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ABSTRACT: From the start of a synthetic chemist’s training, experiments are conducted
based on recipes from textbooks and manuscripts that achieve clean reaction outcomes,
allowing the scientist to develop practical skills and some chemical intuition. This procedure is
often kept long into a researcher’s career, as new recipes are developed based on similar
reaction protocols, and intuition-guided deviations are conducted through learning from failed
experiments. However, when attempting to understand chemical systems of interest, it has
been shown that model-based, algorithm-based, and miniaturized high-throughput techniques
outperform human chemical intuition and achieve reaction optimization in a much more time-
and material-efficient manner; this is covered in detail in this paper. As many synthetic
chemists are not exposed to these techniques in undergraduate teaching, this leads to a
disproportionate number of scientists that wish to optimize their reactions but are unable to
use these methodologies or are simply unaware of their existence. This review highlights the
basics, and the cutting-edge, of modern chemical reaction optimization as well as its relation to
process scale-up and can thereby serve as a reference for inspired scientists for each of these
techniques, detailing several of their respective applications.
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1. INTRODUCTION
Chemical reaction optimization is a term that has a variety of
meanings depending on the chemist defining it, with a large
corresponding variance in expectations of optimization
capability and proficiency. As reaction optimization is largely
unexplored during undergraduate chemistry teaching,1−3 many
research chemists are simply unaware of existing optimization
techniques and are therefore unlikely to employ robust strategies
in their workflows as their career progresses. This is particularly
true in academic research, where intuition-based optimiza-
tion4−12, is commonplace despite the increasing evidence
showing that reaction modeling and algorithmic optimizations
are more efficient in relation to both time and material and
therefore cost.13−16 For these reasons, the use of these
methodologies is much more widespread in industrial research
and development, particularly in process laboratories compared
to their discovery laboratory counterparts,17,18 as manufacturing
conditions often result from vigorous optimization protocols.
Consequently, there is often a large disparity in the familiarity of
optimization techniques between industrial and academic
researchers, particularly because industrial scientists also often
have internal multidisciplinary teams of statisticians and process
chemists to collaborate with. However, the techniques covered
are not inaccessible for chemists, and increasing the exposure of
these methodologies will make them more widespread across
both academic research and teaching, thereby enriching the
skillset of the entire chemical community. Although the primary
aims of many scientists (particularly synthetic chemists) may
not be to achieve truly optimal processes, familiarity with the
concepts discussed herein will help researchers meet the needs
of the modern and evolving laboratory.
This review aims to critically analyze and compare major

chemical reaction optimization techniques, thereby helping to
deliver an accessible account of optimization strategies (with
references to their applications) for the general chemical
scientist. As many of these methodologies borrow concepts
from related fields, such as statistics, computer science, process
chemistry, and engineering, this review will help to diversify the
chemist’s toolkit and serve as a comprehensible reference for
optimization campaigns. Although reaction optimization is
often related to reaction yields, it may also be performed with
respect to purity, E-factor, enantiomeric excess, etc., and these
concepts will be explored further. Typical reaction variables that
are optimized are also often described as either continuous (in a
numeric form, such as temperature or reaction time) or
categorical (discrete options, such as solvent or catalyst/ligand
choice). Further in-depth reading will also be provided at each
stage for interested scientists seeking a deeper understanding of
the workings of each methodology. We also discuss how to
explore the generated reaction knowledge within the subsequent
process scale-up efforts. By providing tools for considerations of
scale-up challenges and complexity in the early stages of process
optimization, we hope to help chemists to guide their
optimization efforts toward scalable processes and thus facilitate

the translation of critical laboratory discoveries into commer-
cially available products.

2. ONE FACTOR AT A TIME (OFAT)
“Intuition-based optimization” largely relates to optimization
using the trends and anecdotal observations from experienced
chemists to improve reaction metrics. Alongside optimization
via chemical intuition, one factor at a time (OFAT) approaches
often substitute as a method for chemical process optimization
and understanding.16,19 This is primarily performed in academia
and in the presence of a structured, yet simple to follow,
procedure, making this technique seem both effective and
accessible. The OFAT methodology itself requires some
scientific intuition, where experiments are iteratively performed
by fixing all process factors except for one. After the best value
for the one factor has been identified, that value is fixed while
another set of experiments are executed to optimize another
factor until each factor is optimized and the scientist believes
that they have arrived at the optimum reaction conditions.20

These factors can be any number of experimental conditions
(such as temperature, stoichiometry, reaction time, etc.) which,
when combined, constitute a multidimensional space with many
possible combinations of factors to make up one experiment.
This is termed the parameter space and is constrained by the
upper and lower limits of each factor (for example, max and min
temperature).
The OFAT approach is often inaccurate and inefficient as an

optimization technique, and the method frequently misinter-
prets the chemical process as there are no considerations for any
synergistic effects between the factors considered.21 Interactions
between the experimental factors are ignored, as this linear
experimental procedure is applied to chemical reaction outputs
that give exclusively nonlinear responses.22 This nonlinearity
can be explained by statistical or physical modeling but is not
explored using OFAT, which therefore often incorrectly
identifies true optimal reaction conditions.23,24 An exemplar
schematic of an OFAT campaign is shown in Figure 1, mapped

onto the response surface for a given parameter space for a
chemical reaction (in which reagent equivalents and temper-
ature are considered). The optimization is initialized as the
temperature is fixed, and iterative experiments (1−7) are
performed to identify the optimum reagent equivalents. After
this value is found at experiment 5, subsequent experiments are
performed (8−14) to determine the optimum temperature. As
there are only two factors considered in this example, the
optimization is now complete with a set of experimental
conditions found that are presumed to be optimal. However, as

Figure 1. An example of an OFAT experimental procedure in varying
temperature and reagent equivalents, where ○ represents a numbered
experimental data point and the blue region indicates the true optimum
area of parameter space. Response surface is contoured from red (low
response) to blue (high response).
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the response surface cannot be known a priori for a real chemical
example, it is difficult to estimate the distance from this
identified set of optimum conditions and the true optimum for
the system.
Generally, scientists performOFAT campaigns as the method

can be performed without mathematical modeling, which is a
critical advantage when performing lab-based experiments and is
one major reason it is prevalent. A recent example by Abtahi and
Tavakol25 shows the use of OFAT optimization to achieve fair
yields in the synthesis of bioactive propargylamine scaffolds. The
model reaction was optimized, shown in Scheme 1, and the

identified reaction conditions were then applied to several
substrates achieving 38−91% yield. The optimization procedure
began by fixing the temperature and reaction time and
optimizing the reaction media and catalyst to obtain the highest
reaction yield. The reactionmedia and catalyst were then fixed as
the temperature and reaction time were optimized, followed by a
fixing of all factors except catalyst loading, as this factor was
finally optimized to achieve a 75% yield in the model reaction.
There are several examples from the literature of this

technique’s application to various chemistries, in many cases
with different levels of applied chemical intuition but still
following the structure of the OFAT methodology.26−28 In our
own laboratories, when undergraduate chemists are given the
task of optimizing a reaction, students will often employ OFAT
techniques as they are unaware of other means of optimiza-
tion.29 This is not the fault of the student, nor is it the fault of the
academics optimizing their reactions in this way, as this does
perform as a rudimentary technique to achieve improved
reaction yields. However, as research laboratories are beginning
to diversify their equipment by incorporating advanced
technologies such as automated retrosynthesis software and
experimentation,30,31 it is also important for chemists to evolve
at the same pace by diversifying their own skillsets to fully
harness the capabilities of the evolving laboratory. Synthetic
chemists, in recent years, have begun to embrace facets of
process chemistry, chemical engineering, analytical chemistry,
and computer science, to name a few.17,18 Concurrently, it is
important to facilitate better understanding and adoption of
reaction optimization methods as OFAT optimizations are
superseded by more robust and more efficient techniques.32−34

Chemical reaction optimization by OFAT has therefore been
included in this paper for comparative purposes.

3. DESIGN OF EXPERIMENTS (DOE)
One robust and widely used optimization technique, particularly
in the pharmaceutical and fine chemical industries, is design of
experiments (DoE). DoE is a class of statistical methods that aim
to build amodel that canmathematically describe the output of a
chemical reaction (such as reaction yield, purity etc.) based on
the experimental inputs for that reaction (factors such as
temperature or reaction time). There are many reports of
widespread DoE usage for reaction optimization, but it is also

often used in the literature as a comparison with OFAT
optimizations to highlight its efficiency and thereby refute
OFAT.16,23 There are three main objectives for DoE: screening,
optimization, and robustness.35 Screening involves the identi-
fication of factors that have a significant effect on reaction
output, as well as their respective upper and lower bounds.
Optimization focuses on the determination of the optimum
factor levels, such as the optimum temperature and reagent
equivalents, to achieve the best reaction output possible. Finally,
robustness testing involves the identification of the sensitivity of
this response to small changes in the experimental factors; this is
important on a process scale to understand how possible
deficiencies in reactors may lead to suboptimal outputs.
The practical manner of running DoE campaigns focuses on

performing predefined experiments from a structured exper-
imental design. These designs are templates from which to
execute experiments, based on the factors and bounds of
interest, that explore the parameter space efficiently and provide
data in a structured format to build robust statistical models.20,36

The format of this experimental data is important and often
difficult to replicate/analyze using human intuition, which is
why DoE software is often implemented, such as MODDE,37

JMP,38 Design-Expert,39 or toolbox applications in languages
such as R, MATLAB, and Python. After data collection and the
fitting of the statistical model, optimized process parameters can
then be identified, and response surfaces are often plotted to
help visualize the effects of experimental factors on the chemical
output.
One optimization campaign performed using DoE in our

laboratory is the multistep SNAr reaction of 2,4-difluoroni-
trobenzene with pyrrolidine, as shown in Scheme 2.1 This

reaction has multiple products, but the study aimed to produce
the ortho-substituted product, 7, in the highest yield by using a
face-centered central composite (CCF) design; more details on
specific DoE designs are outlined in section 3.2. The 17
experiments were predefined and executed according to this
design, where the experimental bounds for each of the defined
factors were: residence time (0.5−3.5 min, as this was a flow
experiment), temperature (30−70 °C), and equivalents of
pyrrolidine (2−10). Among these experiments were three
repeated center-point experiments, or replicates, that ensure that
any extraneous variables are identified (uncontrolled variables
that could be changing unknowingly, e.g., stock solution
degradation throughout the experimental procedure). These
replicates are experiments with the center value for each factor,
e.g., a reaction temperature of 50 °C in this example, and are
conducted throughout the course of the 17 experiment
campaign. The outputs from each experiment were then
inputted into the DoE software, MODDE, to identify the
optimum reaction conditions that afforded the highest yield of 7.

Scheme 1. Model Reaction Used for OFAT Optimization for
the Synthesis of Propargylamine Derivatives25

Scheme 2. SNAr System of Interest, Where the DoE
Campaign Aims to Optimize the Yield of the Ortho-
Substituted Product, 71
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After statistical analysis, a response surface was plotted for the
chemical process to visualize the effect of each factor on the yield
of our ortho-substituted product, as shown in Figure 2. It was
found that the highest yield of 7 could be obtained by using
higher temperature, longer residence times, and higher
pyrrolidine equivalents, leading to a yield of 93%. However,
these reaction conditions also produced the highest yield of the

impurity, the disubstituted product, 9. A process chemist could
then use this information to decide for a particular reactor
system if product throughput is more important than other
downstream processes, such as product purity and separation.
Another campaign highlighting the effectiveness of DoE was

reported by Minisci and co-workers40 on the synthesis of
vanillin, iso-vanillin, and heliotropin. Several DoE studies were

Figure 2. Contour plot for the response of 7, showing how the yield of the desired product varies with respect to changing experimental conditions.1

Scheme 3. One Reaction of Interest, Optimizing the Yield and Selectivity of the Desired 3,4-Dihydroxymandelic Acid
Intermediate, 12a

aThis intermediate can then be used to synthesize either vanillin, 13, iso-vanillin, 14, or heliotropin, 15.40

