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Abstract: A new hybrid model structure combing polynomial models with multiresolution wavelet decompositions is 

introduced for nonlinear system identification. Polynomial models play an important role in approximation theory, 

and have been extensively used in linear and nonlinear system identification. Wavelet decompositions, in which the 

basis functions have the property of localization in both time and frequency, outperform many other approximation 

schemes and offer a flexible solution for approximating arbitrary functions. Although wavelet representations can 

approximate even severe nonlinearities in a given signal very well, the advantage of these representations can be lost 

when wavelets are used to capture linear or low-order nonlinear behaviour in a signal. In order to sufficiently utilise 

the global property of polynomials and the local property of wavelet representations simultaneously, in this study 

polynomial models and wavelet decompositions are combined together in a parallel structure to represent nonlinear 

input-output systems. As a special form of the NARMAX model, this hybrid model structure will be referred to as the 

WAvelet-NARMAX model, or simply WANARMAX. Generally, such a WANARMAX representation for an input-

output system might involve a large number of basis functions and therefore a great number of model terms. 

Experience reveals that only a small number of these model terms are significant to the system output. A new fast 

orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is also 

introduced in this study to determine which terms should be included in the final model.  

Keywords:  Nonlinear system identification;  NARMAX models;  wavelets;  orthogonal least squares. 

1.   Introduction 

Modelling and identification of nonlinear systems have been extensively studied in recent years, and several 

model structures and modelling approaches have been developed. These include the polynomial NARMAX 

(Nonlinear AutoRegressive Moving Average with eXogenous inputs) model (Billings and Leontaritis 1982, 

Leontaritis and Billings 1985), neural networks (Chen et al. 1990b, Chen and Billings 1992, Billings and Chen 

1998, Yamada and Yabuta 1993, Delgado et al. 1995), radial basis function networks (Chen et al 1990a, 1992), 

wavelet networks (Zhang and Benveniste 1992, Zhang 1997) , fuzzy logic based models (Wang 1992), neuro-

fuzzy networks (Brown and Harris 1994), wavelet multiresolution decompositions (Billings and Coca 1999, 

Coca and Billings 2001), support vector machines and kernel methods(Campbell 2002, Lee and Billings 2002), 

and other basis function expansion based models. In input-output observational data based modelling, the main 

task is to determine a suitable model structure, which involves the smallest number of input variables (the lagged 

inputs and outputs for dynamical systems) and adjustable parameters. In practice, however, model parsimony 

and accuracy are difficult to achieve simultaneously. Therefore, the trade-offs between model parsimony, 
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accuracy and validity have to be considered. Another property often considered while modelling a dynamical 

system is the prediction (forecasting) capability of the model. 

 Among existing model structures, polynomial based model structures play a very important role in linear and 

nonlinear system modelling and identification. The well-established linear and nonlinear models such as AR(X), 

ARMA(X) (Ljung 1987) and bilinear models, which have been widely used in linear and nonlinear system 

modelling, all belong to the polynomial model class and can be viewed as special cases of the polynomial 

NARMAX model (Billings and Leontaritis 1982, Leontaritis and Billings 1985, Pearson 1995, 1999). 

Polynomials are globally smooth functions. It has been proved that any given continuous function on an infinite 

interval can be uniformly approximated using a polynomial (Schumaker 1981). Experience shows that even a 

simple polynomial model can track the linear trend of a dynamical system very well. However, a polynomial 

model of a low degree possesses a poor ability to track severe nonlinear behaviour, such as jumps and 

discontinuities. 

    Local function expansion based model structures including the wavelet decomposition techniques provide a 

powerful tool for representing nonlinear signals, even severely nonlinear signals with discontinuities. Among 

almost all the basis functions used for the purpose of approximation, few have had such an impact and spurred so 

much interest as wavelets. Wavelet decompositions outperform many other approximation schemes and offer a 

flexible capability for approximating arbitrary functions. Wavelet basis functions have the property of 

localization in both time and frequency. Due to this inherent property, wavelet approximations provide the 

foundation for representing arbitrary functions economically, using just a small number of basis functions. 

Wavelet algorithms (Coca and Billing 2001) process data at different scales or resolutions, and this makes 

wavelet representations more adaptive compared with other basis functions. Although wavelet decompositions 

can represent nonlinear signals very well, the advantage of these decompositions might be lost when a signal 

displays linear or low-order nonlinear trends. 

In order to sufficiently utilise the global property of polynomial models and the local property of wavelet 

representations simultaneously, polynomial models and wavelet decompositions will be combined together in a 

parallel way to represent a nonlinear input-output system in the present study. As a special form of the 

NARMAX model, this hybrid model structure will be referred to as the WANARMAX model. 

One of the common problems in nonlinear system modelling is the curse of dimensionality. Theoretically, an 

n-dimensional system should be represented using an n-variate function. However, for large n, it is almost 

always true that the observational data only forms a sparse distribution in the spacenR . Consequently, the 

identification problem, which can be converted into a regression problem in most cases and for most model 

structures, is often ill-posed and various methods have been employed to resolve this problem. One way of 

representing a continuous function of several variables is to decompose a multivariate function into a 

superposition of a number of continuous functions with fewer variables and this is the essence of Hilbert’s 13th 

problem, which was resolved by Kolmogorov. Several applicable approaches have been proposed to realize the 

idea of representing multivariate functions using a superposition of a number of functions with fewer variables. 

The projection pursuit regression algorithm (Friedman 1981), radial basis function networks (Chen et al 1990b, 

1992a), and multi-layer perceptron (MPL) architecture (Haykin 1994) are among the representations that have 

been studied for multivariate functions. The existing strategies that attempt to approximate general functions in 

high dimensions are based on suppositions of additive functional submodels including the polynomial 
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NARMAX representation introduced by Billings and Leontaritis (1982, 1985), the multivariate adaptive 

regression spline (MARS) method introduced by Friedman (1991), and the adaptive spline modelling of 

observational data (ASMOD) introduced by Kavli (1993).  

Although experience shows that most systems in practice can be expressed as a supposition of a number of 

low-dimensional submodels if the system variables are appropriately selected, a large number of potential model 

terms might still be involved when expanding each functional component. Practice and experience show that 

often many of the model terms are redundant and inclusion of redundant terms can result in a complex model 

structure and the model may become oversensitive to the training data and is likely to exhibit poor generalisation 

properties. It is therefore important to determine which terms should be included in the model. A new fast 

orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is 

introduced in the present paper as one solution to the model term selection problem.  

