system for PRP studies [4].

Table 2. The characteristics of patient derived PRP application.

PRP Preparation

Blood volume taken 72 mL
Anticoagulant Sodium citrate 3.8% (w/v)
System Close
Centrifugation Once, 580 g/8 min
Final PRP volume 10 mL (IO) plus 8 mL (IA)

PRP Characteristics

PRP Type 13-00-11
MPV 10.1 fL (CI: 9.30–10.50)
Red Blood Cells <0.01 × 106/µL
White Blood Cells <0.05 × 106/µL
Activation CaCl2 10% (w/v)

Application Characteristics

Formulation type Liquid
Administration route IO plus IA
Dosage 2 infiltrations at two weeks interval

Volume IO: 10 mL (5 mL acetabulum + 5 mL femoral head)
IA injection: 8 mL

Dose (range of platelets) IO injection: 2.76 × 109–3.98 × 109

IA injection: 2.21 × 109–3.18 × 109

Tissue Cartilage, synovium, subchondral bone
Pathology Hip osteoarthritis

PRP: platelet-rich plasma; IA: intraarticular; IO: intraosseous; MPV: mean platelet volume.

3.3. Colony Numbers and Characteristics

Paired colony data were available for 10 patients. On completion of the 14-day cul-
ture period, the colonies were fixed, stained, counted, and averaged for duplicate dishes
(Figure 1A). There were no significant differences in the number of colonies per 5000 seeded
cells between the Pre and Post MSCs (Figure 1B) and no correlations were found between
the proportions of colonies and donor age for both the Pre and Post samples (Supplementary
Figure S1).

After the analysis of colony numbers, colony areas that are indicative of the prolifer-
ative capacity of individual MSCs [23,25] were analysed using ImageJ software, version
1.53q, NIH, Bethesda, MD, USA. Altogether, 1197 colonies from the Pre and 1370 colonies
from the Post samples were analysed, and the average colony area was found to be signifi-
cantly 14.5% higher (p < 0.0001) in the Post samples (median = 8.30 mm2) compared to the
Pre samples (median = 7.74 mm2) (Figure 1C). Interestingly, an even larger (28.2%) increase
in colony areas was observed in older patients (>60 years old), from a median of 6.87 mm2

in the Pre samples to a median of 8.81 mm2 in the Post samples, p < 0.0001, Figure 1D).
In agreement, in the Pre samples, colony areas displayed a trend for a decrease in older
patients, whereas this trend was no longer evident in the Post samples (Supplementary
Figure S1). Altogether, these data indicated an increase in the MSC proliferative capacity
after PRP infiltrations, particularly in older patients.
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tions (n = 10 patients, symbols represent averages of the duplicate dishes). (A) Images of duplicate
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3.4. MSC Multipotentiality Marker Expression and Proportion of Senescent Cells

Next, the MSC multipotentiality marker expression and the proportions of senescent
cells in p1 cultures were explored (Figure 2). MSC multipotentiality gene expression was
measured by qPCR for SOX9 (Sex determining region Y box 9) and COMP (Cartilage Oligomeric
Matrix Protein) (chondrogenesis markers), PPARγ (Peroxisome Proliferator Activated Receptor
Gamma) and FABP4 (Fatty Acid Binding Protein 4) (adipogenesis markers), and RUNX2
(Runt related transcription factor 2) and IBSP (Integrin binding sialoprotein) (osteogenesis mark-
ers) [29] (Figure 2A). As expected, trends for the lower expression of all multipotentiality
genes were seen in older patients (>60 years old). There was a significant increase in the
level of SOX9 expression in the Post samples in younger patients compared to the Pre
samples in the older patients (Figure 2A). Overall, these data indicated that p1 cultures
from hip OA patients expressed MSC multipotentiality genes, but PRP infiltrations only
induced small changes in the levels of their expression.

Senescence is the termination of the proliferative capacity of cells and the accumulation
of senescent cells has closely been associated with OA, so targeting cellular senescence
represents an attractive therapeutic option [17,18]. Therefore, the level of senescence in p1
MSCs was next investigated to explore any effect of the PRP infiltrations on the senescence
process (Figure 2B,C).

