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Abstract

In network meta-analysis (NMA), we synthesize all relevant evidence about

health outcomes with competing treatments. The evidence may come from

randomized clinical trials (RCT) or non-randomized studies (NRS) as individ-

ual participant data (IPD) or as aggregate data (AD). We present a suite of

Bayesian NMA and network meta-regression (NMR) models allowing for

cross-design and cross-format synthesis. The models integrate a three-level

hierarchical model for synthesizing IPD and AD into four approaches. The

four approaches account for differences in the design and risk of bias (RoB) in

the RCT and NRS evidence. These four approaches variously ignoring differ-

ences in RoB, using NRS to construct penalized treatment effect priors and

bias-adjustment models that control the contribution of information from high

RoB studies in two different ways. We illustrate the methods in a network of

three pharmacological interventions and placebo for patients with relapsing–

remitting multiple sclerosis. The estimated relative treatment effects do not

change much when we accounted for differences in design and RoB. Conduct-

ing network meta-regression showed that intervention efficacy decreases with

increasing participant age. We also re-analysed a network of 431 RCT compar-

ing 21 antidepressants, and we did not observe material changes in interven-

tion efficacy when adjusting for studies' high RoB. We re-analysed both case

studies accounting for different study RoB. In summary, the described suite of

NMA/NMR models enables the inclusion of all relevant evidence while incor-

porating information on the within-study bias in both observational and

experimental data and enabling estimation of individualized treatment effects

through the inclusion of participant characteristics.
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Highlights

What is already known?

The evidence in network meta-analysis (NMA) typically comes from random-

ized clinical trials (RCT) where aggregate data (AD) are extracted from pub-

lished reports. Retrieving individual participant data (IPD) allows considering

participant covariates to explain some of the heterogeneity/inconsistency in

the network and identify effect modifiers. Additionally, evidence from non-

randomized studies (NRS) reflects the reality in clinical practice and bridges

the efficacy-effectiveness gap.

What is new?

This paper describes a Bayesian suite for evidence synthesis which extends and

integrates four different approaches that combine RCT and NRS evidence into

a three-level hierarchical model for the synthesis of IPD and AD. We call this

suite a cross-NMA/NMR model since it enables cross-design and cross-format

synthesis.

Potential impact for Research Synthesis Methods readers outside the

authors' field

By describing and demonstrating the cross-NMA/NMR suite of models, we

hope to facilitate the inclusion of all relevant evidence that comes from multi-

ple sources. Synthesis of all sources of evidence and formats of data, will

increase power and relevance of NMA results.

1 | INTRODUCTION

Network meta-analysis (NMA) is a widely used tool to syn-

thesize the available evidence that may vary in design and

format.1–3 Evidence may come either from a randomized

clinical trial (RCT) or a non-randomized study (NRS); as

either individual participant data (IPD) or aggregate data

(AD). As heterogeneity is a common attribute of evidence

synthesis, many published comparative effectiveness

reviews account for covariates that modify the treatment

effect in a network meta-regression (NMR).4,5 The effect of

study-level covariates can be modelled using only AD,

while IPD is needed to adjust for patient-level covariates

to avoid aggregation bias6 and confounding when NRS are

included. The inclusion of these participant characteristics

also enables estimating individualized treatment effects.

Matching-adjusted indirect comparison6–8 and simu-

lated treatment comparison methods8 have been used to

combine evidence from IPD and AD using reweighting

techniques and regression models, respectively, to adjust

for effect modifiers. However, this adjustment needs to

be done separately for each treatment comparison and

requires IPD for at least one of each treatment compari-

son. The performance of these methods has been investi-

gated in two simulation studies. Phillippo et al. found

that matching-adjusted indirect comparison performs

poorly when its underlying assumptions are violated.9

Remiro-Az�ocar et al. showed that the current use of sim-

ulated treatment comparison method yields often biased

estimates.10 Jansen proposed combining IPD and AD in

an NMA by integrating the underlying IPD distribution

of the AD studies.11 The method was applied initially to

binary outcomes and extended to other data types.12 The

three-level hierarchical model extends the standard NMR

model combining IPD and AD by introducing a new level

differentiating between the two formats.11,13–15

While most published NMAs only synthesize RCT

evidence, there is growing interest incorporating non-

randomized or real-world evidence in these analyses.16,17

The inclusion of evidence from NRS has many potential

advantages, such as better reflected clinical practice reali-

ties; the data in follow-up studies are collected over rela-

tively long time periods; and finally, NRS are essential

when RCTs are less feasible (e.g., in rare conditions).

While RCT evidence is considered to be of lower risk of

bias when compared with NRS, a Cochrane review found

little evidence that RCTs and NRSs provide different esti-

mates of treatment effect.18 Also, many empirical studies

have identified different types of bias possibly present in

many RCTs. For example, Schulz et al.19 found that RCTs

with inadequate allocation concealment or lack of blind-

ing tended to exaggerate the estimated treatment effect

284 HAMZA ET AL.
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and provide biased results. Similarly, Chalmers et al.20

showed major differences between treatment and control

effects in unblinded trials, as well as trials lacking proper

randomisation when compared with double-blinded studies.

Wood et al.21 found that the treatment effect estimates of

subjective outcomes (outcomes are dependent on judgment

from an assessor or patient-reported) were exaggerated for

studies with poor allocation concealment or lack of blinding.

Several methods have been proposed for combining

various designs in NMA contexts. Three approaches have

been proposed to synthesize RCT and NRS evidence22,23:

the first combines studies of different designs ignoring

their differences (we call this the naïve approach); an alter-

native is to use NRS evidence to construct penalized treat-

ment effect priors; and a third approach is to add a new

level to reflect differences in study designs using a three-

level hierarchical model. This last approach requires the

network to include several studies on each design which is

not the case for most NMAs.23 Dias et al.24 presented an

NMA model that adjusts for the within-study risk of bias

(RoB) of RCTs by adding a bias indicator. The bias indica-

tor was assigned a binary value of 0 for low RoB studies;

1 for high RoB studies; and a uniform distribution for

studies with unclear RoB. Verde25 proposed to model the

unadjusted and adjusted relative treatment effect simulta-

neously using a bimodal normal distribution. The model

was developed for pairwise meta-analysis.

We extend the two RoB adjustment methods described

above by accounting for the uncertainty in each RoB judg-

ment in Dias et al.'s model and by drawing from Verde's

approach into NMA.24,25 Then we build a Bayesian cross-

NMA/NMR model by integrating the approaches that com-

bine RCT and NRS evidence into the three-level hierarchi-

cal model, which combines IPD and AD. This model

enables estimating treatment effects for specific subgroups

of patients through the inclusion of participant characteris-

tics. Bias-adjusted models can be used to explore the impact

of the different levels of bias in RCTs. We will illustrate this

by modelling the risk of bias in a network of RCTs with AD

comparing various antidepressants.