This paper is organised as follows. In Section 2, the wavelet transform and wavelet decompositions are briefly 

reviewed. In Section 3, the Wavelet-NARMAX model structure, or simply WANARMAX, is introduced. The 

model term selection problem is discussed in Section 4, where a new matching pursuit orthogonal least squares 

(MPOLS) algorithm is proposed. Section 5 discusses the implementation of the WANARMAX model. In section 

6, two examples are provided to illustrate the applicability of the new modelling framework. Conclusions are 

given in Section 7. 

2.   Multiresolution wavelet decompositions 

    Assume that the waveletϕ  and the corresponding scaling functionφ  constitute an orthogonal wavelet system. 

From wavelet theory (Mallat 1989, Chui 1992, Daubechies 1992), any function can be expressed as 

the following multiresolution wavelet decomposition  
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α  and kj ,β  are the wavelet decomposition 

coefficients, (Zkj ∈, Z is a set consisting of whole integers), is an arbitrary integer representing the coarsest 

resolution or scaling level.  Note that from Eq. (1) and the property of wavelet multiresolution analysis, any 

function  can be arbitrarily closely approximated with some sufficiently large integer J, that is, for 
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This means that the multiresolutin wavelet series decomposition (1) can be replaced by wavelet series (3) with 

respect to the orthogonal scaling functions , where J is a sufficiently large scale 

number. 

)2(2)( 2/
, kxx JJ
kJ −= φφ

Using the concept of tensor products, the multiresolution decomposition (1) can be immediately generalised to 

the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by taking the tensor 

product of the one-dimensional scaling and wavelet functions (Mallat 1989).  The one-dimensional wavelet 

decomposition (3) can also be extended to d-dimensional (d >1) case by a tensor product approach as below  
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where )(⋅φ is a scalar scaling function.  

3.    The WANARMAX model     

 The WANARMAX model is formed by combining a polynomial model with wavelet decompositions. In this 

study, polynomial NARMAX models and semi-orthogonal multiresolution wavelet decompositions will be 

considered and combined in a parallel way.  

3.1    The NARMAX representations for nonlinear input-output systems 

    In the past few decades, modelling and identification techniques for nonlinear systems have been extensively 

studied with many applications in approximation, prediction and control. Several nonlinear models have been 

proposed in the literature including the NARMAX model representation which was initially proposed by Billings 

and Leontaritis (Billings and Leontaritis 1982, Leontaritis and Billings 1985). The NARMAX model takes the 

form of the following nonlinear difference equation: 

  )())(,),1(),(,),1(),(,),1(()( tentetentutuntytyfty euy +−−−−−−= LLL                  (6) 

where  is an unknown nonlinear mapping,  and  are the sampled input and output sequences, 

and  are the maximum input and output lags, respectively. The noise variable  with maximum lag 

, is unobservable but is assumed to be bounded and uncorrelated with the inputs and the past outputs. The 

model (6) relates the inputs and outputs and takes into account the combined effects of measurement noise, 

modelling errors and unmeasured disturbances represented by the noise variable.  
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    One of the popular representations for the NARMAX model (6) is the polynomial representation which takes 

the function  as a polynomial of degree l and gives the form as )(⋅f
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The degree of a multivariate polynomial is defined as the highest order among all terms. For example, the degree 

of the polynomial  is 2
32

2
13322

4
11321 ),,( xxxaxxaxaxxxh ++= =l 2+1+2=5, which is determined by the 

last term, . Similarly, a NARMAX model with polynomial degree lmeans that the order of each term 

in the model is not higher than .   
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     The NARX model is a special case of the NARMAX model and takes the form 
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 3.2    The wavelet-based ANOVA expansion 

 Generally, a multivariate nonlinear function can often be decomposed into a superposition of a number of 

functional components via the well known functional analysis of variance (ANOVA) expansions (Friedman 

1991, Chen 1993) as below  
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where the first functional component  is a constant to indicate the intrinsic varying trend; , ,  are 

univariate, bivariate, etc., functional components. The univariate functional components  represent the 

independent contribution to the system output that arises from the action of the ith variable  alone; the 
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bivariate functional components  represent the interacting contribution to the system output from the 

input variables  and , etc. Let (k=1,2,…,n) be defined as (8) or (10), the ANOVA expansion (11) can 

then be viewed as a special form of the NARMAX or NARX models for dynamic input and output systems. 

Although the ANOVA decomposition of the NARMAX model (6) involves up to  different functional 

components, experience shows that a truncated representation containing the components up to the bivariate or 

tri-variate functional terms often provides a satisfactory description of  for many high dimensional 

problems providing that the input variables are properly selected. It is obvious that adopting a truncated ANOVA 

expansion containing only low-dimensional function components does not mean such an approach will always 

be appropriate. An exhaustive search for all the possible submodel structures of (11) is demanding and can be 

prohibitive because of the curse-of-dimensionality. A truncated representation is advantageous and practical if 

the higher order terms can be ignored.  In practice, the constant term can often be omitted since it can be 

combined into other functional components.    

),( jiij xxf

ix jx )(txk

n2

)(ty

0f

    It will generally be true that, whatever the data set and whatever the modelling approach, the structure of the 

final model will be unknown in advance. It is therefore not possible to know up to how many order functional 

components in a truncated ANOVA expansion will be sufficient for a given nonlinear system. This is why model 

validation methods, which are independent of the model fitting procedure and the model type, are an important 

part of the NARMAX modelling methodology (Billings and Chen 1998). If the model is adequate to represent 

the system the residuals should be unpredictable from all linear and nonlinear combinations of past inputs and 

outputs. This means that the identified model has captured all the predictable information in the data and is 

therefore the best that can be achieved by any model. It is therefore perfectly acceptable to fit a model that 

includes just up to one, two or three-dimensional functional terms initially. The model validity tests should then 

be applied to test if the model that is obtained has captured all the predictable information in the data. If the 

model fails the model validity tests higher order terms should be included in the initial search set and the 

procedure should be repeated. It is therefore not necessary to prove that it is always possible to proceed based on 

just up to certain order submodels. The identification proceeds a stage at a time and uses model validation as the 

decision making process. This is the NARMAX methodology (Billings and Chen 1998), which is implemented 

here, and which mimics the traditional approach to analytical modelling. In the latter case the most important 

model terms are included in the model initially then the less significant terms are added until the model is 

considered to be adequate. This is exactly what the OLS algorithm and the ERR does but based on the data. The 

most significant model terms are added first, step by step, a term at a time. The ERR cut-off value is used as a 

stopping mechanism but the model should never be accepted without applying model validity tests. If these tests 

fail go back and either reduce the ERR cut-off, or allow more complex model terms in the initial model library, 

or both and continue until the model validity tests are satisfied. 