Unexpectedly, the proportions of senescent cells were found to be significantly in-
creased in the Post samples in comparison to the Pre samples (p = 0.043) (Figure 2B), but
not in all patients. Rather than a direct effect of PRP infiltrations, senescence increases in
some patients could have been a result of a rapidly progressing OA process in the affected
joint. As senescence is closely associated with advancing age [30,31], the data were next
segregated on the basis of the patients’ age, and while no statistically significant differences
were found, the increase in senescent cells in the Post samples was less prominent in the
older patients compared to the younger patients (Figure 2C). On this basis, it could be hy-
pothesised that PRP treatment might have provided some degree of the ‘resistance’ of MSCs
to the OA-driven senescence process, and that it might be more effective in older patients.
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Figure 2. The MSC multipotentiality marker expression and the proportions of senescent cells in p1
MSCs before (Pre) and 2 weeks after (Post) PRP infiltrations. (A) Relative expression of SOX9, COMP,
PPARγ, FABP4, RUNX2, and IBSP in the Pre and Post samples segregated by age. (B) Comparison of
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3.5. MSC Changes in Relation to Treatment Response

As seen above, MSCs from older patients (>60 years old) appeared to respond better
to PRP, at least in the CFU-F and senescence assays, compared to younger patients. Next,
any differences in MSC behaviour were analysed in relation to the patients’ responses to
therapy. The response was evaluated at 6 months after the second injection and was based
on HOOS scoring and clinical examination conducted by a physician at the 6-month follow
up time point (Table 1). Seven out of 12 patients (four older, three younger) were considered
good responders, the other five (two older, three younger) were defined as non-responders.

Comparing the CFU-F assay results between the responders and non-responders,
the colony area increases were more prominent in the responders (13.2% increase, from a
median of 8.12 mm2 in Pre samples to a median of 9.19 mm2 in Post samples) compared to
the non-responders (5.1% increase, from a median of 7.39 mm2 in Pre samples to a median
of 7.77 mm2 in the Post samples, p < 0.0001) (Figure 3A). For the senescence assay, the
segregation of data between the responders and non-responders indicated a lesser increase
in the senescent cells in the Post samples in responders compared to the non-responders,
but the differences failed to reach statistical significance (Figure 3B).

Gene expression changes were next evaluated separately for the responders and non-
responders (Table 3) and any genes with more than 2-fold differences between the Pre and
Post in either group were analysed in more detail (Figure 3C). Any genes for which the
detection was found to be highly donor variable and very low (i.e., expression detected
in less than 50% of samples) [26,32] were eliminated from the analysis. Four groups of
molecules could be identified based on different patterns of expression (Figure 3C). In group
A (BMP2, SPP1, PTHLH), the gene expression changes in the non-responders were in the
opposite direction to the responders, a >2-fold increase in the non-responders, and a >2-fold
decrease in responders. In the group B genes (BGLAP, IBSP, OPG, MMP13, and ADAMTS5),
a similar ‘opposite direction’ pattern was observed, however, the >2-fold changes were
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seen only in one group of patients (mostly increased non-responders). The behaviour of the
group C genes (COL1A1, MMP2, SERPINE1, TIMP1) was similar to the group B genes but
in contrast to the group B genes, they was a >2-fold increase in the responders (Figure 3C).
Finally, the group D genes (SPARC, E11, SOX9) were >2-fold reduced in the non-responders
but not in the responders (Figure 3C). Although no statistically significant differences could
be found due to the small group sizes, differentially-expressed genes could be identified
and interestingly, most of these genes belonged to the osteogenesis, chondrogenesis, and
cartilage homeostasis categories. Altogether, these data suggest that MSC gene expression
changes following PRP infiltrations could be partly contributing to inducing joint tissue
responses, in addition to a significant enhancement in the MSC proliferation seen in the
CFU-F assay.
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Table 3. A list of the genes with median values and fold differences between the Pre and Post samples
in the responders and non-responders.

Genes Median Relative Expression Values Fold Differences, Post/Pre

Pre/R Post/R Pre/NR Post/NR R NR

RUNX2 0.5016 0.6905 0.5779 0.8294 1.376595 1.435196
ALP 0.5477 0.9033 0.3409 0.5918 1.649261 1.735993
IBSP 0.3944 0.05968 0.22 0.3793 0.151318 1.724091

COL1A1 4.653 14.38 4.677 3.967 3.090479 0.848193
BGLAP 1.02 0.57 0.5216 1.952 0.558824 3.742331
SPP1 1.001 0.1541 0.4335 1.323 0.153946 3.051903

