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Low frequency attenuation of acoustic waves in a perforated
pipe

A. Dell,a) A. Krynkin, K. V. Horoshenkov, and G. Sailor
Department of Mechanical Engineering, The University of Sheffield, Sheffield, S1 3JD, United Kingdom

ABSTRACT:

This paper presents new experimental and numerical evidence that perforations in a pipe wall result in a low-

frequency bandgap within which sound waves rapidly attenuate. These perforations are modelled as an acoustically

soft boundary condition on the pipe wall and show that a low frequency bandgap is created from 0 Hz. The upper

bound of this bandgap is determined by the dimensions and separation of the perforations. An analytical model based

on the transfer matrix method is proposed. This model is validated against numerical predictions for the pipe with

varying perforation geometries. A numerical study is undertaken to model the effect of perforations with ideal acous-

tically soft boundary conditions and surrounded with an air gap. Close agreement is found between the numerical

and analytical models. Experimental evidence shows that the width of the bandgap is accurately predicted with the

numerical and analytical models.
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I. INTRODUCTION

The attenuation of acoustic waves in a pipe by silencers

is typically achieved through the employment of rigidly

backed cavities, connected to the pipe by a perforated panel.

For silencers with partitioned cavities with a single perfora-

tion, i.e., a Helmholtz resonator, excellent attenuation can

be achieved at the resonant frequency of the resonator.

Multiple Helmholtz resonators can be side-loaded to the

pipe, all tuned to different frequencies in order to achieve

the broadband attenuation of noise.1 Side-loaded Helmholtz

resonators can be optimised to increase their absorptive per-

formance by changing the separation distance between sub-

sequent resonators and by adjusting their geometry and thus

visco-thermal losses to critically couple them with the pipe.

A similar technique has been employed in the design of

sound absorbing acoustic metamaterials in order to achieve

perfect broadband absorption in one and two port systems

much smaller than the wavelength of the sound wave.2,3

For silencers with non-partitioned cavities and panels

composed of multiple identical perforations along the length

of the silencer a similar phenomenon occurs. If the perfo-

rated separating panel has a low porosity, a Helmholtz reso-

nator type of attenuation occurs. As the porosity increases,

the silencer behaves more like an expansion chamber.4

Different configurations of partitions can be used to alter the

number of resonances. Dissipative materials can be intro-

duced to achieve broadband attenuation.5 A limitation of

these types of silencers is the requirement for large cavity

volumes or narrow neck regions to achieve low frequency

attenuation. A large cavity volume is often impractical and

having narrow regions often results in poor attenuation of

acoustic waves due to large amounts of visco-thermal losses

often resulting in over-damping of the system.6

Through the use of a metamaterial consisting of an

array of perforations along a waveguide, where no cavities

are present, it has been theoretically and experimentally

shown that negative bulk modulus can be obtained from

zero to an upper bound.7 This is due to the non-local reso-

nant effect of the perforations allowing for the occurrence of

a bandgap where zero transmission occurs and where the

bandgap upper bound is determined by the system geometry.

This has been corroborated in the non-linear regime through

the employment of high amplitude excitation8 and it has

also been shown that through the coupling of the perfora-

tions within an array of elastic membranes, both negative

bulk modulus and dynamic density can be achieved. Finally,

it has been theoretically shown that in a sonic crystal in

which the surfaces of each scatterer are modelled with an

acoustically soft boundary condition, a bandgap is created

from zero to an upper bound frequency determined by the

surface area and periodicity of the soft scatterers.9

In this paper, an ideal analytical model is created to exam-

ine the influence periodic arrangements of sound-soft backed

perforations have within a waveguide formed by an air-filled

pipe. It is observed that the presence of periodically arranged

soft scatterers results in a bandgap from 0Hz to an upper

bound. The upper bound of this bandgap is determined by the

dimensions and separation of the perforations. Results are vali-

dated numerically with two modelling approaches employed to

further refine the analytical model. Experimental evidence of a

bandgap produced by acoustically soft scatterers is presented.a)Electronic mail: alexanderjdell1@gmail.com
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This concept of acoustically soft scatterers much smaller than

the wavelength enables us to achieve high attenuation at a very

low frequency.