In practice, many types of functions, such as kernel functions, splines, polynomials and other basis functions 

can be chosen to express the functional components in model (11). In the present study, however, mutiresolution 

wavelet decompositions will be chosen to describe the functional components. For example, the functional 

components (p=1,2,…,n) and  ())(( txf pp ))(),(( txtxf qppq nqp ≤<≤1 )  can be expressed using the 

multiresolution wavelet decompositions as 
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3.3    The WANARMAX model 

The wavelet-NARMAX model, or simply WANARMAX, which incorporates a polynomial NARMAX model 

and a multiresolution wavelet decomposition in a parallel way, can be defined as  

)())(())(())(())(()( tetftxftxftxfty EWP +++== ξ                                                               (14) 

where and (k=1,2,…,n) are defined as in  (10), is a 

polynomial model;  is a wavelet decomposition model; and is a polynomial model with 

respect to the noise variable  and .The submodels , 

 and  can be combined into the WANARMAX model (14) in various forms and the 

following are some examples 
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where the functional components (p=1,2,…,n) and ( ) in (16) 

can be expressed using the multiresolution wavelet decompositions.  
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    For a selected wavelet )(⋅ϕ  and the scaling function )(⋅φ , once the maximum lags ,  and  are given, 

and the initial(coarsest) and highest(finest) resolution scales in the multiresolution decomposition are determined, 

the WANARMAX model can be rearranged and converted into a linear-in-the-parameters regression model of 

the  form  
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model , respectively. , and  ())(( tf E ξ P
iθ

W
jθ E

kθ ;,,2,1 1Mi L=  ;,,2,1 2Mj L= 3,,2,1 Mk L= ) are parameters 

to be estimated. 2/)2)(1(1 ++++= uyuy nnnnM , enM =3  and  depends on not only the wavelet type 

used but also the initial and the highest resolution scales.    

2M

A special case for the WANARMAX model (18) is the Wavelet-NARX, or simply WANARX model 
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Although many functions can be chosen as scaling and/or wavelet functions, most of these are not suitable in 

system identification applications, especially in the case of multidimensional and multiresolution expansions. An 

implementation, which has been tested with very good results, involves B-spline and B-wavelet functions in 

multiresolution wavelet decompositions (Billings and Coca 1999, Coca and Billings 2001, Wei and Billings 

2002). B-spline wavelets were originally introduced by Chui and Wang (1992) to define a class of semi-

orthogonal wavelets. 

For large  and , the model (18) might involve a great number of model terms or regressors. Experience 

shows that often many of the model terms are redundant and therefore are insignificant to the system output and 

can be removed from the model. An efficient algorithm is required to determine which terms should be included 

in the model. The significant model term selection problem is discussed in the next section. 

yn un

4.     Model term selection 

    The selection of which terms should be included in the WANARMAX model (18) is vital if a parsimonious 

representation of the system is to be identified. For a selected basic wavelet and associated scaling function, once 

the initial resolution scale level is given, simply increasing the ordersand  of the dynamic terms and the 

highest resolutions in the multiresolution wavelet model will in general result in an excessively over 

parameterised complex model. Fortunately, experience has shown that only a small number of subsets of these 

model terms are significant and the remainder can be discarded with little deterioration in prediction accuracy. 

Several possible ways can be used to determine which terms are significant and should be included in the model, 

including the well-known orthogonal least squares (OLS) algorithm. In this section, the forward orthogonal least 

squares (OLS) algorithm is briefly summarised and then a new matching pursuit orthogonal least squares 

(MPOLS) algorithm is introduced. 
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    The WANARMAX model (18) can be expressed as a linear-in-the-parameters equation of the form 
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The model term selection procedure is in fact an iterative process which searches through a nested term set in the 

sense that  

LL ⊂⊂⊂⊂ )()2()1( mPPP                                                                                                           (22) 

This makes both the complexity and the accuracy of the representation based on these term sets increase until a 

suitable term set is found, that is, there exists an integer (generally0M MM <<0 ), such that the model  

                                                                                                                      (23) )()()(
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provides a satisfactory representation over the range considered for the measured input-output data. 

4.1    The forward orthogonal least squares (OLS) algorithm 

    A fast and efficient model structure determination approach can be implemented using the forward orthogonal 

least squares (OLS) algorithm and the error reduction ratio (ERR) criterion, which was originally introduced to 

determine which terms should be included in nonlinear models (Billings et al. 1988, 1989, Korenberg et al. 1988, 

Chen et al. 1989). This approach has been extensively studied and widely applied in nonlinear system 

identification (see, for example, Chen et al. 1991, Wang and Mendel 1992, Zhu and Billings 1996, Zhang 1997, 

Hong and Harris 2001). The forward OLS algorithm involves a stepwise orthogonalization of the regressors and 

a forward selection of the relevant terms in (20) based on the error reduction ratio (ERR) (Billings et al. 1988, 

1989). The procedure can be briefly summarised as follows:  

    Consider the linear-in-the-parameters model (20), where the regression matrix with 

, N is the length of the observational data set. With the assumption that P is full 

rank in columns, then P can be orthogonally decomposed as  
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where A  is an MM × unit upper triangular matrix and W is an MN × matrix with orthogonal columns  

in the sense that  Mwww ,,, 21 L DWWT = ],dL,,[  21 Mdddiag=  with .  Model (20) can then be 

expressed as   

m
T
mm wwd =

Ξ+=Ξ+Θ= − WGAPAY ))(( 1                                                                                                               (25) 

where  are the observations of the system output, is the 

parameter vector, is the vector of the noise signal, and  is an 

auxiliary parameter vector, which can be calculated directly from Y and by means of the property of 

orthogonality as  

TNyyyY )](,),2(),1([ L= T
M ],,,[ 21 θθθ L=Θ

TN )](,),2(),1([ εεε L=Ξ T
MgggG ],,,[ 21 L=

W

i
T
i

i
T

i
ww

wY
g = ,                                                                                                                     (26) Mi ,,2,1 L=

The parameter vector , which is related to G by the equationΘ GA =Θ , can easily be calculated by solving this 

equation using a substitution scheme.  
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    The number M of all the candidate terms in model (20) is often very large. Some of these terms may be 

redundant and should be removed to give a parsimonious model with only  terms ( ). Detection 

of the significant model terms can be achieved using the OLS procedures described below. 

