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Land Subsidence Surrogate Models for Normally1

Consolidated Sedimentary Basins2

Domenico Baù∗3
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Abstract7

This article presents a methodology for building a computationally-fast “surro-8

gate model” to simulate land subsidence due to fluid extraction from normally9

consolidated sedimentary basins. The model relies on the extension of the clas-10

sic nucleus of strain solution (NoS) in a homogeneous semi-infinite continuum11

to heterogeneous basins, in which the uniaxial vertical compressibility cM varies12

along the depth z following either a power or an exponential law. The NoS so-13

lution represents the horizontal and vertical components of the surface displace-14

ment associated with a unit volume at a given depth c in which a unit change15

of pore pressure occurs. The modified NoS solution is obtained by fitting the16

horizontal and vertical components of the surface displacement calculated using17

a finite-element (FE) numerical model. This is achieved through a regression18

algorithm that identifies four fitting parameters. By repeating such a regression19

over a set of combinations of the coefficients of the basin compressibility model20

cM (z), it is possible to identify four functions that emulate the variability of the21

four fitting parameters with respect to the compressibility model coefficients.22

The surrogate land subsidence model is then built by integrating the modified23

NoS equations within the subsurface region (e.g. an aquifer) where a change in24

pore pressure occurs due to fluid abstraction. Such formulation results in an ex-25

plicit ”response-matrix” approach, where the forcing terms depend on the pore26

pressure variations, and the matrix coefficients account for the selected basin27

compressibility model. The implementation approach is quite straightforward28
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and powerful, as it allows, for example, to easily construct a land subsidence29

package “online” over any groundwater flow model, or estimate “offline” the30

land surface displacement associated with any simulated or observed 3D pore31

pressure change field. The surrogate land subsidence model is tested with a se-32

ries of numerical experiments, and is shown to produce accurate results within33

the working assumptions of the model.34

Keywords: Land Subsidence, Nucleus of Strain, Model Surrogates35

1. Introduction36

Land subsidence is one of the major unintended effects of the extraction of37

fluids (water, gas, oil) from the subsurface and has long been observed world-38

wide, in several regions of North America (Ortiz-Zamora and Ortega-Guerrero,39

2010; Castellazzi et al., 2016; Kasmarek et al., 2016; Sneed et al., 2018) and40

South America (de Luna et al., 2017), Europe (Teatini et al., 2006, 2012;41

González et al., 2012; Fokker et al., 2018), Africa (Cian et al., 2019; Ikuemonisan42

and Ozebo, 2020), Asia (Erban et al., 2014; Abidin et al., 2015; Wang et al.,43

2019), Australia and Oceania (Ng et al., 2015; Allis et al., 2009).44

Land subsidence can have negative impacts on environment, economy and45

society, including, among others, damage to buildings and infrastructure (roads,46

railways, bridges, power plants, water distribution systems, wastewater treat-47

ment plants, wells, landfills, etc.), changes in flow in channel networks and48

drainage systems, increased flood frequency and increased sea water intrusion.49

As such, land subsidence has been a matter of concern in densely populated50

coastal regions where the elevation of the ground surface is just a few tens51

of centimetres above the mean sea level, where it may significantly limit the52

sustainability of anthropogenic activities related to subsurface development.53

In recent years, the role played by land subsidence on the vulnerability of54

coastal regions has been even more important, as it has the potential to signifi-55

cantly add to the current projections of sea level rise (Kulp and Strauss, 2019).56

Characterizing land subsidence is thus key for urban planning and development,57
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environmental management, as well as hydrogeological risk assessment and mit-58

igation. Such a characterization requires the development and implementation59

of systematic and regular monitoring and modelling programs.60

According to Galloway and Burbey (2011) mitigation of land subsidence61

due to groundwater withdrawal can be achieved by limiting pumping, through62

conjunctive use and regulating water demand, and possibly by artificial ground-63

water recharge. Models are key tools for predicting land displacement associated64

with changes in water management policies. There are essentially two categories65

of models that may be used for simulating the surface displacement induced by66

subsurface fluid extraction: numerical models and analytical models.67

Numerical models rely on the solution of the classical equations of poro-68

elasticity (Biot, 1941, 1955; Verruijt, 1969) by methods such as finite elements,69

finite differences, finite volumes or combinations of these. These models are quite70

flexible, in that they allow for simulating complex hydrogeological settings under71

generic conditions of heterogeneity. In some cases, they have been extended72

to including non-linear elastic, elasto-plastic and viscous constitutive laws and73

led to an unprecedented level of sophistication and accuracy in the simulation.74