This work has been done within the HTx project sup-

ported by the European Union, lasting for 5 years from

January 2019. The main aim of HTx is to create a frame-

work for the Next Generation Health Technology Assess-

ment (HTA) to support patient-centred, societally

oriented, real-time decision-making on access to and reim-

bursement for health technologies throughout Europe.

2 | EXAMPLES

We analysed two networks of interventions: one of phar-

macological agents in relapsing–remitting multiple

sclerosis (RRMS) and another of antidepressant treat-

ments (Figure 1). In both examples, RoB judgments were

formulated using the Cochrane RoB tool 1.26

2.1 | RRMS drugs network

The agents to manage RRMS were compared in systematic

reviews of RCTs and NMAs.27,28 We contribute to the meth-

odological literature by analysing the IPD and AD from five

RCTs29–33 and the Swiss Multiple Sclerosis Cohort (SMSC).34

We defined the inclusion criteria for patients from the

SMSC to be consistent with the RCTs' criteria. We only

included people from the SMSC with RRMS treated with

any of the three active agents shown in Table 1. Compared

with available RCTs, individuals in the SMSC are followed

for longer. To avoid immortal time bias, we specified the

length and the start of follow-up for each individual.35,36

Since 2 years was the typical duration of the RCTs we

included, we defined cycles of length of 2 years from when

a patient initiated a treatment in SMSC; we recorded their

outcome during these 2 years of follow-up.

To investigate the effectiveness of the treatments in

subgroups of people, we explored whether age at the time

of treatment initiation modifies the treatment effect. Indi-

viduals with RRMS have flare-ups of relapses or symptoms;

between these flare-ups, they are free of symptoms.37 Our

outcome of interest is relapse at 2 years of follow-up. We

use the odds ratio (OR) to compare treatments. When OR

of treatment A versus B (ORAB ¼ oddsA=oddsB) is less than

1, treatment A is more effective than treatment B.

Figure 1a, Table 1 and Data S1–S3 summarize the

data available, their format and the RoB in each study.

2.2 | Antidepressants

Our data set includes AD from 431 RCTs (263 at moder-

ate RoB and 168 at low RoB) comparing 21 antidepres-

sants and placebo.38 The outcome of interest is response

to treatment defined as 50% reported reduction in depres-

sion symptoms. In the original article, the authors per-

formed a sensitivity analysis by including only low RoB

studies in their analysis.38 We re-analysed their data set

by controlling the impact of information from studies at

different levels of RoB (The data set is available at

https://data.mendeley.com/datasets/83rthbp8ys/2).

3 | METHODS

We review existing NMR models to combine different

data formats—IPD or AD—in this section. We then

HAMZA ET AL. 285
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extend these models by combining the evidence from RCT

and NRS in four different ways. Table 2 provides an over-

view of these four models and Table 3 summarizes the

notation used. All models we later introduce are implemen-

ted in a new R package called crossnma available on CRAN

(https://CRAN.R-project.org/package=crossnma). The R

code for the analysis of both examples and the antidepres-

sant data set can be found at the following URL: https://

github.com/htx-r/crossnma-theoretical-paper-analysis.

3.1 | Synthesizing cross-format data: IPD
and AD

To combine IPD and AD data into the three-level hierar-

chical model of network meta-regression, we divided the

model into three parts; in the first two parts, the model is

set for IPD and AD separately. Next, we present how we

combined the evidence from both parts. We describe all

models assuming binary outcomes; however, they can be

adapted easily to other outcome types, such as time-to-event

data, as described by Saramago et al.39 The NMA models

are simply the NMR models without covariate terms.

Part I: NMR model for IPD studies

Assuming yijk is a binary outcome of participant i in study

j under treatment arm k, we place a Bernoulli distribu-

tion for yijk with a probability of an event to occur pijk .

This probability is then linked to the control/treatment

effect via a logistic transformation. The study-specific

baseline effect ujb is the log-odds in the reference treat-

ment b in that study. The treatment effect δjbk represents

the log odds ratio of treatment k relative to the reference

treatment b. Both effects δjbk and ujb are defined when

the participant and mean covariates equal zero.

dimethyl fumarate

glatiramer acetate

natalizumab

placebo

(a)

(b)

FIGURE 1 Network plots of

(a) treatments for patients with

relapsing–remitting multiple sclerosis

compared in randomised controlled

trials (solid, grey edges) and in the Swiss

Multiple Sclerosis Cohort (dashed, black

edges). The outcome is relapse in 2 years

(b) antidepressants and placebo

compared in randomised clinical trials.

The outcome is response to treatment.

The thickness of the edges is

proportional to the number of trials

comparing each pair of treatments

[Colour figure can be viewed at

wileyonlinelibrary.com]
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To estimate subgroup-specific treatment effects, we

consider the covariate effect by adding the following

three parameters (i) a regression coefficient, β0j, which

captures the prognostic effect of the covariate in study j;

(ii) a between-study regression coefficient, βB1,jbk, which

quantifies the interaction between the relative treatment

effect and the mean covariate value across studies; and

(iii) a within-study regression coefficient, βW1,jbk, which

models the treatment-covariate interaction effect at the

individual level. The two coefficients β0j and βW1,jbk are

estimated using the participant-level covariate xijk, while

βB1,jbk requires only the study mean covariate ( xj) that is

often reported in the publication. The term βB1,jbk�βW1,jbk
quantifies the discrepancy among the between- and the

within-covariate estimates or the aggregation bias.40 In

the following, we summarize the likelihood and the para-

metrisation of the model in IPD studies:

yijk �Bernoulli pijk

� �

Logit pijk

� �
¼

ujbþβ0jxijk if k¼ b

ujbþδjbkþβ0j xijkþ if k≠ b

βW1,jbkxijkþ βB1,jbk�βW1,jbk

� �
xj:

8
>><

>>:

where j¼ 1,…,nsIPD, and nsIPD is the total number of IPD

studies.

Part II: NMR model for AD studies

We model the published information from each AD study

next. For each treatment k in study j, we place a binomial

distribution for the corresponding number of events rjk
with sample size njk and probabilities of the event to

occur p:jk.

rjk �Bin p:jk,njk

� �

Logit p:jk

� �
¼

ujb if k¼ b

ujbþδjbkþβB1,jbk xj if k≠ b:

(

We incorporate the study-level covariate effect by

adding only βB1,jbk xj: Here, j¼ 1þnsIPD,…,nsIPDþnsAD
where nsAD is the total number of AD studies.

Part III: Combine the evidence from IPD

and AD.