0M MM <<0

Assume that the residual signal)(tε  in the model (20) is uncorrelated with the past outputs of the system, then 

the output variance can be expressed as 

ΞΞ+= ∑
=

T
M

i
i

T
ii

T

N
wwg

N
YY

N

111

1

2                                                                                                        (27) 

Note that the output variance consists of two parts, the desired output ∑ =

M

i i
T
ii wwgN

1

2)/1(  which can be 

explained by the regressors, and the part which represents the unexplained variance. Thus 

 is the increment to the explained desired output variance brought by, and the i th error 

reduction ratio, , introduced by , can be defined as 

ΞΞTN )/1(

∑ =

M

i i
T
ii wwgN

1

2)/1( ip

iERR ip

%100
)(2

×=
YY

wwg
ERR

T
i

T
ii

i %100
))((

)( 2

×=
i

T
i

T
i

T

wwYY

wY
,   Mi ,,2,1 L= ,                                           (28) 

This ratio provides a simple but effective means for seeking a subset of significant regressors. The significant 

terms can be selected in a forward-regression manner according to the value of  step by step. The 

significant terms can be selected in a forward-regression manner according to the value of. Several 

orthogonalization procedures, such as Gram-Schmidt, modified Gram-Schmidt and Householder transformation 

(Chen et al. 1989) can be applied to implement the orthogonal decomposition. The improved version of this 

algorithm (Zhu and Billings 1996) provides a significant reduction in the computations and is advantageous 

compared to standard Gram-Schmidt algorithm when dealing with high order MIMO systems. Other recent 

studies by Hong and Harris (2001) have proposed other improvements to this procedure. 

iERR

iERR

Remark 1:  The forward orthogonal least squares algorithm for model term selection is described and 

expounded in a matrix form here for convenience of introducing and explaining the concept of error reduction 

ratio (ERR). In practical identification, however, this algorithm is often implemented in a forward stepwise way 

(Wei and Billings 2004).  The most significant model terms are added first, step by step, a term at a time. The 

ERR cut-off value is used as a stopping mechanism but the model should never be accepted without applying 

model validity tests. 

    Remark 2: The candidate terms that are not chosen in the first step are orthogonalized with respect to all 

previously selected basis functions. Because of the orthogonality the j th term can be selected in the same way 

as in the first step.  is the jw j th selected orthogonal term and  is the corresponding parameter. Any 

numerical ill conditioning can be avoided by eliminating the candidate basis functions for which  are less 

than a predetermined threshold 

jg

i
T
i ww

τ , for example,  and . r−=10τ 10≥r
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    Remark 3: The assumption that the regression matrix P is full rank in columns is unnecessary in the iterative 

forward OLS algorithm(Wei and Billings 2004). In fact, if the M columns of the matrix P are linearly dependent, 

and assuming that the rank in columns of the matrix P is L (<M) , then the algorithm will stop at the L -th step.  

    Remark 4:  If required, the procedure can be terminated at the -th step ( ) when 

, where

0M LM ≤0

ρ<−∑
=

0

1

1
M

i
iERR ρ is a desired error tolerance called the cutoff, which can be learnt during the 

regression procedure. The final model is the linear combination of the  significant terms selected from the 0M

M  candidate terms  M
iip 1}{ =

)()()(
0

1

tetwgty
M

i
ii +=∑

=

                                                                                                              (29) 

which is equivalent to 

)())(()(
0

1

tetxpty
M

i
ii +=∑

=
llθ                                                                                                       (30) 

where the parameters are calculated from the triangular equation   

with  and 

TOLS
M

],,,[
021

)(
lll L θθθ=Θ )()( OLSOLSAG Θ=

T
M

OLS gggG ],,,[
021

)( L=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

1                    0       0

        1                 0

                            

                 1        0

                      1

00

0

0

,1

2

112

L

L

MOMM

L

L

MM

M

M

a

a

aa

A                                                                                                (31) 

The entries  are given in the above OLS algorithm. )1( 0Mjiaij ≤<≤

Remark 5:  The key point in the forward OLS-ERR algorithm is focused on detecting the most significant 

model terms from a great number of candidates by introducing an orthogonalization procedure and the concept 

of error reduction ratio (ERR). The estimation of the model parameters is only a by-product of the model term 

selection procedure. It requires that the orthogonalization should be explicit so that the significant model terms 

selected by the algorithm are transparent to the model builders. Many other singular value decomposition 

methods including the standard SVD, Krylov subspace and Lanczos bidiagonalizaiton methods, which are 

proved to be more numerically stable compared with the present OLS algorithm, can be used to solve linear least 

squares problems, where the main task is to estimate the unknown parameters for a given linear equation. These 

methods, however, cannot provide any information about which model terms are the most significant. In other 

words, for a given linear-in-the-parameters form (20), these methods cannot tell which model terms or regressors 

make the most significant contributions to the system output y(t).  These methods could however provide an aid 

for solving the identification problem by combining the methods with the forward OLS-ERR algorithm. For 

example, the most significant model terms could then be selected initially using the forward OLS-ERR algorithm, 

and finally the unknown parameters could be estimated using the more numerically stable and precise methods.       
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4.2    Matching pursuit orthogonal least squares (MPOLS) algorithm 

Note that in the forward OLS algorithm, at each step all the unselected regressors are made to orthogonalize 

with the previously selected regressors, and most of the computational cost is based on these orthogonalization 

transforms. An iterated orthogonal projection algorithm, the matching pursuit method, proposed by Mallat and 

Zhang (1993) is a simple regressor selection algorithm which is relatively computationally efficient. But the 

matching pursuit algorithm is less efficient than OLS, since the number of regressors selected by the matching 

pursuit algorithm is almost always larger than that selected by OLS for the same given threshold value of 

approximation accuracy. A trade-off between the efficiency and the computational cost is considered here by 

combining the advantages of the forward OLS with the matching pursuit algorithm to create a new algorithm 

called the matching pursuit orthogonal least squares (MPOLS) algorithm. The algorithm is described below. 