Detailed reviews of numerical models may be found in the works of Galloway75

and Burbey (2011) and Gambolati and Teatini (2015).76

Before numerical models, analytical models were the only tools available77

for simulating or predicting land subsidence due to subsurface fluid extrac-78

tion. Early analytical solutions were developed by Verruijt (1969) and Bear79

and Corapcioglu (1981a,b), who addressed the problem of land subsidence dis-80

placement induced from the continuous pumping from a single well in an either81

perfectly confined or leaky aquifer. In these instances, the solution was de-82

rived through the integration of the poro-elasticity equations (Biot, 1941) using83

Hankel and Laplace transforms in conditions of radial symmetry and uniaxial84

vertical strain.85

Another famous land subsidence model was presented by Geertsma (1966,86

1973)), who derived a close-from analytical solution for the surface displacement87

induced by a disk-shaped axial-symmetric reservoir subject to a constant change88
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in pore pressure, and embeeded in a homogeneous, linearly-elastic, semi-infinite89

domain. Geerstma derived his solution by integrating the so-called ”nucleus90

of strain” (NoS) equations (Mindlin, 1936; Mindlin and Chen, 1950) over the91

reservoir volume. NoS equations represent the surface displacements induced92

by a unit change in fluid pressure, within a point source having a unit volume,93

and located at the same depth as the reservoir.94

Following the same approach as Geertsma’s, van Opstal (1974) proposed95

a model to estimate surface vertical displacement assuming that the reservoir96

lies above a rigid basement. More recently, van Opstal’s models was extended97

by Tempone et al. (2010) to include both vertical and horizontal displacement98

for the full half space based on the the work of Sharma (1956).99

Of related interest is also the work of Morita et al. (1989), who conducted nu-100

merical tests to derive coefficients that can be used to extend Geertsma (1973)’s101

solution for the land subsidence and the strain at the reservoir center, as well102

as the average reservoir volumetric compressibility, to those cases where a con-103

trast between the elastic properties of the reservoir and the surrounding medium104

exists.105

The volume integral with which Geertsma’s model was obtained, relies on106

the hypotheses of linear elasticity and a semi-infinite system subject to homo-107

geneous boundary conditions (i.e. no displacement) at large radial distance108

and depth. Such integral is practically an application of the principle of su-109

perposition of effects, in which the NoS equations (Mindlin and Chen, 1950)110

constitute ”Green” functions. Note that it is possible to apply the same princi-111

ple to reservoirs of generic shape and subject to a spatially distributed change112

in pore pressure. In general, such an integral would be calculated numerically,113

but in some particular conditions an analytical solution is possible. For ex-114

ample, Jayeoba et al. (2019) have recently proposed an analytical solution for115

the transient vertical displacement above a well pumping at a constant rate116

from a cylindrical confined homogeneous aquifer. Since in this instance the117

pore pressure change is radial-symmetric, the integration is made possible using118

Geertsma’s vertical surface displacement at the center of a disk-shaped reservoir119
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as the Green function.120

The analytical and semi-analytical models described above heavily rely on121

the assumption that the reservoir and the surrounding formations are homoge-122

neous. However, the use of NoS equations as Green functions is actually not123

limited by the assumption of homogeneity made by Mindlin and Chen (1950).124

Indeed, it is possible to extend such an approach to heterogeneous systems that125

do not violate the conditions radial symmetry, that is, semi-infinite domains126

with elastic properties varying along the depth only, as in the case, for example,127

of normally consolidated sedimentary basin where cM is observed to decrease128

with the depth. This approach was applied by Gambolati et al. (1991) to esti-129

mate the land subsidence due to the development of a gas pool in Ravenna, Italy.130

