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Part-Object Relational Visual Saliency

Yi Liu, Dingwen Zhang, Qiang Zhang, and Jungong Han

Abstract—Recent years have witnessed a big leap in automatic visual saliency detection attributed to advances in deep learning,

especially Convolutional Neural Networks (CNNs). However, inferring the saliency of each image part separately, as was adopted by

most CNNs methods, inevitably leads to an incomplete segmentation of the salient object. In this paper, we describe how to use the

property of part-object relations endowed by the Capsule Network (CapsNet) to solve the problems that fundamentally hinge on

relational inference for visual saliency detection. Concretely, we put in place a two-stream strategy, termed Two-Stream Part-Object

RelaTional Network (TSPORTNet), to implement CapsNet, aiming to reduce both the network complexity and the possible redundancy

during capsule routing. Additionally, taking into account the correlations of capsule types from the preceding training images, a

correlation-aware capsule routing algorithm is developed for more accurate capsule assignments at the training stage, which also

speeds up the training dramatically. By exploring part-object relationships, TSPORTNet produces a capsule wholeness map, which in

turn aids multi-level features in generating the final saliency map. Experimental results on five widely-used benchmarks show that our

framework consistently achieves state-of-the-art performance. The code can be found on https://github.com/liuyi1989/TSPORTNet.

Index Terms—Salient object detection, capsule network, part-object relationships.

✦

1 INTRODUCTION

THE task of salient object detection is to mimic the human
ability to identify the visually distinctive objects or

regions in a scene and then to segment them out from
the background. Serving as a preprocessing step, salient
object detection has been prevalent in a variety of computer
vision and cognitive science applications, including image
segmentation [1, 2], image fusion [3], object recognition
[4, 5], image and video compression [6–8], image retrieval
[9, 10], and person re-identification [11].

Most early salient object detectors [12–16] advocate the
usage of hand-crafted features to capture the contrast infor-
mation in an image. However, those features become power-
less when grabbing the visual difference in complex scenes,
thus leading to a performance bottleneck. The emergence of
Convolutional Neural Networks (CNNs) makes it possible
to capture more primitive scene semantics, thereby boosting
the development of salient object detection [17–20].

Most salient object detectors based on CNNs learn deep
features via abundant kernels on each image region, in-
tending to capture the contrast of different image parts.
The entire saliency map is made up by assembling those of
individual parts. However, this mechanism has some latent
issues remaining under cover. First, compared with the
background, salient parts that are vested with low contrast
may be easily mislabeled as non-salient, as evidenced by
the experimental results in the top row of Fig. 1. Secondly,
those locally low-contrast parts inside a salient object will be
likely missed in the final saliency map, as can be observed
in the bottom row of Fig. 1. Altogether, it is not surprising
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Fig. 1. Some examples showing the incomplete segmentation of the
salient object. (a) Input image; (b) GT; (c) DLS [21]; (d) ELE [22]; (e)
MDF [17]; (f) OURS.

that most existing CNN based approaches end up with an
incomplete segmentation of the salient object.

In other words, there exist some intrinsic relationships
between an object and its parts, which have long been
overlooked by existing CNN based salient object detection
algorithms. A salient object is usually composed of several
associated parts. From another perspective, these relevant
parts, which share familiar properties of the object, have
great potential to make up a complete object in an image.
This reveals the natural relationships between object parts
and the complete object, i.e., those parts familiar to an object
will be clustered together to form a complete object in a
full image. A graphical explanation can be found in Fig. 2.
Inspired by these observations, we introduce the property
of part-object relationships for salient object detection in
this paper, which provides a solution to the problem of
incomplete salient object segmentation.

Recently, a new deep learning architecture named Cap-
sule Network (CapsNet) [23–25] has shown promising re-
sults for digits recognition and image classification. A cap-
sule encapsulates a group of neurons whose outputs rep-
resent different properties of an entity, e.g., an object or an
object part. Contrary to CNNs, whose primary role is to
learn the contrast cues per image region, CapsNet assigns
associated parts (low-level capsules) to their whole object
(high-level capsule), which can be graphically illustrated
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Fig. 2. Graphical illustration of the part-object relationships. Coordinates
with different colors represent poses of different parts. Given an image,
an object (badminton) is composed by several associated parts (base
and wing). Conversely, these relevant parts (base and wing), which
share familiar properties of the object (badminton), can make up a
complete object (badminton). To this end, CapsNet first infers poses of
different parts of the image, and then votes associated parts to their
whole object.

in Fig. 2. The entire framework is accomplished by finding
similar votes from parts to the whole object layer by layer.

However, a primitive adaptation of CapsNet to salient
object detection may not work, which can be explained from
three aspects. First, each low-level capsule essentially relates
to a subset but not full set types of high-level capsules.
That is to say, the current capsule routing scheme, which
enforces each low-level capsule to vote for all types of high-
level ones, is at the risk of generating fake assignments. This
is well verified by non-distinguishable capsules produced
by CapsNet in Fig. 3, which eventually causes the failure
to identify the salient object. Secondly, despite the great
performance, CapsNet is known for its high computational
demand even when carrying out simple tasks, like digital
image classification. Therefore, using CapsNet to deal with
large-scale dense prediction tasks (e.g., salient object detec-
tion), which is in theory much more complicated than the
task of image classification, without simplifying key algo-
rithmic components is impractical. Thirdly, unlike image
classification, the pixel-level salient object detection task is
confronted with more complex scenes, where complicated
part-object relationships will challenge the current routing
algorithm.

To mitigate the above issues, we present, in this pa-
per, a deep Two-Stream Part-Object RelaTional Network
(TSPORTNet) for salient object detection, where a new two-
stream strategy is adopted to implement CapsNet for sake of
better exploring part-object relationships. Specifically, those
primary capsules are divided into two groups, each being
fed into two streams, respectively. Given a stream, each cap-
sule is voted for one group types of capsules via a locally-
connected routing.1 As shown in Fig. 3, those capsules
generated by the proposed TSPORTNet, especially the one
marked by the red box, are distinctive enough to identify the
salient object in a scene. These two streams are integrated
through a fully-connected routing such that the relevant
parts can be clustered to form a salient object. Compared to
the original CapsNet, the network based on this two-stream
strategy has much less to-be-trained parameters, thus mak-
ing the training of TSPORTNet fairly efficient. Meanwhile,

1. In our experiments, given the fixed total number of capsule types,
we find that non-convergence occurs in the proposed model with 4
and 8 streams, each of which has too few types of capsules. However,
the model works well with 2 streams provided. This indicates that it
reaches a good trade-off between the type number of familiar high-level
capsules and the type number of low-level capsules, given 2 streams.

Fig. 3. Comparison between TSPORTNet and CapsNet (i.e., Single-
Stream PORTNet (SSPORTNet)). All types of capsules of the second
convolutional capsule layer in TSPORTNet and CapsNet are displayed
here. Compared with the original CapsNet, the proposed TSPORTNet
produces more discriminative capsules, which are capable of identifying
the salient object from backgrounds.

since we effectively simplify the capsule connections, the
likelihood of having noisy assignments is reduced.

Besides, it is observed from Fig. 4 that different types
of capsules represent different patterns, which might be
changed if the input image changes. However, those types
of capsules, which activate the salient object, remain un-
changed, e.g., type-4 of stream 1 and type-4 of stream 2 in
Fig. 4. It indicates that pattern assignment, i.e., routing one
type of low-level capsules to one type of high-level capsules,
does not necessarily change, as evidenced by the fact that
strongly correlated types of capsules across adjacent layers
are likely assigned together. The above observation inspires
us to develop a more accurate and efficient capsule routing
algorithm to conduct the capsule assignments task when
dealing with complicated scenes. Specifically, we design a
correlation-aware capsule routing algorithm at the training
phase, where the correlations/similarities between different
types of capsules across adjacent layers, computed from
the previous images, are used to predict the capsule as-
signments for the next image. In doing so, on the one
hand, the network training procedure will be accelerated
by routing highly correlated capsules. On the other hand,
robust capsule assignments can be achieved to explore the
right part-object relationships in different scenes.

Fig. 4. Output capsules of two streams. Obviously, the pattern of each
capsule type keeps up with the change of the input image. Howev-
er, those types of capsules that activate the salient parts remain un-
changed, e.g., type-4 of stream 1 and type-4 of stream 2, which indicates
that pattern assignments do not necessarily change, given different
input images.