For the output vector  in (20), find a vector  from the candidate regressor 

family  , so that  is the “best” matching regressor to Y, i.e., makes the mean squared 

error of the following linear regression 

TNyyyY )](,),2(),1([ L=
1l

p

},,,{ 21 Mppp L
1l

p
1l

p

)()()( ttpcty mmm ξ+=                                                                                                                        (32) 

achieve a minimum in the sense that  

 
⎭
⎬
⎫

⎩
⎨
⎧

−=−= ∑∑∑
===

N

t
mm

m

N

t

N

t

tpcty
N

tpcty
N

t
N 1

2

1

2

1

2 )]()([
1

min))()((
1

)(
1

111 lllξ                              (33) 

The “best” matching regressor can be found using orthogonal projection approach by defining  
1l

p

m
T
m

T

m
T

ppYY

pY
=αcos                                                                                                                       (34) 

m
T
m

m
T

m
pp

pY
Yp == αcos1                                                                                                               (35) 

Such that 

2122

1

2 )( mm

N

t
m pYt −==∑

=

ξξ
m

T
m

m
T

T

pp

pY
YY

2)(
−=                                                                   (36) 

Thus 

 
⎭
⎬
⎫

⎩
⎨
⎧

≤≤= Mm
pp

pY

m
T
m

m
T

m
1,

)(
maxarg

2

1l                                                                                            (37) 

Set , , , , and  )()(
11 tptq l= )()( 11 tqtw = )/()( 1111 wwwYg TT= )/()( 11

2
11 YYwwgERR TT=

)()()( 111 twgtyt −=η . 

    At the second step, find a vector  from the candidate regressor family
2l

p },1:{ 1l≠≤≤ mMmpm  , so that 

 is the “best” matching regrssor to 
2l

p 1η . Following the approach in (32) and (33),  should be chosen as 2l

⎭
⎬
⎫

⎩
⎨
⎧

≠≤≤= 1

2
1

2 ,1,
)(

maxarg ll mMm
pp

p

m
T
m

m
T

m

η
                                                                            (38) 
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Set . Orthogonalize  with as below  )()(
22 tptq l= 2q 1w

1
11

21
22 w

ww

qw
qw

T

T

−=                                                                                                                              (39) 

And set , , and )/()( 2222 wwwYg TT= )/()( 22
2
22 YYwwgERR TT= )()()( 2212 twgtt −=ηη . 

    Generally, at step k, select  

⎭
⎬
⎫

⎩
⎨
⎧

≠≠≠≤≤= −
−

121

2
1 ,,,,1,

)(
maxarg k

m
T
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m
T
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m
k mmmMm
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η
                                  (40) 

Set  and orthogonalize  with  as below )()( tptq
kk l= kq 121 ,,, −kwww L

1
11

1
2

22

2
1

11

1
−

−−

−−−−−= k

k
T
k

k
T
k

T
k

T

T
k

T

kk w
ww

qw
w

ww

qw
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ww
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qw L                                                                (41) 

Calculate , , and set)/()( k
T
kk

T
k wwwYg = )/()(2 YYwwgERR T

k
T
kkk = )()()( 1 twgtt kkkk −= −ηη . 

    A similar algorithm has been used for basis selection in wavelet neural networks (Xu 2002). Note that in the 

MPOLS algorithm, only the most recently selected regressor 
j

pq j l= at step j is made to be orthogonal with  

the previous selected regressors (k=1,2,…,j-1). Therefore, the computational load of the 

orthogonalization procedure in OLS, which involves making all the unselected regressors orthogonal with the 

previously selected regressors, is significantly reduced in the new MPOLS algorithm. Therefore, the 

computational cost of the MPOLS algorithm is much less than that of the OLS algorithm, and  the new algorithm 

is much faster then most existing OLS and fast OLS algorithms.  

k
pqk l=

In the MPOLS algorithm, any numerical ill conditioning can be avoided by eliminating the candidate terms for 

which is less than a predetermined threshold i
T
i pp τ  , for example,  and .  is the r−= 10τ 10≥r jw j th 

selected orthogonal term and  is the corresponding parameter. If required, the procedure can be terminated at 

the -th step ( ) when , where 

jg

0M LM ≤0 ρ<−∑
=

0

1

1
M

i
iERR ρ  is a desired error tolerance, which can be learnt 

during the regression procedure. The final model is the linear combination of all the selected significant terms in 

the form of (29) and (30).  

Notice that, for the same problem, MPOLS may select different model terms (regressors) and different 

numbers of model terms compared with OLS even for the same threshold value of termination. It is nearly 

always true that the MPOLS selects more model terms than that of OLS. However, the first term selected by 

both algorithms is always the same. The computational efficiency of the MPOLS algorithm compared with OLS 

can be demonstrated using the CPU time required to perform a bench test example on the same computer. This is 

illustrated in Table 1.      
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Table 1  The comparison of the computational efficiency between OLS and MPOLS 

Number of selected 
regressors (m) 

 
CPU time (sec) 

 
Cases 

 
Data length 

(N) 

 
Number of 

candidate regressors 
(M) OLS MPOLS OLS MPOLS 

Case 1 500 565 12 20 23.23 2.03 

Case 2 600 1321 9 15 119.73 10.29 

Case 3 1000 705 21 44 226.38 22.15 

Case 4 500 1153 110 112 1503.82 21.49 

Note:  The threshold values to terminate the OLS and MPOLS algorithms were the same. 

5.     Implementing a WANARMAX Model 

    This section summarizes the procedure for implementing a WANARMAX model. The implementation of a 

WANARMAX model involves several practical issues including observational input-output data pre-processing, 

significant variable selection (Wei and Billings 2004), resolution level determination in the wavelet 

decomposition submodels, and model validity tests (Billings and Voon, 1986; Billings and Zhu, 1995). 

The iterative identification procedure to implement a WANARMAX model consists of the following steps. 

Step 1: Data pre-processing  

         For convenience of implementation, convert the original observational input-output data u(t) and y(t)  

         (t=1,2, …,N) into unit intervals . The converted input and output are still denoted by u(t) and y(t).  ]1 ,0[

Step 2: Determining the model initial conditions   

This includes: 

(i)    Provide values for , , , yn un en ρ  and eρ (whereρ  and eρ  are threshold values for terminating the 

        model term selection procedure, ρ  is used in Step 3 and eρ  in Step 4, notice in general eρ < ρ ). 

