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Abstract: A new hybrid model structure combing polynomial models with multiresolution wavelet decompositions is
introduced for nonlinear system identiton. Polynomial models play an portant role in approximation theory,

and have been extensively used in linear and nonlinsterayidentification. Wavelet decompositions, in which the
basis functions have the property of localization in hitte and frequency, outperformany other approximation
schemes and offer a flexible solutifer approximating arbitrary function®\lthough wavelet representations can
approximate even severe nonlinearities in a given signalweltythe advantage of these representations can be lost
when wavelets are used to capture linear or low-order ralinehaviour in a signal. In order to sufficiently utilise
the global property of polynomials arlde local property of wavelet representations simultaneously, in this study
polynomial models and waveldecompositions are combined together in a parallel structure to represent nonlinear
input-output systems. As a spaldiorm of the NARMAX model, this hybrichodel structure will be referred to as the
WAVvelet-NARMAX model, or simplyWANARMAX. Generally, such a WANARIAX representation for an input-
output system might involve a largaamber of basis functions and thenef a great number of model terms.
Experience reveals that ondysmall number of these model terms areiggmt to the system output. A new fast
orthogonal least squares algorithm, ahllee matching pursuit orthogonal leagtiares (MPOLS) algorithm, is also
introduced in this study to determine whichts should be included in the final model.

Keywords: Nonlinear system identification; NARMAMKodels; wavelets; tirogonal least squares.

1. Introduction

Modelling and identification of nonlinear systems haeerbextensively studied in recent years, and several
model structures and modelling approaches have been developed. These include the polynomial NARMAX
(Nonlinear AutoRegressive Moving Average with eXogenous inputs) model (Billings and Leontaritis 1982,
Leontaritis and Billings 1985), neural networks (Chen et al. 1990b, Chen and Billings 1992, Billings and Chen
1998, Yamada and Yabuta 1993, Delgado et al. 1995), radial basis function networks (Chen et al 1890a, 199
wavelet networks (Zhang and Benveniste 1992, Zhang 1997) , fuzzy logic based models (V2yngelos-
fuzzy networks (Brown and Harris 1994), wavelet multiresolution decompositions (Billings and Coca 1999,
Coca and Billings 2001), supg vector machines and kernel meth@kampbell 2002, Lee and Billings 2002),
and other basis function expansion based models. In input-output observational data based modelling, the main
task is to determine a suitable model structure, which involves the smallest number of input variables (the lagged
inputs and outputs for dynamical ssts) and adjustable parameterspractice, however, model parsimony

and accuracy are difficult to achiewmultaneously. Therefore, theatte-offs between model parsimony,
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accuracy and validity have to be considered. Anotineperty often considered while modelling a dynamical

system is the prediction (forecasting) capability of the model.

Among existing model structures, polynomial based model structures play a very important nglariarid
nonlinear system modelling and identification. The well-established linear and nonlinear models suck)as AR(
ARMA(X) (Ljung 1987) and bilinear models, which have been widely used in linear and nonlinear system
modelling, all belong to the polynomial model class and can be viewed as special cases of the polynomial
NARMAX model (Bilings and Leontaritis 1982, Leontaritis and Billings 1985, Pearson 1995, 1999).
Polynomials are globally smooth functions. It has been proved that any given continuous functiorfiaitean in
interval can be uniformly approximated using a polynomial (Schumaker 1981). Experience shows that even a
simple polynomial model can track the linear trend of a dynamical system very well. However, a polynomial
model of a low degree possesses a poor ability tk tsewere nonlinear behaviour, such as jumps and
discontinuities.

Local function expansion based model structures including the wavelet decomposition techniquesaprovid
powerful tool for representing nonlinear signals, esewerely nonlinear signals with discontinuities. Among
almost all the basis functions used for the purpose of approximation, few have had such an impacaeansbspur
much interest awavelets. Wavelet decompositions outperform many other approximation schemes and offer a
flexible capability for approximating arbitrary funotis. Wavelet basis functions have the property of
localization in both time and frequency. Due to thikeirent property, wavelet approximations provide the
foundation for representing arbitrary functions economically, using just a small humbesisffunctions.
Wavelet algorithms (Coca and Billing 2001) process data at different scales or resolutions, and this makes
wavelet representations more adaptive compared with other basis functions. Although wavelet degospositi
can represent nonlinear signals very well, the advantage of these decompositions might be lost when a signal
displays linear or loverder nonlinear trends.

In order to sufficiently utilise the global property pblynomial models and the local property of wavelet
representations simultaneously, polynomial models andi@tdecompositions will be combined together in a
parallel way to represent a nonlinear input-outputesgstn the present studyls a special form of the
NARMAX model, this hybrid model structureifhbe referred to as the WANARMAX model.

One of the common problems in nonlinear system flindds the curse of dimensionality. Theoretically, an

n-dimensional system should be represented using-\aariate function. However, for large it is almost

always true that the observational data only forms a sparse distribution in thdRSpaCensequently, the
identification problem, which can be converted into a regression problem in most cases anst forodel
structures, is often ill-posed and various methods have been employed to resolve this problem. One way of
representing a continuous function of several variables is to decompose a multivariate function into a
superposition of a number of continuous functions Véther variables and this is the essence of Hilbert’s 13
problem, which was resolved by Kolmogorov. Several applicable approaches have been propadied the

idea of representing multivariate functions using a supdigo®f a number of functions with fewer variables.

The projection pursuit regression algorithm (Friedman 1981), radial basis function networks (Chen et al 1990b,
1992a), and multi-layer perceptron (MPL) architecturayltih 1994) are among the representations that have
been studied for multivariate functions. The existing strategies that attempt to approximate general functions in

high dimensions are based on suppositions of additive functional submodels including the polynomial



NARMAX representation introduced by Billings arlceontaritis (1982, 1985), the multivariate adaptive
regression spline (MARS) methddtroduced by Friedman (19913nd the adaptive spline modelling of
observational data (ASMOD) introduced by Kavli (1993).

Although experience shows that most systems in practice can be expressed as a supposition of a number of
low-dimensional submodels if the system variables ppeogriately selected, a largegmber of potential model
terms might still be involved when expanding each functional component. Practice and experience show that
often many of the model terms are redundant and inclusion of redundant terms can result in a complex model
structure and the model may become oversensitive to thengalata and is likely to exhibit poor generalisation
properties. It is therefore important to determine which terms should be included in the model. A new fast
orthogonal least squares algorithm, called the matchingujpworthogonal least squares (MPOLS) algorithm, is
introduced in the present paper as one solution to the model term selection problem.