By exploring part-object relationships, TSPORTNet can
detect the whole salient object and thus produce a Capsule
Wholeness Map (CWM). Several CWMs are exhibited in Fig.
5. However, CWM so far does not look perfect due to: i)
Blurriness around the object boundary; ii) The background
being mixed with a lot of bright spots; iii) The salient
region seeming unsmooth. To remedy these situations, we
further supply CWM with abundant spatial details. Con-
cretely, CWM acts as a guidance map for multi-level features
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extraction, thus resulting in a Wholeness Guidance network
(WGNet). On the one hand, multi-level features will learn
more accurate saliency cues under the guidance of CWM.
On the other hand, spatial details will be provided to the
CWM, thereby helping to generate a smoother saliency map.

Fig. 5. Output CWMs of TSPORTNet. Top: Images; Bottom: CWM.
Some issues occur on CWM: blurry object boundaries, bright spots on
the background region, and un-smooth salient regions.

Fig. 6 shows the architecture of our proposed salient
object detection network. A preliminary version of our work
was published in [26]. This paper reinforces the work in [26]
with further architecture optimization and in-depth analysis
of key components. The main extensions of this paper
are twofold. First, we design a correlation-aware routing
algorithm, on top of the further analysis about the existing
capsule routing algorithm, to achieve more accurate cap-
sule assignments. Secondly, instead of restoring the spatial
details by using deconvolutional operations, we develop a
more sophisticated network, namely WGNet, which allows
multi-level features to provide spatial details for CWM. This
way will obtain a smoother saliency map.

Our contributions are summarized as follows:

(1) We involve a new property, i.e., part-object relation-
ships, in salient object detection, which is implemented by
CapsNet. To the best of our knowledge, this is the first at-
tempt to apply CapsNet to explore part-object relationships
for salient object detection.

(2) We propose a deep TSPORTNet for salient object
detection, in which a new two-stream strategy is adopted to
improve the CapsNet. The intention is to narrow down the
searching space when the routing from a low-level capsule
to the high-level capsules takes place. Doing so reduces
the complexity of CapsNet significantly while lowering the
likelihood of having noisy assignments.

(3) We design a correlation-aware capsule routing al-
gorithm, which preserves capsule correlations between d-
ifferent capsule types across adjacent layers after every
training image to make predictions for capsules routing in
the following image. Such routing mechanism is beneficial
to accelerate the network training procedure and learn more
accurate capsule assignments as well as more primitive part-
object relationships in a scene.

(4) We build a WGNet, in which the CWM output by
TSPORTNet can guide multi-level features to restore spatial
details for a smoother saliency map.

The remainder of this paper is organized as follows.
Section 2 outlines an overview of CNN based salient object
detection techniques and a brief introduction of CapsNet.
Section 3 details the proposed deep salient object detection
network. Section 4 provides some insight analysis of the
proposed framework. Section 5 presents experiments evalu-
ating the proposed model. Section 7 concludes this paper.

2 RELATED WORK

Over the past two decades, a vast number of salient ob-
ject detection methods have emerged. Traditional methods
[13, 27–38] detect the salient object based on hand-crafted
features. The descriptions of these methods are beyond
the scope of this paper. Readers can gain a comprehensive
understanding of these methods from [16]. Here, we focus
on those salient object detection methods based on CNNs,
which are most relevant to our work. Some works about
CapsNet are also reviewed in this section.

2.1 CNNs Based Salient Object Detection

The development of CNNs has achieved substantial im-
provements in salient object detection. Zhao et al. [39]
detected the salient object by jointly taking into account
global context and local context under a unified deep learn-
ing framework. Li et al. [17] used CNNs to learn multi-
scale deep features for saliency detection. Wang et al. [40]
trained two subnetworks for local estimation and global
search, respectively. These methods implemented saliency
detection via patch-by-patch scanning, thus requiring large
computational resources. To address this issue, saliency
detection was conducted via a fully convolutional network.
For example, Liu et al. [18] proposed an end-to-end deep hi-
erarchical saliency detection framework, in which a coarsely
global prediction was achieved by learning various global
saliency cues, and then a hierarchical recurrent CNN was
applied to refine the coarse prediction by making up the
discarded details. Zhang et al. [41] proposed a multi-level
feature aggregation network for salient object detection by
integrating multi-level features into multiple resolutions,
which well incorporated low-level fine details and high-
level semantic knowledge. Liu et al. [42] learned to generate
a contextual attention for each pixel, which was formulated
by incorporating the global and local context. Zhang et
al. [43] designed a gated bi-directional message passing
module to integrate multi-level features in both shallow-
to-deep and deep-to-shallow directions, which efficiently
explored each level of features to detect salient objects. Zeng
et al. [44] incorporated global semantics and high-resolution
details for large-scale image saliency detection. Liu et al. [45]
investigated the role played by the pooling layer in a real-
time salient object detection framework.

Generally, the above methods infer the saliency through
looking at the contrast information provided by learned
deep features. While our method detects the salient object
from a new perspective - by exploring part-object relation-
ships, our framework assigns associated parts to a complete
salient object. This can well solve the problem of incom-
plete segmentation of the salient object from backgrounds
encountered by existing CNNs based methods.

2.2 CapsNet

Recently, a new neural network structure named Capsule
Network (CapsNet), was developed by Hinton et al. [23].
A capsule is essentially a group of neurons, which are
used to represent the instantiation parameters of a specific
type of the entity such as pose (position, size, and orien-
tation), deformation, texture, etc. In spite of its advances,
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Fig. 6. Overview of the proposed network architecture. The image is first input to FLNet to learn deep features (described in the following Fig.
7), which are then fed to TSPORTNet. In TSPORTNet, capsules in the PrimaryCaps layer, constructed from deep feature maps, are divided into
two groups, which are then fed into two identical streams. These two streams are integrated into the ClassCaps layer. By exploring part-object
relationships, TSPORTNet produces a CWM, which is fed into WGNet to guide multi-level feature maps of FLNet (FMi (i = 1, 2, 3, 4) are described
in Fig. 7). The final saliency map is computed by integrating the outputs of TSPORTNet and WGNet.

the CapsNet did not get much attention until Sabour et al.
[24] implemented the vector CapsNet, in which a capsule
encapsulated a group of neurons as a vector. An iterative
dynamic routing algorithm was proposed to assign low-
level capsules to the familiar high-level capsules via trans-
formation weights, which learned to encode the intrinsic
spatial relationship between a part and the whole as well
as viewpoint invariant knowledge. One year later, Hinton
et al. [25] consolidated their work by proposing a matrix
CapsNet, in which each capsule contained a pose matrix
and an activation probability. An iterative Expectation-
Maximization (EM) algorithm was proposed to assign low-
level capsules to high-level capsules or parts to wholes by
finding tight clusters of high-dimensional votes that agreed
in a mist of irrelevant votes. Compared with the vector
CapsNet, the matrix CapsNet has two advantages: 1) The
transformation matrix for the pose matrix adopted in the
matrix CapsNet has much less parameters than that for the
pose vector in the vector CapsNet. 2) The vector CapsNet
uses the cosine similarity between two pose vectors to
measure their agreement, while the matrix CapsNet adopts
an iterative EM algorithm, which is proven to be better.

In view of its advances, some attempts have been made
to apply CapsNet for several computer vision tasks. For
instance, Zhao et al. [46] investigated the possibility of
using CapsNet for text classification, in which the dynamic
routing process was stabilized to alleviate the disturbance
of some noisy capsules that might contain “background”
information such as stop words and the words unrelated
to specific categories. Duarte et al. [47] proposed a 3D
VideoCapsuleNet, which could jointly perform pixel-wise
action segmentation alongside action classification.

In this paper, we introduce the property of part-object
relationships, which is explored by CapsNet, for salient
object detection. Instead of directly adopting CapsNet, we
enhance it with a two-stream strategy and a correlation-
aware routing algorithm, thus making the new CapsNet

specifically suitable for salient object detection.

2.3 View-based Representations

View-based representations have been studied for vari-
ous problems. Biederman [48] proposed a recognition-by-
component theory for image understanding, which pointed
out the stable three-dimensional mental representations of
objects were formed by manipulating a few simple geomet-
ric shapes. In [49], the authors investigated the evidence-
based classification approach, which was modeled based
on human perceived attributes and how such attribute
states “evidence” for different classes. Solina and Bajcsy [50]
sought to recover superquadrics from pre-segmented range
images. [51] made superquadrics recovery from images
more widespread. Krivic and Solina [52] carried out research
on the possible use of part-level descriptions obtained by the
Segmentor system [53], which was an object-based segmen-
tation paradigm using superquadrics, for articulated objects
recognition. Pentland [54] segmented an image into roughly
convex component parts and extracted 3D deformable mod-
els for recognition and prediction. Felzenszwalb [55] used
the deformable part models for cascade object detection.
Girshick [56] expressed the deformable part model as an
equivalent CNN by using distance transform pooling, object
geometry filters, and maxout units. Zhao et al. [57] modeled
a part ordinal relationship to improve the semantic object
part segmentation. Wang et al. [58] employed object-level
context for part segmentation guidance, and detailed part-
level localization for object segmentation refinement.