The paper is set out as follows: In the background the-

ory section, an analytical model is derived using the trans-

fer matrix method. This model is then used to assess the

acoustic transmission loss (TL) of a pipe whose wall is

comprised of periodic arrays of acoustically soft scatterers.

Results from this analytical model are parametrically com-

pared with those computed numerically for a variety of

perforation geometries. This enables us to assess the rela-

tionship between variations in geometry and the width of

the bandgap attained. Then, further numerical results are

presented for a non-rigidly backed perforated pipe to

understand better the acoustically soft boundary phenome-

non occurring within the perforations. Finally, experimen-

tal results are presented and used to validate the numerical

model.

II. BACKGROUND THEORY

A. Visco-thermal losses

The visco-thermal losses of an acoustic plane wave

propagating in the fluid in a pipe wall perforation are

accounted for by the complex frequency dependent density

and bulk modulus.10 For a circular duct of radius r that is

much smaller than the wavelength k,

qðxÞ ¼ q0 1� 2J1ðrGrÞ
rGrJ0ðrGrÞ

� �

; (1)

KðxÞ ¼ K0 1þ ðc� 1Þ 2J1ðrGkÞ
rGkJ0ðrGkÞ

� �

: (2)

Here, Gr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ixq0=g
p

; Gk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ixq0Pr=g
p

, q0 is the

equilibrium fluid density, K0 ¼ cP0 is the adiabatic bulk

modulus, c is the ratio of specific heats, P0 is the equilibrium

pressure in the fluid, Pr is the Prandtl number, g is the fluid

dynamic viscosity, x is the circular frequency and

i ¼
ffiffiffiffiffiffiffi

�1
p

. The harmonic time dependence is eixt and is used

throughout the paper. The effective dynamic fluid density

and bulk modulus can then be used to obtain the characteris-

tic impedance, ZðxÞ, and acoustic wavenumber, kðxÞ,

ZðxÞ ¼ 1

Sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðxÞKðxÞ
p

; (3)

kðxÞ ¼ x

ffiffiffiffiffiffiffiffiffiffiffi

qðxÞ
KðxÞ

s

; (4)

respectively.

B. The transfer matrix method (TMM)

The TMM provides the relationship between the initial

sound pressure, p, and volume flux, V ¼ vSa, where Sa is the

cross-sectional area and v is the acoustic particle velocity, at

the start (x¼ 0) and at the end (x¼L) of a medium in a rigid

duct,11 where L is the length of the medium. To differentiate

between the initial and end properties of a medium in a

duct, the subscripts 0 and L are used, respectively. The

transfer matrix, T, is derived under the assumption that only

plane waves propagate through the medium in the x direc-

tion, meaning it provides the solution for a one-dimensional

(1D) wave propagation problem.12

The general formulation of the transfer matrix is as

follows:

p

V

� �

x¼0

¼ T
p

V

� �

x¼L

¼ T11 T12
T21 T22

� �

p

V

� �

x¼L

: (5)

The transfer matrix for a single fluid layer is constructed as

p

V

" #

x¼0

¼
cos ðkLÞ iZ sin ðkLÞ
i

Z
sin ðkLÞ cos ðkLÞ

2

4

3

5

p

V

" #

x¼L

¼ T11 T12

T21 T22

" #

p

V

" #

x¼L

: (6)

Here, Z is the characteristic impedance and k is the acoustic

wavenumber of the fluid, defined by Eqs. (3) and (4), respec-

tively. For a multilayered structure, the relationship between

the input and output pressure and acoustic flux is obtained

by the multiplication of the transfer matrices of each layer,

T ¼
Y

nt

n¼1

TðnÞ; (7)

where nt denotes the total amount of layers.