This paper is organised as follows. In Section 2, the wavelet transform and wavelet decompositions are briefly
reviewed. In Section 3, the Wavelet-NARMAX modetusture, or simply WANARMAX, is introduced. The
model term selection problem is discussed in Sectiavhére a new matching pursuit orthogonal least squares
(MPOLS) algorithm is proposed. Section 5 discussesntiplementation of the WANARMAX model. In section
6, two examples are provided to illustrate the applicability of the new modelling framework. Conclusions are

given in Section 7.

2. Multiresolution wavelet decompositions
Assume that the wavelpt and the corresponding scaling functiprtonstitute an orthogonal wavelet system.

From wavelet theory (Mallat 1989, Chui 1992, Daubechies 1992), any furfctioh? (R) can be expressed as

the followingmultiresolution wavel et decomposition

F) =D ) B+ DD B (¥ (1)
k

izjo K
whereg, | (X) = 212421 x-k), (X = 21202 x-k), a; x and B are the wavelet decomposition

coefficients, j,k € Z (Z is a set consisting of whole integerﬁ),is an arbitrary integer representing the coarsest
resolution or scaling level. Note that from Eq. éhd the property of wavelet multiresolution analysis, any

function f € LZ(R) can be arbitrarily closely approximatadth some sufficiently large integédr that is, for

any ¢ >0, there exists a sufficiently large integesuch that

<e @
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Therefore,
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This means that the multi@sitin wavelet series decomposition (1) dareplaced by wavelet series (3) with
respect to the orthogonal scaling functiahg, (X) =2""24(2? x—k), whereJ is a sufficiently large scale

number.

Using the concept dénsor products, the multiresolution decomposition (1) can be immediately generalised to
the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by tatiemsprthe
product of the one-dimensional scaling and wavelet fioms (Mallat 1989). The one-dimensional wavelet

decomposition (3) can also be extended-thmensional d >1) case by a tensor product approach as below

f1o.a (X (0), % (1), -+, X4 (1))

- Zaj;klykzymkd By (27 %, (t) —k; .27 X, (1) =Ky, -+, 27 X4 (£) — Ky) @)

Iy

wherek =[k;, Kk, ---,ky]" € Z%is and-dimensional indexB, (-) is and-dimensional scaling function and can

be decomposed as the direct produat ohe-dimensional functions

d
Bd(x):Bd(XI'XZ"”’Xd):H¢(Xi) ®)

whereg(-) is a scalar scaling function.

3. The WANARMAX model

The WANARMAX model is formed by combining a polynomial model with wavelet decompositions. In this
study, polynomial NARMAX models and semi-orthogonal multiresolution wavelet decompositions will be

considered and combined in a parallel way.

3.1 The NARMAX representations for nonlinear input-output systems

In the past few decades, modelling and identification techniques for nonlinearsshaterbeen extensively
studied with many applications in approximation, prediction and control. Several nonlinear moddiedrave
proposed in the literature including the NARMAX model representation which was initially proposed by Billings
and Leontaritis (Billings and Leontaritis 1982, Legitist and Billings 1985). The NARMAX model takes the

form of the following nonlinear difference equation:

y(t) = f(y(t—l),'--,y(t_ny),U(t_l),"-,U(t—nu),e(t_l),"-,e(t—ne))+e(t) (6)
wheref is an unknown nonlinear mapping(t) and y(t) are the sampled input and output sequences,
n,and n, are the maximum input and output lags, respectively. The noise va@dBlevith maximum lag

N, . is unobservable but is assumed to be boundediacamirelated with the inputs and the past outputs. The

model (6) relates the inputs and outputs and takesaiotount the combined effecof measurement noise,

modelling errors and unmeasured disturbances represented by the noiseefdiable



One of the popular representations for the NARMAX model (6) is the polynomial representation which takes

the function f () as a polynomial of degre€and gives the form as

(t) 9 + Z f'l (X'l (t)) +Z z f ihip (Xl1 (t) (t)) tee

+Z,1 Z i (% ), % (), % (1) +elt) R

whered ; , are parametersr,l =n, +n, +n, and
ti2* y T hu e

fioa 04 ()%, ©, % ©)=6, ., lm[xik(t),ls m</,

y(t —k) 1<k<n,
X () =qu(t—(k—n,)) n,+1<k<n +n, (8)
et—(k-n,-n,)  n,+n,+1<k<n +n, +n,

The degree of a multivariate polynomial is defined ashijhest order among all terms. For example, the degree
of the polynomialn(X;, X,,X;) =X +@,X,X; + 8,X X,X; is ¢ = 2+1+2=5, which is determined by the

last terma3x12x2x32. Similarly, a NARMAX model with polynomial degreémeans that the order of each term

in the model is not higher thah.

The NARX model is a special case of the NARMAX model and takes the form

y(t) = f(yt-12,---, y(t—n,),u(t-1),---,ut —n,)) +et) 9
In this case the variablg, (t) defined in (8) reduces to
t—k), 1<k<n
X (1) = Y= ' (10)
ut-k+n,)), n +1<k<n=n, +n,

3.2 The wavelet-based ANOVA expansion

Generally, a multivariate nonlinear function can oftee decomposed into a superposition of a number of
functional components via the well known functioahlysis of variance (ANOVA) expansions (Friedman
1991, Chen 1993) as below

y(t) = F(x (1), %, (1), X, (1))
= f +Zf @)+ D F @ )+ D i (%, %)+

I<i<j<n I<i<j<k<n
+ Z flllz (Xi1 (t)' Xi2 (t)!"'ixim (t)) teeet f12~~n(X1(t)’X2 (t)!'“’xn (t)) +e(t) (11)
I<ig <<y
where the first functional componer’ib is a constant to indicate the intrinsic varying trerﬁp,; fij ,o0r, are

univariate, bivariate, etc., functional components. The univariate functional compcfrgén,@ represent the

independent contribution to the system output that arises from the action ith thariable X; alone; the



bivariate functional componentﬁj (X; ,xj) represent the interacting contribution to the system output from the

input variablesx, and X, etc. LetX, (t) (k=1,2,...n) be defined as (8) or (10), the ANOVA expansion (11) can
then be viewed as a special form of the NARMAX or NARX models for dynamic input and outprnsyst

Although the ANOVA decomposition of the NARMAX model (6) involves up 29 different functional

components, experience shows that a truncated representation containing the components uvat@thebi
tri-variate functional terms often provides a satisfactory descriptiory(®) for many high dimensional

problems providing that the input variables are propslgcted. It is obvious thatopting a truncated ANOVA
expansion containing only low-dimensional function components does not mean such an approach will always
be appropriate. An exhaustive search for all the possible submodel structures of (11) is demanding and can be

prohibitive because of the curse-of-dimensionality. A truncated representation is advantageous and practical if
the higher order terms can be ignored. In practice, the constanf fexam often be omitted since it can be

combined into other functional components.