Figure 3. Contour plot for the selectivity of the reaction forming the desired intermediate, 12. Data was used from the original publication by Minisci
and co-workers to refit the model and plot the response surface using MODDE Pro.40
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employed to identify optimum process factors for each synthetic
step, one of which was the initial addition of glyoxylic acid, 11, to
catechol, 10, to form the desired 3,4-dihydroxymandelic acid
intermediate, 12, as shown in Scheme 3. Their initial attempts to
reproduce reported literature led to poor selectivity and hence
poor yields (<20%), so the authors systematically employed full
factorial DoE designs to identify the important experimental
factors and to estimate the main factor effects and interactions,
hence giving an accurate statistical model for the process and
thereby optimizing the product output.
The first DoE study explored the following factors: amount of

glyoxylic acid, amount of aluminum oxide, reaction temperature,
and amount of sodium hydroxide, while fixing the amount of
catechol, volume of water, and reaction time at convenient
levels. This design resulted in 18 experiments (24 + 2 “center”
experiments). However, it was found that an excess of sodium
hydroxide results in much greater rates of impurity formation,
hence another study was performed under fixed, less basic
conditions. The resulting three factors were therefore inputted
into the second full factorial design of nine experiments (23 + 1),
where the responses of recovered catechol, selectivity of desired
product, and yield of desired product were measured. A
statistical model was constructed for each response, and the
response surface for the selectivity of the desired intermediate,
12, is plotted in Figure 3. Using this information, it was
determined that to achieve an optimum product output, the
amount of glyoxylic acid must be increased, the quantity fraction
of catechol:aluminum oxide must fall within the range of 2.17−
2.28, and the temperature must also be increased. After further
experiments using this information at higher factor bounds, the
selectivity of the process was improved to 90.5% with a
conversion of 78.4%, where the unconverted catechol could be
easily recovered and recycled.
There are many advantages to running optimization

campaigns using DoE. The use of predefined, space-filling
experimental designs removes the necessity for chemical-
intuition-guided optimization, and it has been shown numerous
times to be a more effective methodology.23,33 This space-filling
experimentation, as shown in Figure 4 when compared to more
conventional OFAT studies, allows statistical models to be
constructed to describe the chemical process across the entire
parameter space; this is particularly powerful for reaction
prediction and allows response contours to be generated.16

These statistical models are also often intuitive for a chemist to
use because the responses are described as a direct result of the

changing factors which can be much easier to interpret than
calculating responses using physical models such as kinetic
models. These considerations are advantageous in many
chemistry situations and are conducive to the efficient
optimization of chemical processes.
There are, however, some practical disadvantages to using

DoE for optimization that may lead to the necessity of
employing other techniques. Although some research groups
utilize coding (or packages in particular languages, such as
pyDoE) and statistical expertise to performDoE campaigns,41,42

most researchers use paid software packages specifically
designed for DoE. These options carry either an expertise or a
cost burden (or both), which may have classically hindered the
uptake of the technique, particularly for smaller research
organizations. However, software options have undoubtedly
helped to facilitate the employment of DoE overall due to the
high expertise barrier for typical bench scientists to use the
statistical methods unaided. Another major disadvantage is the
difficulty in exploring categorical variables in DoE studies, as
these experimental designs are only suitable for continuous
variables. One way to incorporate categorical variables, such as
solvent or catalyst, would be to describe them with suitable
continuous descriptors that can then be translated to real-world
categorical choices; see more information on molecular
parametrization in section 6.2.
As DoE builds a statistical model, it has only an empirical

meaning rather than physical, therefore, there is no ingrained
physicochemical information about the optimized process
within the model; this means that model responses are only
considered to be accurate within the explored bounds of the
experimental factors.43,44 For example, if the reaction time is
explored as a factor as part of a DoE study between the bounds of
5−30 min, extrapolating the model to predict responses after 60
min would likely result in inaccuracies, and further studymust be
conducted to predict these outputs. Furthermore, the number of
experiments that are required to be performed in parallel for
some DoE studies may be large, depending on the amount of
reaction material or time required to conduct these experiments,
this may be prohibitive in some circumstances.45 However, the
rise of highly automated experimental platforms with online
analytics provides a powerful option for chemical process
development in many cases by miniaturizing and automating
experimentation using DoE.
DoE has been used extensively in the optimization of chemical

processes, particularly in pharmaceutical and fine chemical
settings. DoE is often used for studies relating to enhancing the
yield46−57 and purity58−62 of particular products but is also used
for drug formulations63−68 and delivery,69−71 analytical method
development,72−75 and more.76−79 This is because there are
numerous and undisputed benefits to the use of DoE for
experimental parameter screening and optimization, especially
when compared with traditional human intuition-guided
experimentation. With the rise of user-friendly software
packages and the increased awareness of the chemical
community, there has been a large uptake of this statistical
method in recent years, although the technique itself has been
around since the mid-20th century.34 As the advantages of DoE
are harnessed, and more industrial job roles will require
familiarity with the technique,35,80 an organic evolution of
academic departments will also occur where there is more
teaching of the topic and utilization of the methods for
optimization practices. It is therefore a possibility in the future
that DoE optimization becomes routine, regardless of the

Figure 4. Parameter space exploration expected when comparing a
typical OFAT optimization with a DoE design, where • represents an
experiment. The DoE shown represents a CCF experimental design.
Note that an OFAT optimization does not require a predetermined
number of experiments and therefore may or may not exceed the
number of experiments in a given DoE design.
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research setting, where the modernized laboratory contains
enabling equipment for these studies, with chemists possessing
highly diversified skillsets.
3.1. Statistical Modeling

Amathematical, empirical model is featured at the center of each
DoE study, built from real-world chemical experiments that
relate experimental factors to chemical responses. The general
format for the model involves fitting coefficients for each
experimental factor, as well as for each 2-factor-combination
possible. Therefore, the model for a 2-factor experiment is
shown in eq 1, where x1 is variable 1 (for example, temperature),
x2 is variable 2 (for example, reaction time), y is the experimental
response (such as reaction yield) and bn is the coefficient term
for the variable(s) of interest (determined by regression).
Therefore, by replacing x1 and x1 with actual values for the
factors considered, it is possible to predict the response for any
experiment, including experiments with reaction conditions that
have not actually been conducted. As any point in the parameter
space can be predicted this way, the entire space can also be
represented graphically as a contour plot; this allows the
behavior of the factors to be more easily understood and
interpreted, as well as allowing predicted response maxima to be
easily identified. The response is often also mathematically
transformed to give better predictability between two bounds,
e.g., log 10 transformed so that a yield prediction cannot exceed
100%.

y b b x b x b x x b x b x0 1 1 2 2 12 1 2 11 1
2

22 2
2= + + + + + (1)

As described in the empirical model, it is not only the
experimental factors that have an effect on the response but also
the interactions between these factors; this is an attribute of DoE
that is difficult to reproduce through methodologies that utilize
human chemical intuition.81,82 These interaction terms within
the model indicate how the experimental factors influence
reaction output, when other factors are also changed alongside
them. When considering the optimization of some generic
reaction while exploring the factors of reagent equivalents and
temperature, it may be a significant factor in the modeling of the
data to include an interaction term between these factors. In real
terms, this interaction could indicate that a higher temperature
has a positive influence on the reaction output only at higher
reagent equivalents. Similarly, these factors may have an
interaction term with themselves, as described by a squared
term. For example, a squared temperature model term could
indicate that temperature has a larger effect on the response at
elevated temperatures, meaning that temperature has a non-
linear effect on the reaction within the explored parameter space.
These interaction considerations can typically give a better
description of the experimental data, as all synergistic effects
between the factors are incorporated into the model. However,
all experimental factor and interaction terms can be added or
removed from a DoE model depending on whether their
contribution to the model is significant.
To accurately isolate and determine interaction effects,

specific DoE designs can be implemented. Within each design,
the experimental factors are split into respective levels: these
denote the degree of the experimental factor and are
conventionally labeled between the minimum (−1) and
maximum (+1). For example, a three-level design that is
exploring reaction temperature (10−50 °C) would use the levels
−1, 0, and 1, which correspond to 10, 30, and 50 °C,
respectively. These levels are defined to ensure that the entire

parameter space can be explored regardless of the factor range.
Each experimental design may explore different levels, which
also depend on the number of factors to be explored, in order to
identify specific interaction effects and remove confounding
(uncertainty).83,84 Depending on the practicality of running
experiments, it may be necessary to balance model accuracy with
experimental measurements, as some designs that feature several
factors may require many more experiments at different levels
for a marginal increase in predictive power. For example, to
estimate all terms for a model containing five experimental
factors, a three-level full factorial design would require 246
experiments, while a face-centered central composite design
would only require 29 with a minimal reduction in predictive
accuracy. It is therefore important for the bench scientist to
identify the optimal experimental design for their purposes to
avoid conducting unnecessary experimental observations,
leading to additional time and material costs. For more detailed
information on DoE designs, also refer to Kumar and co-
workers.35

3.2. Conclusions

Chemical reaction optimization using design of experiments can
be very powerful when attempting to identify regions of optimal
parameter space. The methodology has a relatively low expertise
barrier-to-entry, given the advent of DoE software, and provides
bench scientists with tools to identify significant experimental
variables and model their data.34 Although there are several
options for DoE designs, the statistical knowledge necessary for
chemists to select the correct experimental procedure (based on
their needs for a given experimental outcome) and analyze the
resulting data is low. Because of the relative ease of the
technique, DoE can be easily taught to chemistry students and
adopted for use in academic laboratories as intuition-based
methods are superseded.1,85,86 Furthermore, the ubiquity of
DoE in process laboratories in industry highlights that these
statistical methodologies must be taught to chemists; this will
help to develop the skillsets of the students and familiarize them
with common optimization protocols that they are likely to
encounter in future. For further detailed reading on statistical
modeling within DoE, refer also to Telford87 and Severin and co-
workers.88

4. KINETIC MODELING
The use of kinetic modeling, featuring a mechanistic model
rather than a statistical one, is also common for reaction
understanding and optimization, especially in process labo-
ratories in industry and academia. Kinetic models are
constructed from a scientific understanding of the chemical
process89,90 rather than statistical relationships between
experimental factors and outcomes. In contrast to DoE,
undergraduate courses typically cover kinetic analysis in detail
as part of their core physical chemistry modules, covering
theories on collision, rate laws, and some basic physical-organic
concepts. However, the more practical uses for kinetic analysis
(reaction optimization, mechanism elucidation, etc.) are seldom
explored by many chemists and are typically reserved for
chemical and process engineers. This could be because of large
expertise gaps experienced by chemists, or simply because they
are unaware of the benefits of kinetic studies for their processes.
Because of this distinct knowledge gap, practical kinetic analysis
is discussed in this review and how it relates to reaction
optimization. When these kinetic models are constructed, they
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enable scientists to understand and simulate reactions to
determine optimal regions of parameter space in silico.
The physical modeling of a reaction typically features the rate

laws of each individual chemical step and their corresponding
rate constants. The main assumption when using a physical
model is that the reaction kinetics follow the law of mass action;
this states that the rate of an elementary reaction is directly
proportional to the product of the concentrations of the
reactants, raised to the power of their stoichiometric
coefficients.91 Written simply, this relates the order of a
chemical species within an elementary step to the number of
molecules reacting within that step. For the reaction shown in eq
2 (where x1−3 are chemical species and α/β/γ are their
stoichiometric coefficients), based on the law of mass action,
the reaction rate can be described by eq 3 and therefore eq 4.
The kinetic rate constant, k, therefore determines the speed of
the reaction as well as the reactant concentrations.

x x x1 2 3+ (2)

x xrate 1 2[ ] [ ] (3)

k x xrate 1 2= [ ] [ ] (4)

The law of mass action is applicable in almost all cases and is
typically only inappropriate when concentrations of particular
substrates are very low. More commonly encountered are very
fast elementary reactions that occur in some processes, where it
is more appropriate to describe an entire reaction with an
observed rate rather than the combination of its individual
elementary parts. This leads to circumstances where chemical
species that are reported to have a zero-order, second-order or
even noninteger-order dependence, as it is much more practical
to describe the physical model in this way.92−97

The physical models generated from kinetic analysis contain
ingrained chemical information that, unlike their empirical
model counterparts, can be used to extrapolate reaction
predictions outside of previously conducted experimental
constraints.98,99 The determination of reaction orders and rate
laws within a model is used to optimize outputs but also to
increase overall chemical understanding. As a result of impurity
formation upon scale-up, Ashworth and co-workers studied the
kinetics of the alkylation of the indolphenol, 16, with the
chloropyrrolidine, 17, to form cediranib, 18, which is a
pharmaceutical treatment for solid tumors (Scheme 4).100

The authors found that overall second-order kinetics, consistent
with a direct nucleophilic substitution between the anion of 16
and 17, were not observed in their experiments. Instead, overall
first-order kinetics suggested an initial slow step to form another
species. Further experimentation confirmed that 17 slowly
reacted to form the azetidinium ion, 19, which then reacted

quickly with 16 to obtain the desired product. This mechanistic
understanding was achieved as a direct result of kinetic
experiments, which led to further optimization of the overall
process (solvent selection and base equivalents) for an increase
in overall reaction yield.
As reaction progression can be described by the rate laws in eq