III. IDEAL ANALYTICAL MODEL

A. Impedance of a perforation with soft boundary

conditions

To determine the impedance of a single perforation of

length d, characteristic impedance Zp, and wavenumber kp,

with a soft boundary condition at depth x¼ d, the transfer

matrix method is used. The full matrix, T, is derived from

T ¼ MDlMp; (8)

where Mp models the cavity and is given by

Mp ¼
cos ðkpdÞ iZp sin ðkpdÞ
i

Zp
sin ðkpdÞ cos ðkpdÞ

2

4

3

5: (9)

MDl in Eq. (8) models the length correction due to pressure

radiation at the interface between the perforation and the

pipe, given by

MDl ¼ 1 iZpkpDl

0 1

� �

: (10)

For a circular perforation, the length correction is13
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Dl ¼ 0:82

�

1� 0:235
rp

rw
� 1:32

�

rp

rw

�2

þ 1:54

�

rp

rw

�3

� 0:86

�

rp

rw

�4�

rp: (11)

Here, rw is the radius of the pipe (waveguide) and rp is the radius

of the perforation. To account for the acoustically soft boundary

at the end of the perforation, the final T matrix is multiplied by

½0; 1�T , which provides a soft termination to the perforation at

x¼ d where acoustic volume flux is Vx¼d and pressure is

px¼d ¼ 0. The characteristic impedance of the perforation with

an acoustically soft boundary, Zs, can then be found as

Zs ¼
Px¼0

Vx¼0

¼ T12

T22
¼ iZp tan ðkpðd þ DlÞÞ: (12)

B. Finite periodic system of sound soft scatterers

Consider a finite length of a pipe with nt periodic

arrangements of sound soft scatterers. Each unit cell has a

length h and cross-sectional area Sw. The general geometry

of the system can be seen in Fig. 1. The transfer matrix for

the total system is given by

T ¼ MwMsMwð Þnt : (13)

Mw is the transfer matrix for a fluid layer of length h=2 and

Ms is given by

Ms ¼
1 0

N=Zs 1

� �

; (14)

where N denotes the number of scatterers per unit cell. The

total length of the system L ¼ nth. The TL of the total system

can then be obtained as

TL ¼ 20 log10

�

�

�

�

T11 þ T12=Z þ ZT21 þ T22

2

�

�

�

�

; (15)

where Z is the characteristic impedance of the fluid within

the pipe. As this system is symmetric and reciprocal, the

transmission, reflection, and absorption coefficients can be

determined as

T ¼ 2eikL

T11 þ T12=Z þ ZT21 þ T22
; (16)

R ¼ T11 þ T12=Z � ZT21 � T22

T11 þ T12=Z þ ZT21 þ T22
; (17)

a ¼ 1� jRj2 � jTj2: (18)

C. Bloch waves in an infinite periodic structure

Assuming plane wave propagation in a pipe with peri-

odic imperfections, the Bloch Floquet theorem can be ful-

filled so that the transfer matrix of a single unit cell can be

described as follows:14

p

V

� �

x¼o

¼ T
p

V

� �

x¼h

¼ T11 T12
T21 T22

� �

p

V

� �

x¼h

¼ T11 T12
T21 T22

� �

e�iqhp

e�iqhV

� �

x¼0

; (19)

where q is the Bloch wavenumber. By rearranging, we

obtain

T11 T12

T21 T22

" #

� eiqh 0

0 eiqh

" # !

p

V

" #

x¼h

¼ 0: (20)

By substituting K ¼ eiqh, the following eigenvalue problem

can be constructed:

�

�

�

�

T11 � K T12
T21 T22 � K

�

�

�

�

¼ K
2 � K T11 þ T12ð Þ þ jTj ¼ 0:

(21)