SPARC 12.91 11.64 11.16 4.895 0.901627 0.43862
OPG 1.34 0.8102 0.4803 0.9831 0.604627 2.046846

ANKH 0.4462 0.5939 0.5231 0.5771 1.331017 1.103231
GREM1 0.555 0.9183 0.3949 1.152 1.654595 2.917194

E11 0.03657 0.04949 0.03373 0.01627 1.353295 0.48236
BMP2 0.1449 0.01558 0.005887 0.05139 0.107522 8.729404

PTHLH 0.3283 0.03508 0.01772 0.3664 0.106853 20.6772
SOX9 0.7716 0.4732 0.7836 0.2052 0.613271 0.261868
COMP 0.6122 0.7304 0.6867 1.027 1.193074 1.495558
ACAN 0.9876 1.029 0.6267 1.112 1.04192 1.774374
MMP1 0.1341 0.4476 0.06261 0.1486 3.337808 2.373423
MMP2 2.528 9.414 2.76 1.982 3.723892 0.718116
MMP13 0.4501 0.4859 0.3275 1.014 1.079538 3.096183

ADAMTS4 0.02331 0.01155 0.01217 0.03424 0.495495 2.813476
SERPINE1 2.658 6.356 2.449 1.942 2.391272 0.792977

TIMP1 7.729 20.88 6.346 5.652 2.701514 0.89064
TIMP2 2.32 3.828 2.023 2.37 1.65 1.171527
TIMP3 4.378 7.125 2.982 1.84 1.627455 0.617036
PTGS2 1.096 0.8219 1.066 1.071 0.749909 1.00469
PPAR-
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4. Discussion

Joint-sparing interventions such PRP IA injections are becoming popular in OA man-
agement [33]. The biological mechanisms behind PRP action and their links to improve-
ments in clinical outcomes remain poorly understood but are believed to relate to both the
PRP cellular composition and host (patient-related) factors [34–36]. In comparison to PRP
joint injections, in which PRP primarily acts on the cartilage and synovium, IO PRP infiltra-
tions provide an advantage of better access to the subchondral bone and bone–cartilage
interface, potentially targeting the whole spectrum of OA-affected tissues. Furthermore,
there is a possibility of a longer-term retention of PRP or its constituents in the target tissues,
in contrast to the joint fluid that is likely to exchange its constituents with plasma more
rapidly during locomotion.
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In this study, we investigated the effect of autologous PRP on MSCs resident at the
site of an IO PRP infiltration in patients with hip OA. BMAs were obtained before and
2 weeks after the first infiltration and MSCs were minimally-cultured in media containing
human serum, which is known to better preserve MSC native characteristics [22,37]. This,
and the fact that the study also investigated the in vivo effect of PRP in relation to clinical
outcomes, makes our study very novel. To study the effects of PRP on MSC proliferation, we
compared the number of colonies and colony areas in early-passage MSC cultures. We also
investigated 47 transcripts associated with various MSC functions including osteogenesis
and bone remodelling, chondrogenesis and cartilage homeostasis, adipogenesis, MSC
support for angiogenesis as well as cell cycle and senescence-related molecules. As OA is
an age-related disease and ageing is closely associated with cellular senescence [17,30,31],
we evaluated the percentages of the senescent cells in MSCs following infiltrations. Finally,
keeping the former in mind, we separated the data based on patient age and reported the
clinical responses for each of these evaluations to further dissect the findings.

We first investigated any changes in MSCs at the single-cell level using a well-
established CFU-F assay [25]. While we found no significant differences with respect
to the number of colonies formed in the Post samples, the colony areas in the Post samples
were found to be significantly higher compared to the Pre samples. This is indicative of
the higher rates of proliferation of single MSCs post the PRP infiltrations. These results are
also in line with one of our previous findings wherein we also found a significant increase
in the colony area of MSCs from the synovial fluid (SF) following knee joint distraction
(KJD) surgery, another joint-sparing intervention for OA [26]. In agreement, another clinical
study described an enhancement of the in vivo MSC proliferation following autologous
PRP injections [38] into the iliac crest, which coincided with an increase in the systemic
and local concentrations of the PDGF-BB and FGF-2 growth factors known to be mitogenic
for MSCs. Watt and co-workers also demonstrated an increase in the local FGF-2 in the
synovial fluid 6 weeks post joint distraction [39]. While this is suggestive of the potential
role of FGF-2 in mediating this effect, it remains to be further explored.