4, predictions of reactant/product concentrations can be made
for any collection of reaction variables such as reaction time,
reagent equivalents, and temperature. This allows response
surfaces to be plotted in the same manner as with DoE studies,
allowing the visual determination of high-interest experimental
parameters for process optimization. One example of this
application is in the continuous-flow aqueous reduction of 4-
nitrophenol, 20, to 4-aminophenol, 21, using gold nanoparticles
(AuNPs) by Chamberlain and co-workers (Scheme 5).101 This

kinetic study related the surface area of AuNPs and flow
residence time to reaction conversion, highlighting the optimal
reaction conditions for the scale-up of the pharmaceutical
building block, 4-aminophenol, as shown in Figure 5.
4.1. Conventional Approaches
When fitting a physical model of rate laws to a chemical process,
the reaction order and rate constants must be experimentally
determined. For a mechanistic model that incorporates reaction
temperature, activation energies must also be identified.
Conventionally, mathematical transformations to concentra-
tion−time data are applied to identify both the reaction order
and rate constants in one plot; this can then be repeated at
multiple temperatures to obtain the activation energies for the
reaction.102−106 Figure 6 shows the most common, classical data
transformations to obtain rate law information from kinetic
experiments.107 For each case, a linear fit to the transformed data
indicates that the reaction order is correct, while the gradient of
the fit gives information on the rate constant. For a unimolecular
reaction, a zero-order reaction is confirmedwith a linear fit to the
concentration−time data (a) while a first-order reaction can be
confirmed via a log-transformed plot of the data (b). For
bimolecular reactions, if both reactants are the same, then an
overall second-order reaction can be confirmed simply from the

Scheme 4. Alkylation of the Indolphenol, 16, with the Chloropyrrolidine, 17, to Form the Desired Cediranib Product, 18a

aThis reaction was found to proceed via the azetidinium intermediate, 19, as a result of kinetic modelling.100

Scheme 5. Aqueous Reduction of 4-Nitrophenol, 20, to 4-
Aminophenol, 21, Using Gold Nanoparticles (AuNPs) and
NaBH4

101
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plotting of the reciprocal of the concentration data (c).
However, when both reactants are not the same, more complex
plotting can confirm an overall second-order reaction (d).
Additional modeling, such as the conventional modeling of
enzymatic (and sometimes other catalytic) reactions, known as
Michaelis−Menten kinetics, can also be applied; for more
information refer to a recent review by Johnson.108

These techniques are still employed regularly today in both
teaching and research laboratories. For example, a study by Etua
and co-workers109 confirmed second-order reaction kinetics of a
benzaldehyde oxidation, and work byGueǵan and co-workers110

confirmed first-order reaction kinetics in an epoxybutane
polymerization; both cases are recent examples of how these
conventional methodologies are still used. As can be seen from
Figure 6d, the mathematics required to extract kinetic
information grows much more complex as the reaction deviates
further from very simple chemistry. Therefore, these conven-
tional approaches become less appropriate when studying

processes that are multistep, contain multiple reaction pathways,
and have impurity formation as the mathematics becomes more
inaccessible. In these complex cases, it is more common to use
modern kinetic analysis techniques depending on the chemistry,
such as reaction progress kinetic analysis,111 or kinetic fitting
software, such as Compunetics.101,112

4.2. Modern Techniques
In every chemical case, regardless of the complexity of the
process, it is possible to write coded solutions for kinetic analysis
using rate constant solvers (using differential equation counter-
parts to eq 4).113−115 Although this is a useful strategy that is
often employed by engineers,116−120 it is rarely conducted by
chemists, as there is a high expertise barrier to access this form of
kinetic analysis, namely, coding and mathematical knowledge.
Software solutions have been developed to aid in this kinetic
model fitting (Compunetics,121 Berkeley Madonna,122 Dyno-
Chem,123 COPASI124) that often require minimal coding
expertise, which have been adopted by process chemists but
have still had relatively low uptake within the wider chemistry
community. One example of fitting a kinetic model using rate
constant solvers was shown in our lab for the determination of
the overall first-order reaction of alanine methyl-ester (Al-Me),
22, and 9-bromo-9-phenylfluorene (PfBr), 23, to form the
protected amino acid (Pf-Al-Me), 24, as shown in Scheme 6.92

This approach computationally identified the “best-fit” param-
eters for the rate constants and activation energies, with the fit to
the experimental data shown in the combined plot in Figure 7.
Another common modern kinetic analysis technique used for

the determination of physical models, particularly for catalytic
processes, is reaction progress kinetic analysis (RPKA).111 This
methodology was pioneered by Blackmond and represents a
systematic experimental procedure for kinetic analysis through

Figure 5. Kinetics-derived response surface for the conversion of 4-
nitrophenol, 20, to 4-aminophenol, 21, when exploring the variables of
residence time and AuNP surface area per liter.101

Figure 6. Common conventional kinetic analysis techniques for the
determination of: (a) unimolecular zero-order kinetics, (b) unim-
olecular first-order kinetics, (c) bimolecular second-order kinetics
between the same reactants, and (d) bimolecular second-order kinetics
between different reactants.

Scheme 6. Reaction of Al-Me, 22, with PfBr, 23, to Form the
Protected Amino Acid Pf-Al-Me, 2492

Figure 7. Kinetic profiles for three kinetic experiments at 30 °C, 35 and
40 °C, where red plots indicate PfBr concentrations and blue plots
indicate Pf-Al-Me concentrations. At 30 °C: blue solid squares =
experimental data, � = kinetic fit. At 35 °C: blue solid triangles =
experimental data, - - - = kinetic fit. At 40 °C: blue solid circles =
experimental data, ······ = kinetic fit.92
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sequential experimental/analytical steps involving reaction rate/
time data. Rather than coding kinetic fitting solutions, this
methodology features various plotting techniques and uses
qualitative visual confirmations of overlaying graphs to
determine catalyst/reactant orders, catalyst deactivation, and
product inhibition. Therefore, precise kinetic parameters cannot
be elucidated, but the plots required are simple to construct and
easy to interpret, which allows easy determination of this kinetic
information. Because of its systematic approach to analysis,
RPKA has been widely adopted in process chemistry settings
and reported in several applications.125−130

One recent example by Niemeyer and co-workers used RPKA
in the regio- and stereoselective reduction of 2-phenylquinoline,
25, with the Hantzsch ester, 26, using the macrocyclic catalyst,
27, to yield the tetrahydroquinoline, 28, as shown in Scheme
7.131 This work highlighted, using the RPKA methodology, that

the process was first-order with respect to both substrates and
the catalyst, and that there was no observed catalyst deactivation
or product inhibition over time. Each piece of information
gained from this study can thereby help in further process
development, both for reaction condition optimization and
scale-up suitability.
Variable time normalization analysis (VTNA) is another

technique that, alongside RPKA, falls into the dubbed category
of “visual kinetic analysis”.132 VTNA can obtain the same
chemical and physical model information as RPKA but does not
require rate/time data; instead, VTNA can be used directly with
concentration/time data, which requires fewer experiments to
obtain and less data manipulation.133,134 As VTNA requires only
simple graphical transformations with easily obtained data, this
methodology has also been reported in many process chemistry
applications and chemical optimization studies.135−138

One recent example by Carretero and co-workers showed
how VTNA was utilized in the cobalt-catalyzed C−H
functionalization of N-benzylpicolinamide, 29, with 4-octyne,
30, to yield the dihydroisoquinoline product, 31, as shown in
Scheme 8.139 This study showed that the reaction exhibited a

first-order dependence on the cobalt concentration, a zero-order
dependence on the alkyne and a partial negative-order in the
benzylamide concentration. The authors suggested that this
partial negative-order finding was a result of off-cycle
unproductive binding interactions with the catalyst, thereby
decreasing the effective concentration of catalyst available.
Therefore, for further optimization work and scale-up, this
quantification of reaction orders has been crucial in showing that
there must be an optimal benzylamide concentration range
whereby productivity is maximized.
4.3. Outlook
Kinetic modeling is a very powerful tool for the optimization of
chemical processes and represents a much more systematic
approach than traditional OFAT optimization. The mechanistic
models used in kinetic analysis also provide chemical insights
and scientific understanding that DoE does not but may also be
more difficult to interpret and conduct experimentally as time-
series data is paramount. Although software solutions have been
created to lower the expertise barrier for kinetic analysis, the
uptake of kinetic modeling techniques is still relatively low
among chemistry researchers as the analysis is typically assigned
to physical-organic or engineering colleagues, often unnecessa-
rily as many reactions are simplistic and easy to fit a physical
model to. Visual kinetic analysis, although a relatively new
methodology, has helped to provide an accessible framework for
chemists to obtain semiquantitative model information from
their processes without the need for coding or software. More
complex techniques that feature parameter estimation for kinetic
modeling have not been covered, but interested readers are
directed to reports on model-based design of experiments
(MBDoE).140−142 As robust physical models are often useful for
optimization and necessary for scale-up, familiarity with these
modeling techniques is very important as our laboratories
become more interdisciplinary and connected.

5. SELF-OPTIMIZATION
Self-optimization is a modern approach to automating the
discovery of optimal reaction conditions for chemical processes
which does not require the determination of explicit mechanistic
or empirical models. Self-optimization proceeds through
iterative cycles of automated reaction execution, quantification,
and algorithmic condition selection to efficiently identify
optimal reaction conditions to maximize process metrics
(yield, selectivity, etc.). Although self-optimization was initially
applied to tuning analytical instruments as early as the 1970s,143

DeMello and co-workers144 first introduced the concept of self-
optimization of chemical reactions in 2007, which led to further
adoption by many other research groups in the following years.
DeMello and co-workers focused on the synthesis of CdSe
quantum dots, but subsequent works have applied self-
optimization to a wide range of synthetic organic reactions
including oxidation,145 Diels−Alder,146 methylation,147 Paal−

Scheme 7. Stereoselective Reduction of 2-Phenylquinoline,
25, to Yield the Tetrahydroquinoline, 28, Using the Hantzsch
Ester, 26, and the Macrocyclic Catalyst, 27131

Scheme 8. Cobalt-Catalyzed C−H Functionalization/Alkyne
Annulation Reaction of 29 with 30 to Form the
Dihydroisoquinoline Product, 31139
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Knorr,148 Suzuki−Miyaura cross-coupling,149,150 hydrolysis,151

and C−H activation.152

Self-optimization is often conducted using automated
reactors that can independently execute reactions at a specified
set of reaction conditions. Automated analytical instruments
then quantify the individual components of a reaction mixture,
followed by an algorithmic suggestion of new reaction
conditions based on previous data to improve key reaction
outcomes. Self-optimization research can therefore often be
divided into three subsections that map directly on to these three
key aspects: development of automated reactors, development
of automated analytical methodologies, and development of
optimization algorithms (adapted for a specific chemical
problem). One or more of these developments are typically
reported in individual works in the literature. These ideas are
shown conceptually in Figure 8.

The primary goals of self-optimization are to reduce the
number of experiments required to optimize a reaction and the
experimental burden on the bench scientist, saving time and
money. Additionally, self-optimizing systems offer a more
consistent way of generating data than human driven reaction
optimization. This means that self-optimization has the
potential to not only accelerate reaction optimization but also
provide data that will enable predictive modeling in the future.
Currently, self-optimization has been adopted by both academia
and industry, although work from the former has been published
more readily.
5.1. Automated Reactors for Self-Optimization
Automated reactors must be able to receive and execute a set of
reaction conditions without human intervention. Continuous
flow and batch reactors have been applied to self-optimization,
and prominent examples from the literature are herein
discussed, but two example reactor setups are shown in Figure 9.

5.1.1. Automated Flow Reactors. Most self-optimization
studies in the literature have employed automated flow
reactors.154,155 Utilizing developments in continuous flow
chemistry, these automated flow reactors use pumps to deliver
solutions at a desired flow rate to a temperature-controlled
reactor. By pumping solutions of starting materials and reagents
at varying flow rates, precise stoichiometries and reaction times
can be achieved. Automated flow reactors are attractive because
a bespoke system can be quickly assembled using commercially
available parts, or a complete system can be purchased from
several specialized vendors. Building a bespoke system offers
flexibility and lower costs, while complete systems enable faster
(and often easier) application deployment.156 An additional
advantage of automated flow reactors is that the optimal
conditions found in an automated flow reactor can be utilized for
medium-to-large scale production (grams to kilograms per
week) by either running the reactor for an extended period157 or
numbering-up,158 as discussed in section 7.
However, three major challenges are faced by researchers

using automated flow reactors for self-optimization. First,
automated flow reactors can consume large amounts of starting
material and solvent due to the need to flush the reactor when
changing conditions. The standard heuristic is to wait at least
two residence times (i.e., twice the amount of time necessary for
material entering the reactor to exit) prior to initializing
analytical measurements, so much of the reaction material is
directed to waste. Second, changing categorical reagent
conditions such as catalyst, base, or solvent is nontrivial in a
standard automated flow reactor because each pump must be
loaded with a particular reagent prior to reaction execution.159

Third, automated flow reactors suffer from standard issues with
flow chemistry, particularly reactor clogging due to precipitation
of solids,160 and limits in the maximum residence time of
compact reactors.161

To overcome challenges of material consumption and
changing reagents in automated flow reactors, researchers
have developed automated droplet flow reactors.162 These
reactors employ liquid handlers that transfer the individual
components for a reaction into a sample loop prior to injecting
them as a droplet into the reactor tubing. The droplets can be as
small as several hundred microliters, resulting in large reaction
material savings when compared with traditional continuous
flow experimentation. For example, Jensen and co-workers
demonstrated the self-optimization of a C−N cross-coupling
reaction in an automated droplet flow reactor varying catalyst
and base with a liquid handler (see Figure 10); their reactor
consumed less than 200 mg of starting material.163

Figure 8. Three parts of a self-optimizing reactor are an automated
reactor system, an analytical method, and an optimization algorithm.