In the previous equation, the determinant, jTj ¼ 1, through

the principle of reciprocity and therefore the forward and

backward propagating Bloch waves display the same disper-

sion and the Bloch dispersion relation can be found as

cos ðqhÞ ¼ 1

2
ðT11 þ T22Þ: (22)

As such, the dispersion relationship for an infinitely periodic

array of sound-soft backed perforations can be expressed as

cos ðqhÞ ¼ cos ðkhÞ þ iZN

2Zs
sin ðkhÞ: (23)

IV. IDEAL ANALYTICAL MODEL PARAMETRIC STUDY

In this section, a parametric study is undertaken where the

relationship between the separation, depth and area of the perfo-

rations and the width of the bandgap produced is investigated.

The analytical model is validated using three-dimensional (3D)

numerical models in COMSOLMultiphysics 6.0.

Details of the selected geometries can be seen in Table

I where the perforation radius is rp, the perforation depth is

d and the unit cell length is h. In all the cases the radius of

the pipe, rw, is 40mm, the total number of unit cells, nt, is

10 and the number of perforations per unit cell, N, is 6.

FIG. 1. Graphical representation of a

finite system of sound soft scatterers.
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These perforations are distributed evenly along the circum-

ference of the pipe. Plots comparing the absorption, trans-

mission and reflection coefficients predicted with the

analytical and numerical model in the lossless and lossy

cases can be seen in Fig. 2. In the lossless case, the effective

fluid properties of the pipe and perforation are calculated

with the lossless acoustic impedance and wavenumber such

that visco-thermal losses are not taken into consideration. In

TABLE I. Geometrical parameters of the four models validated

numerically.

Geometry rp (mm) d (mm) h (mm)

1 2 5 50

2 2 5 25

3 3 5 50

4 2 10 50

FIG. 2. (Color online) Analytical and

numerical plots of a, jRj and jTj for
Geometries 1–4 (Table II) in the loss-

less and lossy cases.
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the lossy cases, all visco-thermal losses are included using

Eqs. (1) and (2) to calculate the acoustic impedance and

wavenumber. Plots of the TL predicted with analytical and

numerical models and real and imaginary components of the

Bloch wavenumber predicted with the analytical model are

presented in Fig. 3. These results are also presented for the

lossless and lossy cases. The results shown in Figs. 2 and 3

suggest that there is excellent agreement between the ideal

analytical and 3D numerical models.

From Fig. 2(a), it is evident that in the lossless case, the

introduction of acoustically soft backed perforations results

in the reflection coefficient value close to unity at 0Hz. This

behaviour extends to approximately 300Hz before the

reflection coefficient begins returns to 0. Consequently, the

FIG. 3. (Color online) Analytical plots

of the real and imaginary components

of the Bloch wavenumber, and analyti-

cal and numerical plots of the TL for

Geometries 1–4 (Table II) in the loss-

less and lossy cases.
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transmission coefficient behaves in the opposite manner.

This phenomenon is also clear in Fig. 2(b). In the lossless

case there is no absorption present, whereas there is in the

lossy case. Additionally, with losses the strength of the

bandgap is reduced, with the reflection coefficient dropping

from near unity immediately at frequencies above 0Hz.

There is no discernible change in TL.

In Fig. 3(a) a bandgap is evident, denoted by the purely

imaginary Bloch wavenumber. This purely imaginary Bloch

wavenumber indicates that the propagating wave within the

bandgap frequency range is evanescent, which is evidenced

by the TL across the same frequency range. It can be seen in

Fig. 3(b) that the introduction of losses reduces the strength

of the gap, with real values for the Bloch wavenumber

occurring at 0Hz.

In Geometry 2, the length of the unit cell has been

halved, reducing the separation between the rows of perfora-

tions. Upon comparison of Fig. 2(c) with 2(a), it can be seen

that by decreasing the unit cell length, the width of the

bandgap is increased. It is worth noting that the reflection

and transmission coefficients appear to change more gradu-

ally in this scenario. Again, as seen in Fig. 2(d), the intro-

duction of losses induces absorption within the system.