We combine the relative treatment effects and the

between-study regression coefficients from IPD and AD

parts via an exchangeable model

δjbk �N dAk�dAb,τ
2

� �
,βB1,jbk �N BB

1,Ak�BB
1,Ab,τ

2
B

� �
,

where j¼ 1,…,nsIPDþnsAD.

The within-study regression estimates from only IPD

studies (j¼ 1,…,nsIPD) are synthesized as

TABLE 1 Study characteristics and assigned priors for bias probability of the network of treatments for the relapsing–remitting multiple

sclerosis in Figure 1a

Study Treatments

Number of patients

with at least one

relapse in 2 years

Sample

size

Design

and data

formal

Risk of

bias

(RoB)

Mean

age

Distribution

of bias

probability πj

AFFIRM29 Natalizumab, Placebo 359 939 RCT

IPD

Low 36 Beta (1, 100)

CONFIRM30 Dimethyl fumarate,

Glatiramer acetate,

Placebo

451 1417 RCT

IPD

Low 37 Beta (1, 100)

DEFINE31 Dimethyl fumarate,

Placebo

394 1234 RCT

IPD

Low 39 Beta (1, 100)

Swiss

Multiple

Sclerosis

Cohort34

Dimethyl fumarate,

Glatiramer acetate,

Natalizumab

44 206 NRS

IPD

High 46 Beta (100, 1)

Bornstein32 Glatiramer acetate,

Placebo

30 50 RCT

AD

High 34 Beta (100, 1)

Johnson33 Glatiramer acetate,

Placebo

186 251 RCT

AD

High 30 Beta (100, 1)

Abbreviations: AD, aggregate data; IPD, individual participant data; NRS, non-randomized study; RCT, randomized clinical trial.
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βW1,jbk �N BW
1,Ak�BW

1,Ab,τ
2
W

� �
:

Here, A represents the reference treatment in the

whole network; therefore, dAA, B
W
1,AA, B

B
1,AA ¼ 0.

Alternatively, a common-effect model can be assumed

δjbk ¼ dAk�dAb,β
B
1,jbk ¼BB

1,Ak�BB
1,Ab,β

W
1,jbk ¼BW

1,Ak�BW
2,Ab:

We summarize the model assumptions in Table 4.

We assumed minimally informative priors for

ujb,β0j �N 0,102ð Þ and also for the basic parameters

BW
1,Ak,B

B
1,Ak,dAk �N 0,102ð Þ. For all heterogeneity parame-

ters, we assigned a uniform distribution

τ,τB,τW �Unif 0,2ð Þ which allows for difference of log-

odds ratios of 2 (or 7.4 of odds ratio) across trials in the

TABLE 2 Overview of the presented models allowing for cross-design and cross-format synthesis in network meta-regression

Unadjusted analysis

Using NRS to form a

prior distribution Bias-adjusted Model 1 Bias-adjusted Model 2

Accounting for

RoB of RCT

and NRS

RoB is not considered. The NRS evidence is

shifted and/or down-

weighted using the

parameters ς and w,

respectively. The RoB in

the RCT is not

considered.

For high RoB studies (NRS

or RCT), the model

shifts/multiplies the

relative treatment effects

by γjbk and/or

downweighs the study

contribution when the

estimates are combined.

The method

differentiates NRS

evidence from RCT by

setting relatively greater

bias probability (πj) for

NRS compared

with RCT.

The model adjusts the

relative treatment effects

by γjbk where the

adjustment is

proportional to the bias

probability of the study.

It allows also to

downweigh the study

contribution through τγ
a

or qj
b. The bias

probability (πj) can be

assumed greater for NRS

compared with RCT.

Key model

parameters

Relative treatment

effect δjbk .

Covariate effect β0j.

Within-study covariate-

treatment

interaction (βW1,jbk).

Between-study covariate-

treatment

interaction (βB1,jbk).

Same as unadjusted

analysis.

Same as unadjusted

analysis.

Bias effect; multiplicative

(γ1,jbk) and/or

additive γ2,jbk .

Bias indicator Rj.

Bias probability πj.

The covariate parameters;

β0j, β
W
1,jbk and βB1,jbk .

Bias-adjusted relative

treatment effect θjbk
Bias effect γjbk (only

additive)

Bias probability πj

Features,

advantages,

and

challenges

Easy to implement using

standard statistical

software.

Mostly used in practice.

Recommended only as

an initial analysis.

Choosing a value for ς

(mean bias shift) and the

inflation factor w can be

challenging in practice.

Should be used with a

range of parameter

values.

Can be used to model

multiplicative bias

effects.

Compared with bias-

adjusted Model 2, an

extra parameter, Rj,

needs to be estimated.

We recommend running a

sensitivity analysis by

choosing different values

for a1,a2
(hyperparameters of the

prior beta distribution

assigned to πj).

It allows for more

uncertainty about our

risk of bias judgment.

It has slightly a better

convergence for the bias

effect parameters

compared with bias-

adjusted Model 1.

A sensitivity analysis for

a1,a2 is recommended.

The bias-adjusted Model 2

is more sensitive to the

prior assigned to πj

compared with bias-

adjusted Model 1,

particularly when there

are a few studies to

synthesize.

Abbreviations: NRS, non-randomized studies; RCT, randomized clinical trials; RoB, risk of bias in the study.
a
τγ is the between-study heterogeneity in bias effect.
bqj ¼ τ2= τ2þ τ2γ

� �
represents the proportion of the between-study heterogeneity that is not explained by accounting for risk of bias.
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treatment and the covariate effect. This change is ade-

quately large on the log scale; hence, the given prior can

be considered sufficiently vague.

In all models we present with random treatment

effects, we accounted for correlations induced by multi-

arm studies using a multivariate distribution as in the

standard NMA methods.2 In Appendix S2, we describe

how we accounted for multi-arm studies in bias-adjusted

Model 2.

3.2 | Synthesizing cross-design data:
Randomized trials and observational data

The model we described in Section 3.1 can be applied to

RCT or NRS studies, separately. Next, we describe four

different approaches to combine evidence from RCTs and

NRSs into the model from Section 3.1.

3.2.1 | Unadjusted network meta-regression

Using the simplest approach, we integrate the NRS evi-

dence into the RCT model without differentiation

between the two designs. Technically, this means we only

need to expand the index of study j to involve both study

designs. For IPD, it becomes j¼ 1,…,nsIPD,RCT þnsIPD,NRS
and in AD part, j¼nsIPD,RCT þnsIPD,NRSþ1,…,

nsIPD,RCT þnsIPD,NRSþnsAD,RCT þ nsAD,NRS.

