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Abstract 

Industrial robots have been around since the 1960s and their 

introduction into the manufacturing industry has helped in 

automating otherwise repetitive and unsafe tasks, while also 

increasing the performance and productivity for the companies that 

adopted the technology. As the majority of industrial robotic arms are 

deployed in repetitive tasks, the pose accuracy is much less of a key 

driver for the majority of consumers (e.g. the automotive industry) 

than speed, payload, energy efficiency and unit cost. Consequently, 

manufacturers of industrial robots often quote repeatability as an 

indication of performance whilst the pose accuracy remains 

comparatively poor. Due to their lack in accuracy, robotic arms have 

seen slower adoption in the aerospace industry where high accuracy 

is of utmost importance. However if their accuracy could be 

improved, robots offer significant advantages, being comparatively 

inexpensive and more flexible than bespoke automation. Extensive 

research has been conducted in the area of improving robotic 

accuracy through re-calibration of the kinematic model. This 

approach is often highly complex, and seeks to optimise performance 

over the whole working volume or a portion thereof, rather than 

optimising performance of a particular task. In this paper, a method 

for iteratively teaching poses on a standard industrial robot is 

presented, and an investigation into the limits on the achievable pose 

accuracy and the required recalibration period is conducted. Through 

experimental work on a KUKA KR 240 R2900 ultra robot equipped 

with a drilling end-effector and measured in 3DoF using a laser 

tracker, it is demonstrated that the achievable accuracy approaches 

the stated repeatability of the robot. Finally, investigation results into 

the accuracy of the robot over short distances to allow small 

corrections to be applied from these taught poses to compensate for 

work-piece alignment or thermal effects are presented. 

Introduction 

Robot calibration is the process of improving the accuracy and 

repeatability of a robot by identifying and quantifying the sources of 

inaccuracies, and compensating them to improve the kinematic and 

dynamic models of the robot. Robot calibration has helped in 

increasing the usage of robotic arms not only in pick-and-place tasks 

but also in machining of components, even as far as aerospace 

components [1]. However, their usage is still limited by their lack of 

absolute accuracy. Robot calibration can be split between parametric 

and non-parametric. The parametric calibration considers the 

kinematic and dynamic modelling of the robot and the parameters 

those models depend on. The aim of parametric calibration is to 

identify and estimate the relevant parameters with the purpose of 

optimizing performance. On the other hand, the non-parametric 

calibration is concerned with compensating for the errors observed in 

robot configuration (e.g. errors in Cartesian space) without 

consideration of the kinematic and dynamic model. This is mostly 

done by observing the differences between the target and attained 

pose. In this paper, the results of improving the accuracy of a KUKA 

KR240 R2900 ultra robot in 3DoF through iterative teaching, i.e. 

non-parametric calibration, are presented.  

Most of the academic research work conducted on robot calibration 

has concentrated around kinematic calibration. In [2] the authors 

concentrate on offering a calibration solution by monitoring the 

coordinate location of a robot manipulator’s end effector. In order to 
achieve the improvement in accuracy, a kinematic calibration 

approach is implemented such that the errors in end effector location 

are utilised to optimise the kinematic model of the robot. Two 

compensation algorithms are used for improving the accuracy once 

the errors in the kinematic model were identified: the differential 

error transform and Newton-Raphson compensation method. These 

approaches only took into consideration geometrical sources of error, 

as it is to be expected from a kinematic calibration method. The 

algorithms are further experimentally proven on a six axis PUMA 

560 robot, on three data sets. The improvement in Cartesian accuracy 

noted by the authors was 70% between the calibrated and non-

calibrated results. The work done in [2] is a typical example of using 

a kinematic calibration method.  

Laser trackers are often used in literature for identifying the location 

of a robot and in particular the robot’s end effector with respect to its 
base. In [3] the authors used such a method in order to identify the 

errors in the end effector positioning of a Motoman SK 120 robot 

manipulator. Three robot orientations were used in order to 

demonstrate their method. The authors utilised a laser tracker for the 

work that has a measurement uncertainty of around 60 microns. 

Compared to [2], in [3] the authors used the ISO 9283 standards for 

robot accuracy and robot repeatability to demonstrate their calibration 

method, as such presents a good reference methodology for any 

future testing and helps with the comparison of results.  