When looking at Figs. 3(c) and 3(d), the TL seems similar

in amplitude to that predicted for Geometry 1, indicating

that whilst the separation distance influences the width of

the bandgap, it does not greatly impact TL.

To further investigate the relationship between the per-

foration geometry and the width of the bandgap produced,

Geometry 3 is chosen to have the same geometrical parame-

ters as Geometry 1, but an increase in perforation radius by

1mm. When examining Figs. 2(e) and 2(f), the main differ-

ence to Geometry 1 is, an increase in the width of the

bandgap. This time, the change in the reflection and trans-

mission coefficients is similar to that produced by Geometry

1. From Figs. 3(e) and 3(f), it can be seen that by increasing

the radius of the perforations it is possible to increase the

width of the bandgap and amount of TL within the bandgap.

This result indicates that the overall surface area of soft

boundary conditions influences the TL produced by the

perforations.

The final parameter is the depth of the perforation and

how it influences the width of the bandgap produced. In

Geometry 4, the depth of perforations is doubled, whilst

the remaining parameters are kept consistent with

Geometry 1. From Figs. 2(g) and 2(h), it can be seen that

the width of the bandgap is reduced, with the reflection and

transmission coefficients changing more gradually. In Figs.

3(g) and 3(h), it can be seen that by increasing the depth of

the perforations, the TL is reduced in comparison to

Geometry 1.

Therefore, for this system, it can be determined that the

size and strength of the bandgap are dependent on multiple

factors. Reducing the unit cell length, but keeping the total

number of unit cells increases the width of the gap, but it

does not increase the TL within the bandgap. Increasing the

size of the perforation increases the surface area where a

sound-soft boundary condition is present, which increases

the size and TL of the bandgap. Finally, an increase in the

perforation depth reduces the size and TL within the

bandgap.

V. NUMERICAL STUDYOF SOUND SOFT

PHENOMENON

In this section, a numerical study is undertaken to fur-

ther understand the acoustically soft boundary effect pro-

duced by non-rigidly backed perforations. To do this, two

variants of numerical models are used which model the

soft boundary condition differently. In the first variant, the

perforations are encompassed by an air gap and then a per-

fectly matched layer (PML), whereas in the other variant,

the outer boundary of the perforations is modelled with an

ideal acoustically soft boundary condition. The PML is

used to artificially attenuate any acoustic wave propagating

away from the perforated pipe and minimise reflections

back into the pipe from the boundary of the fluid domain

surrounding the pipe.15 Graphical representations of these

two variants can be seen in Figs. 4(a) and 4(b),

FIG. 4. (Color online) Graphical representation of the numerically mod-

elled perforated pipes with an air gap (a) and acoustically soft boundary (b).

TABLE II. The parameters of the three geometries of perforations used in

the numerical model of the perforated pipe.

Geometry rp (mm) d (mm) h (mm) n

1 5 5 50 11

2 5 5 25 21

3 2.5 5 25 21
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respectively. Three perforation geometries and spacing

are modelled with the parameters summarised in Table II.

The radius of the pipe is kept constant between each

model at rw ¼ 40mm, and the number of perforations per

unit cell is always N¼ 1. The transmission, reflection,

and absorption coefficient spectra for Geometries 1–3

(see Table II) are shown in Fig. 5. These results are given

for the perforated pipe surrounded with an air gap

(dashed lines) and ideal acoustically soft boundary (solid

lines). The behaviour of the absorption, reflection, and

transmission coefficients shown in Fig. 5 suggests that

the bandgap phenomenon cased by the perforations is pre-

sent in both the variants of the numerical model. This is evi-

denced by the near unity reflection coefficient as the frequency

reduces to 0Hz. The width of the bandgap differs between the

two variants of the numerical model. In the case of the model

for the ideal acoustically soft boundary conditions, the high

attenuation band extends over a larger frequency range for

each of the three perforation geometries considered in this

study. It can therefore be determined that an additional length

correction due to pressure radiation at the soft boundary of the

perforation is required. Additionally, in Figs. 5(a) and 5(b), it

can be seen that the numerical results produced for the variant

with the air gap and PML are noisy due to numerical artifacts

resulting from the PML.