3.2.2 | Using NRS to construct priors for the
treatment effects

Using NRS evidence to construct priors for the treatment

effects in the RCT model is a two-step approach. In the

first step, the (network) meta-regression—with only NRS

data—estimates the relative treatment effects with poste-

rior distribution of mean ~d
NRS

Ak and variance VNRS
Ak . In the

second step, the posteriors of NRS results—accounting

for possible confounders—are then used as priors for the

corresponding basic parameters in the RCT model;

dRCTAk �N ~d
NRS

Ak ,VNRS
Ak

� �
. Treatment effects not observed in

NRS are given vague priors (see part III of Section 3.1).

Another possibility when constructing the prior is to use

the estimated between-NRS heterogeneity (~τ2NRS) instead

of the posterior variance VNRS
Ak .

Instead of performing the analysis in two steps, the

RCT and NRS synthesis can be conducted simultaneously

and seamlessly incorporate the information from NRS in

the RCT model.

We can control the potential dominance of NRS

evidence (e.g., because of the large sample size) on

the RCT model by either shifting the NRS means with a

bias term ς or by dividing the variance in the prior distri-

bution with a common inflation factor w,0 <w<1;

dAk �N ~d
NRS

Ak þ ς,VNRS
Ak =w

� �
. When w¼ 1, NRS evidence

is used at face value and when w≈ 0, NRS evidence is

ignored.

3.2.3 | Bias-adjusted Model 1

We incorporate judgments about study risk of bias in

bias-adjusted Model 1 and Model 2. The indicator Rj

takes binary values 0 (no bias) or 1 (bias) according to a

Bernoulli distribution with probability of risk of bias πj

that relates to the study design characteristics. These

characteristics are used to summarise the study risk of

bias into low, high or unclear. In bias-adjusted Model

1, we extend the method introduced by Dias et al.24 by

adding a treatment-specific bias term γ2,jbkRj to the rela-

tive treatment effect for both the AD and IPD parts of the

model.41 A multiplicative model can also be employed,

where treatment effects are multiplied by γ
Rj

1,jbk . These

TABLE 3 Notation for the synthesis models

Notation Description

i¼ 1,…,npj Participant id

j¼ 1,…,ns Study id

k¼ 1,…,K Treatment index

nsIPD,nsAD,nsRCT ,nsNRS
nsIPD,RCT ,nsAD,RCT
nsIPD,NRS,nsAD,NRS

The number of studies. The index

refers to the design or format of

the study or both

yijk Binary outcome (0/1)

pijk Probability of the event to occur

rjk The number of events per arm

njk The sample size per arm

b The study-specific reference

ujb The treatment effect of the study-

specific reference b

when xijk ¼ xj ¼ 0

δjbk Log(OR) of treatment k relative to b

xijk The covariate

xj The mean covariate for study j

dAk The basic parameters where dAA= 0

when A set as the reference in the

network

zj Study characteristics to estimate the

bias probability πj
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bias terms penalize the high RoB studies for potential

overestimation or underestimation by adjusting their rel-

ative treatment effects. Next, we extend the model from

Section 3.1 to adjust for bias.

Part I: NMR model for IPD studies

We model the IPD studies from both designs simulta-

neously; we differentiate between the designs by includ-

ing the study-level bias terms. We can add either

multiplicative γ1,jbk bias effects, additive γ2,jbk bias effects,

or both (in this case, δjbk should be dropped from the

additive part) as

Logit pijk

� �
¼

ujbþβ0jxijk if k¼ b

ujbþ δjbkγ
Rj

1,jbk

zfflfflfflffl}|fflfflfflffl{multiplicative

þ δjbkþ γ2,jbkRj

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{additive

þif k≠ b

β0j xijkþβW1,jbkxijkþ βB1,jbk�βW1,jbk

� �
xj:

8
>>>>><

>>>>>:

1ð Þ

where j¼ 1,…,nsIPD,RCT þnsIPD,NRS.

The bias indicator Rj follows a Bernoulli distribution

with a bias probability πj ¼ P Rj¼ 1
� �

Rj ¼
1, if study jhashigh risk of bias
0, otherwise

�

Rj �Bernoulli πj
� �

:

Then based on the risk of bias for each study, a differ-

ent beta distribution is placed for πj.

πj �Beta a1,a2ð Þ:

The hyperparameters a1 and a2 should be chosen in a

way that reflects the risk of bias for each study. The

degree of skewness in beta distribution can be controlled

by the ratio a1=a2. When a1=a2 equals 1 (or a1 ¼ a2),

there is no skewness in the beta distribution (the distribu-

tion is reduced to a uniform distribution), which is appro-

priate for studies with unclear risk of bias. When a1 is

much larger than a2, the mean of probability of bias

(expected value of πj ¼ a1= a1þa2ð Þ) is closer to 1 as the

study will have a high bias probability, which leads to a

‘major’ bias adjustment.

Alternatively, we can use the study characteristics

zj ¼ z1,j, z2,j, …, zm,j

� �
(e.g., the concealment of the

study) to predict πj through a logistic transformation as

follows

Logit πj
� �

¼ eþ f Tzj:

where f T ¼ f 1,…, fmð Þ is a vector of covariate effect on

the odds ratio of bias and e is the overall odds of bias.

The superscript T transposes the vector. A minimally

TABLE 4 Assumptions about the model parameters

Parameter Assumptions

Relative treatment effect (δjbk) Random-effects: δjbk �N dAk�dAb,τ
2ð Þ

Common-effect: δjbk ¼ dAk�dAb

Covariate effect β0j

� �
Independent effects: β0j �N 0,102ð Þ

Random-effects: β0j �N B0,τ
2
0

� �

Within-study covariate-treatment interaction (βW1,jbk) Random-effects: βW1,jbk �N BW
1,Ak �BW

1,Ab,τ
2
W

� �

Common-effect: βW1,jbk ¼BW
1,Ak�BW

1,Ab

Between-study covariate-treatment interaction (βB1,jbk) Random-effects: βB1,jbk �N BB
1,Ak �BB

1,Ab,τ
2
B

� �

Common-effect: βB1,jbk ¼BB
1,Ak�BB

1,Ab

Bias effect (γm,jbk) m¼ 1,2f g Random-effects: γm,jbk �Ν gm,bk ,τ
2
m,γ

� �

Common-effect: γm,jbk ¼ gm,bk

Mean bias effect (gm,bk)
gm,bk ¼

gm if b is inactive treatment

0 if b andk are active treatments

�

gm,bk ¼
gm if b is inactive treatment

�1ð Þdirbkgactm if b and k are active treatments

(

Bias indicator Rj �Bernoulli πj
� �

Bias probability (πj) πj �Beta a1,a2ð Þ

Logit πj
� �

¼ eþ fTzj
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informative prior is located in the regression coeffi-

cients e, f T �N 0,102ð Þ.