In 2004, Elatta et al presented an overview in robot calibration [4]. 

The authors classify the calibration methods into model based 

parametric calibration and model based non-kinematic calibration. 

The parametric calibration is also known as kinematic and non-

kinematic calibration for which three steps are identified: modelling, 

measurement, and identification and compensation. The non-

kinematic calibration is associated with calibration where the sources 

of error are mechanical sources. The authors of [4] further claim that 

the kinematic modelling is assuming the robot manipulators links are 

rigid bodies while the non-kinematic modelling is assuming links to 
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be non-rigid bodies.  The paper mainly discussed the theory behind 

robot calibration (i.e. methods of robot calibration) without 

necessarily giving examples of applications.  

In [5] assessment methodologies for positioning performance of an 

ABB IRB1600 robot manipulator are discussed. The paper is 

concerned with providing a comparison of capabilities between three 

measurement systems: a laser tracker system, a laser interferometer 

system and a telescopic ballbar system. The methodology follows the 

ISO 9283 standards. According to the ISO 9283 standards, the robot 

being tested should be loaded at its maximum payload. Nevertheless, 

the tests were conducted with only 1.9 kg of payload (the max 

payload for the IRB1600 robot is 6 kg) as previous tests conducted 

(not presented) showed no influence in the robot's repeatability when 

the payload was increased from 3 kg to 6 kg. The concluding results 

presented were summarised and the ballbar system was underlined as 

being more fit for purpose than the other two. Thermal effects were 

also reported on and it was concluded that the robot needed a long 

warm up cycle (24hrs in their case) in order for the repeatability 

measurements to stabilise.  

The work conducted in [6] is concerned with improving accuracy of 

robots for usage in the robotic machining field. The used method is 

dependent on robot model which makes it difficult to define a 

homogenous framework for improving accuracy in robotic 

machining. Compliance and backlash are found to be the dominant 

sources of error in robotic machining. The authors characterise the 

sources of error in robotic machining. The robot used for the 

conducted experiments is a KUKA KR125 that is controlled via a 

Beckhoff TwinCat controller (CNC controller).  

Most recently, in [7], a kinematic calibration methodology for a 

KUKA KR500 robot was presented. The method is dependent on 

firstly defining the kinematic model of the used robot (by using the 

Denavit-Hartenberg (D-H) method). The next step was to define the 

relationship between the robot coordinate system and the 

measurement device (API Radian laser tracker) coordinate system. 

This was done by using the motion around only two axis, A1 and A2. 

The novelty in the method was that a two-step error model was used. 

This was utilised to calibrate the D-H kinematic parameters, angle 

and distance. The authors of [7] compared their newly introduced 

calibration method to the full parameter calibration method. In the 

full parameter method, the angles and the distance errors are 

considered simultaneously.  

As stated before, non-kinematic robot calibration takes into account 

error sources such as stiffness, joint-compliance and friction. Work 

conducted in non-kinematic robot calibration is considerably less in 

volume than the work conducted in kinematic robot calibration. This 

is due in part to the fact that non-kinematic error sources are more 

difficult to model.  

In [8], the authors present a hybrid robot calibration method such that 

it takes into account kinematic modelling and kinematic sources of 

error (i.e. geometry based) but also joint and link compliance errors 

(i.e. non geometry based). For the study, a Staubli TX60L robot 

manipulator was considered. The non-kinematic errors were 

modelled through a robot compliance method, specifically by looking 

into the relationship between torque and tension. In [8] the authors 

present results supporting that joint compliance errors are more 

significant in terms of their effect of positional accuracy than link 

compliance errors. This further informed the use of superposition 

theory as a robot compliance error analysis method. As such, each 

joint was modelled as a linear torsional spring with one stiffness 

coefficient to be identified. Furthermore, it is stated in [8] that the 

error model for the robot is nonlinear.  

Planar constraints are used in [9] in order to develop a non-kinematic 

robot calibration method. The authors identify the stiffness of the 

joints of the robot and the kinematic parameters in a simulated 

environment. The robot considered in the study was a FANUC LR 

Mate 200iC. The data used for training of their proposed model of 

calibration was obtained using a precision touch probe. Linear Taylor 

approximation is used for identifying the stiffness of the robot joints 

and the kinematic parameters.  