It will generally be true that, whatever the data set and whatever the modelling approach, the structure of the
final model will be unknown in advance. It is therefore not possible to know up to how many order functional
components in a truncated ANOVA expansion will be sigffitfor a given nonlinear system. This is why model
validation methods, which are independent of the model fitting procedure and the model type, are antimport
part of the NARMAX modelling methodology (Billings and Chen 1998). If the model is adequate to represent
the system the residuals should be unpredictable from all linear and nonlinear combinations of past inputs and
outputs. This means that the identified model has captitetie predictable information in the data and is
therefore the best that can be achieby any model. It is therefore pectly acceptable to fit a model that
includes just up to one, two or three-dimensional functional terms initially. The model validity tests should then
be applied to test if the model that is obtained hasuceghtall the predictable information in the data. If the
model fails the model validity tests higher order terms should be included in the initial search set and the
procedure should be repeated. It isréiore not necessary to prove that it is always possible to proceed based on
just up to certain order submodels. The identification proceeds a stage at a time and usesidaiitel aslthe
decision making process. This is the NARMAX methodology (Billings and Chen 1998), which is implemented
here, and which mimics the traditional approach to analytical modelling. In the latter case the most important
model terms are included in the model initially then the less significant terms are added until the model is
considered to be adequate. This is exactly what the OLS algorithm and the ERR does but based on the data. The
most significant model terms are added first, step by step, a term at a time. The ERR cut-offusddeas a
stopping mechanism but the model should never be axtepthout applying model validity tests. If these tests
fail go back and either reduce the ERR cut-off, or allow more complex model terms in the initial model library,
or both and continue until the model validity tests are satisfied.

In practice, many types of functions, such as kefumgdtions, splines, polynomials and other basis functions
can be chosen to express the functional components in model (11). In the present winbr, moutiresolution

wavelet decompositions will be chosen to desctle functional components. For example, the functional
componentsf (X, (t)) (p=1,2,...n) and f, (X, (), %, (1)) (1< p<g<n) can be expressed using the

multiresolution wavelet decompositions as



fo (X, (1) = zaffi(ﬁhk(x )+ .Y BRe (X)), p=12--,n, (12)

iz k
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izjz ki ks

3.3 The WANARMAX model

The wavelet-NARMAX model, or simply WANARMAX, which incorporates a polynomial NARMAX model

and a multiresolution wavelet decomposition in a parallel way, can be defined as
y(t) = f(x(®) = £7(x®) + £ (x(©) + f " (£(1) +e(t) (14)

where X(t) = [, (t), X, (t),---, X (t)]" and X, (t) (k=1,2,...n) are defined as in (10)f " (X(t)) is a
polynomial model:f Y (x(t)) is a wavelet decomposition model; afid (£(t)) is a polynomial model with
respect to the noise variab#t) and £(t) =[e(t —1),e(t — 2),---,&(t —n.)]" .The submodelsf * (x(t)),

£ (x(t)) and f 5 (&(t)) can be combined into the WANARMAX model (14) in various forms and the

following are some examples

fP(x(t)) = a, + Zapxp(t) +° bX, (1) (1) (15)
p=1 p=lg=p
Y (x(1)) = Zf (x (t))+ZZf (X, (), %, (1) (16)
p=lg=p
fEE) = Zcpe(t— p)+ZZcpqe(t ~ pe(t—a) (17)
p=lg=p

where the functional components, (X, (t)) (p=1,2,...n) and f (X, (t),X,(t)) (1< p<g<n) in (16)
can be expressed using the multiresolution wavelet decompositions.

For a selected wavele() and the scaling functia#(-), once the maximum lags, , n, andn, are given,

and the initial(coarsest) and highest(finest) resolutiates in the multiresolution decomposition are determined,
the WANARMAX model can be rearranged and converted into a linear-in-the-parameters regressioof model

the form
Ml MZ M3
yt) =>.67p"®)+>.6) p}' ® + D6 pe 1) +e(t) (18)
i=1 j=1 k=1

where the regressomg/” (t) pJ (and pE(t)(i=12-,M;j=122--,M,;k=12,---,M,) are related to

the autoregressive modél” (x(t)) , the wavelet decomposition mod&l" (x(t)) and moving average



model f  (£(t)), respectively 8,6} and 5 (i =12+, My; j=12--,M,; k=12---,M;) are parameters
to be estimated; = (n, +n, +1)(n, +n, +2)/2,M; =n, and M, depends on not only the wavelet type

used but also the initial and the highest resolution scales.
A special case for the WANARMAXhodel (18) is the Wavelet-NRX, or simply WANARX model

YO =677 )+ 6" p¥ (1) + &) (19)
i-1 -1

Although many functions can be chosen as scaling and/or wavelet functions, most of these are not suitable in
system identification applications, especially in the case of multidimensional and multiresolution expansions. An
implementation, which has been tested with very good results, involves B-spline and B-wavelet functions in
multiresolution wavelet decompositions (Billings and Coca 1999, Coca and Billings 2001, Wei and Billings
2002). B-spline wavelets were originally introduced by Chui and Wang (199@gfioe a class of semi-

orthogonal wavelets.
For Iargeny andn,, the model (18) might invora great number of model terms or regressors. Experience
shows that often many of the model terms are reduradahtherefore are insignificato the system output and

can be removed from the model. An efficient algorithm is required to determine which terntstlshndluded

in the model. The significant model term selection problem is discussed in the next section.

4. Model term selection

The selection of which terms should be includethe WANARMAX model (18) is vital if a parsimonious
representation of the system is toitbentified. For a selected basic wavelatl associated scaling function, once
the initial resolution scale level is given, simply increasing the Ol'q;iHBd n, of the dynamic terms and the
highest resolutions in the multiresolution wavelabdel will in general result in an excessively over
parameterised complex model. Fortunately, experience has shown that only a small number of subsets of these
model terms are significant and the remainder can smadied with little deteriot@an in prediction accuracy.
Several possible ways can be used to determine which terms are significant and should be included in the model,
including the well-known orthogonal least squares (OLS)rdlgu. In this section, # forward orthogonal least
squares (OLS) algorithm is briefly summarised and then a new matching pursuit orthogonal least squares
(MPOLS) algorithm is introduced.