Figure 9. Examples of automated reactors. (a) A bespoke automated flow reactor equipped with pumps, reactors, and analytical equipment.153 (b) A
commercial robotic liquid handler that can be utilized as an automated batch reactor (see section 6.2 for more details).
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A variety of technologies have been developed to address
other standard issues with flow chemistry. Methods to prevent
clogging include continuous stirred tank reactors (CSTRs) that
can facilitate slurries164 and reactors with baffles to improve
mixing and reduce precipitation.165 To overcome challenges
with limited residence time in flow reactors, researchers have
applied oscillatory droplet flow reactors that move droplets back
and forth inside a fixed length tubing until the desired reaction

time is achieved.166−168 These oscillatory systems could, in
theory, enable very long reaction times (hours), although in
practice they have only been used for reactions with shorter
reaction times (minutes).
Overall, the field of flow chemistry offers a powerful set of

tools for building automated reactors for self-optimization. By
either building or buying automated flow reactors, research
groups and industry can quickly access the basic laboratory tools

Figure 10. Development of a Buchwald C−N cross coupling between p-tolyl triflate (32) and aniline (33) via self-optimization in an automated
droplet flow reactor.163 Three continuous variables (residence time, base equivalents, and temperature) and two categorical variables (catalyst and
base) were varied to maximize the yield of 4-(p-tolyl)morpholine (34). In the chart, each column contains data for a different catalyst and base
combination, and the experiments in each column are shown left to right in the order they were selected by the optimization algorithm. Additionally,
the color bar shows experiment selection order.
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needed for building self-optimizing systems. However, particular
care must be taken for solid handling and the screening of
categorical parameters (such as solvent, catalyst etc.) as vital
modifications to existing equipment may be necessary.
5.1.2. Automated Batch Reactors. Recent work has

shown that automated liquid handling robots, historically
deployed for high-throughput screening (HTS) in biological

applications, can also be used in combination with high-
throughput screening microplates to create automated batch
reactors for self-optimization.15,149 Using these liquid handling
instruments, it is possible to screen many categorical variables,
such as catalysts, ligands and solvents. Hein and co-workers
conducted self-optimization of a stereoselective Suzuki coupling
reaction using a ChemSpeed liquid handling robot, varying the

Figure 11.Development of a stereoselective Suzuki coupling between sulfonate 35-E and boronic acid 36 to form 37-E and 37-Z via self-optimization
in an automated batch reactor. In 161 experiments, the yield of 37-Ewas improved from 30% nominal to 70%, and the E/Z ratio from 1.5:1 to 2.5:1. AY
represents assay yield.149
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ligand, several stoichiometries, and temperature to maximize the
formation of the E-product and minimize the Z-product, as
shown in Figure 11.149 This self-optimization campaign led to
more than a 2-fold increase in yield of the E-product (30%
nominal to 73% optimized) and a notable increase in the E/Z
ratio (1.5:1 nominal to 2.5:1 optimized) within 161 experi-
ments.
As automated liquid handling robots are common among

high-throughput experimentation (HTE) and process develop-
ment groups in industry, automated batch reactors represent a
significant opportunity for industrial adoption of self-optimiza-
tion. Indeed, the few publicly available self-optimization studies
that have been executed using automated batch reactors were
from industrial-affiliated groups. HTE is further discussed, in
detail, in section 6.1.
5.1.3. Analytical Techniques. The most common

analytical techniques used in self-optimization are chromato-
graphic, either high performance liquid chromatography
(HPLC) or ultrahigh performance liquid chromatography
(UHPLC).154 This trend is likely due to the ubiquity of
HPLC and UHPLC instruments in chemical synthesis
laboratories and the relative ease with which they can give
quantitative data and be integrated into self-optimization
systems. For automated flow reactors, HPLC sampling is
achieved using a switching valve located at the outlet of the
reactor, which can alternate between directing reaction material
to waste during changes between conditions and sending
aliquots to the HPLC instrument for analysis; this is referred to
as online sampling, as material is removed from the flow path for
analysis.169 This sampling is typically initialized based on the
residence time of the reaction or, in the case of droplet flow
reactors, an in-line UV cell. In addition to HPLC, gas
chromatography (GC) has also been reported in the literature,
but this is much less common.152

In addition to online HPLC, there have been many reports on
developing in-line analytical techniques, such as NMR, IR, UV,
and FTIR. In-line NMR has been used to identify both known
and novel products synthesized in self-optimizing reac-
tors.170−172 Additionally, in-line IR and FTIR has been used
independently and in combination with NMR and HPLC for
reaction quantification.170 The advantage of in-line analytical
techniques is they offer fast data feedback, enabling more rapid
optimization. However, because the analysis is conducted on the
crude reaction mixture, these complex mixtures can suffer from
overlapping peaks which often makes quantification difficult.
The supporting information of the review by Rincon and co-
workers has a list of flow chemistry self-optimization studies and
the on-line/in-line analytical techniques used.154

5.2. Optimization Algorithms

In self-optimization, an efficient optimization algorithm is
required to select new reaction conditions based on previous
results. Chemical reactions can be viewed as mathematical
functions that receive reaction conditions as input values and
output reaction outcomes (e.g., product yield, selectivity,
etc.).173 This functional view of chemical reactions makes it
clear why optimization algorithms, which find the optimal values
of mathematical functions, can be used to optimize chemical
processes. Optimization algorithms iteratively evaluate the
output of the function at different input values until a maximum
or, if desired, a minimum, is reached. In the case of chemical
processes, these iterative evaluations correspond with intelli-
gently suggested experiments to execute in the laboratory until a

set of reaction conditions are achieved that give the optimal
desired output.
5.2.1. Local Optimization vs Global Optimization. The

two main classes of optimization algorithms are local and global
optimization algorithms. Local optimization algorithms are
designed to find the optimal values of a function closest to an
initial guess. Therefore, if there is one optimal value, local
optimization algorithms will likely find it, but if there are
multiple optima, the success of a local optimization method is
highly dependent on the initial guess. Example chemical
applications of local optimization algorithms include the
steepest descent algorithm, which chooses reaction conditions
based on the most favorable gradient (direction) in design space
to explore,145 and the simplex algorithm, which explores the
design space based on geometric transformations to exploit
perceived favorable areas.143,147 The challenge with local
optimization algorithms is their dependence on the reaction
conditions used to initialize the algorithm; if there are multiple
regions of chemical space with local optima, the algorithm could
potentially fail to find the best overall reaction conditions for the
transformation, as illustrated in Figure 12.

Global optimization algorithms can identify the best value of a
function independent of the initial guess but may require more
experiments to obtain. Krishnadasan and several other
researchers were the first to apply global optimization to self-
optimization.47,144,145 They used the Stable Noisy Branch and
Fit (SNOBFIT), which, as its name suggests, relies on sequential
branching and fitting steps. The algorithm begins by subdividing
the optimization domain into boxes with one data point each
(i.e., branching) and subsequently builds full quadratic models
for each box and its nearest neighbors (i.e., fitting).174

SNOBFIT achieves global optimization by sampling evenly
from the complete reaction condition input space. This has been
shown to result in a larger number of experiments than local
optimization in exchange for a higher likelihood of finding the
optimum for difficult problems (i.e., challenging nonlinear
optimization tasks).145 SNOBFIT also allows researchers to
conduct experiments in batches (i.e., the algorithm makes
multiple experimental requests at one time).
More recently, researchers have started to apply Bayesian

optimization within chemistry optimization problems.15,175−178

This class of optimization algorithm is a subset of Bayesian

Figure 12. Example of a local optimization algorithm failing to find the
global maximum of a function with multiple local optima, i.e., the
algorithm finds a maximum peak but not the highest peak. X and Y are
hypothetical experimental variables (e.g., temperature, reaction time),
and the objective is the value that must be maximized (e.g., yield).
Unfilled circles are function evaluations (i.e., experiments). Red
indicates local maxima function value, while blue indicates local
minima.
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statistics, which uses probability to express certainty in future
outcomes based on past observations. In the case of reaction
optimization, when an experimental iteration is completed, a
probabilistic model is trained to predict its reaction outcome
(e.g., yield) given the reaction conditions. Then, the Bayesian
optimization algorithm chooses experiments that balance
further exploration of chemical space and exploitation of the
known best performing conditions.179 Bayesian optimization
offers a principled and efficient way to apply global optimization
to chemical reactions that is more intuitive and often more
effective than other global optimizers.
5.2.2. Categorical Variable Optimization. Each of the

aforementioned algorithms only utilize continuous input
variables (e.g., temperature, concentration, residence time),
but chemistry problems often have categorical variables also
(e.g., solvent, ligand, etc.). To address this algorithmic
limitation, Jensen presented a branch-and-fit algorithm that
eliminates possible values for categorical variables (e.g.,
particular solvents, ligands, etc.) that lead to poor reaction
performance.150,159,180,181 The algorithm fits predefined math-
ematical models for each combination of categorical variables
and, once the best categorical combination has been identified, it
suggests further experiments to improve the fit of the model.
However, this approach requires users to specify a kinetic model
a priori, whichmay be difficult when a full reactionmechanism is
not known, as discussed in section 4. Furthermore, because no
model is built to describe the relationship between categorical
variables, insights cannot be easily drawn about the relationship
between different catalysts and bases. This could explain the
poor performance seen when this algorithm was used in the
aforementioned example of C−N cross coupling (see Figure
10).
Alternatively, it is possible to use optimization algorithms that

inherently work with categorical variables. In recent studies,
Bayesian optimization algorithms were adapted to automatically
learn the relationship between categorical variables from
experimental data.177,178 These algorithms tended to perform

slightly better in finding optimal reaction conditions than the
aforementioned strategies that could not learn a relationship
between categorical variables and may be a large research area of
interest in future. Categorical variables can be explored more
easily by quantifying them with various “continuous variable”
chemical descriptors, as highlighted in section 6.2. However,
more recently, work by Bourne and co-workers177,182 showed
the effectiveness of their mixed variable multiobjective
optimization (MVMOO) algorithm in optimizing categorical/
continuous variables without chemical descriptors. In their
respective works, they show the use of novel distance metrics
based upon Gower similarities that reduce this necessity in both
simulated and experimental case studies.
5.2.3. Multiobjective Optimization. Optimization prob-

lems in chemistry often involve trade-offs between multiple
competing objectives, such as balancing high process yields with
low costs, so optimization algorithms need to be able to consider
and weight these objectives to find optimal solutions. For
example, Jensen and co-workers optimized catalyst turnover
number (ratio of the rate of product formation to catalyst usage)
with the constraint that yield must be greater than 90%.150 This
constraint was implemented to prevent the yield being
maximized by simply adding higher loadings of an expensive
catalyst. In other cases, researchers have optimized a weighted
function of multiple objectives.144,151,183 Both of these methods
require the scientist to make an a priori judgment about the
trade-offs between competing objectives and their respective
importance. This prior judgment can be limiting and results in a
single optimum point identified, whereas there are likely
multiple optimal solutions depending on the weightings of the
individual objectives.
An alternative approach to considering these trade-offs is the

use of multiobjective optimization algorithms. These algorithms
explore the full set of trade-offs between multiple objec-
tives.175,184 These algorithms construct a Pareto front, which is
defined as a set of points in which an improvement in one
objective would result in a detriment to another. By presenting a