The papers considered so far have the kinematic and non-kinematic 

calibration approach in common. The issue with the kinematic and 

non-kinematic calibration approaches is that it is not user friendly and 

it requires deep technical knowledge of robot modelling for 

implementation. This makes both of them an unattractive calibration 

method for industrial applications. Furthermore, it may not be 

necessary to optimise performance over the whole working volume. 

This is why, in this work, a non-parametric approach was considered 

for improving robot accuracy through iterative teaching.  

In the first instance, the robot was iteratively taught poses to correct 

for errors attributed to geometric effects. This was followed by 

investigation of the robot’s accuracy over small scales during which 

it was noted that these errors do not accumulate over a distance of 

approximately 10 mm and therefore small corrections for errors such 

as workpiece alignment might be applied without compromising the 

accuracy of the taught pose.    

 

The next section of the present paper will cover the description of the 

equipment used and the setup decided upon as well as the method of 

data gathering. Following this section, the results of the work 

conducted will be presented. The paper will conclude with a 

discussion section. 

Methodology 

Equipment and Setup 

The experimental setup is based on a robotic drilling cell with a 

flexible fixture created for an aerospace project. The cell can be seen 

in Figure 1 below.  

 
Figure 1. Flexible robotic drilling cell illustrating working volume utilised in 

the experiment. 

The cell consists of a KUKA KR240 R2900 ultra robot with a drilling 

end-effector fitted with a Leica T-Mac probe to facilitate 

measurement of the robot pose. The drilling end-effector weighs 

approximately 120kg, and was kept on during the experiments as 

realistic payload. The cell also contains a flexible fixturing frame 

with suction cups, a robot tool changer station (not visible in the 

picture) and rotary table.  

y 

z 

x 
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The KUKA KR240 R2900 ultra robot has a maximum payload of 

240 kg, a rated repeatability of ±60 µm and a maximum reach of 

2896 mm [10]. However, the working range of the robot during the 

conducted experiments was determined by the cell layout. Before 

each experiment, the robot was warmed up for a total of 40 minutes 

by moving it around in each axis within its working volume.  

A Leica AT960 absolute laser tracker was used to measure the 

position of the T-Mac probe and robot TCP (Tool Centre Point), 

defined as the furthest point along the spindle axis with respect to the 

robot tool flange. The Leica AT960 and T-Mac probe has a 

maximum permissible error of ±15 µm + 6 µm/m and was used in 

conjunction with Spatial Analyser (SA) software to measure the pose 

of the robot in three degrees of freedom within a USMN (Unified 

Spatial Metrology Network) coordinate system established by 

spherically mounted retroreflectors affixed within the cell. 

During the experiment, the robot was programmed to sequentially 

visit 81 different poses within a 600 mm x 1600 mm x 400 mm 

region directly above the fixture and evenly distributed over 3 x 9 x 3 

grid (x, y, z). In each of the poses the end-effector was kept in a 

downward orientation to mimic a realistic positioning for a drilling 

application. The robot revisited each of these poses 30 times in order 

to allow a reliable calculation of the mean attained pose. The error 

between the mean attained pose and the command pose was then 

used to correct the future command pose in three subsequent 

iterations of calibration.    

To investigate the pose accuracy over small distances, a Renishaw 

XL-80 laser was used (see Figure 2). The Renishaw XL-80 device is 

a laser interferometer typically used to calibrate linear axes within 

computer numerically controlled machines and has a rated accuracy 

of ±5 µm per metre. As the device only measures the displacement 

along a single axis between the laser head and retroreflector, the 

experiments were separated into three individual sets for the x, y and 

z axis. The robot was programmed to move 200 mm in 1 mm 

increments along the x, y or z axis from poses within the working 

volume where the robot did not have to change configuration or pass 

through singularity, before returning along the same path. This 

routine was repeated 30 times to allow a reliable calculation of the 

mean attained pose at each increment. The increased resolution of the 

Renishaw device over the laser scanner afforded measurement of 

errors arising from non-geometrical effects such as backlash in the 

joints.   