We alternatively describe the logistic model with

additive bias effect in Equation (1) by the following

parametrisation

Logit pijk

� �
¼

ujbþβ0jxijk if k¼ b

ujbþ 1�Rj

� �
δjbkþRjδ

bias
jbk þ if k≠ b

β0j xijkþβW1,jbkxijkþ βB1,jbk�βW1,jbk

� �
xj:

8
>><

>>:

ð2Þ

where δbiasjbk ¼ δjbkþ γjbk .

Part II: NMR model for AD studies

Similarly, we add the two bias terms to model the sum-

mary data.

Logit p:jk

� �
¼

ujb if k¼ b

ujbþ δjbkγ
Rj

1,jbk

zfflfflfflffl}|fflfflfflffl{multiplicative

þ δjbkþ γ2,jbkRj

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{additive

þβB1,jbk xj if k≠ b

8
><

>:

ð3Þ

where j¼ nsIPD,RCT þnsIPD,NRSþ1,…, nsIPD,RCT þ

nsIPD,NRSþ nsAD,RCT þnsAD,NRS. Again, when multiplica-

tive and additive parts are both considered in the model,

the term δjbk needs to be removed from the additive term.

Other parametrisation of the logistic model with addi-

tive bias effect in Equation (3) is

Logit p:jk

� �
¼

ujb if k¼ b

ujbþ 1�Rj

� �
δjbkþRjδ

bias
jbk þβB1,jbk xj if k≠ b:

(

ð4Þ

Part III: Combine the evidence from IPD and AD

In addition to the covariates' effects and the

treatment effects, here we also combine the multi-

plicative and the additive treatment-specific bias

effects across studies by assuming they are either

exchangeable (γ1,jbk �Ν g1,bk ,τ
2
1,γ

� �
,γ2,jbk �Ν g2,bk,τ

2
2,γ

� �
)

or common (γ1,jbk ¼ g1,bk and γ2,jbk ¼ g2,bk). We set priors

for the between-study standard deviation again

as τ1,γ ,τ2,γ �Unif 0,2ð Þ.

For the other parameterisation in Equations (2) and

(4), the bias-adjusted relative treatment effect δbiasjbk can be

assumed exchangeable across studies

δbiasjbk �Ν gbkþdAk�dAb,
τ2

qj

 !

or common as

δbiasjbk ¼ gbkþdAk�dAb:

In this case, instead of assigning prior to the between-

study heterogeneity in bias effect τγ , we model the RoB

weight qj ¼ τ2= τ2þ τ2γ

� �
for each study. The quantity rep-

resents the proportion of the between-study heterogene-

ity that is not explained by accounting for risk of bias.

These weights take values between 0 and 1, 0< qj <1,

and they are either given fixed values (as Spiegelhalter

and Best proposed42) or assigned a prior to let the data

estimate them, qj �Beta v,1ð Þ(as Verde assumed25). The

values of v determine the extent studies at high risk of

bias will be down-weighted on average. Setting v¼ 1

gives E qj

� �
¼ v= vþ1ð Þ¼ 0:5, which means that high risk

of bias studies will be penalized by 50% on average.

Dias et al.24 proposed to model the mean bias effect

(g1,bk, g2,bk) based on the compared treatments. One

approach is to assume a common mean bias for studies

that compare active treatments with an inactive treat-

ment (placebo, standard, or no treatment)

gm,bk ¼
gm if b is inactive treatment

0 if b and k are active treatments

�

where m¼ 1,2f g:

In this case, the mean bias effect cancels out contrasts

for comparing two active treatments. When exchangeable

bias parameters are used, active versus active compari-

sons have an expected bias effect of zero with uncertainty

the common bias-heterogeneity parameters τ21,γ , τ
2
2,γ for

multiplicative and additive, respectively.

Instead of assuming zero bias in active versus active

comparison, we could assume a common and fixed bias

effect gactm :

gm,bk ¼
gm if b is inactive treatment

�1ð Þdirbkgactm if b and k are active treatments

(

The direction of bias (dirbk) varies by the comparison

type and should be defined in the data. The bias in active

versus inactive comparisons will favour the active treat-

ment. However, the direction of bias is less clear in stud-

ies that compare active treatments with each other. The

direction of bias could be linked to other types of bias,

such as ‘optimism bias’—a bias favouring the newest

treatment. In this case, the direction of bias in each active

versus active comparison is set to be either 0, meaning

that bias favours b over k; or 1, meaning that k is

favoured to b. We could also follow a data-driven
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approach and assign the bias direction a Bernoulli distri-

bution dir�Bernoulli pdirð Þ where the probability of b to

be favoured over k,pdir , is given a beta distribution

pdir �Beta a3,a4ð Þ: The shape of this beta distribution is

characterized by a3 and a4. When a3 is set a value less

than a4, the study is more likely to be favouring b over k.

3.2.4 | Bias-adjusted Model 2

Extending the model initially introduced by Verde,25

bias-adjusted Model 2 parametrises the relative treatment

effect using a bimodal normal distribution that involves

the bias parameters.25 We define the bias-adjusted rela-

tive treatment effect θjbk as follows in both parts of

the NMR.

Part I: NMR model for IPD studies

Logit pijk

� �
¼

ujbþβ0jxijk if k¼ b

ujbþθjbkþβ0j xijkþ if k≠ b

βW1,jbkxijkþ βB1,jbk�βW1,jbk

� �
xj:

8
>><

>>:

Part II: NMR model for AD studies

We also add the bias adjustment term to AD part

Logit p:jk

� �
¼

ujb if k¼ b

ujbþθjbkþβB1,jbk xj if k≠ b:

(

Part III: Combine the evidence from IPD and AD

The coefficients from the covariates effect and treatment

effects are combined as in the previous models. We addi-

tionally combine the bias-adjusted relative treatment

effect θjbk via exchangeable model with a mixture of two

normal distributions

θjbk � 1�πj
� �

N dAk�dAb,τ
2

� �

þπjN dAk�dAbþ γjbk,τ
2þ τ2γ

� �
:

Assuming a common-effect model we can alternatively

summarize these relative effects

θjbk ¼ 1�πj
� �

dAk�dAbð Þþπj dAk�dAbþ γjbk

� �

¼ dAk�dAbþπjγjbk:

This model adjusts the relative treatment effect by a

bias effect that is proportional to the bias probability in

each study. The bias parameters γjbk across studies are

assigned either the exchangeable- or common-effect

model and then the mean bias effects gbk are also com-

bined across comparisons.

Following what we describe in Section 3.2.3, the

between-study standard deviation τγ can also be modelled

in two different ways. We set a prior either for

τγ �Unif 0,2ð Þ or for qj �Beta v,1ð Þ where

qj ¼ τ2= τ2þ τ2γ

� �
represents the RoB weight for each

study. However, choosing the prior for qj could be more

meaningful in practice as v represents the discounting in

study weight. All other syntheses are performed as out-

lined for bias-adjusted Model 1 in Section 3.2.3.