Figure 13.Multiobjective self-optimization of theN-benzylation ofN-benzylation of α-methylbenzylamine 38with benzyl bromide 39.175 TSEMO184

was used to maximize space−time yield of the desired 2° amine 40 and minimize production of the percent impurity of 3° amine 41. After 20
experiments designed by Latin hypercube sampling (LHS),185 TSEMO quickly identified experiments on or near the Pareto front.
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spectrum of trade-offs, this multiobjective approach allows the
scientist to select one optimal point with other softer constraints
considered (e.g., budget constraints, manufacturability, down-
stream separation efficiency, etc.). Due to the need to optimize
multiple variables and explore globally, multiobjective Bayesian
optimization algorithms can be slower than gradient descent or
single objective optimization and require further experimenta-
tion.
Figure 13 shows an example of the multiobjective Bayesian

optimization algorithm TSEMO184 applied to a N-benzylation
reaction.175 The flow rate of α-methylbenzylamine 38, ratio of
benzyl bromide 39 to 38, solvent flow rate, and temperature
were modified to maximize production of 40, while minimizing
formation of 41. After 20 experiments designed by Latin
hypercube sampling (LHS),185 a balanced random sampling
technique, TSEMO quickly identified 58 further experimental
conditions on or near the Pareto front. The Pareto front
indicated that a 60 kg m−3 h−1 increase in space-time yield
(STY) would correspond with an approximate 10% increase in
impurity yield, which the scientist can then consider based on
the needs of the process.
5.2.4. Benchmarking of Optimization Algorithms. The

self-optimization reports explored thus far primarily focus on
single experimental case studies, implementing bespoke
optimization strategies; this makes it difficult to compare the
performance of optimization algorithms objectively. Therefore,
recent work has aimed to develop chemically relevant
optimization simulations of reactions, or benchmarks, so that
these algorithms can be compared without the time and expense
of laboratory experiments.186−188

Benchmarking rarely finds algorithms that will work in all
situations, but they can help filter out poorer-performing
algorithms and compare the effect of small changes to algorithms
for potential benefits. Furthermore, benchmarking studies can
act as postverification of algorithms developed initially on real
experiments, as it is possible to run large numbers of repeated
simulations to understand the average behavior of these
algorithmic techniques.
5.3. Future Directions

Self-optimization has the potential to significantly accelerate
reaction development by enabling autonomous optimizations of
reaction conditions. However, currently, as highlighted by Hein
and co-workers, automated reactors often require significant
human intervention and adjustment to achieve high quality
results.156 Therefore, there are still open research questions
tackling how to develop highly flexible automated reactors that
can adapt to a wide range of chemistry without significant
customization. There are also further necessities when
conducting reactions that must be addressed, particularly steps
that are easy for humans but more complex for machines, such as
phase separations, extractions, crystallizations, etc.
Additionally, self-optimization has shown promise in the

automated optimization of single reactions, but there is a wealth
of reaction data available that current algorithms are unable to
utilize. Very recent work has used transfer learning techniques to
accelerate optimization by leveraging data from similar reaction
optimization campaigns, but this has mainly been demonstrated
in silico,189,190 with one active learning example from Lapkin and
co-workers with the focus of pH adjustment.191 There is also a
significant opportunity for benchmarking these algorithms on
both in silico and real-life experimental case studies to see how
well they generalize to all classes of reactions.

6. DATA-DRIVEN OPTIMIZATION

6.1. High-Throughput Experimentation

High-throughput experimentation (HTE) involves running
multiple reactions in parallel, which is a useful technique for
quickly exploring chemical space in a systematic and stand-
ardized manner.192−200 Traditionally, this process has been
employed in the pharmaceutical industry for the parallel
synthesis/assessment of chemical compounds on a variety of
scales. This includes small, focused arrays of compounds for
exploring structure−activity relationships (SAR) around a hit
compound of interest, and the synthesis of thousands of
compounds to populate high-throughput screening (HTS)
libraries. In recent academic settings, HTE has also shown utility
in the discovery of new chemical reactions, as this technique is
well-suited for the discovery of unexpected reagent combina-
tions enabled by the large number of reactions that can be run in
tandem.201−205 For the purposes of this review, this section will
focus on the application of HTE to accelerate the optimization
of synthetic organic reactions. Herein, methods employed for
the simultaneous exploration of chemical space using multi-
factorial optimization will be discussed, touching on the
strengths and weaknesses of the different methods currently
available to HTE practitioners.
6.1.1. Multifactorial Optimization. With HTE, a large

proportion of chemical optimization space can be examined at
once in an “all vs all” manner, where one exhaustive (full
factorial) screen may help to identify optimal conditions much
faster and more efficiently than performing reactions individu-
ally (e.g., using OFAT). However, reaction optimization using a
HTE methodology requires time-intensive reaction design from
the outset, as several categorical variables (e.g., catalyst, solvent,
base, etc.) may be varied at once.192 Commonly a fractional
factorial approach is employed where a subset of variables are
screened in amatrix array with all categorical variables compared
against each other. Although this approach can be time-
consuming to design and analyze, it is generally more cost-
efficient than OFAT (see section 2) or other iterative
optimization methods due to the miniaturized scale requiring
less reaction material. An example HTE workflow is shown in
Figure 14, where a chemical process is explored with each

Figure 14. Schematic of a typical HTE workflow where a particular
chemical process is optimized with respect to 12 catalysts, 4 bases, and 2
solvents.
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possible variation of 12 catalysts, 4 bases, and 2 solvents. HTE is
a powerful resource that has seen widespread use in the
pharmaceutical industry. It is employed in different areas of
chemical development throughout the drug discovery process,
from early stage preclinical development up to process
optimization for clinical development, in-human testing, and
subsequent market release.193

6.1.2. Reaction Miniaturization. During the lead opti-
mization phase of a drug discovery campaign, elaborated
compounds (leads) produced in the development of a clinical
candidate can be very time and resource intensive to make.
High-throughput optimization techniques can be useful to
optimize potentially intractable reactions such as transition-
metal catalyzed cross-couplings of highly functionalized drug-
like compounds, however, these elaborate pharmaceutical
intermediates often cost more gram-for-gram than precious
transition-metal catalysts that may be employed in their

synthesis. By downscaling chemical reactions into aminiaturized
format, one can increase the number of data points gained
during a HTE screen without the associated impact on material
cost.
For decades, biological assays have been routinely performed

in plate-based formats on micro- or nanoliter scales in a
parallelized high-throughput manner.206 This miniaturization
approach not only allows for a greater number of experiments to
be run in amaterial sparing fashion, but is also highly appropriate
for automation. Hence, a number of robotic platforms have been
developed by vendors (e.g., Tecan, Hamilton, Beckman Coulter
Echo, SPTLabtech Mosquito) to facilitate the execution of
multiple experiments at once in a Society for Biomolecular
Screening (SBS) footprint microtiter plate (MTP). This data
capture workflow was further streamlined with the advent of
analytical systems equipped with autosamplers that can sample
directly from the same footprint MTPs. The standardization of

Table 1. Chemical Reaction Limitations with Relation to Current Miniaturization Technologiesa

aRBF, round-bottomed flask; MTP, microtiter plate; PFA, perfluoroalkoxy alkane; COC, cyclic olefin copolymer; PP, polypropylene; DCM,
dichloromethane. *With specialized glassware or additional apparatus attached. ‡Vessel or equipment dependent. §Depending on amount required.
◇Reagent dependent.
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these plates to a universal footprint ensures interchangeability
between different robotic systems, and this has undoubtedly had
an enormous impact on the rate with which experiments can be
performed and analyzed within the biological sciences.
Organic chemistry has been slow to adopt MTPs as, unlike

biological experiments which are run under aqueous conditions
at physiological temperature (37 °C), synthetic organic
chemistry experiments employ a wide range of temperatures
(cryogenic to elevated, e.g., −78 to 150 °C) and differing
polarity solvents, some of which are incompatible with plastic
MTPs. Accordingly, when chemists perform reactions in
parallel, they tend to miniaturize their chemistry from round-
bottomed flasks (RBFs) to 96-well plates and seldom downscale
further to 1536-well MTPs. Table 1 explores some of the
chemical limitations which need to be taken into consideration
when miniaturizing chemical reactions into these plate formats.
Table 2 explores how translating chemistry from common
synthetic apparatus such as round-bottomed flasks into plate-
based formats means that chemical synthesis can be
economized, thereby increasing the density of information
obtained from the same amount of material.
6.1.3. Platforms for HTE Optimization. Platforms used

for automated HTE can be broadly characterized into the
following three formats: (1) plate-based reactors where
individual reactions are either performed directly in the plate
wells or within a glass vial insert, (2) flow-based platforms
employing continuous31,207 or radial208 flow techniques, or (3)
microfluidic (and droplet) reactors.204 These platforms have
been utilized for a number of different applications including
miniaturized synthesis and reaction discovery, but the examples
shown herein are those which have been applied to reaction
optimization only.201−203,209

6.1.3.1. Microscale Plate-Based Optimization. Microscale
plate-based chemistry involving 96 individual glass vials housed
within a metal block (Tables 1 and 2) is one of the most

routinely used methods for HTE reaction optimization. The
apparatus required is relatively low cost, and liquids can be
rapidly dosed using multichannel displacement pipettes and
solid reagents (either as pure material or as ChemBeads)210−213

can be weighed out manually with small spatulas or using 3D-
printed scoops,196,210 which can somewhat streamline the
meticulous and demanding process. Unlike other nanoscale
approaches in 1536 MTP, these 96-well reactors now allow an
experimentalist to operate on a scale which is compatible with
solid handling of chemical substances. Although the addition of
solids to a microscale reactor can be more time-consuming than
the addition of liquids or stock solutions, the ability to use solids
is important as it broadens the variety of chemical reactions that
can be performed, as not all chemical reagents can be effectively
dispensed as stock solutions due to issues such as heterogeneity
and chemical instability.
Another key benefit of working on microscale in 96-well

reaction blocks is that the reactors themselves are suitable for a
wider range of reactions than can be performed in plastic MTP
reactors, the glass vial inserts in the 96-well plates exhibit good
chemical tolerance akin to the traditional round bottomed flask,
furthermore, they can be heated or irradiated, and the contents
of the vials shaken on an orbital shaker or magnetically stirred
with the addition or small magnetic fleas. Although automation
is not necessary for reaction implementation using this setup
(unlike the 1536-well MTP approach), the SBS footprint of
these reactors means that they are compatible with a variety of
different platforms for automated liquid and solid han-
dling214,215 to streamline reaction implementation and opti-
mization. The flexibility and accessibility of this 96-well
approach has led to widespread usage with multiple literature
examples for HTE optimization216,217 of a variety of reaction
classes with selected examples shown in Table 3.

6.1.3.2. Nanoscale Plate-Based Optimization. Nanoscale
1536-well MTP chemistry, recently referred to as ultraHTE,198

Table 2. Physical and Pragmatic Reaction Constraints Using Miniaturization Technologiesa

aRBF: round-bottomed flask; MTP: microtiter plate.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00798
Chem. Rev. 2023, 123, 3089−3126

3105

https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00798?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00798?fig=tbl2&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00798?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


is a commonly reported HTE method which can facilitate the
collection of thousands of data points within a multiparameter
optimization.227−229 Due to the minute volumes of material
employed in this approach, access to specialized liquid handling
robotics is required. Examples include SPT Labtech’s Mosquito
positive displacement multichannel pipetting system, which can
dispense and aspirate volumes in the range of 25 nL to 1.2 μL, or
Beckman’s Echo liquid handler, which can dispense volumes in
the range of 2.5 nL to 5 μL using Echo Acoustic Technology.
These platforms are increasingly used for nanoscale (or even
picoscale) synthesis of pharmaceutically relevant compounds
with examples of also incorporating nanoscale biological
screening in a “direct-to-biology” approach.230−239

The Mosquito/1536-well MTP platform pioneered by Merck
Research Laboratories is prevalently reported in the literature
for nanoscale optimization. Although this approach has
limitations related to the breadth of chemical reaction types
that can be performed in 1536-well MTPs (Table 1), ultraHTE
has been successfully employed on multiple occasions for the
multiparameter optimization of a variety of different reaction
types from the medicinal chemistry toolbox.17,240−242 These
reactions include Suzuki cross-couplings, reductive aminations,
N-alkylations, nucleophilic aromatic substitutions (SNAr), etc.,
as well as transition-metal catalyzed couplings on pharmaceuti-

cally relevant molecules such as the Pd-catalyzed Buchwald−
Hartwig amination, metallophotoredox C−N and C−O bond
formations, and C−H functionalizations to furnish C(sp2)−
C(sp3) bonds (Table 4).