The WANARMAX model (18) can be expressedadmear-in-the-parameters equation of the form
M
Y(t) =D 0P (V) +€(1) (20)
m=1

where p,(t)=pL(t) for m=12---M; , p,(t)=pr(t) for M;+1<m<M;+M, , and
P, (1) = pE(t) for M;+M, +1<m<M =M; +M, +M;. 6, (m=12---,M ) are parameters to be

estimated. Define

PM™ ={p, :1<i <M; k=12-,n}, m=12, ..M, (21)



The model term selection procedure is in fact an iterativeess which searches thrbwnested term set in the

sense that

PO cP@® c...c PM ... (22)

This makes both the complexity and the accuracy ofdgpeesentation based on these term sets increase until a

suitable term set is found, that is, there exists an inddgetgenerallyM , << M ), such that the model

Mo
yt)=>_6, p, (t)+e(t) (23)
k=1

provides a satisfactory represdita over the range considered for the measured input-output data.

4.1 The forward orthogonal least squares (OLS) algorithm

A fast and efficient model structure determination approach can be implemented using theoitheganhal
least squares (OLS) algorithm and the error reduction (@R&R) criterion, which was originally introduced to
determine which terms should be included in nonlinear models (Billings et al. 1988, 1989, Korenberg et al. 1988,
Chen et al. 1989). This approach has been extensively studied and widely applied ieanosystem
identification (see, for example, Chen et al. 1991, Wang and Mendel 1992, Zhu and Billings 1996, Zhang 1997,
Hong and Harris 2001). The forward OLS algorithm involves a stepwise orthogonalization of the regressors
a forward selection of the relevantrtes in (20) based on the error retioi ratio (ERR) (Billings et al. 1988,

1989). The procedure can beédfly summarised as follows:

Consider the linear-in-the-parameters model (20), where the regression fhatip,, p,,---, Py, ] with
p. =[p @, p (2, p.(N)]", Nis the length of the observational data set. With the assumptiaR ihatll
rank in columns, theR can be orthogonally decomposed as
P=WA (24)
where A is an M x M unit upper triangular matrix andV/ is an N x M matrix with orthogonal columns
W, W+, Wy, in the sense thatW/"W=D =diag [d,,d,,---dy] with d_=w w_. Model (20) can then be

expressed as
Y =(PA)(A®)+E=WG +Z (25)

where Y = [y(D),y(2),---,y(N)]" are the observations of the system outgdt=[6,,0,,---,8,,]" is the

T is an

parameter vectotZ = [£(1),£(2),---,&(N)]" is the vector of the noise signal, d&c=[g;, ., -, Oy ]
auxiliary parameter vector, whictan be calculated directly frond and W by means of the property of
orthogonality as

_Y'w

9=, i=12--,M (26)
W W,

The parameter vectd® , which is related t& by the equatio®® = G, can easily be calculated by solving this

equation using a substitution scheme.



The numbeM of all the candidate terms in model (20) is often very large. Some of these terms may be
redundant and should be removed to give a parsimonious model wittMgnterms (M, << M ). Detection

of the significant model terms can be achieved using the OLS procedures described below.

Assume that the residual siga€t) in the model (20) is uncorrelated with the past outputs of the system, then

the output variance can be expressed as

[1]

1 1 1_
YTY ==>"g’w'w, +N:T 27)

N N <
M
Note that the output variance consists of two parts, the desired c(ilnfp},le:i:lgizwiTWi which can be
explained by the regressors, and the p(&/tN)ETE which represents the unexplained variance. Thus

@ N)Z:\ilgizwrwi is the increment to the explained desired output variance brought bpd thei th error

reduction ratioERR, , introduced byp; , can be defined as

(YTw)?

_ gi2 (WiTWi)
YT YY) (W w)

ERR x100% = x10®6, i1=212--M, (28)
This ratio provides a simple but effective means for isget subset of significant regressors. The significant

terms can be selected in a forward-esgion manner according to the valueERR;, step by step. The

significant terms can be selected in a forward-regression manner according to the =R ofSeveral

orthogonalization procedures, such as Gram-Schmidt, modified Gram-Schmidt and Householder transformation
(Chen et al. 1989) can be applied to implement the orthogonal decomposition. The improved vetg®on of
algorithm (Zhu and Billings 1996) provides a significaeduction in the computations and is advantageous
compared to standard Gram-Schmidt algorithm when dealing with high order MIMO systems. Other recent

studies by Hong and Harris (2001) have proposed other improvements to this procedure.

Remark 1: The forward orthogonal least squares algorithm for model term selection is described and
expounded in a matrix form here for convenience of introducing and explaining the concept of error reduction
ratio (ERR). In practical identification, however, thig@ithm is often implemented in a forward stepwise way
(Wei and Billings 2004). The most significant model terms are added first, step by step, a term at a time. The
ERR cut-off value is used as a stopping mechanism but the model should never be accepted without applying
model validity tests.

Remark 2: The candidate terms that are not chosen in tise dtep are orthogonaéd with respect to all

previously selected basis functio®ecause of the orthogonality tHeth term can be selected in the same way

as in the first stepw, is the | th selected orthogonal term argjj is the corresponding parameter. Any
numerical ill conditioning can be avoided by eliminating the candidate basis functions foerhare less

than a predetermined threshaid for example,r =10™" andr >10.
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Remark 3: The assumption that the regression marig full rank in columns is unnecessary in the iterative
forward OLS algorithm(Wei and Billings 2004). In fact, if thlecolumns of the matrif are linearly dependent,

and assuming that the rank in columns of the m&iL (<M) , then the algorithm will stop at theth step.
Remark 4: If required, the proceder can be terminated at th#®l, -th step (M, <L ) when

MO
1—ZERR < p, wherep is a desired error tolerance called theoff, which can be learnt during the
i-1

regression procedure. The final model is the linear combination dfithsignificant terms selected from the

M candidate term§p,} ",

y(t) = Z 9w, (1) +&(t) (29)

which is equivalent to

y(t) = Ze p,, (X(1)) + &(t) (30)

where the paramete®“- =[6, .6, ,---,0, 1" are calculated from the triangular equatié@9 =09
10, o

with G =[g,,g,,~+, gy, 1" and

I a, alMO 1
0o 1 e Agy,
A= 1 T : (31)
1 VIRV
0 1

The entriesa; (L<i < j <M,) are given in the above OLS algorithm.