In that case, however, a FE axial-symmetric model was necessary to calculate131

the NoS solution due to the system heterogeneity.132

Nowadays numerical models constitute undoubtedly the most powerful tool133

for simulating land subsidence in real-world scenarios, but require conspicuous134

datasets to validate model assumption and calibrate. Lack of data, however,135

often poses significant limitations for the construction of reliable land subsidence136

models. In addition, these models typically imply a considerable cost in terms of137

time and skills for model construction and computational running time. When138

these limitations are tangible, analytically based closed-form solutions have the139

advantage of being less data-demanding, easier and faster to implement, as well140

as computationally more efficient.141

The advantages of closed-form solutions become even more relevant when the142

sparsity and the uncertainty in geomechanical data need to be addressed through143

uncertainty quantification analyses for purposes, for example, of quantitative144

risk assessment in support of decision making. These analyses are typically145

based on Monte Carlo stochastic simulations, which may require on the order146

of hundreds or thousands of model runs, which may result quite overwhelming147

when using fully numerical models. While in these situations analytical or148

semi-analytical models appear to be better suited than numerical models, it is149

also important to improve their ability to deal with more realistic conditions150

5



of heterogeneity, such as those observed in normally consolidated sedimentary151

basins.152

This article presents a novel, computationally-fast surrogate land subsidence153

models that relies on the extension of the NoS equations for normally consol-154

idated sedimentary basins, where the uniaxial vertical compressibility cM de-155

creases with the depth according to either a power or an exponential model.156

Such a model is developed around three major components: a basin compress-157

ibility model, a semi-analytical surrogate form of the NoS equations for het-158

erogeneous subsurface systems, and finally a surrogate land subsidence model.159

These components are presented in Sections 2, 3, and 4, respectively.160

2. Compressibility Models in Normally Consolidated Sedimentary161

Basins162

Considered here is the case of a fully saturated sedimentary basin in condi-163

tion of “normal consolidation”, that is, where the compaction in any given point164

depends solely on the current effective stress exerted by the “overburden”, and165

no overloading has ever occurred. In such a basin, the total vertical stress σz at166

any given depth z can be estimated as:167

σz (z) =

∫ z

0

ρbw (z′) · g · dz′ (1)

where g is gravity, and ρbw is the wet bulk density, given by:168

ρbw = ρs · (1− φ) + ρw · φ (2)

In Eq. (2), ρs is the solid density, ρw is the water density, and φ is the porosity.169

While all these properties may vary with z, ρs and ρw are assumed to be constant170

(ρs=2650 kg/m3; ρw=1000 kg/m3). The so-called “overburden gradient” obg (z)171

is associated with σz (z) by the following relationship:172

obg (z) =
σz (z)

z
(3)

Because of Eq. (1), obg (z) represents the average soil specific weight (ρbw ·g) over173

the “column” [0, z]. Assuming the pore pressure p as hydrostatically distributed174
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(i.e. p = ρw · g · z), Terzaghi’s principle establishes a link between the total175

vertical stress σz and the effective vertical stress σ′

z at any depth z (Terzaghi,176

1936):177

σz (z) = α · ρw · g · z + σ′

z (z) (4)

where α is Biot’s coefficient (Biot, 1941; Biot and Willis, 1957), expressed as:178

α = 1−
cs
cM

(5)

with cs being the compressibility of the particles (solid phase). Merging Eqs. (3)179

and (4) yields the following relation between the overburden gradient and the180

vertical effective stress:181

σ′

z (z) = obg (z) · z − α · ρw · g · z (6)