6.1.3.3. HTE Plate Analysis. When using HTE to optimize
chemical reactions, it is important to not only consider the
practicalities of how to perform multiple reactions in tandem,
but also how to analyze and deconvolute the reaction outcome
in a similarly high-throughput manner. Without careful
consideration of the overall experimental and analytical
workflow, a bottleneck can occur.248,249 In the past decade,
several ground-breaking developments in the analytical sciences
have occurred which now permit the ultrafast analysis of high-
throughput reaction screening at increasingly impressive speeds.
For example, techniques like matrix-assisted laser desorption/
ionization (MALDI),243,250,251 desorption electrospray ioniza-
tion (DESI),252−254 and acoustic ejection MS (AE-
MS)233,255−257 have been reported for the high-throughput
data acquisition of 1536 reactions in under 10 min and requiring
only nanolitre volumes of crude reaction mixtures. These
techniques are rapid, and in some cases the analysis can be
performed directly from a 1536-well MTP, however, the
equipment required can be expensive. Other options for rapid
analysis which can be performed on standard UHPLC hardware

Table 3. Examples of Different Reaction Classes Optimized Using the 96-Well Glass Inert/Metal Reaction Block Approach
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interfaced with a single-quadrupole mass spectrometer is the
Multiple Injections in a Single Experimental Run (MISER)
technique developed by Merck.227,258 This flow-injection
analytical method injects multiple samples back-to-back with
limited or no chromatographic separation and uses single-ion
monitoring (SIM) to detect analytes. With inexpensive

UHPLC-MS equipment, run times are reported to be as low
as 10 s per sample, resulting in the data acquisition of 1536
samples possible in around six hours. The main drawback of this
technique compared to the ultrafast MS methods is that
reformatting from a 1536-well MTP to four 384-well MTPs
(Figure 15) is required as currently no commercial LC-MS

Table 4. Examples of Different Reaction Classes Optimized Using the Mosquito/1536 MTP UltraHTE Platforma

a‡, in duplicate; *, in quadruplicate.
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Figure 15.RoutineHPLC-MS kit equipped with a single-quadrupleMS can be used for analysis of ultraHTE reactions direct from 384-wellMTP. Two
techniques can be employed, either the multiple injections in a single experimental run (MISER) method or a more traditional LCMS/UV method,
however, there is a trade-off between speed and the level of quantification that can be achieved.

Figure 16. Platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow developed by Pfizer and reported for the
optimization of a Suzuki reaction.207
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autosamplers can accommodate these plates. Furthermore,
when compared to methods like AE-MS, ion suppression from
common diluents (like DMSO) can be problematic.248

Although the development of these rapid analytical
techniques has had a notable impact on the speed at which
analytical data from HTE reactions can be acquired, there
remains a trade-off between (1) speed of acquisition, (2)
sensitivity of the technique employed, (3) the amount of
structural information gained from the technique, and (4) the
level of quantification that can be achieved. With ultrafast
techniques like MALDI, DESI, AE-MS, etc., quantitative data
can be acquired providing an internal standard is added to the
analytical samples prior to analysis, an authentic sample of the
analytes can be obtained, and a calibration curve run to compare
measured analyte response and concentration to henceforth
determine yield. This calibration is necessary as ionization
responses of different analytes can be nonlinear and difficult to
compare reliably. However, even if authentic samples of the
analytes can be sought, other phenomena like ion suppression
can add additional complications to the level of accuracy of yield
assessment that can be realistically achieved with MS-based
techniques. More conventional LC-MS methods which
chromatographically separate analytes and use UV absorbance
(e.g., at 210 nm) to determine analyte concentration tend not to
suffer from the same issues as MS-based techniques (e.g.,
nonlinear responses at increased concentration and ion
suppression). However, these methods require longer run
times (cf MISER) and may require optimization of the elution
gradients to ensure peak separation. Thus, although this
technique can afford increased confidence in the level of
quantitation that can be obtained, this comes at the cost of
prolonged analysis times for both acquisition of data and
deconvolution of reaction outcome (Figure 15).

6.1.3.4. HTE and Continuous Flow. Flow chemistry is a
technique that is highly applicable for optimization methods
such as self-optimization, as discussed in section 5. Commer-
cially available equipment such as the Vaportec R-series or
systems from ThalesNano or Uniqsis, combine an autosampler
for reagent selection and following injection into the flow
reactor, in-line analytical equipment can also be coupled for in-
line analysis. These setups are well-suited to automated
synthesis, however, there are currently no off-the-shelf
continuous flow setups which can rival the throughput of plate
based HTE, and consequently there is a scarcity of reports of
HTE used in continuous flow. More often continuous flow is
used for the scaling up or continuous variable optimization of
HTE hits identified in plates,228,259,260 however, before this can
be accomplished, reoptimization is often required as chemistry
seldom translates directly from batch or plate to flow.228,230

Pfizer has recently reported a bespoke flow platform for
nanoscale HTE based on modified HPLC equipment, as shown
in Figure 16.207 The autosampler which would normally house
analytical samples is repurposed to hold up to 192 source vials
containing stock solutions of reagents, which is a significant
increase in capacity compared to existing commercial platforms.
The reaction segment is assembled in ∼45 s, where 1 μL of each
reagent is aspirated and then the whole slug is injected into a
flowing solvent stream and delivered into the reactor with
approximately one-minute residence time. The reaction mixture
is then directed into a 96-well plate fraction collector and
subsequently analyzed via LCMS. This system has the benefit of
not only containing several switching valves which can permit
selection of a several solvents but can also direct the reaction slug

to one of two LCMS machines for analysis. This platform
enabled the execution and analysis of around 1500 reactions in a
24 h period and was also subsequently employed for the
optimization of a photoredox catalyzed decarboxylative minisci-
type C−H arylation to afford bicyclo[1.1.1]pentane containing
compounds, which are medicinally relevant and traditionally
challenging to synthesize.261

A workflow recently reported by Bourne and co-workers also
shows the use of a bespoke flow reactor platform for library
synthesis and optimization.262 This work utilizes “stopped-flow”
experiments and machine learning models to map chemical
reactivity and synthesize diversity-oriented libraries. This led to
a system that can predict optimal synthesis conditions with 92%
accuracy and a dramatic increase in the success rate of initial
library screens for reactivity while achieving a 90% reduction in
reagent consumption when compared with continuous flow.
6.1.4. HTE for Data Set Generation. Data driven

optimization involves the use and analysis of relevant data to
guide decision making in pursuit of the global optima for a given
process. In practice, the success of this endeavor is highly
dependent on the quality of data utilized, a factor that is
increasingly important for autonomous reaction optimization
systems using algorithmic, generative, and machine-learning
(ML) derived models. One of the biggest challenges currently
faced in this area is the acquisition of abundant and high-quality
data sets. The availability of reaction data accessible to
cheminformaticians has dramatically increased as online data-
bases such as SciFinder-CAS, Reaxys, and the United States
Patent and Trademarks Office (USPTO) have become
accessible, as discussed in section 6.2. However, there are
limitations to the condition of data obtained from these
databases, as they are collated from numerous sources and
usually extracted using text mining software which can lead to
poorly standardized data and noisy data sets. Automated HTE
offers the potential to acquire high-quality data sets which are
well-standardized and most importantly, include negative data
points, however, there is currently a scarcity of these data sets
which are publicly available.
Although data sets compiled from mining patent repositories

and published reaction literature are extensive and cover a wide-
ranging number of reaction classes, there are limitations to the
quality of data as it is merged from many different laboratories
using different methods and different equipment for quantifi-
cation. Deviations in reaction outcomes of the same reaction
might arise from human error in the laboratory, transcription, or
limitations of the text mining software, varying analytical
methods and different reaction scales (mg to kg scale).
Moreover, it must be noted that generally literature data is
biased toward higher yields as low yielding outcomes are often
not reported. In detail, NMR yields are usually calibrated to an
internal standard within the reaction sample or probe, although
isolated yields are considered the “gold standard,” these can be
limited by sample recovery success which is highly dependent on
the purification techniques used. UV- (e.g., HPLC-MS diode
array responses) ormass-based techniques such as HPLC-MS or
GC-MS can also give varying degrees of quantification as UV of
MS responses can vary between compounds and purely
quantitative results are only achieved by comparing the mass
or UV response to an analytical calibration curve. By contrast,
HTE offers an opportunity to generate data with a high degree of
standardization, reactions tend to be performed and analyzed on
the same scale with the same equipment using the same stock
solutions. The power of this approach is apparent when
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comparing the variance in yield prediction models trained on
HTE-derived data for specific reactions compared to a much
larger data set from USPTO as highlighted by Reymond and co-
workers.263

6.1.5. HTE Outlook. The past decade has seen a shift in the
application of HTE from the generation of chemical samples for
HTS libraries to conditions screening and optimization of
chemical reactions by taking advantage of the ability of HTE to
rapidly survey a wide area of chemical space using a small
amount of material. Recent advances in HTE and the translation
of nanoliter robotics like the SPTMosquito and Beckman Echo,
originally designed for biological assays and now being applied
to parallelize organic synthesis, has fueled a rise in reports of
ultraHTE where hundreds or thousands of chemical reactions
can be executed in parallel on a miniaturized scale. Although
limitations still exist with regards to the types of chemistry that
are amenable to these plate-based formats, further development
to increase the flexibility and generality of chemistry which can
be performed in this fashion will be a benefit to the field of
reaction optimization by HTE. Furthermore, as HTE plates are
sealed and heated as a block, flexibility in reaction times, reagent
equivalents, and temperature controls are limited as the entire
plate is subjected to the same conditions. This means that
although promising categorical variables can be identified as
“hits” for promising potential optimal conditions in reaction
optimization, many continuous variables must then be
optimized upon scale-up to more traditional batch or flow
laboratory scales.
As discussed herein, another advantage of translating organic

chemistry to a miniaturized HTE configuration is the ability to
rapidly generate large amounts of standardized data in a
relatively short time frame creating information density for a
desired reaction or class of substrates. Currently, there are few
examples of utilizing HTE-generated data to train ML models

and the increased availability of more publicly available data sets
would be particularly useful to the machine learning in the
chemistry community. In this regard, challenges exist around the
extent of quantitative data which can be obtained using an
ultraHTE approach; currently there is a trade-off between speed
and quantitation, and there are also constraints around the
number of different analytes that can be analyzed in a
quantitative manner in tandem. Recently, there has been
significant progress in the field of analytical chemistry and
robotics, which have directly facilitated the renaissance of HTE
in the field of organic synthesis and further developments are
sure to modernize the area further and increase the number of
data sets available to data scientists.
6.2. Data Mining, Machine Learning, and Optimization
Benchmarking

Machine learning (ML) has already revolutionized various areas,
such as image recognition,264 natural language processing,265

and autonomous driving.266 Within the field of organic
chemistry, ML also represents an emerging tool, particularly
for prediction tasks such as retrosynthesis, optimal reaction
conditions, or reaction outcomes. It is then also possible to use
these predictions from ML to influence starting points and
process bounds for real-world optimizations, whether in self-
optimization, HTE, or otherwise.
The prediction of reaction outcomes at specific reaction

conditions or direct prediction of reaction conditions are
relevant and particularly attractive for reaction optimization. As
shown in Figure 17, this problem is subdivided into data
collection andmodel training. Once a data set is extracted from a
high-throughput experiment or a reaction database, a chosen
MLmodel is trained to predict reaction conditions or outcomes.
Typical inputs for ML models include continuous reaction
parameters such as reaction time, temperature, or reagent

Figure 17. Schematic of the data collection andmodel training steps of usingmachine learning for reaction optimization from public or private reaction
databases.
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equivalents and categorical parameters involving the choice of
catalyst, reactants, or bases. In the case of reaction outcome
prediction, outputs are typically the targets of reaction
optimization such as yield, conversion, or enantiomeric excess
(ee). The predictive performance of these trained models is
subsequently evaluated on unseen test data. Thus, one main goal
is to develop modeling strategies that capture the correlation
between reactants, reagents, and chemical reactivity to avoid
brute-force laboratory screening which can be wasteful
(particularly without the use of HTE equipment). Choosing
the best molecular parametrization is a key aspect of achieving
that goal.
6.2.1. Molecular Parameterization. Molecules must be

translated to a machine-readable, typically numerical, format
that can be used as an input for ML models, prior to their use.
We refer to this translation process as molecular parametrization
as it aims to capture relevantmolecular properties for a particular
reaction. For different chemical transformations, different
properties can influence reaction outcomes such as steric
hindrance of a functional group or electronegativity of
neighboring atoms. Moreover, the parametrization strategy
should also be chosen to allow optimal compatibility with the
ML model used, as prediction performance will depend on the
compatibility between input format and ML model.
The baseline parametrization method for representing

chemical inputs is one-hot encoding (OHE). A one (1) or a
zero (0) represent the presence or absence of specified reaction
components respectively: no chemical information is encoded.
This approach has been shown to be effective for a variety of
chemical tasks, including yield prediction, but cannot extrap-
olate to new parts of chemical space.229

Extended-connectivity fingerprints (ECFP) is a parametriza-
tion method that captures atom types, neighboring connectivity
relationships, bond types, and represents the outcome in a
machine-readable one-dimensional bit-vector. Circular finger-
prints (e.g., Morgan fingerprints) are generated by (1) assigning
identifiers to each atom in the molecule, (2) updating each
atom’s identifiers depending on the neighboring atoms, (3)
removing duplicates, and (4) compressing the data into a vector
of set length, e.g., 1024 bit (a number of zeros and ones).267 One
of the advantages of these fingerprint based methods is that they
are considered cheap features for modeling; their generation
does not require a vast amount of computing power/time. Yet,
their ability to explicitly capture molecular properties (e.g.,
sterics, electronics) of molecules is limited. Typically, models
that use fingerprints develop knowledge in an indirect manner,
such as an implicit understanding of electronegativity associated
with different halides, for example.268