Different from the previous methods that mostly repre-
sent each component by only spatial features (only neurons
representing the existence probability of the component), in
our model, the view representation for each component is
represented by a capsule (i.e., a group of neurons), which
includes a pose matrix indicating the pose attributes of
the component, and an activation value demonstrating the
existence probability of the component. On top of that, we
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segment out a complete object in a scene by detecting its
associated parts based on their pose and activation repre-
sentations, which is implemented by the capsule routing
algorithm.

3 PROPOSED METHOD

Fig. 6 shows the overall architecture of the proposed deep
salient object detection network. Our system begins with a
Feature Learning Network (FLNet), in which the input im-
age is represented by meaningful primitive features. After-
wards, these features are fed into the proposed Two-Stream
Part-Object RelaTional Network (TSPORTNet). In TSPORT-
Net, those primary capsules in PrimaryCaps, constructed by
deep feature maps, are divided into two groups, each being
fed into two identical streams, namely PORTNet. These
two streams are integrated by a fully-connected routing in
ClassCaps. Thanks to the explored part-object relationships,
TSPORTNet produces a Capsule Wholeness Map (CWM),
which is further input into WGNet to guide multi-level
features for the sake of smoothing the saliency map. The
final saliency map is obtained by integrating those outputs
of TSPORTNet and WGNet.

3.1 FLNet

Fig. 7. The architecture of FLNet. The input image first undergoes five
stacked convolutional layers, each of which is followed by concatenating
four dilation convolutional layers. On top of that, different layers are
integrated in a deep-to-shallow manner.

FLNet is designed for the purpose of learning rich fea-
tures of the input image. The details of FLNet are displayed
in Fig. 7. As observed in Fig. 7, the input image first
undergoes five stacked convolutional layers. On top of that,
four dilation convolutional layers [59] are stacked up at each
stage, which have the same convolutional kernel size of 3×3
with different dilation rates, including 1, 3, 5, and 7. Such a
structure helps to capture rich context information under
various receptive fields without increasing the kernel scales.
Besides, considering the fact that low-level feature maps
aid in capturing fine details while high-level feature maps
can grab semantic knowledge, deeper-level feature maps are
integrated with shallower-level ones layer by layer until the
shallowest stage, which efficiently aggregates multi-stage
context information.

3.2 TSPORTNet

TSPORTNet aims to explore the part-object relationships in
a scene, consisting of three stages, i.e., capsules construction,
two-stream PORTNet, and capsule classification. The details
of TSPORTNet will be illustrated as follows.

3.2.1 Capsules Construction

Capsules are constructed based on the feature maps learned
by FLNet, which is implemented by a Primary Capsule
(PrimaryCaps) layer. Each capsule consists of a pose matrix
with the dimension of 4× 4 and an activation value, which
represent the pose characteristics (such as an object part and
an object) and the existence probability of the entity, respec-
tively. Therefore, PrimaryCaps is formed by two branches
including pose matrix construction and activation construc-
tion, which are aggregated for the capsules construction.
Fig. 8 shows details of PrimaryCaps, which will be elaborated
in the following.

Fig. 8. Capsules construction. The context features of FLNet are down-
sampled for efficient computation. In the following, two branches emerge
for pose matrix construction and activation construction, which are finally
integrated to compose capsules.

The context features of FLNet (i.e., 352 × 352 × 128) are
downsampled with two convolutions (stride: 2) layers and
one ReLU layer to 88× 88× 16 for efficient computation.

Pose matrix construction: The 16-channel feature maps
(88 × 88 × 16) are first transformed to 256-channel feature
maps (88× 88× 256) via one convolutional layer, which are
then reshaped into 88× 88× 16× 16 as the vectorized pose
matrices2 of 16 types of capsules.

Activation construction: The 16-channel feature maps
(88 × 88 × 16) are first transformed to 16-channel feature
maps (88 × 88 × 16) via one convolutional layer, which are
reshaped into 88× 88× 16× 1 as the activation information
of 16 types of capsules.

Capsules construction: The vectorized pose matrices
and activations are concatenated together to construct 16
types of capsules, i.e., 88× 88× 16× 173.

3.2.2 Two-Stream PORTNet

Those capsules obtained by PrimaryCaps are divided into
two groups, each of which contains 8 types of capsules
(88 × 88 × 8 × 17). These two groups of capsules are fed
into two identical streams, respectively. Each stream consists
of two Convolutional Capsule (ConvCaps1 and ConvCaps2)
layers with 8 and 4 types of capsules, respectively. ConvCap-
s1 and ConvCaps2 share the same architecture, i.e., enrich
capsule types, compute capsules votes, and route capsules,

2. Here, the pose matrix of each capsule is lengthened as a vector for
efficient storage.

3. Channel-(1 & 2) are the number of capsules of one type. In other
words, each pixel position possesses a capsule. Channel-(3 & 4) are the
number of capsule types and the one-capsule dimension, respectively.
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Fig. 9. Process of PORTNet by taking ConvCaps1 as an example. In the figure, vij represents the vote matrix from capsule i in one type of low-level

capsules to capsule j in one type of high-level capsules. mlow
∗

/alow
∗

and m
high
∗

/a
high
∗

are pose matrices/activation values of low-level and high-level
capsules, respectively.

each being elaborated by taking ConvCaps1 for example in
the following. Fig. 9 provides the process of PORTNet under
ConvCaps1.

Step 1: Enrich capsule types. The 8-type capsules of each
group (88 × 88 × 8 × 17) are reshaped into 88 × 88 × 136.
A depth-wise convolution with the stride of 2 and the
channel multiplier of 9 is performed on the output cap-
sules of PrimaryCaps to learn more rich-type capsules, i.e.,
44× 44× 9× 136, which are reshaped into 1936× 72× 17.
Not unnaturally, the vectorized pose matrices and activation
values are 1936 × 72 × [1 : 16] and 1936 × 72 × [17],
respectively, where [·] represents the number of channels
along the corresponding dimension.

Step 2: Compute the votes of low-level capsules for the
adjacently high-level capsules. The pose matrix Mi ∈ R4×4

of the capsule i in one layer is constructed by reshaping the
vectorized pose matrix. Between capsule i in one layer and
capsule j in the layer above, it learns a trainable transfor-
mation matrix Wij ∈ R4×4 discriminatively. The vote Vij of
capsule i for capsule j is calculated by multiplying Mi and
Wij , i.e.,

Vij = MiWij . (1)

By Eq. (1), the resulting votes are 1936× 72× 8× 16, where
1936, 72, 8, and 16 are the number of capsules of one type,
type number of low-level capsules, type number of high-
level capsules, and dimension of vote matrix, respectively.

Step 3: Route capsules between adjacent layers. Cap-
sule routing intends to assign low-level capsules (parts) to
high-level capsules (wholes), which can be solved by finding
tight clusters of the votes from parts for the wholes in the
layer above. To achieve this, a capsule routing algorithm is
used to update the probability, with which a part is assigned
to a whole. Such an assignment is determined based on the
proximity of the current part’s vote to the votes of the other
parts for the same whole. This routing algorithm derives
segmentation based on the knowledge of familiar shapes,
rather than just using low-level cues such as proximity or
agreement on color.

Specifically, the votes and the activation values of low-
level capsules are input into the iterative routing algorithm,
which will calculate the pose matrices (i.e., 44× 44× 8× 16)
and activation values (i.e., 44 × 44 × 8 × 1), respectively.
Next, they are concatenated to form the high-level capsules
(44 × 44 × 8 × 17). These obtained capsules are fed into
ConvCaps2 within the same stream. Details of TSPORTNet
can be found in Table 1.

Deep insights into the two-stream strategy for the task
of salient object detection. The original CapsNet may have
noisy capsules assignments because of its fully-connected
routing. Such inaccurate capsule-assignments may cause no
damage for some visual tasks, such as image classification,
but it becomes problematic for salient object detection as it
would make background noises appear on the saliency map.
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TABLE 1
Details of TSPORTNet. s: stride; c m: channel multiplier.