VI. REVISED ANALYTICAL MODEL

In order to account for the extra pressure radiation

that occurs at the discontinuity from the perforation and

the surrounding medium, an additional length correction

to the perforation depth must be accounted for in the

expression for the impedance of a perforation with a soft

boundary condition. Equation (11) gives the length cor-

rection, Dl, for the pressure radiation at the discontinuity

between the perforation and fluid within the perforated

pipe. In addition to this, an expression of the length cor-

rection for the pressure radiation from an orifice in a tube

wall into free space is required. This is given by the fol-

lowing equation:16

Dl2 ¼
Up

8
þ k�1

0 v0 2k0

ffiffiffiffiffi

Sp

p

r

 !

; (24)

where Up is the perimeter of the perforation, k0 ¼ x=c0, and

FIG. 5. (Color online) Plots of a, jRj and jTj for both numerical variants for Geometries 1–3 (Table II).
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v0ðnÞ ¼
4

p

ðp

0

sin ðn cos ðaÞÞ sin 2ðaÞda

� n2

8
for n � 1: (25)

Here, n ¼ 2k0
ffiffiffiffiffiffiffiffiffiffi

Sp=p
p

. If the length correction for the pres-

sure radiation at the discontinuity between the perforation

and pipe is

Dl1 ¼ 0:82

�

1� 0:235
rp

rw
� 1:32

�

rp

rw

�2

þ 1:54

�

rp

rw

�3

� 0:86

�

rp

rw

�4�

rp; (26)

as described in Eq. (11), then the equation for the revised

impedance for a perforation with a sound soft boundary [see

Eq. (12)] is

Zs ¼ iZp tan ðkpðd þ Dl1 þ Dl2ÞÞ: (27)

The methodology presented in Sec. III B and Eq. (27) was

used to compare the revised analytical model against the

numerical simulation detailed in Sec. V. The results of this

comparison are shown in Fig. 6 for the three geometries

presented in Table II. Figure 6 presents the absorption,

reflection, and transmission coefficients for the perforated

pipe encompassed by an air gap and PML. From these

figures, it can be seen that there is now an excellent

agreement between the revised analytical and numerical

models suggesting that the revised analytical model now

provides a simple and robust way to determine the acous-

tic attenuation in a pipe with non-rigidly backed circular

perforations.

VII. EXPERIMENTAL RESULTS

In order to validate the proposed analytical and numer-

ical models and to illustrate practically the existence of the

low frequency bandgap, an experimental pipe rig was set

up in the ICAIR laboratory at the University of Sheffield.

The experimental rig included a 1.32m perforated pipe

with a smooth inner radius 0.8m and a corrugated outer

radius, with three perforations per cross section and

approximately 1m of separation between the speaker and

FIG. 6. (Color online) The spectra of the absorption, a, reflection, jRj, and transmission, jTj, coefficients predicted with the revised analytical model and

numerical model for the pipe with the peroration geometries defined in Table II.
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an array of nine microphones as illustrated in Figs.

7(a)–7(c). The speaker was piston-on-a-sphere which is

designed to act like a source with high radiation effi-

ciency.17 The speaker was installed at one end of the perfo-

rated pipe as shown in Fig. 7(a). The speaker was driven

by a sine sweep generated between 50Hz and 25 kHz with

the help of a NI-9260 analog output module and B&K type

2716 �C amplifier.