4 | IMPLEMENTATION OF THE
MODELS AND RESULTS

We implemented the models in a Bayesian setting using

Just Another Gibbs Sampler43 software through R.44 For

all models, we ran two chains each for 100,000 itera-

tions, discarded the first 40,000 samples, and thinned by

1. We examined the convergence of chains on each

parameter by either visually inspecting the trace plots or

checking the Gelman-Rubin statistic, bR, which measures

the agreement between the within- and between-chains

of MCMC; it should be approximately 1 when the chain

converges properly. We evaluated model performance

using the deviance information criterion (DIC), with the

preferable model being the one with the lowest DIC

values.45 From here onwards, point estimates refer to

posterior medians.

Of note, the study-specific ORs in Figure 2 were cal-

culated within a frequentist framework, and the lines

represent confidence intervals. We analyzed IPD studies

with the glm() function in R and AD studies with the

metabin() function (from meta package).

4.1 | Immunomodulatory agents
in RRMS

We conducted NMA and NMR assuming a common

treatment effect across studies (the small number of stud-

ies did not allow efficient estimation of heterogeneity).

We included age as a covariate in the NMR model which

was centred around mean age 38 to improve conver-

gence. We also assumed a common age effect across stud-

ies. For the IPD part of the models, we set the within-

and between-study age effects equal: βW1,jbk ¼ βB1,jbk . The lit-

tle variation in mean participant age across the included

studies (see Table 1) renders the estimation of βB1,jbk . In

bias-adjusted Models 1 and 2, we assigned two different

informative prior distributions for the bias probability πj:

a Beta 100,1ð Þ for high RoB studies and Beta 1,100ð Þ for

low RoB studies (see Figure S2 and Table 1). We assumed

additive bias effects and combined them across studies

292 HAMZA ET AL.
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bias−adjusted 1
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Johnson
CONFIRM
Bornstein

bias−adjusted 2
bias−adjusted 1
unadjusted

DEFINE
CONFIRM

bias−adjusted 2
bias−adjusted 1
unadjusted

Swiss Cohort
CONFIRM
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0.50 [0.35, 0.73]
0.45 [0.31, 0.65]
0.47 [0.33, 0.66]

0.21 [0.08, 0.52]

0.72 [0.53, 0.99]
0.71 [0.52, 0.97]
0.72 [0.52, 0.98]

1.06 [0.44, 2.55]

0.66 [0.52, 0.84]
0.72 [0.55, 0.95]
0.69 [0.55, 0.88]

0.74 [0.42, 1.30]
0.72 [0.53, 0.97]
0.25 [0.07, 0.83]

0.46 [0.39, 0.55]
0.45 [0.38, 0.54]
0.45 [0.38, 0.54]

0.43 [0.33, 0.55]
0.51 [0.39, 0.67]

0.70 [0.54, 0.89]
0.63 [0.49, 0.81]
0.65 [0.51, 0.82]

0.22 [0.07, 0.67]
0.71 [0.54, 0.94]

Treatment and method of synthesis OR [95% CrI]

Dimethyl fumarate vs Placebo
Study−specific estimates

NMA estimate

Dimethyl fumarate vs Glatiramer acetate
Study−specific estimates

NMA estimate

Glatiramer acetate vs Placebo
Study−specific estimates

NMA estimate

Natalizumab vs Dimethyl fumarate
Study−specific estimates

NMA estimate

Natalizumab vs Glatiramer acetate
Study−specific estimates

NMA estimate

Natalizumab vs Placebo
Study−specific estimates

NMA estimate

FIGURE 2 Relapse odds ratios with 95% credible intervals (CrI) of all comparisons of treatments among patients with relapsing–

remitting multiple sclerosis. The estimates are computed by conducting unadjusted analysis and bias-adjusted analyses 1 and 2 in a Bayesian

framework of the data in the network of Figure 1a. The study-specific estimates have been computed in a frequentist framework and hence

the lines represent confidence intervals. To compute these estimate, we used glm() function to analyze IPD studies and metabin() function

(from meta package) to analyze AD studies
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FIGURE 3 The relationship

between patient age (in years) and the

estimated odds ratio with 95% credible

intervals (the shaded areas) for active

treatments versus placebo among

patients with relapsing–remitting

multiple sclerosis estimated with

network meta-regression with bias-

adjusted Model 1 [Colour figure can be

viewed at wileyonlinelibrary.com]
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into a common parameter. The direction of bias was

assumed to favour the active treatment rather placebo in

RCTs and any other treatment over glatiramer acetate in

the SMSC since it is the oldest treatment. We set placebo

as a network reference for all analyses except when using

NRS information as a prior; in that case, natalizumab

was used as the reference treatment.

We first analysed the data using the SMSC data to con-

struct priors for the treatment effects. The posterior distri-

butions of the logORs were dDF versus N �N �0:01,0:2ð Þ

(dimethyl fumarate vs. natalizumab) and

dGA versus N �N 1:56,0:33ð Þ (glatiramer acetate vs. natalizu-

mab). The basic parameter of placebo versus natalizumab

(not observed in the cohort) was assigned an approxi-

mately uninformative prior (dP vs N �N 0,102ð Þ). In

Figure S1, we present the results when these posteriors

were used as (discounted) priors in the NMA of the RCT

data assuming different values of w. Only the estimated

effect of glatiramer acetate versus natalizumab changed

slightly when incorporating the non-randomized evi-

dence because the SMSC has a much smaller sample size

(n¼ 206) than all RCTs together (n¼ 3891).

Figure 2 and Tables S4 to S7 show the NMA ORs and

the corresponding 95% credible intervals (CrI) using no

adjustment and bias-adjusted Models 1 and 2. The adjust-

ment for the different bias effects did not materially

change the estimated ORs. The small change we observed

for glatiramer acetate in bias-adjusted models can be

attributed to the high risk of bias in Bornstein and John-

son studies.32,33

For bias-adjusted Model 1, the bias effect exp gð Þ was

estimated 0.705 (95% CrI: 0.198–1.459). The OR of the

active treatments when compared with placebo in high

RoB studies are on average 0.705 times the OR in low

RoB studies, yet the uncertainty is very large. In the bias-

adjusted Model 2, exp gð Þ was more precisely estimated at

0.323 (95% CrI: 0.126–0.821). This means that on average

high RoB studies tend to overestimate the efficacy of the

active treatments. We investigated the convergence of the

model parameters in Figure S4 and Table S8. The bias

parameter g estimated from the bias-adjusted Model 1

has a slightly poor convergence when compared with

other parameters.