Layer Process Input Operation Output
Details of capsules construction

S1: Downsample feature maps
Feature maps of FLNet

(352× 352× 128)
2Conv (s=2), ReLU

Downsampled feature maps
(88× 88× 16)

S2: Construct pose matrix
Downsampled feature maps

(88× 88× 16)
Conv (s=1), reshape

Pose matrices
(88× 88× 16× 16)

PrimaryCaps S3: Construct activation
Downsampled feature maps

(88× 88× 16)
Conv (s=1), reshape

Activation
(88× 88× 16× 1)

S4: Construct capsules
Pose matrices (88× 88× 16× 16)

Activation (88× 88× 16× 1)
Concatenate

16-type capsules
(88× 88× 16× 17)

S5: Construct two groups
16-type capsules

(88× 88× 16× 17)
Split

8-type capsules (88× 88× 8× 17)
8-type capsules (88× 88× 8× 17)

Details of PORTNet within each stream

S1: Enrich the features of capsules
One group of primary capsules

(88× 88× 8× 17)
Reshape, Depth conv
(c m=9, s=2), Reshape

1936× 72× 17

ConvCaps1
S2: Compute votes of low-level capsules

for the adjacently high-level capsules
Reshaped pose matrix (1936× 72× [1 : 16])
Transformation matrx W (1936× 72× 16)

Multiply
Votes

(1936× 72× 8× 16)
S3: Assign parts (low-level capsules) to

wholes (high-level capsules)
Votes(1936× 72× 8× 16)

Reshaped activation (1936× 72× 1)
EM routing algorithm

Pose matrix (44× 44× 8× 16)
Activation (44× 44× 8× 1)

S1: Enrich the features of capsules
Output capsules of ConvCaps1

(44× 44× 8× 17)
Reshape, Depth conv
(c m=9, s=1), Reshape

1936× 72× 17

ConvCaps2
S2: Compute votes of low-level capsules

for the adjacently high-level capsules
Reshaped pose matrix (1936× 72× [1 : 16])
Transformation matrix W (1936× 72× 16)

Multiply
Votes

(1936× 72× 4× 16)
S3: Assign parts (low-level capsules) to

wholes (high-level capsules)
Votes (1936× 72× 4× 16)

Reshaped activation (1936× 72× 1)
EM routing algorithm

Pose matrix (44× 44× 4× 16)
Activation (44× 44× 4× 1)

Details of capsule classification

S1: Integrate two streams

Pose matrices of two streams
(both 44× 44× 4× 16)

Activation values of two streams
(both 44× 44× 4× 1)

Concatenate, reshape
Pose matrix (1936× 8× 16)

Activation (1936× 8× 1)

ClassCaps
S2: Compute votes of low-level capsules

for the adjacently high-level capsules
Reshaped pose matrix (1936× 8× 16)

Transformation matrix W (1936× 72× 16)
Multiply

Votes
(1936× 8× 2× 16)

S3: Assign parts (low-level capsules) to
wholes (high-level capsules)

1936× 8× 2× 16 (votes)
1936× 8× 1 (reshaped activation)

EM routing algorithm
44× 44× 2× 16 (pose)

44× 44× 2× 1 (activation)
44× 44× 2× 17 (2-type capsules)

To address this issue, we propose a two-stream strategy
to implement CapsNet via a locally-connected routing to
detect the salient object. Such practice narrows the searching
space and thus further lowers the likelihood of having noisy
assignments. On top of that, it ensures that relevant salient
parts can be routed together to form a complete salient
object while suppressing background noise caused by mis-
routing background regions to salient parts in the saliency
map. Some visual examples can be found in Fig. 14. In this
context, the two-stream strategy fits better to the salient
object detection than the original CapsNet as it gains both
detection accuracy and detection efficiency.

3.2.3 Capsule Classification

Those more complete capsules obtained by the two streams
are finally classified to be salient or background, which
is implemented by a Class Capsule (ClassCaps) layer. The
architecture of ClassCaps is similar to Step 2 and Step 3
in ConvCaps1. Through the ClassCaps layer, the capsules of
two streams will be assigned to two types of capsules cor-
responding to the salient object and background, in which
way some relevant parts will be clustered together to form
a salient object. Considering the capsule activation values
represent the existence probability of the entity, we take
them as the output of ClassCaps, i.e., 44× 44× 2, to form the
saliency prediction map of the input image. In other words,
this is also the output of TSPORTNet.

3.3 Correlation-Aware Capsule Routing

Different from the image-level classification, salient object
detection, a task of pixel-level dense segmentation, involves
more complicated part-object relationships, given a large-
scale image. This is challenging for the original capsule

routing algorithm in [25] designed for small-size image
classification. To remedy this issue, we resort to the capsule
correlations for more powerful capsule routing.

As observed in Fig. 4, different types of capsules rep-
resenting different patterns may change as the input im-
age varies. However, pattern assignments calculated by
the routing algorithm do not necessarily change and they
somewhat relate to the correlations between different types
of capsules across adjacent layers. Specifically, highly corre-
lated capsules across adjacent layers share high familiarity,
which will be more likely to be routed together. In light of
this, we could take the correlations between different types
of capsules of the preceding training samples as a capsule
routing awareness to facilitate the subsequent training im-
age.

Suppose xI and xJ are the features of type-I capsules
and type-J capsules from two consecutive layers, the corre-
lation between them is encoded as:

cIJ = 1− Sigmoid(‖xI − xJ‖
2

2). (2)

We embed this capsule correlation information into the
EM routing algorithm in [25] via a residual formulation

R
reg
ij = Rij +Rij · cIJ , i ∈ I, j ∈ J, (3)

where Rij is the capsule assignment probability in [25]. i
and j are two capsules belonging to type-I and type-J ,
respectively.

The resultant correlation-aware capsule routing algo-
rithm is scheduled in Algorithm 1, where the two-stream
strategy is also exhibited. Algorithm 1 consists of five steps,
i.e., initialization, M-procedure, E-procedure, capsule corre-
lations embedding, and capsule correlations calculation. We
will explain these steps in the following.
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Algorithm 1 Correlation-aware capsule routing algorithm.
a and V are the activation values and vote matrices, re-
spectively. Ωhigh is the type number of high-level capsules.
I and J represent two types of capsules across adjacent
layers. i and j are two capsules belonging to type-I and
type-J , respectively. βu and βa are trained discriminatively.
λ is an inverse temperature parameter increased by 1 after
each routing iteration. h represents one component of one
vector.

Procedure Correlation-aware capsule routing (a, V )
1. Initialization:
Rij =

1
Ωhigh

cIJ = 0
for n images do
∣

∣ for m streams do
∣

∣

∣

∣ for t iterations do
∣

∣

∣

∣

∣

∣ 2. M-procedure for high-level capsule j:
∣

∣

∣

∣

∣

∣ ∀i ∈ ΩL : Rij = Rij · ai
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀h : µh
j =

∑

i RijV
h
ij

∑

i Rij
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀h :
(

σh
j

)2

=
∑

i Rij(V h
ij−µh

j )
2

∑

i Rij
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

costh =
(

βu + log
(

σh
j

))

∑

i Rij

∣

∣

∣

∣

∣

∣ aj = logistic
(

λ
(

βa −
∑

h cost
h
))

∣

∣

∣

∣

∣

∣ 3. E-procedure for low-level capsule i:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀j ∈ ΩL+1 : pj =

exp



−
∑H

h

(V h
ij−µh

j )
2

2(σh
j )

2





√

∏

H
h 2π(σh

j )
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀j ∈ ΩL+1 : Rij =
ajpj

∑

k∈ΩL+1
akpk

∣

∣

∣

∣

∣

∣ 4. Capsule correlations embedding
∣

∣

∣

∣

∣

∣ (removed at the test stage):
∣

∣

∣

∣

∣

∣ Rij = Rij +Rij · cIJ , i ∈ I, j ∈ J
∣

∣

∣

∣ end
∣

∣ end
∣

∣ 5. Capsule correlations calculation:
∣

∣ cIJ = Sigmoid(1− ‖xI − xJ‖
2

2)
end

Step 1: Initialization. We initialize the assignment prob-
ability Rij to be uniformly distributed, i.e., low-level cap-
sules equally related to any high-level capsule. Besides, cIJ
is initialized to be zero.

Step 2: M-procedure for high-level capsule j. M-
procedure computes an updated Gaussian model (µ, σ) and
the activation aj of high-level capsule j from the activation
ai, the current Rij , and votes V .

Step 3: E-procedure for low-level capsule i. E-procedure
determines the assignment probability Rij of each low-level
capsule to a high-level capsule based on the new (µ, σ) and
the activation aj .

Step 4: Capsule correlations embedding. We embed the
capsule correlations into the assignment probability with the
aim to assign highly correlated capsules together.