The microphone array made of nine GRAS 46AE 1/200

CCP free-field standard microphones (GRAS Sound and

Vibration, Holte, Denmark) was installed at the other end of

the pipe. It was arranged along the pipe diameter as shown

in Fig. 7(b). The microphone array was used to filter out the

plane wave mode in a sufficiently broad frequency range. It

is noted that the locations of holes in the perforated pipe

along the pipe circumference were not consistent and varied

along the pipe length. The spacing between the rows of per-

foration was fixed at h¼ 20mm and the width of each perfo-

ration was approximately 20mm as shown in Figs. 8(a) and

8(b), respectively. A National Instrument data acquisition

module type NI-9232 was used to acquire data at the sam-

pling rate of 51.2 kHz. Figure 9 illustrates the TL obtained

with the following equation:

TL ¼ 20 log10

�

�

�

�

pref

prec

�

�

�

�

; (28)

where pref is the acoustic pressure recorded at the reference

microphone in the vicinity of the sound speaker and prec is

the acoustic pressure recorded at the receiver side with the

array microphones. The experimental pipe geometry was

replicated in a 3D finite element method (FEM) model in

FIG. 7. (Color online) The experimen-

tal pipe set up at the ICAIR: (a) sound

speaker at the source end; (b) array of

nine microphones at the receiver end;

(c) perforated pipe with speaker and

microphone array installed at the oppo-

site ends of the pipe.

FIG. 8. (Color online) Pipe perforation:

(a) Axial distance between perforation;

(b) width of a single perforation.
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COMSOL multiphysics 6.0 with ideal soft boundary condi-

tions at the interface of the perforation and PML imposed at

the end of the pipe away from the sound source. The sound

source was modelled as a piston generating plane wave. The

perforations were modelled as ellipses of constant cross-

sectional area. The results of the numerically and experi-

mentally obtained TL can be seen in Fig. 9. The measured

TL illustrated in Fig. 9(b) offers evidence that the periodi-

cally arranged perforations in the rigid pipe create a low fre-

quency bandgap that extends to approximately 460Hz. The

width of this bandgap matches that predicted for the simpli-

fied perforation geometry, i.e., where the perforations are

idealised with an elliptical geometry in the 3D finite element

model. It is evident, however, that the experimental data set

is noisy and that the level of the experimental TL is limited

by the signal-to-noise ratio. This difference can also be

attributed to a structure-borne vibrations excited in the wall

of the pipe or sound leakage due to the experimental perfo-

rated pipe being open-ended. Despite this, it can be seen that

the acoustically soft scattering phenomenon discussed in

Sec. II does occur when the pressure release condition is

imposed on a non-rigidly backed perforation allowing for

very low frequency attenuation of acoustic waves with a

sample size much smaller than the wavelength of sound

being attenuated.

VIII. CONCLUSIONS

An analytical model based upon the transfer matrix

method has been developed to predict the acoustic attenua-

tion in a pipe caused by a periodic array of non-rigidly

backed perforations acting like acoustically soft scatterers.

It has been shown that periodic arrays of acoustically soft

scatterers produce a low frequency bandgap from 0Hz to an

upper bound determined by the geometry of the perforations

and the unit cell length. Acoustic waves within the fre-

quency range of the bandgap become evanescent causing a

significant attenuation. As a result, there is no wave

propagation in infinite pipe with perforation. Reducing the

unit cell length, but keeping the total number of unit cells

constant, increases the width of the gap, but does not

increase the attenuation within the bandgap. Increasing the

size of the perforation increases the surface area where an

acoustically soft boundary condition is present. This causes

an increase in the width of the bandgap and attenuation

within it. Additionally, it is possible to adjust the width of

the bandgap and attenuation by changing the depth of the

perforations. An increase in the perforation depth results in

a reduction in the width of the bandgap and attenuation

achieved within it. All of these observations are numerically

validated indicating in the ideal case the analytical model is

valid. An experiment has been carried out to illustrate that

the models predict the width of the bandgap.
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