Remark 5: The key point in the forward OLS-ERR algorithm is focused on detecting the most significant
model terms from a great number of candidates by introducing an orthogonalization procedure amcefite co
of error reduction ratio (ERR). The estimation of the model parameters is only a by-product of the model term
selection procedure. It requires thla¢ orthogonalization should be explicit so that the significant model terms
selected by the algorithm are transparent to tleeleinbuilders. Many other singular value decomposition
methods including the standard SVD, Krylov subspace and Lanczos bidiagonalizaiton methiodsare
proved to be more numericaklyable compared with thegeent OLS algorithm, can liged to solve linear least
squares problems, where the main task is to estimate the unknown parameters for a given linear equation. These
methods, however, cannot provide any information about which model terms are the most significant. In other
words, for a given linear-in-the-parameters form (20), these methods cannot tell which model terms or regressors
make the most significant contributions to the system ow{ut These methods could however provide an aid
for solving the identification problem by combinitige methods with the forward OLS-ERR algorithm. For
example, the most significant model terms could thesetected initially using the forward OLS-ERR algorithm,

and finally the unknown parameters could be estimated using the more numerically stable and presise me

11



4.2 Matching pursuit orthogonal least squares (MPOLS) algorithm

Note that in the forward OLS algorithm, at each stétha unselected regressase made to orthogonalize
with the previously selected regressors, and mosteotdimputational cost is based on these orthogonalization
transforms. An iterated orthogonaidojection algorithm, the matching pursuit method, proposed by Mallat and
Zhang (1993) is a simple regressor selection algorithichas relatively computationally efficient. But the
matching pursuit algorithm is less efficient than OLS¢aithe number of regressors selected by the matching
pursuit algorithm is almost always larger than thelected by OLS for the same given threshold value of
approximation accuracy. A trade-off betwethe efficiency and the computatial cost is considered here by
combining the advantages of the forward OLS with the matching pursuit algorithm to create goréhnal

called the matching pursuit orthogonal least squares (MPOLS) algorithm. The algorithm is described below.

For the output vectoY =[y(),y(D, -~ Y(N)]" in (20), find a vectorp, from the candidate regressor

family{ p,, P,," ", Py} , SO that p,, is the “best” matching regressor Yo i.e.,p, makes the mean squared

error of the following linear regression

Y(0) = Cr P (1) + &1 (1) (32)
achieve a minimum in the sense that

=Y EEM) ==D (y(t)—c, p, (1)* =mins = > [y(t) - ¢, p,(1)] (33)

N = N = m [N
The “pest” matching regressqd, can be found using orthogonal projection approach by defining

COSy = L (34)

VY'Y PPy
YT
|pi] = I¥cosa = =P (35)
\ P P

Such that

N 2 2 2 (Y pw)’

> éa® =l = IV =|ph| =YY - (36)

t=1 pm pm
Thus

YT 2

0= argmngx{(rf—pm) 1<ms< M} (37)
Set ql(t) =Py, t) Wl(t) = ql(t) v O = (YTW1)/(W1TW1) . ERR = 912 (wal) /(YTY) , and
7 () = y(t) — g,wi (t) .

At the second step, find a vectpy  from the candidate regressor fanfify,, :1<M<M,m=/,} , so that
P, is the “best” matching regrssor tg . Following the approach in (32) and (3%), should be chosen as
T 2
fzzargmn?x{w,ls m<M,m= él} (38)
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Setq,(t) = p,, (t). Orthogonalizeq, with W, as below

.

W 0,
=

W W,

W, =(, — W 9) 3

And seg, = (YTW,) /(W ), ERR, = g2(Wjw,) ((YTY) , andr, (t) = 7, (t) - g, W, (1)
Generally, at stely select

(77;—1 pm ) 2
P Prn

Setq, (t) = p,, (t) and orthogonalize), with W, W,,---,W, ; as below

ﬁk:argmax{ lsmsM,mifl,mifz,---,mifkl} (40)

T T
W, W. W,

1TQk w, — iQk W, = k-10k W, (a1)
W, Wy W, W, Wi aWia

Wy = 0Ok —
Calculateg, = (Y W) /(We W) , ERR, = g (W W, ) /(YY) , and sety, (t) = 77,1 (t) — Gy Wi ().

A similar algorithm has been used for basis seledtiovavelet neural networks (Xu 2002). Note that in the

MPOLS algorithm, only the mosecently selected regressgr = p(j at stepj is made to be orthogonal with

the previous selected regressoly = P, (k=1,2,...j-1). Therefore, the coputational load of the

orthogonalization procedure in OLS, which involves making all the unselected regressors orthogonal with the
previously selected regressors, is significantigused in the new MPOLS gdrithm. Therefore, the
computational cost of the MPOLS algorithm is much thas that of the OLS algorithm, and the new algorithm

is much faster then most existing OLS and fast OLS algorithms.

In the MPOLS algorithm, any numerical ill conditioning can be avoided by eliminating the candidate terms for

which piT p,is less than a predetermined threshold for example,r =10 andr >10. w; is the j th

selected orthogonal term argjj is the corresponding parameter. If regdirthe procedure can be terminated at

Mo
the M ,-th step M, < L) when 1—2 ERR < p, where p is a desired error tolerance, which can be learnt
i=1

during the regression procedure. The final model is the linear combination of all the selected significant terms in
the form of (29) and (30).

Notice that, for the same problem, MPOLS may setbfferent model terms (regressors) and different
numbers of model terms compared with OLS even for the same threshold value of terminatioeattyis
always true that the MPOLS selects more model termsttiatnof OLS. However, the first term selected by
both algorithms is always the same. The computatieffigiency of the MPOLS glorithm comparedavith OLS
can be demonstrated using the CPU time required to peddrench test example on the same computer. This is

illustrated in Table 1.
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Table 1 The comparison of the compiataal efficiency between OLS and MPOLS

Number of selected
Cases | Data length Number of regressorsn) CPU time §ec)
(N) candidate regresso
(M) OoLS MPOLS oLS MPOLS

Case 1 500 565 12 20 23.23 2.03

Case 2 600 1321 9 15 119.73 10.29

Case 3 1000 705 21 44 226.38 22.16

Case 4 500 1153 110 112 1503.82 21.49
Note: The threshold values to terminate @S and MPOLS algorithms were the same.