Step 5: Capsule correlations calculation. After training
each image, we calculate the capsule correlations between
different types of capsules across adjacent layers.

R
reg
ij contains two types of information: 1) assignment

probability information between capsule i and capsule j
for the current training image; 2) correlation information
between type-I capsules and type-J capsules of all the pre-
ceding training images. Due to the involvement of capsule
correlations, Rreg

ij is able to activate those high-familiarity
capsules while alleviating confusing capsule assignments,
which is conductive to exploring accurate part-object rela-
tionships. Also, the training procedure will be sped up with
the guidance of capsule correlations.

Deep insights into the correlation-aware capsule rout-
ing algorithm to salient object detection. The capsule rout-
ing algorithm is designed to solve the part-object routing
problem, i.e., finding relevant instead of individual parts of
the same salient object based on the familiar relationships
between the salient object and its parts. It eventually helps
to segment out the whole salient object by forming all the
relevant salient parts to compose a complete salient object.
This is superior to the previous salient object detectors that
segment out the salient object by finding individual salient
regions, which easily leads to the incomplete segmentation.
To enhance this capability of exploring the familiar part-
object relationships, we propose a correlation-aware rout-
ing algorithm by taking into consideration the correlation
between lower-layer capsules (parts) and higher-layer cap-
sules (wholes). Doing so enhances the capsule assignments
between two similar types of capsules while suppressing
those between two irrelevant ones, which further helps to
improve the familiar relationships between the salient parts
and their whole salient object. Consequently, the saliency
map will wholly identify the salient object, as can be verified
in Fig. 15.

3.4 WGNet

By exploring part-object relationships, TSPORTNet can infer
the whole salient object by finding salient parts, generating
a Capsule Wholeness Map (CWM). We take the salient
capsule output by TSPORTNet as a CWM. Fig. 5 provides
some CWM examples. However, there still exist some prob-
lems with the CWM: i) Blurriness occurs around the object
boundary; ii) Some bright spots emerge in the background
region; iii) Poor smoothness appears on the salient object
surface. To tackle these problems, we design a Wholeness
Guidance Network (WGNet), where the CWM is used to
guide multi-level feature maps of FLNet. On the one hand,
multi-level features will learn more accurate saliency cues
with the guidance of the CWM. On the other hand, the
CWM will get a smoother surface with the aid of rich
saliency cues of those feature maps of FLNet. The detailed
architecture of WGNet can be found in Fig. 6. To be specific,
for each level of feature maps FMi(i = 1, 2, 3, 4), the feature
maps of WGNet can be formulated as

FWGNet
i = Conv (Concat (Up (OCWM ) ,FMi)) , (4)

where Conv (·), Concate (·), and Up (·) represent the op-
erations of convolution, concatenation, and upsampling,
respectively. FWGNet

i is further used to achieve the saliency
prediction Si for the stage of i by

Si = Conv
(

Up
(

FWGNet
i

))

. (5)
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It is noted that S1 is achieved by directly performing convo-
lution on FM1 owing to a large resolution of FM1.

Furthermore, the capsule wholeness map FCWM is used
to compute the saliency map S5 by

S5 = Conv (Up (FCWM )) . (6)

The final saliency map is achieved by combining
{Si} (i = 1, 2, 3, 4, 5) by

S = S1 + S2 + S3 + S4 + S5. (7)

Unlike the existing spatial attention maps [60–62] that
fixate at the location of the salient object, the proposed
capsule wholeness map can not only locate the salient object
but also provide the object wholeness.

Additionally, our framework is distinct from the coarse-
to-fine methods [63, 64] that first generate a coarse saliency
map and then apply one or more refinement stages to restore
those missing details, e.g., object boundaries, salient context,
etc. The main difference lies in that our wholeness map
predicted by TSPORTNet can detect the whole salient object
with fewer object parts missed.

3.5 Saliency Inference

We adopt a joint loss function by combining the cross-
entropy loss function used in [43] and the IoU boundary
loss function to train the proposed salient object detection
network.

The cross-entropy loss function is formulated as

CE (v) = −
1

N

N
∑

p=1

∑

c∈{0,1}

(y(vp) = c) (log (ŷ(vp) = c)),

(8)
where vp represents the location of pixel p. y(vp) and ŷ(vp)
represent saliency values of the pixel p in the ground truth
and the predicted saliency map, respectively.

The IoU boundary loss function is defined as

IoU Loss = 1−
2|Cl ∩ Ĉl|

|Cl|+ |Ĉl|
, (9)

where Ĉl and Cl are the gradient magnitudes of salien-
cy map and ground truth corresponding to region l. The
gradient magnitude is computed by using a Sobel operator
followed by a tanh activation on the saliency map. |·| repre-
sents the number of non-zero entities in a mask.

The joint loss function combines the cross-entropy loss
function and the IoU Boundary loss function, i.e.,

Joint Loss = CE + IoU Loss. (10)

4 INSIGHT ANALYSIS

4.1 Salient Property of Part-Object Relationships

The property of part-object relationships for salient object
detection is derived from the idea that two parts will be
clustered together to form a whole object if they share
familiar properties. In other words, two capsules i and k will
be put together to make the capsule j in the layer above, if

Fig. 10. Illustrations for the part-object relationships. Type-4 capsules
(panel) and type-7 capsules (pedestrians) make up type-6 capsules (a
whole object) in the higher ConvCaps1 layer based on their approxi-
mately equal votes to the higher capsule. Here, we visualize the capsule
activation values since they are the saliency probabilities of the entities.

MiWij ≈ MkWkj . (11)

To give a clear insight for the property of part-object
relationships employed in salient object detection, we vi-
sualize the intermediate layers of a real example (as shown
in Fig. 10) based on a Single-Stream PORTNet (SSPORTNet),
which is a baseline network by directly adopting the origi-
nal CapsNet after FLNet. Two observations can be viewed
from Fig. 10: 1) Type-4 capsules and type-7 capsules in the
PrimaryCaps layer do capture two parts, i.e., pedestrians
and panel, while type-6 capsules in the higher ConvCaps1
layer clearly depict the whole object; 2) Due to approximat-
ed votes (M4W46 ≈ M7W76), type-4 capsules and type-
7 capsules capturing different parts make up the higher
type-6 capsules representing a complete object, i.e., road
sign. Hence, the natural capability of PORTNet in modeling
part-object relationships can detect the whole salient object
by finding familiar object parts, thereby addressing the
object part missing problem that the CNNs based saliency
detectors are suffering from.

4.2 In Comparison to CapsNet

Our proposed framework differs the original CapsNet in
four aspects.

Computational complexity: The original CapsNet votes
each lower capsule to all types of higher capsules, yielding
a heavy computational complexity. Differently, our two-
stream strategy assigns each lower capsule to one stream
types of higher capsules only, instead of all types of capsules
at the higher layer. In doing so, our strategy learns transfor-
mation matrices 4 times fewer than those in the original
CapsNet, thus decreasing the computational complexity of
the capsule routing algorithm dramatically. Such a signifi-
cant reduction of computation helps CapsNet to deal with
complicated dense prediction applications such as salient
object detection.

Feature learning: Unlike the original CapsNet that uses
(Conv + ReLU) layers for feature extraction, we utilize a
FLNet to learn more primitive features for TSPORTNet. This
will improve the performance by a large margin, which is
verified in the experiment part.

Capsule classification: The original CapsNet classifies
capsules to several capsules corresponding to image cate-
gories, which is not suitable for the dense prediction task.
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Instead, since salient object detection is essentially a binary
segmentation task, we classify the capsule at each pixel
position to two capsules, including salient capsule and
background capsule.

Capsule routing algorithm: To enhance the original
capsule routing algorithm, we take the correlations between
different capsule types across adjacent layers from the pre-
ceding training samples into consideration. Doing so helps
to activate those high-familiarity capsules while alleviat-
ing confusing capsule assignments, thereby accelerating the
training procedure and gaining more accurate part-object
relationships.

4.3 Analysis of CWM

To better exhibit the superiority of CWM in WGNet, we
replace CWM with a Convolutional Map (ConvM) that is
obtained by replacing ConvCaps 1 and ConvCaps 2 with two
convolutional layers. Toy examples are shown in Fig. 11.
In Fig. 11, (b) and (d) visualize ConvM and CWM with
the resolution of 44 × 44; (c) and (e) are the side outputs
(i.e., S5 in Fig. 6) with the resolution of 352 × 352, which
are obtained by directly conducting several deconvolutional
layers on ConvM and CWM, respectively. Comparing Fig.
11(b) and (d), we can observe that ConvM in Fig. 11(b) hard-
ly identifies the salient object with too much background
noises, while CWM in Fig. 11(d) can segment out the whole
salient object discriminatively. As a result, the side output of
CWM in Fig. 11(e) can detect the whole salient object with
clean background. This is beneficial from the part-object
relationships explored by TSPORTNet. More analyses will
be presented in the following Sec. 5.4.6.