It is worth pointing out that, within the normal consolidation assumption,182

the sedimentary basin is assumed to have been formed under a ”slow” and183

“homogeneous” deposition process. In this process, the progressive increase in184

total stress produces a consolidation of the porous medium, in which the in-situ185

porosity decreases as z and thus σ′

z increase (Eq. 6). It is then possible to derive186

an expression for the basin compressibility cM as a function of z based on the187

variations of φ observed through the overburden gradient obg(z). To do so, two188

assumptions are made: (a) soil particles are incompressible; and (b) the porous189

medium undergoes no horizontal strain (oedometric conditions).190

Note that hypothesis (a) applies to “soft” porous media, in which cs is neg-191

ligible with respect to cM , so that α ∼= 1 (Eq. 5). This is typically justifiable192

since cs is of the order of 10−11-10−10 Pa−1 for most common sediment miner-193

als (Zisman, 1933).194

For a representative elementary porous volume (REV) of thickness H sub-195

ject, during deposition, to a thickness reduction dH due to an effective stress196

increase dσ′

z, the uniaxial vertical compressibility is defined as:197

cM = −
1

H
·
dH

dσ′

z

(7)
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Since the sample volume V and the solid phase volume Vs are related to one an-198

other by Vs = V · (1− φ), and taking into account of the grain incompressibility199

and the oedometric assumptions, the following is relation is obtained:200

dVs = d [V · (1− φ)] = A · d [H · (1− φ)] = 0 (8)

where A is the REV base area (V = A ·H). From Eq. (8):201

dH · (1− φ)−H · dφ = 0 (9)

and thus:202

dH

H
=

dφ

1− φ
(10)

Substituting Eq. (10) in (7) yields:203

cM = −
1

1− φ
·
dφ

dσ′

z

(11)

Eq. (11) provides a basis for exploring the relationships between cM , σ′

z and z.204

By taking the derivative with respect to z of Eq. (1), and using Eqs. (2) and (3):205

206

d

dz
[obg (z) · z] =

d

dz

∫ z

0

{ρs·[1− φ (z′)]+ρw·φ (z′)}·g·dz′ = ρs·g−(ρs − ρw)·g·φ (z)

(12)

Eq. (12) can be rearranged to obtain φ as a function of obg (z) and z:207

φ (z) =
ρs

ρs − ρw
−

1

(ρs − ρw) · g
·
d

dz
[obg (z) · z] (13)

Eq. (13) is the first element needed to evaluate Eq. (11). dφ
dσ′

z
can be calculated208

by noting that: dφ
dσ′

z
= dφ

dz
/
dσ′

z

dz
. From Eq. (13):209

dφ

dz
= −

d2

dz2 [obg (z) · z]

(ρs − ρw) · g
(14)

and from Eq. (6):210

dσ′

z

dz
=

d

dz
[obg (z) · z]− ρw · g (15)

Substituting Eqs. (13-15) into (11) gives, after a few rearrangements:211

cM (z) =
d2

dz2 [obg (z) · z]

{ d
dz

[obg (z) · z]− ρw · g}2
(16)
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Eq. (16) can be used to estimate cM (z) from obg (z). One can observe that if212

obg (z) · z, that is σz (z), is linear, then cM (z) = 0, that is, the porous medium213

results incompressible. Thus, in a normally consolidated basin, for cM (z) to be214

positive, σz (z) must be a convex function.215

The derivation of Eq. (16) is valid so long as α = 1, which, for practical216

applications, requires cM to be at least 10 times larger than cs. This translates217

into a maximum depth value, within which cM is correctly estimated by Eq. (16).218

Such a value depends on the adopted overburden gradient model obg(z). Beyond219

that depth one can assume that, since the porosity cannot be further reduced,220

the compressibility of the continuum approaches cs.221

Note that the combination of Eqs. (6) and (16) would allow for deriving222

an implicit non-linear elastic constitutive law, which could be used to simulate223

changes of cM occurring due to fluid abstraction. This approach was followed,224

for example, by Baú et al. (2002) and Ferronato et al. (2003), but is not used225

here. Instead, a plain linear-elastic model is adopted, which assumes that during226

depletion cM remains constant and equal to the in-situ conditions prior to fluid227

abstraction (Eq. 16).228

2.1. Homogeneous Systems229

In a basin characterized by a homogeneous cM , Eq. (11) can be easily in-230

tegrated by separation of variables to derive the following porosity function:231