A much more comprehensive parametrization approach is
calculatingmolecular descriptors using density functional theory
(DFT). DFT can be used to determine the ground/excited state
of molecules and thus offer fundamental insights into geometric
and electronic properties.229 As a result, DFT can be used to
calculate descriptors that quantify the specific chemical

properties of the given set of ligands such as the bulkiness of a
molecule or electronegativity of atoms within a molecule.269

However, DFT calculations for large libraries are often more
time-consuming than actually running the corresponding
reactions in a high-throughput screening format.
More recently, parametrization work has utilized neural

networks to achieve the tailored nature of DFT descriptors
without the computational expense. This work is divided into
two approaches: natural language processing models and graph
neural networks. The former leverages recent advances in
language models such as transformers,270 where results can be
achieved by training a model to predict the next word in a
sentence across a wide variety of texts. Because chemistry can be
represented as a language in the form of simplified molecular-
input line-entry system (SMILES),271 a language model can be
trained to predict the next atom in a molecule when given only a
portion of the molecule, thereby saving computational
expense.272 Because the model must understand a significant
volume of chemistry to be able to predict a SMILES string, its
numerical output can be used as a “learned fingerprint” for other
prediction tasks.273 Furthermore, the learned fingerprint can be
tuned for each downstream task such as yield prediction using
standard neural network training.
Alternatively, graph neural networks represent a molecule as

an interconnected network of atoms and bonds. These networks
can be trained to produce a “learned fingerprint” for prediction
tasks. One of the most widely used forms of graph neural
networks in chemistry are message passing neural networks
(MPNNs), which learn relationships between neighboring
atoms through iterative “messages” passed along bonds.274,275

MPNNs have been extended to generate fingerprints for
reactions, with state of the art results.276 An overview of these
techniques is shown in Table 5.
6.2.2. Prediction of Chemical Reaction Yields from

High-Throughput Experiments. Reaction outcome predic-
tion has primarily been carried out on data obtained via HTE or
similar techniques for generating consistent data sets. Doyle and
co-workers trained a random forest (RF) algorithm on HTE
data of a Buchwald−Hartwig reaction, aiming to generate an
automatic feature generation algorithm. They demonstrated
success using their approach, which was trained on 5% of data
and outperformed linear regression trained on 70% of data.243

Subsequently, Hirst and co-workers continued the work by
Ahneman by using another machine learning technique, support
vector machines (SVM), in which they demonstrated improved
prediction performance.277 Glorius and co-workers successfully
boosted this prediction performance using a concatenation of
fingerprints.278 Doyle and co-workers then used a combination
of fingerprint based and DFT based descriptors for the
prediction of reaction performance for a deoxyfluorination
HTE data set, thereby guiding the search toward high yielding
conditions.279 Overall, due to the consistency of HTE generated
data sets, good results could be achieved with regard to the
predictive performance of the applied ML models.

Table 5. Overview of the Commonly Used Molecular Parameterization Techniques for Modelling Chemical Data

parameterization method information captured data type example data

OHE existence/absence of a component binary encoding [0 0 0 1 0 0 0]
molecular fingerprints atom type, atom count, chemical structure, connectivity binary encoding [1 0 0 1 1 0 1 0 0... 0 1]
DFT descriptors interatomic information: length, angles, volumes numerical values 0.001342, 45, ...

Electronic Information: Charge Distribution
learned representations connectivity and potentially atom and bond numerical values 0.001342, 45, ...
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6.2.3. Reaction Databases. While most of this covered
literature used data solely generated via HTE or flow chemical
platforms for training ML models to prediction chemical
reactivity, an increasing effort is made in developing predictive
models with chemical data mined from online databases. Reaxys,
a commercial database by Elsevier, and the United States Patent
and Trademark Office (USPTO) reaction database are the two
most used sources for data-mined applications. The Reaxys
database is proprietary and contains information on more than
56 million reactions from over 16 000 journals. In contrast, the
USPTO database is accessible to the public and contains
chemical reactivity information obtained from over nine million
patent applications.280,281 Additionally, Pistachio represents a
commercially available data set, based on USPTO data,
electronic lab notebook (ELN) data, and information obtained
from journals or other patent literature containing 13.3 million
reactions.282 Most recently, the open reaction database was
created to build a standard format and open-access location for
reaction data, which represents a large shift in fair data
accessibility.283 Figure 18 illustrates the information overlap
between several of these reaction databases.284

6.2.4. Data Preprocessing. To build predictive models
based on reaction databases, one of the most significant
challenges is extracting data into a standard format amenable
tomachine learning. The database providers mentioned perform
some amount of preprocessing to extract the data into a
common format. However, the databases often do not capture
important details of the procedure such as the reaction
temperature, workup protocol, or analytical results. Further-

more, the same reagent can be represented in different ways
across the database (e.g., metal catalysts can be represented with
their ligands or as separate components). To overcome this issue
with data quality, recent work has developed deep learning
models that can extract text descriptions of synthetic procedures
in a standard format.285−287

Subsequently, the data must then be filtered, in particular, as
noted by Varnek and co-workers, there are many duplicate
reactions in databases.288 This is often caused by scientists using
the same procedure for a standard reaction as is reported in the
literature. Therefore, a filtering process often includes removing
duplicate reactions, discarding reactions with missing key
reactants or reagents (e.g., a Suzuki reaction should always
have an organohalide and boronic acid), and excluding reactions
without a numerical yield. This filtering process can often result
in less than the 30% of the original extracted data being utilized
for machine learning. For example, Reymond and co-workers
created a data set of Buchwald couplings based on data extracted
from several databases and, after filtering, only 15% of the
original reaction records remained.289

6.2.5. Machine Learning for Reaction Condition
Prediction. Upon data set extraction from the literature,
machine learning models can then be used to predict reaction
conditions directly given a set of reactants. The first examples of
such a model were developed by Jensen and co-workers, who
used a feed forward neural network to directly predict reaction
conditions given the difference in the ECFP fingerprints of the
products and reactants, as shown in Figure 19.290 Their neural
network architecture was designed to reflect a chemist’s

Figure 18. Illustration of the overlap of chemical reaction databases (Reaxys, Pistachio, USPTO, and a subset of AstraZeneca ELN13).284

Figure 19. Demonstration of the architecture used by Jensen and co-workers for predicting reaction conditions.290
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intuition. Often, catalysts are selected followed by solvents,
reagents, and temperature, so Jensen and co-workers’s network
first predicted catalysts and then conditioned each further
prediction (solvents, reagents, and temperature) on the prior
ones. On unseen reactions, the neural network’s top-3
predictions included those used in the literature with 50%
accuracy. Furthermore, the correct catalyst was selected with
over 93% accuracy.
Approaches that directly predict reaction conditions do not

account for the yield of the reaction; instead, these techniques
aim to predict the conditions used most often in the literature.
The downside of this approach is that optimal reaction
conditions for a particular transformation often require going
beyond the standard conditions used for a transformation.
Therefore, reaction condition prediction models might be used
to give suggestions of starting points for further optimization
rather than predicting optimal conditions directly.291

In addition to predicting reaction conditions, machine
learning models can be trained to predict the likely products
of a reaction given the reactants. A variety of models have been
trained for this purpose, ranging from natural language
processing models (e.g., transformers)292 to custom neural
network architectures.293 Furthermore, machine learning
models can be used for retrosynthesis, which has been reviewed
extensively elsewhere.294

6.2.6. Future Directions. Thus far, ML has been applied to
yield prediction and reaction condition prediction, both of
which have potential use for reaction optimization. Scientists
can use yield prediction models to narrow the potential optimal
sets of conditions for a reaction without brute-force screening.
Recent work by Grzybowski, Burke, and co-workers showed this
by highlighting the use of ML and closed-loop optimization to
identify general high-performing reaction conditions for a
Suzuki−Miyaura coupling.295 These ML models can therefore
be combined with the optimization techniques described in
section 5 to automate the identification of optimal reaction
conditions with viable starting points.15

Currently, ML models have been very successful in reaction
outcome prediction on HTE data sets for a single reactant pair.
We foresee that leveraging a broad selection of data from
targeted experiments could aid general prediction of key
reaction outcomes for specific classes of reactions. Reymond
and co-workers attempted to build a general yield prediction
model based on the USPTO data set, but their model has low
predictive quality due to the sparse nature of the USPTO yield
data.263 Therefore, more high-quality data sets with reaction
outcomes recorded and further model development are needed
to create general ML models for reaction optimization. If
successful, this research could be transformative in reaction
optimization and transition the field to more direct predictions
of optimal reaction conditions. For a recent review of in-depth
modeling of HTE data sets, also refer to Jensen and co-
workers.296

7. SCALE-UP AND MANUFACTURE
Lab-scale reaction optimization studies focus on improvements
in reaction yield and purity, optimization of reaction cost and
greenness, and development of the optimal workup/separation
approach, whereas subsequent process design steps (necessary
for scale-up) need to address a different set of requirements.297

The ability to deliver commercially relevant quantities of
product, with an acceptable investment, operational and
environmental cost, as well as process safety, are the focus of

this stage of process design. Furthermore, continuous fulfilment
of quality critical parameters is investigated at this step,
fundamental for pharmaceutical and fine chemicals indus-
tries.298 Development of processes meeting these criteria is
defined as scale-up and involves determination of the critical
scale-dependent factors that would affect the choices of the most
functional reactor architecture, process conditions, and
separations steps. These are the next steps from bench-scale
reaction optimization and understanding how previously
obtained optimal conditions may change is crucial to the
successful scale-up of chemical processes.
Scale-up implies the attainment of significantly larger product

throughputs compared to laboratory reaction discovery or
reaction development studies. This is traditionally realized by
deploying significantly larger reactors with very different
gradients of temperature, pressure, and reactant concentrations
to the small-scale processes.299 Therefore, it is often very difficult
to reproduce at scale exactly the same conditions obtained when
using small-scale equipment and the most promising operating
conditions determined during lab-scale optimization studies do
not necessarily yield an optimal large-scale process. As a result,
many initially promising discoveries and reaction routes may not
achieve broad deployment in industrial production.300,301 While
large companies can invest vast resources into solving scale-up
related challenges,302 smaller research organizations such as
start-ups or academia might not be in place to allocate such
resources, limiting the technology-readiness level of developed
reactions.297

Determining the optimal reaction conditions for the scaled-up
reaction involves careful consideration of how the processing
conditions change in space and time and how these changes
relate to the time scale of the molecular events driving the
reaction. Elucidating these phenomena requires simultaneous
insights into the kinetics, heat transfer, and mass transfer
happening inside of the reactor. In contrast to exhaustive scale-
up guidelines formulated for chemical engineers and process
chemist experts,303−305 this section discusses scale-up on a
conceptual level, providing insight for chemists working on
molecular discovery and benchtop optimization. We anticipate
that the consideration of scale-up challenges and complexity in
the early stages of process optimization can help to guide the
laboratory studies toward the achievement of metrics mean-
ingful for large-scale plants and consequently accelerate the
process of launching new molecules and products to market.
The following subsections briefly discuss scale-up consid-

erations to be addressed during benchtop experiments, as well as
which phenomena change during the transition to larger
reactors and how to quantify these changes. Furthermore, we
introduce two strategies used to develop large-volume
processes: scale-up and numbering-up, as well as guide the
user toward a choice of applicable equipment for each case.
7.1. Scale-Up Considerations within Reaction Optimization

In most chemical applications, the design of a large-throughput
process involves a multifold increase in the size of the reactor
vessels that were used for kinetic or optimization studies in the
laboratory environment. The processing environment is likely to
drastically change; this is because of significant reductions in
surface area/volume ratios that imposes limitations on heat
transfer rate, sensitivity to mixing, and different time of addition
and removal of products.306 Figure 20 summarizes the typical
time ranges of characteristic mixing, heat transfer, and liquid
space time (reactor volume divided per volumetric flow rate) for
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different reactors used in academia and industry (shake flask,
flow reactors, microreactors, stirred-tank reactors). During the
transition to the large-scale reactors, mixing and heat transfer
become several orders of magnitude slower. While this imposes
little or no consequences for slow reactions, which can be scaled-
up in a relatively straightforward manner,303 for fast reactions
the extended time necessary to mix phases in a large-reactor
results in limited chemical availability of each reactant leading to
suboptimal outputs.
Therefore, finding the optimal reaction conditions for a

scaled-up process cannot rely on a simple linear increase of the
reactant feed and processing time from the optimal lab
benchmark. From a process design perspective, the availability
of the intrinsic kinetic model can significantly accelerate process
development,308 and the ability to generate such models with
automated flow methods has been highlighted as a potential
paradigm shift in the process systems engineering commun-
ity.162 Notably, such models should be obtained with no mass/
heat/mixing limitations. To design kinetic determination
experiments unhindered by these effects, Jensen and co-
workers309 provided a simplified chart-based method for the
evaluation of mixing and dispersion in small-scale flow systems,
while detailed insights into overcoming heat transfer limitation
during optimization in flow reactors were discussed byMase and
co-workers.310