Fig. 11. Illustrations for the superiority of CWM. (a) Images; (b) ConvM;
(c) Saliency map inferred by ConvM; (d) CWM; (e) Saliency map inferred
by CWM. (b) and (d): 44× 44; (c) and (e): 352× 352.

5 EXPERIMENT AND ANALYSIS

In this section, numerous experiments and analyses are
conducted to verify the effectiveness and superiorities of
our proposed deep salient object detection network.

5.1 Benchmark Datasets

We evaluate the performance of our model on five bench-
mark datasets, details of which are described as follows.

ECSSD [65] contains 1000 images with complicated
structures, which are collected from the Internet. HKU-IS
[17] consists of 3000 training images and 1447 test images,
which are with multiple disconnected objects. PASCAL-S
[66] includes 850 images in various scenes, which are col-
lected from the validation dataset of PASCAL VOC 2010 [67]

segmentation challenge. DUTS [68] contains 10533 training
images and 5019 test images, which are with different scenes
and various sizes. DUT-OMRON [13] has 5168 images with
different sizes and complex structures. In terms of HKU-
IS [17] and DUTS [68], only the test images are used for
evaluations in our experiments.

5.2 Evaluation Criteria

We evaluate the performance of our model as well as other
state-of-the-art methods from both visual and quantitative
perspectives. The quantitative metrics include Precision
Recall (PR), F-measure, Mean Absolute Error (MAE), S-
measure, and E-measure. Given a continuous saliency map,
a binary mask B is achieved by thresholding. Precision is
defined as Precision = |B ∩G|/|B|, and recall is defined
as Recall = |B ∩G|/|G|, where G is the corresponding
ground truth. A PR curve is plotted under different thresh-
olds.

F-measure is an overall performance indicator, which is
computed by

Fβ =

(

1 + β2
)

Precision×Recall

β2Precision+Recall
. (12)

As suggested in [69], β2 = 0.3.

MAE is defined as

MAE =
1

W ×H

W
∑

i=1

H
∑

j=1

|S (i, j)−G (i, j)|, (13)

where W and H are the width and height of the image,
respectively.

S-measure (Sm) [70] is computed by

Sm = αSo + (1− α)Sr, (14)

where So and Sr represent the object-aware and region-
aware structure similarities between the prediction and the
ground truth, respectively. α is set to 0.5 [70].

E-measure (Em) [71] combines local pixel values with
the image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

5.3 Implementation Details

The proposed model is implemented in Tensorflow [72].
To avoid over-fitting caused by training from scratch, the
five stacked convolutional layers in FLNet are initialized
by Conv1 2, Conv2 2, Conv3 3, Conv4 3, and Conv5 3 of
the pretrained VGG16 model [73], respectively. The other
weights are initialized randomly with a truncated normal
(σ = 0.01), and the biases are initialized to 0. The Adam
optimizer [74] is used to train our model with an initial
learning rate of 10−5, β1 = 0.9, and β2 = 0.999. The training
dataset of DUTS [75] is chosen as the training dataset with
horizontal flipping as the data augmentation technique.
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TABLE 2
Comparisons of Fβ and MAE values for different ablation analyses on
ECSSD [65]. Especially in (d), “w/ CAR” and “w/o CAR” represent the
proposed correlation-aware capsule routing algorithm and the original

capsule routing algorithm adopted in [25], respectively.

Training with the cross-entropy loss function.

Section Framework versions
Metric

Fβ MAE

(a) Sec. 5.4.1
FLNet + TSPORTNet 0.8873 0.0515

Conv + ReLU + TSPORTNet 0.6545 0.1504

(b) Sec. 5.4.2
FLNet + TSPORTNet 0.8873 0.0515

FLNet 0.8250 0.0694

(c) Sec. 5.4.3
FLNet + TSPORTNet 0.8873 0.0515
FLNet + SSPORTNet 0.8706 0.0644

Training with the joint loss function.

(d) Sec. 5.4.4
FLNet+TSPORTNet (w/ CAR) 0.9098 0.0437

FLNet+TSPORTNet (w/o CAR) 0.9007 0.0503

(e) Sec. 5.4.5
+WGNet 0.9135 0.0417
-WGNet 0.9098 0.0437

(f) Sec. 5.4.6
CWM 0.9135 0.0417

ConvM 0.8680 0.0572
Training “FLNet + TSPORTNet” with different loss functions.

(g) Sec. 5.4.7
CE + IoU 0.9007 0.0503

CE 0.8873 0.0515

5.4 Ablation Analysis

5.4.1 FLNet

To explore the validity of FLNet, we compare two frame-
work versions, including “FLNet + TSPORTNet” and “Conv
+ ReLU + TSPORTNet” that learn features of the input
image through (Conv + ReLU) layers used by the original
CapsNet. The performance comparisons are given in Table
2(a) and Fig. 12. Obviously, in Table 2(a), FLNet promotes
the performance significantly, specifically 23.28 and 9.89
points in terms of Fβ and MAE values, respectively. This
evidently proves that rich deep features of the input image
fed into CapsNet play an important role in the final dense
prediction. More visibly in Fig. 12, thanks to the rich features
learned by FLNet, the network can identify low-contrast
salient parts, generating a whole salient object. This firmly
confirms that rich features of the input image can help
CapsNet find those tight low-contrast parts to compose a
whole object.

Fig. 12. Visual comparisons for FLNet. (a) Image; (b) GT; (c) FLNet +
TSPORTNet; (d) Conv + ReLU + TSPORTNet.

5.4.2 TSPORTNet

To demonstrate the effectiveness of TSPORTNet, we com-
pare two baselines, i.e., “FLNet + TSPORTNet” and
“FLNet”. Table 2(b) and Fig. 13 describe the detailed per-
formance comparisons from the quantitative and qualitative
perspectives, respectively. It can be found in Table 2(b) that
TSPORTNet improves the performance by a clear margin,
specifically 6.23 and 1.79 points for Fβ and MAE values,

respectively. Similar conclusions can be observed in Fig. 13,
where FLNet tends to miss those locally low-contrast salient
parts, e.g., the yellow region within the local diamond panel
in the top row of Fig. 13, or those globally low-contrast
salient parts, e.g., the birds in the entire image in the bottom
row of Fig. 13. By contrast, through exploring the part-object
relationships, TSPORTNet grabs the whole salient object
with all the salient parts detected.

Fig. 13. Visual comparisons for TSPORTNet. (a) Image; (b) GT; (c)
FLNet + TSPORTNet; (d) FLNet.

5.4.3 Two-Stream Strategy

To better understand the superiority of the two-stream strat-
egy, we investigate two architectures, including “FLNet +
TSPORTNet” and “FLNet + SSPORTNet”, where the latter
is implemented by directly adopting the original CapsNet
following FLNet. Table 2(c) and Fig. 14 show the quantita-
tive and visual comparisons, respectively. As observed in
Table 2(c), compared with SSPORTNet, TSPORTNet greatly
elevates the performance by 1.67 and 1.29 points with regard
to Fβ and MAE values, respectively. Also, as illustrated
in Fig. 14, SSPORTNet mislabels some background regions
as parts of the salient object, which indicates SSPORTNet
introduces some noisy capsule assignments. In contrast to
that, due to the involvement of the two-stream strategy,
our TSPORTNet successfully alleviates those noisy capsule
assignments, helping to cluster correct salient parts together
to compose the whole salient object.

Fig. 14. Visual comparisons for the two-stream strategy. (a) Image; (b)
GT; (c) FLNet + TSPORTNet; (d) FLNet + SSPORTNet.

5.4.4 Correlation-Aware Capsule Routing Algorithm

To show the effectiveness of the correlation-aware cap-
sule routing algorithm, we explore the difference between
“FLNet + TSPORTNet (w/ CAR)” and “FLNet + TSPORT-
Net (w/o CAR)”, where “CAR” represents the correlation-
aware capsule routing algorithm. To this end, we com-
pare two frameworks using the proposed correlation-aware
capsule routing algorithm (i.e., “FLNet + TSPORTNet (w/
CAR)”) and the original capsule routing algorithm (i.e.,
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“FLNet + TSPORTNet (w/o CAR)”) adopted in [25], re-
spectively. The performance comparisons can be found in
Table 2(d), which shows that the correlation-aware capsule
routing algorithm enhances the performance by 0.91 and
0.66 points in terms of Fβ and MAE, respectively. Fig. 15
exhibits two complex scenes to illustrate the superiority of
the correlation-aware capsule routing algorithm. Obviously,
the correlation-aware capsule routing algorithm helps to
grab more satisfactory object wholeness. This is beneficial
from the involvement of capsule correlations, which activate
high-familiarity capsules between adjacent layers, thereby
exploring more accurate part-object relationships.