 

 
Figure 2. Renishaw XL-80 laser placed within robot cell (left) Renishaw           

XL-80 laser layout with two optics (right). 

 

Results 
Large volume accuracy results 

In Figure 3, Figure 4 and Figure 5, the error in each axis is presented 

by calibration step. The first step is the initial error observed with no 

calibration applied; Step 2, 3 and 4 represent each of the three 

calibration steps, and Step 5 represents the error one week after 

calibration. It can be observed in all plots that the calibration is still 

valid after a period of one week.  

 
Figure 3. Error by calibration step for X axis. 

Figure 3 shows the error by calibration step for the x axis. The red 

line represents the median of the data points (50% quantile), the top 

of the rectangle represents the 75% quantile and the bottom of the 

rectangle represents 25% quantile. The top and bottom whiskers are 

the maximum and minimum values of the data points. The red points 

represent outliers.    

Repeat of 

tests with 3rd 

step 

calibration 

after 1 week 
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Figure 4. Error by calibration step for Y axis. 

Figure 4 shows the error by calibration step for the y axis. As with 

Figure 3, the red line represents the median of the data points, while 

the top and bottom of the rectangle represents the 75th percentile and 

the 25th percentile respectively. The top and bottom whiskers are the 

maximum and minimum values of the error.   

 
Figure 5. Error by calibration step for Z axis. 

Figure 5 shows the error by calibration step for the z axis. The 

graphical representation is the same as with Figure 3 and Figure 4 

such that the red line is the 50% quantile and the bottom and top of 

the rectangular box is the 25% and 75% quantile. The ends of the 

whiskers represent the minimum and maximum values of the data 

points considered.  

For all three axis, it can be observed that the spread of the data in the 

non-calibrated case is considerably bigger than after the robot was 

calibrated. The first, second and third calibration steps show that the 

error is getting closer to zero.  

To aid visualisation, the deviations from the target pose in the non-

calibrated and calibrated states are shown in Figure 6. The overall 

positional accuracy 𝐴𝑝was calculated according to ISO 9283:1998 by 

using equation (1) below: 

𝐴𝑝 =  √(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 + (𝑧 − 𝑧𝑐)2                               (1) 

 where, 𝑥, 𝑦, 𝑧 are the coordinates of barycentre of the cluster of 

poses attained after repeating the same command pose 𝑥𝑐, 𝑦𝑐 , 𝑧𝑐  30 

times. 

Figure 6 (top) shows the colour map for absolute error (from equation 

(1)) for the non-calibrated robot created by linearly interpolating 

between the measurement poses. The colour map is plotted for the 

three attempted x target positions, 800 mm, 1100 mm and 1400 mm 

respectively. For this case, the maximum error obtained was over 1.8 

mm and it corresponded to the target position [x y z] = [1400 400 

250]. Figure 6 (bottom) represents the colour map for the absolute 

error after the third calibration step was conducted. The maximum 

error obtained after the third step of calibration was approximately 

0.058 mm and corresponded to the target position [x y z] = [1400 600 

450]. In both panels it can be seen that the pose accuracy varies 

across the working volume which may be attributed to discrepancies 

between the actual kinematics of the robot and the idealised model 

used within the controller which manifests as a pose dependent error. 

Nevertheless, the non-parametric approach has reduced the maximum 

error to 0.058 mm.  

 

 

 
Figure 6. Colour map of absolute error for non-calibrated robot (top) and 

third step of calibration (bottom). 

Figure 7 represents the positional accuracy by calibration step. Once 

again, the pose accuracy improves dramatically from the first 

calibration step. Thereafter the spread of the data improves over each 

subsequent calibration step. From the results of Step 5 one can 

conclude that even after a period of one week after which time the 

maximum error observed was 0.1 mm, the calibration is still valid. As 

such it can be concluded that depending upon the process 

requirements, the necessary recalibration period may exceed weeks. 

Repeat of 

tests with 3rd 

step 

calibration 

after 1 week 

Repeat of 

tests with 3rd 

step 

calibration 

after 1 week 
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Figure 7. Positional accuracy by calibration step. 

Figure 8 presents three times the standard deviation in pose accuracy 

for at each calibration step, such that 99.7% of the data points were 

taken into consideration.  