TABLE 5 The mean estimates and 95% credible intervals from

bias-adjusted Models 1 and 2 for the antidepressants network

shown in Figure 1b

Bias-adjusted

Model 1

Bias-adjusted

Model 2

Model assuming a prior τγ �Unif 0,2ð Þ for the heterogeneity in

bias effects

Primary analysis: Bias probability distribution (low RoB:

πj �Beta (1, 20), moderate RoB: πj �Beta (20, 1))

Mean bias effect:

exp(gp)

1.090 (0.975, 1.249) 1.035 (0.939, 1.143)

Mean bias effect:

exp(gact)

1.186 (1.054, 1.335) 1.182 (1.054, 1.335)

Heterogeneity in

bias effect: τγ
(95% CrI)

0.130 (0.005, 0.261) 0.185 (0.128, 0.251)

Sensitivity analysis: Bias probability distribution (low

RoB; πj �Beta (1, 10), moderate RoB; πj �Beta (10, 1))

Mean bias effect:

exp(gp)

1.163 (0.966, 1.421) 1.035 (0.878, 1.224)

Mean bias effect:

exp(gact)

1.257 (1.095, 1.478) 1.271 (1.094, 1.600)

Heterogeneity in

bias effect: τγ

0.206 (0.078, 0.318) 0.210 (0.127, 0.354)

Model that re-parametrises the heterogeneity using weights

qj �Beta v,1ð Þ where qj ¼ τ2= τ2þ τ2γ

� �

Low RoB studies: no down-weighting; Moderate RoB

studies: down-weight by 25%

Mean bias effect:

exp(gp)

0.985 (0.786, 1.475) 0.817 (0.549, 1.112)

Mean bias effect:

exp(gact)

1.222 (1.073, 1.476) 1.427 (1.173, 1.942)

Low RoB studies: no down-weighting; Moderate RoB

studies: down-weighting by 80%

Mean bias effect:

exp(gp)

1.012 (0.860, 1.167) 1.008 (0.851, 1.153)

Mean bias effect:

exp(gact)

1.203 (1.067, 1.383) 1.231 (1.081, 1.470)

Note: gp, the additive bias effect on log odds ratio for active-placebo

comparisons; gact , the additive bias effect on log odds ratio for active-active

comparisons (sponsored treatment assumed to be favoured).

Abbreviations: CrI, credible interval; RoB, risk of bias in the study.

TABLE 6 Deviance information

criterion of the network meta-analysis

models (NMA) fitted to the network of

treatments for the relapsing–remitting

multiple sclerosis (RRMS) in Figure 1a

and for the NMA models fitted to the

antidepressants network in Figure 1b

RRMS example Antidepressant example

IPD model AD model AD model

Unadjusted analysis 90492 187 2667

Bias-adjusted Model 1 90508 248 2648

Bias-adjusted Model 2 90365 158 2664

Abbreviations: AD, aggregate data; IPD, individual participant data.
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We incorporated the effect of age in bias-adjusted

Model 1; Figure 3 presents the NMR ORs of active versus

placebo for various age values. The estimated age coeffi-

cient exp Bð Þ was 0.984 (95% CrI: 0.264–1.935) suggesting

that for an increase in age by 1 year the ORs of each treat-

ment versus placebo decreases by 1–0.984.

Table 6 summarizes the DIC values for the unad-

justed analysis and the bias-adjusted Models 1 and 2.

Because bias-adjusted Model 2 has the lowest DIC (DIC

for IPD model = 90365 and for AD model =158), it is

preferred over other models. The model that uses NRS

evidence as a prior has DIC for IPD model 87144 and

for AD model 142. This model was excluded from the

comparison because it only uses RCT data.

4.2 | Antidepressants for major
depression

We conducted an NMA assuming a random treatment

effect across studies. For bias-adjusted Models 1 and 2,

we used additive bias effects and combined them across

studies assuming random-effects. The bias probability πj

of moderate and low RoB studies was given prior distri-

butions Beta 20,1ð Þ and Beta 1,20ð Þ, respectively (see

Figure S3). When we set the direction of bias in studies

comparing an active drug to placebo, we assumed mean

bias gP, and the antidepressant was assumed the

favoured treatment; then in active versus active compari-

sons, we assumed bias gact, and the sponsored treatment

was assumed the favoured treatment. In other cases, the

mean bias was set to zero. We performed a sensitivity

analysis to investigate the robustness of the results with

less informative prior distributions for the bias probabil-

ity πj in both bias models Beta 10,1ð Þ and Beta 1,10ð Þ for

studies at moderate and low RoB, respectively.

Table 5 shows the estimates of bias effect parameters

using the bias-adjusted Models 1 and 2. The results sug-

gest that moderate RoB studies do not provide different

estimates of the effectiveness of the active interventions

versus placebo, whereas the effects of sponsored treat-

ments are overestimated on average. In bias-adjusted

vortioxetine

reboxetine sertraline trazodone venlafaxine vilazodone

levomilnacipran milnacipran mirtazapine nefazodone paroxetine

desvenlafaxine duloxetine escitalopram fluoxetine fluvoxamine

agomelatine amitriptyline bupropion citalopram clomipramine

1.0 1.5 2.0 2.5

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

bias−adjusted 2

bias−adjusted 1

unadjusted

bias−adjusted 2

bias−adjusted 1

unadjusted

bias−adjusted 2

bias−adjusted 1

unadjusted

bias−adjusted 2

bias−adjusted 1

unadjusted

bias−adjusted 2

bias−adjusted 1

unadjusted

Odds Ratio (OR)

FIGURE 4 Response odds ratio with 95% credible interval for each antidepressant versus placebo estimated from unadjusted analysis

and bias-adjusted Models 1 and 2 using the data presented in the network of Figure 1b. A random-effects network meta-analysis model is

assumed to estimate treatment and bias effects
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Model 1, the OR of the active treatment (sponsored)

against active (not sponsored) in low RoB studies are on

average 1.186 times the OR in high RoB studies. We also

fitted the bias-adjusted Models 1 and 2 by re-parametris-

ing the heterogeneity τγ using the weights qj. We set

qj ¼ 1 for studies at low RoB and qj �Beta 1=3,1ð Þ for

moderate RoB studies which reduces their weight on

average by 25% or qj �Beta 4,1ð Þ for 80% weight reduc-

tion. The results do not materially change.

As expected, the bias indicator (Rj) was estimated to

be 1 on average for studies with moderate RoB and 0 for

studies with low RoB. In addition, the convergence of

bias parameters was good in the antidepressants example

because of the large number of studies (see Figures S5

and S6).

Figure 4 presents the resulting OR and 95% CrI for

the adjusted and unadjusted models. Controlling for the

information from the moderate RoB studies scarcely

changed the effects of active drugs versus placebo. Using

less informative priors for the bias probability and for

between-study heterogeneity in the bias effect did not

materially change these conclusions (Figures S7 and S8).