(ii)   Set =0 for t=1,2,…,N.  )(te

(iii)  If possible, select the significant variables from all the candidate lagged output and input variables  

       )}(,),1(),(,),1({ uy ntutuntyty −−−− LL .  This involves the model order determination and    

        variable selection problems.   

(iv)  Select a polynomial submodel , a wavelet submodel , and a noise model   ))(( txf P ))(( txf W ))(( tf E ξ

        from the representations (15)-(17).   

(v)   Determine the initial and the highest resolution scales. Generally the initial resolution scalesand  in   1j 2j

        the wavelet models can be set to =0, and the highest resolution scales  and  can be chosen   21 jj = 1J 2J

        in a heuristic way.   

Step 3: Identify the WANARX model 

    (i)    Calculate the regressors  and ()(tp P
i )(tpW

j 21 ,,2,1;,,2,1 MjMi LL == ) which are related to the   
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         the autoregressive models  and the wavelet decomposition model . The regression  ))(( txf P ))(( txf W

         matrix  of the WANARX model (19) are formed from these regreesors.    ],[ WP PPP =

(ii)    Select the significant terms in the autoregressive models  and the wavelet decomposition model ))(( txf P

         using the OLS or MPOLS algorithms to obtain parsimonious models of the form (29) and (30).   ))(( txf W

Step 4: An iterative loop to identify a WANARMAX model         

    (i)    Set k=0 and estimate the initial residuals  

          )(ˆ)()()0( tytyt −=ε

                           )0,,0),(,),1(),(,),1((ˆ)( LLL uy ntutuntytyfty −−−−−=

∑
=

−=
0

1

)()( )()(
M

i

k
i

k
i twgty                                                                                                           (42) 

            where  and (ii gg =)0(
ii ww =)0(

0,,2,1 Mi L= ) are the orthogonalized regressors and the parameters   

            estimated in Step 3 (ii).  

    (ii)   Set k=:k+1. Select significant terms for the moving average model , add these terms to the  ))(( tf E ξ

model estimated in Step 3 (ii). Re-estimate the parameters for the updated model using the OLS or  

MPOLS algorithms, and calculate the residuals  recursively using    )()( tkε

              ))(,),1(),(,),1(),(,),1((ˆ)()( )1()1()(
e

kk
uy

k nttntutuntytyftyt −−−−−−−= −− εεε LLL

∑
+

=

−=
e

jj

mM

j

k tpty
0

1

)( )()( llθ                                                                                                             (43) 

             or 

∑
+

=

−=
emM

j

k
j

k
j

k twgtyt
0

1

)()()( )()()(ε                                                                                                           (44) 

        where  is the number of the noise terms selected. The above recursive calculation will be terminated at   em

        the kth iteration if one of the following the convergence tests is satisfied 

1
1

)(

)1()(
0

δ≤
−

∑
+

=

−
emM

m
k

m

k
m

k
m

g

gg
                                                                                                             (45) 

       and  

 2
1

2)1()( )()( δεε ≤−∑
=

−
N

t

kk tt                                                                                                       (46) 

  where 1δ  and 2δ  are two tolerance values for convergence testing. Numerous tests have shown that less than  

  10 iterations, typically 3-5 iterations, are sufficient for the algorithm to converge.   

Step 5: Model validity tests         

      Apply model validity tests to evaluate the identified model. If the identified model does not satisfy the model  

      validity tests, change some of the initial model conditions in Step 2, especially conditions  in (i), (iv)and (v),       

      and repeat Steps 3 to 4.  
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6.   Examples 

Two examples, one a simulated system and one based on real data relating to a terrestrial magnetosphere 

dynamic system, are given to illustrate the effectiveness and applicability of the new modelling framework. The 

original observational input-output data u(t) and y(t) (t=1,2, …,N) are normalized into the unit interval [0,1] for 

the convenience of implementation. The modelling can then be performed in [0,1], and the model output can 

then be recovered to the original system operating domain by taking the inverse transform.  

6.1   Simulated example—a nonlinear system       

The following nonlinear input-output system 

                
)3()2()1(1

)3()2()3()1()2()1(
)(

222 −+−+−+
−−+−−+−−

=
tytyty

tytytytytyty
ty  

                        ))]3())][cos(2([sin(2))]2())][cos(1([sin(2 −−+−−+ tytytyty  

)2()1(6))]1())][cos(3([sin(2 32 −+−+−−+ tututyty                                                       (47) 

was simulated using a system input with the form 

)]40/exp[sin(02.0)30/sin(5.0)25/sin(2)( ttttu πππ ++=                                                        (48) 

The estimation set consists of 500 input-output data points which are shown in Figure 1.  It was assumed that 

the real model structure is unknown and setting  and  to be 5 and 3, respectively, in the initial model, 

which was assumed to be of the form 

yn un

 

          Figure 1    The input and output data of the system described by Eq. (47)      

 16



      ))3(,),1(),5(,),1(()( −−−−= tututytyfty LL     
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where each function  can be described using the multiresolution wavelet decomposition (12) as  )(⋅pf

∑∑∑
= ∈∈

+=
4

0
,

)(
,,0

)(
,0 ))(())(())((

0 j Kk
pkj

p
kjpk

Kk

p
kpp

j

txtxtxf ϕβφα , 8,,2,1 L=p ,                                   (50) 

where and  are the 4th order  B-spline wavelet and 

scaling functions, and the finest resolution level was chosen to be J=4.. From the definition of the B-spline 

wavelets (Chui 1992, Chui and Wang 1992), the sets 

)2(2)( 2/
, kxx jj
kj −= ϕϕ )2(2)( 2/

, kxx jj
kj −= φφ

0K  and  can easily be determined as 

and 

jK

}0,1,2,3{0 −−−=K ,1,,5,6{ −−−= LjK }12,,1,0 −jL .  