Fig. 15. Visual comparisons for the correlation-aware capsule routing
algorithm. (a) Image; (b) GT; (c) FLNet + TSPORTNet (w/ CAR); (d)
FLNet + TSPORTNet (w/o CAR). “w/ CAR” and “w/o CAR” represent the
proposed correlation-aware capsule routing algorithm and the original
capsule routing algorithm adopted in [25], respectively.

As illustrated in Fig. 16, the correlation-aware routing
algorithm leads to a faster convergence than the original
capsule routing algorithm, which makes the network train-
ing a lot easier. Concretely, when the loss converges to 0.05,
the correlation-aware capsule routing algorithm will save 4
epochs covering 24 hours, which is a significant acceleration
of the training procedure.

Fig. 16. Training loss with the cross-entropy loss function. “Original”
and “CAR” mean the losses obtained by the original capsule routing
algorithm in [25] and the correlation-aware capsule routing algorithm,
respectively. When the loss converges to 0.05, our CAR saves 4 epochs
covering 24 hours.

5.4.5 WGNet

To illustrate the effectiveness of WGNet, we compare the
entire framework with a modified version that is obtained
by replacing WGNet with three deconvolution-ReLU opera-
tions and one convolution on the capsule wholeness map to
infer the saliency map. Table 2(e) and Fig. 17 give detailed

Fig. 17. Visual comparisons for WGNet. (a) Image; (b) GT; (c) +WGNet;
(d) -WGNet.

comparisons for these two versions. It is clear in Table 2(e)
that WGNet increases Fβ and decreases MAE by 0.37 and
0.20 points, respectively. In Fig. 17, we can find that WGNet
helps to get more clear object boundaries as well as more
uniform foreground and background maps. This proves that
the aggregation of the capsule wholeness map and multi-
level features facilitates to generate the final saliency map.

5.4.6 CWM

To investigate the superiority of the CWM, we replace CWM
with a Convolutional Map (ConvM) that is obtained by
replacing ConvCaps 1 and ConvCaps 24 with two convolu-
tional layers. Table 2(f) and Fig. 18 exhibit the performance
comparisons between our CWM and ConvM in quantitative
and visual manners, respectively. It is obvious from Table
2(f) that our CWM achieves a significant performance gain
compared to ConvM, e.g., 4.55 and 1.55 points in terms of
Fβ and MAE values, respectively. Additionally, in Fig. 18,
different from ConvM that misses some salient object parts,
our CWM can effectively produce the whole salient object.
These comparisons demonstrate that our CWM that grabs
the object wholeness is superior to ConvM.

Fig. 18. Visual comparisons for the capsule wholeness map. (a) Image;
(b) GT; (c) CWM; (d) ConvM.

5.4.7 Loss Function

To compare the performance of different training loss func-
tions, we train the baseline model, i.e., “FLNet + TSPORT-
Net”, using the cross-entropy loss function and the joint
loss function, respectively. Table 2(g) and Fig. 19 show
the quantitative and qualitative comparisons. It is obvious
from Table 2(g) that the joint loss function can promote the
performance to some extent, specifically 1.34 and 0.12 points
for Fβ and MAE, respectively. As shown in Fig. 19, the joint
loss function helps to achieve clear object boundaries.

4. Here, ConvCaps 1 and ConvCaps 2 correspond to the two convolu-
tional capsule layers, which are illustrated in Fig. 6.
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Fig. 19. Visual comparisons for different loss functions. (a) Image; (b)
GT; (c) Saliency map obtained by using the cross-entropy loss function;
(d) Saliency map obtained by using the joint loss function.

5.4.8 Visualization of Different Phases

To illustrate the roles of different phases in our method,
we visualize the detection results of different phases on
the same image, which are shown in Fig. 20. As can be
seen, FLNet indeed captures rich features of the image, and
TSPORTNet filters out background noises, thus promoting
the salient regions via exploring the part-object relationship-
s. The correlation-aware routing algorithm helps to capture
the whole salient object by computing more accurate cap-
sule assignments. With the aid of WGNet, the entire model
can detect the whole salient object with uniform saliency
values.

Fig. 20. Detection results of different phases. (a) Image; (b) FLNet; (c)
FLNet + TSPORTNet; (d) FLNet + TSPORTNet + CAR; (e) Our entire
model; (f) GT.

5.5 Comparison with the State-of-the-Art Methods

In this section, we compare our method with 14 state-of-
the-art methods, including TSPOANet [26], JointCRF [76],
ToHR [44], PoolNet [45], CPD [78], AFNet [79], BMP [43],
LFR [80], Amulet [41], UCF [81], DLS [21], ELE [22], ELD
[82], and MDF [17]. Visual and quantitative comparisons are
both taken into account for fair comparisons.

5.5.1 PR Curve and F-measure Curve

Fig. 21 plots PR and F-measure curves of our method against
the state-of-the-art methods on 4 popular salient object
detection datasets. If looking at the upper right corners of
the PR curves, our method produces higher precision when
the recall score is close to 1, which indicates a lower false
positive rate. Besides, it can be found that our method
beats most of the others in the two upper corners of the
F-measure curves. This demonstrates that on our saliency
maps, background regions achieve uniformly low values
whilst salient regions are provided with uniformly high
values. These observations from the PR and F-measure
curves also indicate that the saliency maps of our framework
are much closer to the ground truth.

5.5.2 Quantitative Comparisons

Table 3 lists the average F-measure, MAE, S-measure, and
E-measure values of different methods. It can be easily seen
from Table 3 that our model achieves competitive perfor-
mance with the state-of-the-art methods on five benchmark-
s. Specifically, over four metrics on five benchmarks, we ob-
tain 7 top-1, 15 top-2, and 19 top-3 places, respectively. The
second best method, i.e., PoolNet [45], gets 7 top-1, 10 top-
2, and 17 top-3 places, respectively. The third best method,
i.e., CPD [78], obtains 6 top-1, 13 top-2, and 14 top-3 places,
respectively. This clearly demonstrates the superiority of the
part-object relational property adopted by our framework
for salient object detection. We are especially excited to ob-
tain a noticeable gain over the previous version TSPOANet
[26], which indicates the performance improvements caused
by the correlation-aware routing algorithm and the capsule
wholeness map guidance network.

5.5.3 Visual Comparison

To further explain the superiority of our proposed approach,
Fig. 22 displays saliency maps of some images with var-
ious challenging properties, including small objects, large
objects, low contrast, low compactness, multiple objects,
center bias, complex scenes. Each image usually incorpo-
rates multiple properties. For the first group of images,
the compared methods mostly introduce some background
noises. For the second group, most existing methods usually
miss some salient object parts. For the third group, existing
saliency detectors mostly miss some salient objects or get
poor object smoothness. For the last group, the compared
approaches mostly miss some salient parts. Instead, taking
all circumstances into account, our model highlights the
right salient object, and produces good wholeness for those
images with various properties. To sum up, compared with
the state-of-the-arts, our detection results are closer to the
ground truth in various cases.

5.5.4 Time Analysis

Table 4 lists the running time of some methods (with one
NVIDIA 1080Ti GPU). It can be observed that our method
is much faster than CapsNet [25], JointCRF [76], ToHR [44],
and MDF [17]. In contrast, our approach is slower than BMP
[43], LFR [80], Amulet [41], and UCF [81]. This is mainly
attributed to the computationally expensive EM routing
algorithm adopted in our model. However, notice that our
method achieves much better performance than these meth-
ods, as evidenced in Fig. 21 and Table 3. Specifically, as
illustrated in Fig. 22, we get much better wholeness and
uniformity for the saliency map than these state-of-the-art
methods.

Notably, compared with the original CapsNet, our
method can greatly accelerate the running speed by 65%,
which benefits from the use of the proposed two-stream
strategy. Specifically, our method takes 0.35 seconds to pro-
cess one image with cropped size 352×352, which is feasible
for some applications, e.g., medical diagnosis, image/video
editing and rotoscoping on mobile.
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ECSSD [65] HKU-IS [17] PASCAL-S [66] DUTS [68]

Fig. 21. PR and F-measure curves of different methods on four popular salient object detection datasets.