5. Implementinga WANARMAX Modd

This section summarizes the procedure fglémenting a WANARMAX model. The implementation of a
WANARMAX model involves several practical issues including observational input-output dgteopessing,
significant variable selection (Wei and Billings 2004), resolution level determination in the wavelet
decomposition submodels, and model validity tests (Billings and Voon, 1986; Billings and Zhu, 1995).

The iterative identification procedure to implemeM/ANARMAX model consists of the following steps.

Step 1. Data pre-processing
For convenience of implementation, convert the original observational input-outpu(t)cetaly(t)

¢=1,2, ...N) into unit intervals[0,1] . The converted input and output are still denoted(hyandy(t).
Step 2: Determining the model initial conditions

This includes:

(i) Provide values fan,, n,,N,, p and p. (wherep and p, are threshold values for terminating the

model term selection proceduge,is used in Step 3 and, in Step 4, notice in general < p).
(i) Sete(t)=0 fort=1,2,...N.
(iii) If possible, select the significant variables from all the candidate lagged output and inflgwvaria
{yt-2,--,y(t-n,),u(t-12),--,u(t—n,)} . Thisinvolves the model order determination and
variable selection problems.

(iv) Select a polynomial submodkf (X(t)), a wavelet submodef " (X(t)), and a noise modef = (£(t))
from the representations (15)-(17).

(v) Determine the initial and the highest resolution scales. Generally the initial resolutiorjlsmnadiaj% in
the wavelet models can be sejte= |,=0, and the highest resolution scalbsand J, can be chosen
in a heuristic way.

Step 3: Identify the WANARX model
() Calculate the regressomp (t) and p\jN t)(i=12---,M;; ] =12---,M,) which are related to the
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the autoregressive modéfs(x(t)) and the wavelet decomposition mofi&l(X(t)). The regression
matrixP =[P",P"] of the WANARX model (19) are fmed from these regreesors.
(i) Select the significant terms in the autoregressive m&dé¢(t)) and the wavelet decomposition model
" (x(t)) using the OLS or MPOLS algorithms to obtain parsimonious models of the form (29) and (30).

Step 4. Aniterative loop to identify a WANARMAX model
() Setk=0 and estimate the initial residuals

£ (1) = y(t) - (t)
= y(t) - f(y(t=D, -, yt—n,),ut ~2),--,ut - n,),0,-,0)
= y(t) —%gi(k’w(k) (t)

Wheregi(o) =0, andwi(o) =W (i =12,---,M,) are the orthogonalized regressors and the parameters

(42)

estimated in Step i8)(
(i) Setk=:k+1. Select significant ternfsr the moving average mod&F (£(t)), add these terms to the

model estimated in Step B)( Re-estimate the parameters for the updated model using the OLS or
MPOLS algorithms, and calculate the residué'f%.(t) recursively using

N @) =yt) - f(yt-,, yt—n,)ut -2, ut—n,), e 2t -1, -, (t —n,))

Mo+me
=y~ >.0%p, () 43)
j=1

or
Mg+my
¥ =y0- > 9f'w 1
j=1
wherdT, is the number of the noise terms selected. The above recursive calculation will be terminated at

(44)

thekth iteration if one of the following the convergence tests is satisfied

M gl - g4
(k) <0 )
m=1 ‘gm

and
N 2
Z‘g“) (t) - e® D (t)‘ <5, (46)
t=1

whered; and 0, are two tolerance values for convergence tgstflumerous tests have shown that less than

10 iterations, typically 3-5 iterations, are sufficient for the algorithm to converge.

Step 5: Model validity tests
Apply model validity tests to evaluate the identified model. If the identified model does not satisfy the model

validity tests, change some of the initial model conditions in Step 2, especially conditignévjargd ¢),

and repeat Steps 3 to 4.
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6. Examples

Two examples, one a simulated system and one basedabulata relating to a terrestrial magnetosphere
dynamic system, are given to illustrate the effectiveness and applicability of the new modelling framework. The
original observational input-output daié) andy(t) (t=1,2, ...N) are normalized into the unit interval [0,1] for
the convenience of implementation. The modelling can then be performed in [0,1], and the model output can

then be recovered to the original system operating domain by taking the inverse transform.

6.1 Simulated example—a nonlinear system

The following nonlinear input-output system

_Y(t-Dyt-2)+y(t-Dyt-3) +yt-2)y(t-3
1+ y2(t-1) + y?(t—2) + y?(t - 3)
+2[sin(y(t —1))][cos(y(t - 2))] + Zsin(y(t - 2))][cos(y(t —3))]
+ Zsin(y(t — 3))][cos(y(t —1))] + 6u? (t —1) + u>(t — 2) (47)

was simulated using a system input with the form

y(t)

u(t) = 2sin(zt /25) + 0.5sin(zt /30) + 002exp[sinft /40)] (48)
The estimation set consists of 500 input-output data peihich are shown in Figure 1. It was assumed that

the real model structaris unknown and settingy andn, to be 5 and 3, respectively, in the initial model,

which was assumed to be of the form

| | | | 1 | | |
a a0 100 180 200 250 300 350 400 450 500

| | | | 1 | | |
a0 100 180 200 250 300 3F_/0O 400 450 500
Sampling Index

Figure 1 The input and output data of the system described by Eq. (47)
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y(® = f(y(t=1, y(t=9),ut -1, u(t-3))

5 3 5 5
=g+ Y a,y(t—p)+ Y byult—p) + > > b y(t—p)y(t—0)
p=1 p=1

p=lg=p

3 3 5 3
£ Coquit = pu(t—0) + > > dyy(t - pu(t-a)
p

p=lg=p =1 g=1
5 3
2 fo(yt=p)+ 2 fhsut-p)) (49)
p=1 p=1
where each functior‘fp (-) can be described using the multiresolution wavelet decomposition (12) as
4
o0 ®) = D alldo () + D D A0 (X, 1), p=12:- 8, (50)
kek© j=0keK;

where ¢, (X) = 2125 (2) x—k) and P (X) = 21242 x—k) are the 4th order B-spline wavelet and
scaling functions, and the finest resolution level was chosen fi=de From the definition of the B-spline
wavelets (Chui 1992, Chui and Wang 1992), the K5 and K]- can easily be determined as
K®={3-2-10}and K ={-6-5,-- -1, OL---,2) -1} .