Although kinetic models are a powerful tool for accelerating
process scale-up, in some cases, the experimental effort
necessary to derive these models is extensive, making it
infeasible to realize in the fast-paced process development
environment. In such cases, Stitt and Simmons303 recommend
determination from benchtop optimization, at a minimum, the
following information: (i) reaction network and the significant
byproducts, (ii) if the reaction kinetics follow simple power-
laws, (iii) sensitivity of the reaction selectivity to mass transfer
effects, and (iv) heat evolution and the potential for reaction
runaway. Practical guidelines toward the use of flow chemistry
setup for heat measurements were proposed by Meier and co-
workers,311 while Bourne and co-workers312 discussed best
practices toward continuous-flow aided kinetic analysis. Other,
case-specific strategies for extracting meaningful information for
process scale-up from optimization studies are summarized in
the reviews of industrial practices in large-scale deployment of
novel reactive routes,313 such as photoredox catalysis,314,315

electrochemistry,316 C−H activation,317 reductive coupling,318

and flow chemistry.319

Another aspect to address within optimization studies is the
preferred production mode for the scaled-up process, as the
rationale for its choice may differ between early benchtop
experiments and large-scale production, as broadly described by
Trout and co-workers.320 In a batch process, feedstocks are
supplied all at once to the reactor, and the treatment of the
subsequent load of feed materials starts only when the previous
batch is fully processed and removed. Batch processing is
frequently preferred due to its simplicity and is particularly
convenient in pharmaceutical processes that require frequent
cleaning of used equipment, or even removal and disposal of
single-use reactors between batches (e.g., biomanufacturing
lines321). However, the design simplicity comes at an extra cost
of slow processing, increased energy consumption for start-up
and shutdown of each batch, significant environmental impact
from cleaning solvents, and more challenging process parame-
ters control. Continuous processing, in contrast, allows for a
significant cost and environmental footprint reduction (if
solvents are recycled322,323) by faster conversion and increased
productivity, reduced down-time, and improved quality by
facilitating continuous monitoring of critical parameters. From
the perspective of the chemist, it is important to be aware of the
preferred processing mode and consider process limitations
related to each mode within the design of lab-scale experiments.
Within the pharmaceutical and fine chemical industries, the

ability to fulfill quality-critical parameters is one of the key goals
of process development, but these aspects are typically not
investigated before moving toward scale-up studies. Most recent
industrial practices, described by Tsai and co-workers,324

describe how to systematically include quality considerations
across all phases, including reaction optimization.
7.1.1. Classical Approaches Toward Scale-Up. After

transferring the data from benchtop optimization to process
development, models of scaled-up reactors are obtained to
account for engineering phenomena, e.g., characterization of
heat and mass transfer environments. If detailed kinetic models
are available, the engineer can simulate the operation of a large-
scale process and determine a new optimal set of conditions.
Gatica and co-workers provided a detailed overview of the
industrial practices for the development of design equations to
model such processes,325 whereas a review by Patterson326

addresses the challenges in modeling of mixing- and temper-
ature-sensitive chemical reactions at larger scales. Other reports
from the literature also provide insightful examples of computa-
tional fluid dynamics (CFD) use for modeling of mixing
phenomena.327,328

Scale-up engineers seek to quantify the influence of heat and
mass transfer, as well as other physical properties, on reaction
progression. This also includes the interactions between each
physicochemical property. This problem is frequently simplified
by dimensional analysis that enables scientists to develop
relations among physical quantities (e.g., velocity, viscosity,
surface tension) using their dimensions expressed in base units
(combination of, e.g., meter, kilogram, second). Detailed
instructions on the derivation and use of dimensional analysis
equations, followed by practical examples of calculations for
stirred-tank reactors, were provided by Zlokarnik329,330 and
Wild and co-workers.331 These equations enable an engineer to
disregard the parameters that are not critical for the given
reaction, and further develop the nonlinear relationships guiding
scale-up. If necessary, experiments to determine the significance
of these variables for successful scale-up can be designed. The
experiments can be planned for a partial similarity or complete

Figure 20. Laboratory vs industrial scale: comparison of characteristic
times (in seconds) for mixing, heat transfer and liquid space time
observed in reactors used in benchtop optimization and large-scale
industrial reactors.306,307
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similarity approach, and advantages and limitations of both
approaches are described by Kind and co-workers332 and
illustrated by the case study of a scale-up of competitive chemical
reactions.
Another aspect addressed at the scale-up stage is the choice of

a reactor. While stirred-tank or tubular reactors are by far the
most deployed reactors in the industrial setting, development of
the process intensification field333 yields a wide variety of novel
reactors offering designs that can drastically enhance heat and
mass transfer as well as increase the controllability of reactants
and product spatial concentrations distributions. The choice of
the reactor also includes insights into construction materials and
their interactions with the reaction medium, compliance with
the regulatory requirements for the given final product, and the
lead manufacturing time. Guidelines provided by Moran and
Henkel334 compare the reactors typically used in industry; the
toolbox proposed by Roberge and co-workers includes both the
choice of processing mode and the reactor,335 while the
contribution of Lindeque336 specifically addresses reactor
considerations in biocatalytic production of pharmaceuticals
compounds; Dautzenberg and Mukherjee337 discuss the choice
and deployment of multifunctional reactors; West and co-
workers338 focus on scalable autothermal reactors. Methods for
selection between a wider range of novel, process intensification
reactors were proposed by Commenge and Falk,306 and an
overview of different options was presented in an open-source
database published by Gorak and co-workers.339

Selected reactor architectures and the optimal conditions
determined for a scaled-up process are frequently verified on a
scale of pilot or mini-plant operation, whereas operability and
stability are tested in pilot plants. Industrial practice proves that
this intermediate step in process development has the
substantial potential to improve process understanding and
consequently product quality and operational safety, however, it
also increases time-to-market and overall project costs. Design of
such plants was described in detail by Whalley.340 Examples of
scale-up toward a pilot/manufacturing plant capacity are
available in the literature, including a hydrazine condensation
study by Lane and co-workers and the edaravone synthesis by
Sun and co-workers.341,342

7.1.2. Alternative Approaches: Numbering Up. The
discussed strategies for process scale-up include both extensive
experimental insights on laboratory scale, simultaneous
modeling of numerous phenomena, and potential pilot plant
testing. Despite the availability of the methodological tools
described above, it still may not be possible to reproduce the
selectivity achieved in benchtop tests in the scale-up setting,
particularly if the optimization studies were conducted in
microreactors that offer excellent heat and mass transfer
characteristics. In such cases, increases in the plant throughput
can be achieved instead by the numbering-up approach, which
involves the simultaneous use of hundreds to thousands of
reactors of the same or similar scale to the ones used in process
optimization studies.158 This enables one to achieve exactly the
same conditions as found in the lab, improves safety by better
temperature control and drastically reduces scale-up time.
Possibilities of the accelerated process development by
numbering-up of microreactors are covered in detail by
Kockmann and co-workers343 and Roberge and co-workers.344

However, numbering-up is associated with high investment cost:
numerous reactors are required instead of a single stirred-tank
reactor, along with multiple process control devices.

Detailed insights into the economics of numbering-up were
described by Weber and Snowden-Swan,345 and the potential to
intensify the process can be evaluated by the process
intensification score proposed by van der Meer and co-
workers.346,347 Capital costs considerations mean that this
approach can be economically justified only for high-end
products, and for cases where a drastic improvement of output
(e.g., reaction yield) has been demonstrated. Interestingly, an
analysis conducted by the Process Development Team from
Lonza348 reveals that 50% of reactions in the fine chemical/
pharmaceutical industry could benefit from the deployment of
microreactor technology. Lowe and co-workers349 proposed a
benchmarking method allowing for a similar evaluation across
different industries. Notably, as the economic factors are limiting
the deployment of microreactors, their market availability is also
lower, and the extended lead time could be a key limitation for
decision makers that require fast and large product delivery. By
more frequent adoption of novel process optimization methods
that involve the use of microreactors, we anticipate the unveiling
of more case studies where excellent optima are achievable solely
by this method, and hence, we can expect accelerated adoption
of more efficient process intensification technologies.
7.2. Safety Considerations

For both scaling- and numbering-up approaches, in batch or
continuous mode, there are several safety concerns to be
addressed. Large volumes of flammable solvent are almost
always required, meaning that precautions must be taken to
minimize the risk of fire from static electricity build up or
exposed flame. However, the greatest concern with organic
processes is thermal runaway.350 It is important to consider
these physical limitations when running optimization cam-
paigns, as algorithms or experimental designs may suggest
experiments that are out of safe operating bounds: this includes
reactions that are suggested at unsafe temperatures or
concentrations.
Thermal runaway occurs when the rate of an exothermic

reaction is accelerated by increases in temperature. In the worst
case, this rate acceleration can lead to secondary decomposition
reactions that are more energetic and hazardous than the
primary synthesis. While reactions commonly used in fine
chemicals such as the Suzuki−Miyaura cross coupling are often
not thought to be dangerously exothermic at the bench, they can
have significant exotherms that could lead to thermal runaway at
scale.351 The exotherms of reactions need to be understood via
calorimetry studies in the lab, so that control strategies can be
implemented during scale-up.
Reaction calorimetry enables the measurement of the heat

produced by a reaction over time. Often, two parameters are
determined: the adiabatic temperature rise (ΔTadia) and the
maximum temperature of synthesis reaction (MTSR). ΔTadia is
the temperature rise in a specific volume for a specific reaction
when all the heat of reaction is delivered to an adiabatic system
(i.e., no heat is transferred between the system and its
surroundings). MTSR is defined as the maximum temperature
an adiabatic reactor would reach if cooling failed. In other words,
MSTR is the sum of the reaction temperature Tp and ΔTadia.
Together, ΔTadia and MTSR can give insights of the worst-case
scenario for a particular reaction and reactor. For example,Wang
and co-workers conducted calorimetry studies of copper-
mediated fluorinations of bromopyridines and found that the
MTSR was above the decomposition of the chosen reaction
solvent, DMSO.352 Because decomposing DMSO is an

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00798
Chem. Rev. 2023, 123, 3089−3126

3115

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00798?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


explosion hazard,353,354 control strategies such as reduced speed
dosing or switching to an alternative solvent needed to be
implemented.
Readers interested in learning more about the safety

considerations for reaction development are referred to the
excellent reviews by Yang on safety aspects of DMSO354 and Pd-
catalyzed reactions,350 as well as the textbook by Stoessel on
“Thermal Safety of Chemical Processes”.355

8. CONCLUSION
In this review, we have outlined several modern techniques that
are utilized for chemical reaction optimization to serve as an
accessible reference for interested bench scientists. We have also
given discussions on their relationship to further stages of
process development, namely scale-up. There are many distinct
methodologies that can be used to obtain optimal reactions
conditions for desired outcomes (reaction yield, selectivity, E-
factor, etc.), and there are trade-offs to consider for research
organizations when deciding which to implement. These
decisions must balance the costs associated with each technique
(equipment costs, training costs, time investments) with the
deliverables that they hope to achieve and their associated
accuracy and reliability. As automated equipment is becoming
more ubiquitous and user-friendly, this is one possible solution
to unify several fields (chemistry, process engineering, computer
science) to conduct reaction optimization techniques in novel,
systematic ways to maximize process outputs. This could be in
conducting automated DoE or kinetic studies, screening every
combination of reaction variables in HTE or utilizing self-
optimization, or more!
Researchers may willingly run intuition-driven experimenta-

tion, even when knowing of more effective techniques, as the
novelty of their research may focus on other aspects of chemistry
(such as reaction discovery, substrate scopes, etc.) rather than
complete optimization of their processes. However, as modern
laboratories are becoming more diversified in skillsets and more
interdisciplinary research is conducted, familiarity with these
techniques must be embraced and undergraduate/postgraduate
courses will undoubtedly reflect this more in coming years. It is
easy to envision an evolving chemistry course with practical
modules in DoE, HTE, and more, as the skillsets of chemists
diversify beyond traditional synthesis to meet the needs of the
modern laboratory. It is the hope that this timely review will
prove the accessibility of these optimization techniques and help
to encourage inspired chemists to incorporate them into their
workflows.
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the Medicinal Chemistry Synthetic Toolbox. Nat. Rev. Drug Discovery.
2018, 17, 709−727.
(18)Murray, P. M.; Bellany, F.; Benhamou, L.; Bucǎr, D.-K.; Tabor, A.
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