It is noteworthy that we found higher rates of response and better increases in the
colony areas in older patients compared to all patients, suggesting that clinically, the older
patients’ MSCs might respond better to PRP infiltrations than the MSCs from the younger
patients. This is in line with our previous study when we investigated the responses of
young- and old-donor MSCs to ‘young’ human serum and found that colony area increases
were more pronounced in older donors [23]. These findings suggest that older individuals
might gain more benefit from PRP treatments, and that the administration of allogeneic
‘young’ donor PRP may be considered as a future step. Indeed, IO injections of PRP from
young rats prevented age-related bone degeneration in old rats in a pre-clinical study [40].
Interestingly, older donor MSCs also appeared to resist the accumulation of senescent
cells better than the younger donor MSCs. Even though the data did not reach statistical
significance, this presents a further insight into the potentially better effectiveness of PRP
treatments in older patients. The MSC response after intraosseous PRP infiltration may be
similar to the effect of cell therapies, in which MSCs from different niches are implanted
with the intention of harnessing the therapeutic properties of these cells [41]. Thus, the in
situ stimulation of MSCs by PRP may favour their “therapeutic effect”, considering they
offer a cost effective and less invasive process than cell therapies with fewer regulatory
limitations [42,43].

Finally, when we compared the data in terms of the response to treatments, we found
that the MSC colony area increases after PRP infiltrations were stronger in the responders
compared to the non-responders and that the responders’ MSCs also appeared to better
resist the accumulation of senescent cells compared to the non-responders, suggesting
that the treatment potentially activated mechanisms that helped these cells abstain from
becoming senescent [44,45]. In terms of gene expression, the responder and non-responder
MSCs tended to differ in the expression of genes associated with bone formation and
cartilage turnover including osteoblast markers, matrix metalloproteinases, and their in-
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hibitors. However, the differences failed to reach statistical significance due to the small
group sizes. While these molecules represent good candidates to take onto a larger study,
other relevant pathways should also be considered. For example, a recent study investigat-
ing the in vitro responses of macrophages and synovial fibroblasts to PRP in patients with
knee OA demonstrated that the pathways most significantly affected by PRP in fibroblasts,
the cells the closest in nature to MSCs, were related to the cell cycle, DNA synthesis, and
cell survival [34]. Future investigations should therefore investigate larger panels of genes,
encompassing many more markers of cell proliferation, survival, and apoptosis as well as
assess many inflammation-driven signalling pathways that might be activated in MSCs
from OA joints.

5. Conclusions, Limitations and Future Directions

Overall, we present the first-in-human evidence of subchondral bone MSC responses
to IO PRP infiltrations. We also combined this evidence with the clinical responses of the
patients to correlate the impact of PRP infiltrations on MSCs from OA patients, making
this a novel study. Our data point towards better MSC responses to this treatment in older
patients compared to the younger patients. Notably, combined IO and IA PRP infiltrations
boosted the subchondral MSC proliferative and stress-resistance capacities, especially in
patients over 60 years old. In terms of gene expression, there were no differences that were
statistically significant. However, trends of gene expression within the defined groups
between the responders and non-responders were intriguing and merit further research in
the field.

We acknowledge that our sample size was limited, particularly following segregation
into the different groups, but we used human patient samples from the site of infiltration
reflecting as closely as possible the conditions of MSCs in their native target tissue. It
should also be noted that, due to methodological limitations, the impact measured is for
half of the treatment (one infiltration) and not the full treatment (two infiltrations). Thus,
it is possible that the final effect will be more pronounced due to repeated injections [46],
although further research is needed to validate this.

Future investigation involving the use of uncultured MSCs in a larger patient group
should give a better indication of the magnitude and clinical relevance of differences identi-
fied in the present work. In vivo, MSCs do not exist in isolation and co-cultures with other
joint-resident cells may aid in uncovering other cellular and molecular mechanisms of PRP
action in vivo, leading to potential ‘treatment response’ biomarkers to PRP administrations.
Moreover, based on our findings, the future study of an ‘anti-ageing’ function of PRP,
performed using direct comparisons between autologous and allogenic PRP treatments,
deserves special attention. Furthermore, adapting techniques such as next-generation se-
quencing (NGS) present tremendous potential and novelty in terms of uncovering these
mechanisms, especially considering the anti-ageing function of PRP on MSCs [47]. Alto-
gether, our study has presented evidence that is the first of its kind to assess the impact
of IO PRP infiltrations on MSC function in OA patients. At the same time, this work has
paved the way for future research to further dissect the mechanisms involved in the same
with the aim to enhance treatment for OA patients.
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