The initial model (49) contains 565 model regressors, but most of these are likely to be redundant and should
be removed from the initial model. Both the OLS and MBGQllgorithms were used to select the significant

regressors, and two validated parsimonious models were obtained

A~ 12
y(t) = O (yt -1, y{t-5),ut - 1),,ut -3)) = > 69 p{*9 (1) (51)
k=1
~ 20
y(t) = £ PO (y(t -1, y(t —=5),u(t -1, -, ut - 3) = D HM (M ) (52)
k=1

The parameters, regressors and the corresponding error reduction ratios (ERR) of the models (51) and (52) are
listed in Table 2 and Table 3, respectively. A comparisf the model predicted outputs and the measurements,
are shown in Figure 2. Note that more model teh@as been selected by tMPOLS algorithm than that
selected by the forward OLS algorithm, but the model predicted outputs of the MPOLS identified model (52) is
worse than that from the OLS identified model (51), thekaviour will be investigated in a later paper. The
model predicted output (MPO) is defined as

Yirpo (1) = T (Yipo (€ =)+, Yoo (t =1 ),u(t = 1),---,u(t —n, ) ,0,--- ,0) (53)
The model predicted outputs are recursively estimatddsmnused to calculate the model prediction errors

€rpo (1) = V(1) = Yo (1) (54)
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250 800 250 500 950 1000

sampling Index

Figure 2 The comparison of the modeagicted output (MPO) and theeasurements for the system described by Eq (47).
(a) The model predicted outputs based on the model (BL)he model predicted outputs based on the model (52). ( The
solid line denotes the measurements, and theeddste denotes the model predicted outputs.)

Table 2 The regressors, parameters and the correspondingeEfRRated using OLS for the system described by Eq (47)

e [T PR ———
1 y(t-1) 5.02655e-001 97.52096
2 y(t-4) -9.37588e-002 1.04316
3 Po-1(U(t-3)) -6.55070e-001 0.23092
4 Po-2(u(t-1) 7.21870e-001 0.10046
5 ¢1-5(y(t-1)) 7.63680e-002 0.22474
6 Po-s(y(t-1)) 1.90501e-002 0.08508
7 Pop(ut-1) -2.23549e+001 0.11981
8 Po-s(y(t-1)) 5.04206€-001 0.02497
9 Pa2(¥(t-5)) 3.73955e-003 0.01516
10 $o-1(ut - 2) 1.41307e+000 0.01250
11 y(t-2u(t-2) -2.49814e+000 0.01455
12 y(t-2)u(t-3) 2.10633e+000 0.03581
Note: The CPU time spent on selecting these mtetehs from all the candittamodel term set is 23.83
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Table 3 The regressors, parameters and the corresponding ERRs$egsusing MPOLS for the system described by Eq (47)

er | Jee T e o t00n
1 y(t-1) 1.01732e+000 97.52096
2 91-3(y(t-5)) 1.67365e-001 0.51440
3 $oo(Y(t-5)) -9,08939e-001 0.51530
4 Po2(U(t-1) 2.26668e-001 0.20425
5 Po-4(y(t-1) -5.24924e+000 0.11191
6 ¢1-1(U(t-3) -8.15303e-002 0.08418
7 Poo(Y(t-4)) -1.40831e+000 0.04319
8 @11 (¥(t 1) -4.91165€-002 0.02270
9 91-2(Y(t-5)) -4.16277e-002 0.03402
10 936Ut -1)) 4.07545e-002 0.02683
11 ¢2-2(y(t-1) 7.13154e-003 0.02574
12 92-4(y(t-4)) 2.73731€-002 0.02045
13 @ 430(y(t —4)) -1.10107e-002 0.01004
14 P21 (u(t-1) -1.60958e-002 0.01619
15 Po-3(y(t-5)) 3.44345e-003 0.00903
16 @47(y(t-2) 8.70263e-003 0.01084
17 911(y(t-4)) -1.46078e-002 0.00858
18 923(¥(t-3) -1.17200e+000 0.00893
19 @45(y(t-1) 4.28377e-003 0.00737
20 9 212(Y(t - 2)) 19.62771e-003 0.00821
Note: The CPU time spent on selecting these maetehs from all the candidate model term set is.03

6.2 Aterrestrial magnetosphere dynamical system

While the results obtained for the simulated system in section 6.1 demonstrate the applicability of the wavelet-
NARMAX model, it does not provide a realistic test the new hybrid modelling structure. To achieve the
latter objective, a data set related to a teledstragnetosphere dynamic system was considered.

The sun is a source of a continuous flow of charged patrticles, ions and electrons callkd thimdoThe
terrestial magnetic field shields the Earth from the solar wind, and forms a cavity in the solar wind flow that is
called the terrestrial magnetosphere. The magnetopause is a boundary of the cavity, and its position on the day
side (sunward side) of the magnetosphere can be determined as the surface where there is a batanteebetw
dynamic pressure of the solar wind outside the magnetosphere and the pressure of the teagsttial field
inside. A complex current system exists in the magnetosphere to support the complex structure of the
magnetosphere and the magnetopause. Changes in the solar wind velocity, density oc fielgniethd to
changes in the shape of the magnetopause and variations in the magnetospheric current systeam iintlaelditi
solar wind magnetic field has a component directed towards the south a reconnection between the terrestrial
magnetic field and the solar wind magnetic field is itgia Such a reconnection results in a very drastic
modification to the magnetospheric current system and this phenomenon is referred to as magnetic storms.
During a magnetic storm, which can last for hours, the magnetic field on the Earth’s surface will change as a

result of the variations of the magnetospheric current system. Changes in the magnetic field induce considerable
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currents in long conductors on therésstrial surface such as power linesl pipe-lines. Unpredicted currents in
power lines can lead to blackouts of huge areas,Qhtario Blackout is just one recent example. Other
undesirable effects include increased radiation to crew and passengers on long flights, and effects on
communications and radio-wave propagation. Forecaggogagnetic storms is therefore highly desirable and
can aid the prevention of such effects. Thgndex is used to measure the disturbance of the geomagnetic field
in the magnetic storm. Numerous studies of correlations between the solar wind parameters and magnetospheric
disturbances show that the product of the solar wind veldtapd the southward component of the magnetic
field, quantified byB,, represents the input that caa considered as the input to the magnetosphere. Denote the
multiplied input byVBs.

Figure 3 shows 1000 data points of measurements of the solar wind pardBdiaput) and theDg index
(output) with a sample perio=1hour. The purpose here is to identifynonlinear model to represent the input-
output relationship betweérB; (input) andDg. The effects of other inputs on the system will be neglected in the
present study.