The estimate of between-study heterogeneity in treat-

ment effect was 0.210 (95% CrI: 0.169–0.251) in unad-

justed model, which decreased when bias-adjusted Model

1 was applied to 0.176 (95% CrI: 0.089–0.236) and the

estimate in bias-adjusted Model 2 was 0.213 (95% CrI:

0.147–0.291). The differences in the estimates of between-

study heterogeneity are minor and their CrI overlap to a

large extent.

We compared the bias-adjusted Models 1 and 2 and

unadjusted model by calculating the DIC; their values are

reported in Table 6. The bias-adjusted Model 1 performs

better than the unadjusted and bias-adjusted Models 2.

5 | DISCUSSION

We introduced a suite of Bayesian NMA and NMR models

to synthesize evidence that comes from different study

designs and in different data formats. We extended the

three-level hierarchical model for combining IPD and AD

with four models incorporating RCT and NRS evidence.

The first model ignores differences in design and RoB

between studies; the second uses NRS to construct dis-

counted treatment effect priors; and two models adjust for

the risk of bias in each study. The bias effect can be multi-

plied or added to the relative treatment effect. The multipli-

cative bias is more likely to describe better cases of selective

outcome reporting. In such cases, results from studies with

small true effects are magnified considerably to “cross the

significance line” while results from studies with large true

effects are exaggerated only a bit or not at all.

We implemented the four NMA/NMR models in a

data set comparing treatments for RRMS patients. The

estimated treatment effects were consistent, irrespective

of the model used. When age was included as a covariate,

the efficacy of active treatments relative to placebo

decreased with increasing age. In other words, all active

treatments become less effective for older patients, which

aligns with previous findings.46,47 We also illustrated the

bias-adjusted models in a network of AD from RCTs on

antidepressants. The results from sponsored drug arms in

head-to-head studies tended to be larger than those in

non-sponsored arms. In the original analysis, Cipriani

et al.38 did not detect any impact of sponsoring in the

estimated efficacy of the antidepressants. Note, however,

that our bias-adjusted models estimate the interaction

between risk of bias and sponsoring and hence it is possi-

ble that sponsoring plays a role in modifying the treat-

ment effect only in studies with moderate risk of bias.

Our methods tackle the bias issue at the quantitative

synthesis stage. However, there are two issues to consider

when such analyses are conducted. First, empirical evi-

dence has shown that the treatment effects are often

exaggerated in high-risk of bias studies.48 In these cases,

one can employ diagnostics to evaluate the impact of

such large study results49–51 and then fit models that

decrease the impact of those studies either by employing

non-normal random effect distributions52 or by shrinking

the relative treatment effects towards equivalence.53,54

Second, the bias (for NRS, in particular) should also be

mitigated at study design and when interpreting results.

In their comprehensive framework, Sarri et al.55 pro-

posed seven steps outlining how to combine RCT and

NRS data in NMA. They proposed different consider-

ations for interpreting findings, suggesting a way that

reflects the differences in evidence type. Their framework

suggests a certain critical assessment of NRS, which can

be used in our bias-adjusted models.

Some limitations of our proposed models need to be

acknowledged. First, the bias-adjusted models require

several studies at different levels of RoB. In the absence

of many studies, strong assumptions can be imposed on

bias parameters via informative priors. Our first example

of RRMS only included six studies; we assigned highly

informative beta distributions to the bias probability. We

used less informative priors in the case of antidepres-

sants' network because many studies were available. Sec-

ond, the results of the analysis can be sensitive to the

prior assumptions in model parameters. For this reason,

sensitivity analyses should be conducted to investigate

the robustness of the estimates, using different priors if

possible. Sensitivity to prior distributions is particularly

important for the probability of bias and the covariate

effect parameters. In our examples, we found that bias-
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adjusted Model 2 was more sensitive to the prior assigned

to the bias probability when compared with bias-adjusted

Model 1. Third, choosing down-weighting parameters

for the model that uses the NRS data to construct prior

information is not straightforward. However, Efthimiou

et al.23 outlined different considerations to guide this

choice.

Finally, the estimated treatment effect can be influ-

enced by the sample size of the study when reporting bias

is suspected or for other reasons associated with small

study effects. Hence, a study can overestimate the treat-

ment effect for reasons related to its sample size and/or a

high RoB. In a hierarchical random-effects models study-

specific estimates from small studies tend to be pulled

towards the overall mean, and hence overestimation of

treatment effects in small studies tends to be less of a

problem.53 However, we recommend that the presence of

small-study effects are routinely checked before conduct-

ing any synthesis. If there is no strong evidence of small-

study effects, bias-adjusted Models 1 or 2 can be applied.

To implement the proposed models, there are further

worthy considerations. These include performing a com-

prehensive systematic review to identify relevant RCTs

and NRSs (following the framework introduced by

Sarri et al.55). In our RRMS example, we included RCTs

identified in a previous systematic review with available

IPD27,28 and observational data from the SMSC. For

clinically-relevant results after analysis, more data needs

to be included to apply our methods to an extended net-

work of all drugs used to treat patients with RRMS, such

as presented by Jenkins et al.56 In their review, Jenkins

et al. showed how including NRS data in the synthesis

model increased the between-study heterogeneity and

therefore the uncertainty around the effect estimates. By

accounting for potential effect modifiers and differences

in RoB, other studies can investigate whether our models

explain large between-study heterogeneity.

Combining individual and aggregate data has two key

advantages when compared with analysing aggregate

data solely. First, aggregate data studies contribute only

to estimating interactions between mean values of effect

modifiers and treatment, yet individual data studies

account for interactions at the individual patient-level,

thus avoiding ecological bias. Second, individual data

adjust for prognostic factors and covariates that predict

the outcome and the course of the disease regardless of

the assigned treatment.46 Adjusting for prognostic factors

is desirable57 in order to improve the interpretation and

the external validity of the findings58; enhance the preci-

sion of the estimated treatment effects59; and correct

potential imbalance in baselines after randomization.60

Incorporating NRS evidence into NMA models that

traditionally only include RCTs is increasingly important

in several clinical research settings, such as when con-

ducting RCTs are less feasible for rare conditions. A

recent scoping review of methods that combine RCT and

NRS in NMA61 reveals that unadjusted synthesis is the

most popular approach, probably for its ease of use. The

unadjusted analysis, however, can be considered as an ini-

tial step but not the primary analysis, as it ignores the dif-

ferences in design and RoB. Accounting for within-study

bias in both observational and experimental data, our suite

of models offers a viable alternative. Our approach also

allows estimating individualized treatment effects through

the inclusion of participant characteristics.
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