TABLE 3
Fβ , MAE, Sm, and Em values of different methods. Top three methods are marked by red, blue, and green, respectively. “-” means that the

corresponding authors do not provide the detection results of the dataset.

ECSSD [65] HKU-IS [17] PASCAL-S [66] DUTS [68] DUT-OMRON [13]
Fβ MAE Sm Em Fβ MAE Sm Em Fβ MAE Sm Em Fβ MAE Sm Em Fβ MAE Sm Em

OURS 0.9135 0.0410 0.9129 0.9229 0.9010 0.0324 0.9091 0.9502 0.8204 0.0707 0.8498 0.8578 0.8092 0.0433 0.8707 0.8877 0.7436 0.0579 0.8230 0.8557
TSPOANet [26] 0.8873 0.0515 0.8684 0.9020 0.8795 0.0391 0.8656 0.9263 0.8123 0.0749 0.8142 0.8508 0.7971 0.0482 0.8202 0.8748 0.7030 0.0628 0.7692 0.8232
JointCRF [76] 0.8956 0.0493 0.9068 0.9152 0.8817 0.0394 0.9032 0.9384 0.7898 0.0824 0.8410 0.8368 0.7444 0.0588 0.8358 0.8477 0.7379 0.0574 0.8207 0.8571

ToHR [44] 0.9023 0.0544 0.8829 0.9171 0.8923 0.0420 0.8827 0.9357 0.8008 0.0855 0.8068 0.8465 0.7932 0.0512 0.8291 0.8835 0.7079 0.0660 0.7718 0.8411
BASNet [77] 0.9023 0.0544 0.8829 0.9171 0.8923 0.0420 0.8827 0.9357 0.8008 0.0855 0.8068 0.8465 0.7932 0.0512 0.8291 0.8835 0.7079 0.0660 0.7718 0.8411

CPD [78] 0.9145 0.0402 0.9102 0.9216 0.8962 0.0332 0.9045 0.9471 0.8199 0.0721 0.8446 0.8563 0.8132 0.0429 0.8666 0.8921 0.7452 0.0567 0.8177 0.8633
PoolNet [45] 0.9098 0.0417 0.9173 0.9205 0.8942 0.0333 0.9118 0.9477 0.8060 0.0716 0.8518 0.8452 0.7986 0.0419 0.8787 0.8807 0.7386 0.0562 0.8324 0.8574
AFNet [79] 0.9076 0.0418 0.9134 0.9180 0.8891 0.0355 0.9058 0.9424 0.8149 0.0717 0.8482 0.8506 0.7924 0.0458 0.8670 0.8787 0.7385 0.0574 0.8263 0.8533
BMP [43] 0.8682 0.0447 0.9108 0.9137 0.8705 0.0389 0.9065 0.9373 0.7578 0.0753 0.8431 0.8420 0.7453 0.0490 0.8616 0.8599 0.6917 0.0636 0.8093 0.8375
LFR [80] 0.8799 0.0525 0.8968 0.9005 0.8751 0.0396 0.9046 0.9313 0.7613 0.1066 0.8045 0.7992 0.7030 0.0834 0.8089 0.8059 0.6656 0.1030 0.7800 0.7799

Amulet [41] 0.8683 0.0589 0.8941 0.9011 0.8426 0.0501 0.8860 0.9122 0.7574 0.0997 0.8183 0.8016 0.6775 0.0846 0.8039 0.7939 0.6472 0.0976 0.7805 0.7787
UCF [81] 0.8439 0.0690 0.8834 0.8923 0.8233 0.0612 0.8742 0.9027 0.7261 0.1155 0.8055 0.8042 0.6307 0.1122 0.7823 0.7625 0.6206 0.1204 0.7599 0.7647
DLS [21] 0.8219 0.0860 0.8064 0.8655 0.8081 0.0696 0.7986 0.8788 0.7071 0.1301 0.7234 0.7925 - - - - 0.6453 0.0895 0.7249 0.8016
ELE [22] 0.7545 0.1201 0.7426 0.8201 0.7053 0.1118 0.7127 0.8097 0.6444 0.1614 0.6682 0.7432 0.5765 0.1272 0.6704 0.7479 0.5752 0.1215 0.6763 0.7502
ELD [82] 0.8169 0.0783 0.8413 0.8835 0.7764 0.0719 0.8230 0.8845 0.7138 0.1206 0.7605 0.8055 0.6246 0.0924 0.7534 0.7844 0.6141 0.0909 0.7513 0.7771
MDF [17] 0.8068 0.1050 0.7761 0.8462 0.7843 0.1292 0.8101 0.8708 0.7020 0.1420 0.6959 0.7596 0.6692 0.0935 0.7330 0.8091 0.6443 0.0916 0.7208 0.7997

Fig. 22. Detection results of different methods. (a) Image; (b) GT; (c) OURS; (d) TSPOANet [26]; (e) JointCRF [76]; (f) ToHR [44]; (g) BASNet [77];
(h) CPD [78]; (i) PoolNet [45]; (j) AFNet [79]; (k) BMP [43]; (l) LFR [80]; (m) Amulet [41]; (n) UCF [81]; (o) DLS [21]; (p) ELE [22].
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TABLE 4

Running time of some methods. It can be found that our method is much faster than CapsNet [25], JointCRF [76], ToHR [44], and MDF [17].
Especially, compared with the original CapsNet, our method can greatly accelerate the running speed by 65%, which benefits from the use of the

proposed two-stream strategy.

TSPORTNet CapsNet [25] JointCRF [76] ToHR [44] BMP [43] LFR [80] Amulet [41] UCF [81] MDF [17]
Time (second) 0.35 0.54 0.48 0.39 0.05 0.09 0.07 0.15 8

Crop size 352× 352 352× 352 240× 320 384× 384 256× 256 384× 384 256× 256 448× 448 400× 300

6 DISCUSSION AND FUTURE WORK

6.1 Potential of Part-Object Relational Property

As the part-object relationships are essential for the object,
the spirit, i.e., detecting part-object relationships, presented
in this work can help improve the performance of various
vision tasks, especially object-centric tasks. To this end, we
have extended our work to semantic segmentation and
lesion detection. The preliminary results reveal: 1) For the
segmentation task, i.e., the pixel-level recognition task, by
detecting associated object parts, our algorithm can help
to recognize all pixels belonging to a certain object and
thus segment the whole object out from complicated back-
grounds; 2) For the object detection task, part-object rela-
tionships can help to find the complete object region, rather
than discriminative parts only. It enables us to recognize
the right interest proposals for accurate classification and
localization.

To provide some context, we elaborate on how we ex-
pand our spirit to segment different objects in our daily-
life images (i.e., conducting semantic segmentation) and
to detect the lesion regions in medical imaging data (i.e.,
conducting universal lesion detection) in the supplementary
materials.

6.2 Future Work

In the future, we will focus on several urgent issues. First,
we will expand the property of part-object relationships to
wide applications, e.g., segmentation and object detection,
by finding the intrinsic relations between the part-object
relational property and these tasks.

Secondly, high computational complexity and a large
number of parameters are the general problems faced by
CapsNet related works. Therefore, a lightweight CapsNet is
in demand for CapsNet to be used for wide applications. In
the future, we will pay attention to this problem with two
potential solutions: 1) Making the adjacent-layer capsule
connections sparse can reduce the parameters by a large
margin; 2) Designing a more intelligent capsule routing
algorithm to trade off the accuracy of capsule assignments
and computation speed is worth investigating.

7 CONCLUSION

In this paper, we have investigated a part-object relational
visual saliency for the purpose of remedying the problem
of incomplete segmentation of the salient object in a scene,
which is accomplished by involving a new salient property
of part-object relationships provided by CapsNet in salient
object detection. To achieve this, we have presented a deep
TSPORTNet, where a two-stream strategy is adopted to
implement CapsNet, helping to reduce the network com-
putation budgets while diminishing some noisy capsule
assignments. A correlation-aware capsule routing algorith-
m is also presented by preserving the preceding capsule

correlations between different capsule types across adjacent
layers in favor of more accurate capsule assignments. With
the part-object relationships discovered, TSPORTNet out-
puts a capsule wholeness map, which further aggregates
with multi-level features to achieve the final saliency map.
Extensive evaluations have verified the effectiveness and
superiority of the proposed salient object detector. However,
the network parameters and computation complexity of
CapsNet are still obstacles for the large-scale dense segmen-
tation and detection. In the future, we will investigate the
issue of making CapsNet a light tool for large-scale dense
segmentation and detection tasks.
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