 

Figure 8. Standard deviations vs Calibration Step. 

From Figure 8 the confidence in attaining the target pose improves 

with each calibration step. This gradual improvement can be related 

back to the variation in pose accuracy across the working volume in 

Figure 6: whilst over the working volume the robot may exhibit poor 

pose accuracy due to discrepancies between the actual kinematics of 

the robot and the model used within controller, at each calibration 

step a progressively smaller correction is applied, and over such 

distances this effect is diminished. 

Small volume accuracy results 

To further investigate the length scales over which these errors 

manifest, the pose accuracy over small distances was measured. 

Figures 9 to 11 show the average mean results for forward and 

backward runs for each axis. Whilst no pattern can be observed in the 

x axis mean errors over the 200 mm, for the y and z axes the mean 

error is continuously increasing over the considered 200 mm. As such 

it should be concluded that the pose accuracy deteriorates as the robot 

travels away from a taught position. Again this can be attributed to an 

accumulation of errors due to discrepancies between the kinematics 

of the robot and the idealised model used within the controller. 

Naturally, these errors will be highly dependent upon the joints 

involved in the movement and thus will vary throughout the working 

volume. However, this result illustrates that a small offset could be 

applied to a command pose without compromising the accuracy 

provided care is taken to avoid reversing direction, which from 

Figure 9 to 11 introduces errors that might be attributed to backlash 

within the robot actuators.   

 

 

Figure 9. Average error X axis for forward and backward runs. 

 

Figure 10. Average error Y axis for forward and backward runs. 

 

Figure 11. Average error Z axis for forward and backward runs. 
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tests with 3rd 

step 

calibration 
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Figure 12. Error per each axis for forward and backward runs. 

Figure 12 summarises the pose error per forward and backward run, 

for each axis. The red line in Figure 12 represents the median of the 

data points, while the top and bottom of the rectangle represent the 

25% and 75% quantile respectively. The top and bottom whiskers are 

the maximum and minimum of the considered data points. Due to the 

fact that these tests were run for each individual axis, the presented 

results in Figure 12 are also given for each individual axis. The 

difference between the medians of the forward and backward runs in 

Figure 12 also give an indication of the average reversing error 

observed. 

In Figure 13 the average reversing error along each axis is 

summarised. For the x axis, an average error of 0.154 mm was 

observed. For the y axis, the average error was 0.174 mm, while the 

highest average error was observed on the z axis and it was 0.232 

mm.  

  

Figure 13. Average backlash observed on each axis. 

Conclusions and Discussion 

The purpose of the work presented in this paper was to provide an 

approach for improving robotic accuracy through iterative teaching. 

The literature shows that the issue of robot calibration is extensively 

attempted through the use of kinematic and non-kinematic models. 

However, kinematic and non-kinematic robot calibration approaches 

require a deep technical knowledge and modelling of the kinematics 

and dynamics models of the robot. This in turn makes these 

approaches cumbersome and as such are less likely to be accepted in 

industry. In this work non-parametric improvements of robot 

accuracy were discussed and results were presented for the applied 

methodologies in a large and small working volumes of the KUKA 

KR240 R2900 ultra robot.  

The results presented in the previous section show that after three 

steps of calibration the robot’s positional accuracy improved beyond 
its stated repeatability, with a maximum error of approximately 0.058 

mm. Furthermore, after a time period of one week, the calibration 

was still valid and the robot’s positional accuracy was still close to its 
stated repeatability, with a maximum error of 0.1 mm. This therefore 

brings the performance of this standard robot within the typical 

tolerances of 0.25 mm required of aerospace [11]. 

Investigation of the robot’s performance over small scales revealed 

that the robot’s positional error in each of the three axis does not 
fluctuate much within 10 mm distance or so of the start point, 

previously taught using our iterative process. This suggests that small 

corrections for factors such as workpiece alignment could be applied 

to the previously taught positions without compromising the pose 

accuracy provided that care is taken to avoid introducing reversing 

errors.  

Future work will focus on validating the proposed methodology in a 

representative drilling application and investigation of the resolution 

limit of the robot in compensating for thermal or other environmental 

effects. 
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