    The initial model (49) contains 565 model regressors, but most of these are likely to be redundant and should 

be removed from the initial model. Both the OLS and MPOLS algorithms were used to select the significant 

regressors, and two validated parsimonious models were obtained 

                 (51) ))3(,),1(),5(,),1((ˆ)( )( −−−−= tututytyfty OLS LL ∑
=

=
12

1

)()( )(
k

OLS
k

OLS
k tpθ

                (52) ))3(,),1(),5(,),1((ˆ)( )( −−−−= tututytyfty MPOLS LL ∑
=

=
20

1

)()( )(
k

MPOLS
k

MPOLS
k tpθ

The parameters, regressors and the corresponding error reduction ratios (ERR) of the models (51) and (52) are 

listed in Table 2 and Table 3, respectively. A comparison of the model predicted outputs and the measurements, 

are shown in Figure 2.  Note that more model terms has been selected by the MPOLS algorithm than that 

selected by the forward OLS algorithm, but the model predicted outputs of the MPOLS identified model (52) is 

worse than that from the OLS identified model (51), this behaviour will be investigated in a later paper. The 

model predicted output (MPO) is defined as  

)0,,0),(,),1(),(ˆ,),1(ˆ(ˆ)(ˆ LLL uympompompo ntutuntytyfty −−−−=                               (53) 

The model predicted outputs are recursively estimated and are used to calculate the model prediction errors 

)(ˆ)()(ˆ tytyte mpompo −=                                                                                                                    (54) 
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 Figure 2   The comparison of the model predicted output (MPO) and the  measurements for the system described by Eq (47). 
(a) The model predicted  outputs based on the model (51) ; (b) The model predicted outputs based on the model (52). ( The 
solid line denotes the measurements, and the dashed line denotes the model predicted outputs.) 

 
 
 

Table 2  The regressors, parameters and the corresponding ERRs estimated using OLS for the system described by Eq (47)  

Number 
k 

Terms 

)()( tp OLS
k  

Parameters 
)(OLS

kθ  
%100×kERR  

1 )1( −ty  5.02655e-001 97.52096 

2 )4( −ty  -9.37588e-002 1.04316 

3 ))3((1,0 −− tuφ  -6.55070e-001 0.23092 

4 ))1((2,0 −− tuϕ  7.21870e-001 0.10046 

5 ))1((3,1 −− tyϕ  7.63680e-002 0.22474 

6 ))1((3,0 −− tyϕ  1.90501e-002 0.08508 

7 ))1((0,0 −tuϕ  -2.23549e+001 0.11981 

8 ))1((3,0 −− tyϕ  -5.04206e-001 0.02497 

9 ))5((2,4 −tyϕ  3.73955e-003 0.01516 

10 ))2((1,0 −− tuφ  1.41307e+000 0.01250 

11 )2()2( −− tuty  -2.49814e+000 0.01455 

12 )3()2( −− tuty  2.10633e+000 0.03581 
 Note:   The CPU time spent on selecting these model  terms  from all the candidate model term set is 23.23s.              
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Table 3  The regressors, parameters and the corresponding ERRs estimated using MPOLS for the system described by Eq (47)  

Number 
k 

Terms 

)()( tp MPOLS
k  

Parameters 
)(MPOLS

kθ  
%100×kERR  

1 )1( −ty  1.01732e+000 97.52096 

2 ))5((3,1 −− tyϕ  1.67365e-001 0.51440 

3 ))5((0,0 −tyφ  -9.08939e-001 0.51530 

4 ))1((2,0 −tuϕ  2.26668e-001 0.20425 

5 ))1((4,0 −− tyϕ  -5.24924e+000 0.11191 

6 ))3((1,1 −− tuϕ  -8.15303e-002 0.08418 

7 ))4((0,0 −tyϕ  -1.40831e+000 0.04319 

8 ))1((1,1 −− tyϕ  -4.91165e-002 0.02270 

9 ))5((2,1 −− tyϕ  -4.16277e-002 0.03402 

10 ))1((6,3 −tuϕ  4.07545e-002 0.02683 

11 ))1((2,2 −− tyϕ  -7.13154e-003 0.02574 

12 ))4((4,2 −− tyϕ  2.73731e-002 0.02045 

13 ))4((10,4 −tyϕ  -1.10107e-002 0.01004 

14 ))1((1,2 −tuϕ  -1.60958e-002 0.01619 

15 ))5((3,0 −− tyϕ  3.44345e-003 0.00903 

16 ))2((7,4 −tyϕ  8.70263e-003 0.01084 

17 ))4((1,1 −− tyϕ  -1.46078e-002 0.00858 

18 ))3((3,2 −tyϕ  -1.17200e+000 0.00893 

19 ))1((5,4 −tyϕ  4.28377e-003 0.00737 

20 ))2((12,4 −tyϕ  -9.62771e-003 0.00821 
Note:   The CPU time spent on selecting these model  terms  from all the candidate model term set is 2.03s. 

6.2   A terrestrial magnetosphere dynamical system  

While the results obtained for the simulated system in section 6.1 demonstrate the applicability of the wavelet-

NARMAX model, it does not provide a realistic test for the new hybrid modelling structure. To achieve the 

latter objective, a data set related to a terrestrial magnetosphere dynamic system was considered.  

    The sun is a source of a continuous flow of charged particles, ions and electrons called the solar wind. The 

terrestial magnetic field shields the Earth from the solar wind, and forms a cavity in the solar wind flow that is 

called the terrestrial magnetosphere. The magnetopause is a boundary of the cavity, and its position on the day 

side (sunward side) of the magnetosphere can be determined as the surface where there is a balance between the 

dynamic pressure of the solar wind outside the magnetosphere and the pressure of the terrestrial magnetic field 

inside. A complex current system exists in the magnetosphere to support the complex structure of the 

magnetosphere and the magnetopause. Changes in the solar wind velocity, density or magnetic field lead to 

changes in the shape of the magnetopause and variations in the magnetospheric current system. In addition if the 

solar wind magnetic field has a component directed towards the south a reconnection between the terrestrial 

magnetic field and the solar wind magnetic field is initiated. Such a reconnection results in a very drastic 

modification to the magnetospheric current system and this phenomenon is referred to as magnetic storms. 

During a magnetic storm, which can last for hours, the magnetic field on the Earth’s surface will change as a 

result of the variations of the magnetospheric current system. Changes in the magnetic field induce considerable 

 19



currents in long conductors on the terrestrial surface such as power lines and pipe-lines. Unpredicted currents in 

power lines can lead to blackouts of huge areas, the Ontario Blackout is just one recent example. Other 

undesirable effects include increased radiation to crew and passengers on long flights, and effects on 

communications and radio-wave propagation. Forecasting geomagnetic storms is therefore highly desirable and 

can aid the prevention of such effects. The Dst index is used to measure the disturbance of the geomagnetic field 

in the magnetic storm. Numerous studies of correlations between the solar wind parameters and magnetospheric 

disturbances show that the product of the solar wind velocity V and the southward component of the magnetic 

field, quantified by BBs, represents the input that can be considered as the input to the magnetosphere. Denote the 

multiplied input by VBs. 