The objective here was to construct a hybrid wavelet-NARMAX model ofotine (14). The first 500
input-output data points were used for model identification and the remaining 508odatawere used for
testing. Ten significant variabley({f-1), ..., y(t-5),u(t-1), ..., u(t-5)} were initially selected using a variable

selection algorithm. The initial model was chosen as below:

y(®) = F(y(t =1, y(t=9,u(t=1,---,u(t - 5), et -1, &t -10))

10 10 10 10
=ay+ Y a,X, (1) + DD b X, ()%, (1) + D (X, (1)
p=1 p=la=p p=1
10
+> Cce(t— p) +et) (55)
p=1

where X (t) = y(t — p) for p=1,...5 an, (t) = u(t — p+5) forp=6,...10, and each functiof, (-) can
be expressed as Eg. (50) .

The implementation procedure 5.2 was performed step by step, and both the OLS and MPOLS algorithms
were used in the model identification procedure, finally two validated parsimonious models were obtained

y(t) = f O (yt -1, -, yt—5),ut -1, u(t - 5),e(t —1),....et —10))

14

=609 p*9 (1) (56)
k=1
y(t) = £ MPOS (y(t—1),---, y(t - 5),u(t - 1), u(t - 5),e(t — 1), -, et —10))
_ i QIEMPOLS) pIEMPOLS) (t) (57)
k=1

The parameters, regressors and the correspondingredwoction ratios (ERR) of thselected regressors in
models (56) and (57) are listed in Table 4 and Table 5, respectively. A comparison of the madeldpred
outputs and the measurements are shown in Figure 4, which clearly indicates that the model predicted outputs
provide good long term predictions and give confidence in the identified model. The discrbpamesn the

model predicted outputs and the measured values db¢hrdex are believed to be the result of other inputs
which affect the system output but weiat included in the current model.

20



“WBs
[} ] = [my} [mn}
= T

_2 | | | | | | 1 | |
o 0 200 300 400 500 BOO 7OO  §00 500 1000

| | 1 | |
o 100 200 300 400 500 BOO YOO 800 500 1000

=150 : :

Time [Hours]

Figure 3 The input (VBs) and output (Dst) data terrestrial magnetospheric dynamic system.
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Figure 4 The comparison of the model predicted outplR@Mand the measurements #otterrestrial magnetospheric
dynamic system.(a) The model predicted outputs based on the model (56) ; (b) The model predicted outputs based on the
model (57).( The solid line denotes the measurementgharghshed line denotestmodel predicted outputs.)
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Table 4 The regressors, parameters and ERRs estimatgdllsS for a terrestrial magnetospheric dynamic system.

Nurl?ber pg-O(Ia.rSr)n(st ) Pzrl?onlj;ters ERR, x100%
1 y(t-1 8.86991e-001 95.64488
2 $o-s(U(t—1)) 7.28895e-001 1.53870
3 Po-a(Ut-1) 2.92761e+000 1.01020
4 P2, (U(t-2) 8.09016€-002 0.71025
5 P2 (Y(t-2) 1.22450e-002 0.70824
6 P43(y(t-1) 1.04799e-002 0.09612
7 P31 (y(t—2) 9.99869e-003 0.00544
8 P32(y(t-2) -5.38155e-003 0.00525
9 et-1) 1.23283e-002 0.00107
10 et-2) -3.47584e-001 0.00093
11 et-3) 4.00556e-001 0.00045
12 et -9) 9.64407e-003 0.00042
13 e(t-7) -2.14539¢-001 0.00012
14 et -8) -5.24350e-002 0.00009

Note: The CPU time spent on selecting the process model terms from all the candidate

model term set is 20.59s.

Table 5 The regressors, parameters and ERRs estimatgdMBOLS for a terrestrial magnetospheric dynamic system.

Number pﬁMTP%rLrgf(t) F;’Eﬁ;gf;’frs ERR, x100%
1 y(t-1) 9.92291e-001 95.64488
2 Po(U(t-1) 1.02467e-001 1.31859
3 Pos(y(t—1) 6.50852e-001 1.22031
4 P412(U(t-1)) -4.06704€-002 0.81145
5 P, (Y(t-2) 2.29453e-002 0.60765
6 P22(Y(t—2)) 1.10544e-001 0.08649
7 P43(u(t—2) 3.67041e-001 0.01626
8 @21 (Ut —5)) 6.17316e-002 0.00545
9 Paa(y(t—4) -5.45452¢-003 0.00486
10 et-1) 5.66383¢-003 0.00118
11 e(t-2) 2.86554e-002 0.00073
12 e(t-4) -7.00413e-002 0.00029
13 et -5) -3.90424-002 0.00013
14 e(t-7) 1.19670e-002 0.00020
15 et -98) 3.28276€-002 0.00008
16 e(t-9) -7.32255€-003 0.00006

Note: The CPU time spent on selecting the process model terms from all the candidate

model term set is 1.38s.
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7. Conclusions

A novel hybrid modelling framework, which combingslynomial models with multiresolution wavelet
decompositions, has been proposed for nonlinear input-output system identification. In a-MARNMAX
model, or simply WANARMAX, a high-dimensional systasninitially expressed as a supposition of a number
of low-dimensional submodels, and then each submodel is expanded using polynomial models and
multiresolution wavelet decompositions. The new WANARMAX model structure not only significantly
alleviates the difficulty of the curse-of-dimensionality for high-order and high-dimensional nonlinear system
modelling, but also makes it possible to sufficiently utilise the global property of polynomial models and the
local property of wavelet representations simultaneously.

A large number of potential model terms are usualplved in a WANARMAX model when each submodel
is expanded using multiresolution wavelet decompositiMast of the model terms are redundant and only a
small number of significant model terms need to be included in the final model. Either the widely-used forward
OLS algorithm or the new MPOLS algorithm proposed here can be used to select the significant model terms.
The computational cost of the MPOlaigorithm is much less than that of the OLS algorithm. However, the
MPOLS is less efficient than the forward regression Qh&, is, for the same given problem, it is nearly always
true that the MPOLS selects more model terms thansdatted by OLS with the same threshold value for
termination. The MPOLS routine also tends to produceehpredicted outputs that are not as good as those

from an OLS identified model.

The WANARMAX model can be used to describe a wide class of nonlinear systems including severely
nonlinear systems. The linear or low-order nonlineardsesf the system can be easily tracked by polynomial
models and the local nonlinear behaviour can be captured by wavelet decompositions. This emables th
WANARMAX model to be more flexible than either a single polynomial model or a wavelet decomposition

model.
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