Figure 3 shows 1000 data points of measurements of the solar wind parameter VBs (input) and the Dst index 

(output)  with a sample period T=1hour. The purpose here is to identify a nonlinear model to represent the input-

output relationship between VBs (input) and Dst. The effects of other inputs on the system will be neglected in the 

present study.  

    The objective here was to construct a hybrid wavelet-NARMAX model of the form (14). The first 500 

input-output data points were used for model identification and the remaining 500 data points were used for 

testing. Ten significant variables {y(t-1), …, y(t-5),u(t-1), …, u(t-5)} were initially selected using a variable 

selection algorithm. The initial model was chosen as below: 
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where for p=1,..,5 and)()( ptytx p −= )5()( +−= ptutx p   for p=6,…10, and each function  can 

be expressed as Eq. (50) .  

)(⋅pf

    The implementation procedure 5.2 was performed step by step, and both the OLS and MPOLS algorithms 

were used in the model identification procedure, finally two validated parsimonious models were obtained 
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The parameters, regressors and the corresponding error reduction ratios (ERR) of the selected regressors in 

models (56) and (57) are listed in Table 4 and Table 5, respectively. A comparison of the model predicted 

outputs and the measurements are shown in Figure 4, which clearly indicates that the model predicted outputs 

provide good long term predictions and give confidence in the identified model. The discrepancy between the 

model predicted outputs and the measured values of the Dst index are believed to be the result of other inputs 

which affect the system output but were not included in the current model.  
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Figure 3   The input (VBs) and output (Dst) data of a terrestrial magnetospheric dynamic system. 

 

Figure 4   The comparison of the model predicted output (MPO) and the measurements for a terrestrial magnetospheric 
dynamic system.(a) The model predicted outputs based on the model (56) ; (b) The model predicted outputs based on the 
model (57).( The solid line denotes the measurements, and the dashed line denotes the model predicted outputs.) 
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Table 4  The regressors, parameters and ERRs estimated using OLS for a terrestrial magnetospheric dynamic system.   

Number 
k 

Terms 

)()( tp OLS
k  

Parameters 
)(OLS

kθ  
%100×kERR  

1 )1( −ty  8.86991e-001 95.64488 

2 ))1((3,0 −− tuφ  7.28895e-001 1.53870 

3 ))1((4,0 −− tuϕ  2.92761e+000 1.01020 

4 ))2((1,2 −tuϕ  8.09016e-002 0.71025 

5 ))2((1,2 −− tyϕ  1.22450e-002 0.70824 

6 ))1((3,4 −tyϕ  1.04799e-002 0.09612 

7 ))2((1,3 −tyϕ  9.99869e-003 0.00544 

8 ))2((2,3 −tyϕ  -5.38155e-003 0.00525 

9 )1( −te  1.23283e-002 0.00107 

10 )2( −te  -3.47584e-001 0.00093 

11 )3( −te  4.00556e-001 0.00045 

12 )5( −te  9.64407e-003 0.00042 

13 )7( −te  -2.14539e-001 0.00012 

14 )8( −te  -5.24350e-002 0.00009 
Note:   The CPU time spent on selecting the process model  terms  from all the candidate   
            model term set is 20.59s. 

Table 5  The regressors, parameters and ERRs estimated using MPOLS for a terrestrial magnetospheric dynamic system.   

Number 
k 

Terms 

)()( tp MPOLS
k  

Parameters 
)(MPOLS

kθ  
%100×kERR  

1 )1( −ty  9.92291e-001 95.64488 

2 ))1((2,0 −− tuϕ  1.02467e-001 1.31859 

3 ))1((3,0 −− tyφ  6.50852e-001 1.22031 

4 ))1((11,4 −tuϕ  -4.06704e-002 0.81145 

5 ))2((1,2 −− tyϕ  2.29453e-002 0.60765 

6 ))2((2,2 −tyϕ  1.10544e-001 0.08649 

7 ))2((3,4 −tuϕ  3.67041e-001 0.01626 

8 ))5((1,2 −tuϕ  6.17316e-002 0.00545 

9 ))4((4,4 −tyϕ  -5.45452e-003 0.00486 

10 )1( −te  5.66383e-003 0.00118 

11 )2( −te  2.86554e-002 0.00073 

12 )4( −te  -7.00413e-002 0.00029 

13 )5( −te  -3.90424e-002 0.00013 

14 )7( −te  1.19670e-002 0.00020 

15 )8( −te  3.28276e-002 0.00008 

16 )9( −te  -7.32255e-003 0.00006 
Note:   The CPU time spent on selecting the process model  terms  from all the candidate   
            model term set is 1.38s. 
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7.   Conclusions 

A novel hybrid modelling framework, which combines polynomial models with multiresolution wavelet 

decompositions, has been proposed for nonlinear input-output system identification. In a wavelet-NARMAX 

model, or simply WANARMAX, a high-dimensional system is initially expressed as a supposition of a number 

of low-dimensional submodels, and then each submodel is expanded using polynomial models and 

multiresolution wavelet decompositions. The new WANARMAX model structure not only significantly 

alleviates the difficulty of the curse-of-dimensionality for high-order and high-dimensional nonlinear system 

modelling, but also makes it possible to sufficiently utilise the global property of polynomial models and the 

local property of wavelet representations simultaneously.   

A large number of potential model terms are usually involved in a WANARMAX model when each submodel 

is expanded using multiresolution wavelet decompositions. Most of the model terms are redundant and only a 

small number of significant model terms need to be included in the final model. Either the widely-used forward 

OLS algorithm or the new MPOLS algorithm proposed here can be used to select the significant model terms. 

The computational cost of the MPOLS algorithm is much less than that of the OLS algorithm. However, the 

MPOLS is less efficient than the forward regression OLS, that is, for the same given problem, it is nearly always 

true that the MPOLS selects more model terms than that selected by OLS with the same threshold value for 

termination. The MPOLS routine also tends to produce model predicted outputs that are not as good as those 

from an OLS identified model. 

The WANARMAX model can be used to describe a wide class of nonlinear systems including severely 

nonlinear systems. The linear or low-order nonlinear trends of the system can be easily tracked by polynomial 

models and the local nonlinear behaviour can be captured by wavelet decompositions. This enables the 

WANARMAX model to be more flexible than either a single polynomial model or a wavelet decomposition 

model. 
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