232

φ (z) = 1− (1− φ0) · e
cM ·σ′

z(z) (17)

where the boundary conditions φ (0) = φ0 and σ′ (0) = 0 have been imposed.233

From Eqs. (1-2) and (4):234

σ′

z (z) =

∫ z

0

(ρs − ρw) · (1− φ) · g · dz′ (18)

Substituting Eq. (17) into (18) yields:235

σ′

z (z) = (ρs − ρw) · g · (1− φ0) ·

∫ z

0

ecM ·σ′

z(z
′) · dz′ (19)
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The integral function at the right-hand side of Eq. (19) is removed by taking236

the derivative of it with respect to z, which produces:237

dσ′

z (z)

dz
= (ρs − ρw) · g · (1− φ0) · e

cM ·σ′

z(z) (20)

Eq. (20) can be integrated by separation of variables, which leads to the following238

expression:239

σ′

z (z) = −
1

cM
· ln [1− cM · (ρs − ρw) · g · (1− φ0) · z] (21)

Substituting Eq. (21) into (17) allows to determine the porosity:240

φ (z) = 1−
1− φ0

1− cM · (ρs − ρw) · g · (1− φ0) · z
(22)

Substituting Eq. (21) into (4) provides the total stress:241

σz (z) = ρw · g · z −
1

cM
· ln [1− cM · (ρs − ρw) · g · (1− φ0) · z] (23)

The overburden gradient (Eq. 3) can thus be expressed as:242

obg (z) = ρw · g −
ln [1− cM · (ρs − ρw) · g · (1− φ0) · z]

cM · z
(24)

Example profiles for φ (z) (Eq. 22) and obg (z) (Eq. 24) are given in Figure 1243

(see the blue solid lines).244

Note that Eq. (22) holds so long as φ (z) ≥ 0. According to such a model,245

the porosity decreases with the depth, from φ0 at z = 0, to zero at a depth246

z = zmax, so that Eq. (22) can be deemed valid only if:247

0 ≤ z ≤ zmax =
φ0

1− φ0
·

1

cM · (ρs − ρw) · g
(25)

The constraints (25) reveal that the conditions of normal consolidation and248

homogenous cM result incompatible beyond the depth zmax. Indeed, since at249

that depth the porosity vanishes, the porous medium underneath behaves like250

an elastic continuum, with a compressibility cs that is much smaller than cM ,251

which violates the homogeneity assumption.252

10



(a) (b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
20800

21000

21200

21400

21600

21800

22000

22200

22400

homogeneous system

heterogeneous system: power law

heterogeneous system: exponential law

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.15

0.2

0.25

0.3

0.35

homogeneous system

heterogeneous system: power law

heterogeneous system: exponential law

Figure 1: Examples of (a) overburden gradient and (b) porosity profiles vs. depth for normally

consolidated sedimentary basins where cM is considered either homogeneous, or heterogeneous

according to a power law (Eq. 30) and an exponential law (Eq. 36).

2.2. The Heterogeneous Case253

Let us now consider a hypothetical basin where the vertical effective stress254

increases with depth according to a power law:255

σ′

z (z) = a1 · z
b1 (26)

where a1 and b1 are two strictly positive coefficients. Based on Eq. (4), the total256

vertical stress is:257

σz (z) = ρw · g · z + a1 · z
b1 (27)

and the overburden gradient (Eq. (3)) is:258

obg (z) = ρw · g + a1 · z
b1−1 (28)

The power law (26) is thus adequate for sedimentary basins in which overburden259

data, typically calculated from density logs (Ellis and Singer, 2008), can be fit260

to a function such as (28). Substituting Eq. (28) into (13) yields:261

φ (z) = 1−
a1 · b1 · z

b1−1

(ρs − ρw) · g
(29)
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Figure 1 shows example profiles (the orange solid lines) for obg (z) and φ (z)262

based on Eqs. (28) and (29).263

Substituting Eq. (28) into (16) gives the basin compressibility:264

cM (z) =
b1 − 1

a1 · b1
· z−b1 (30)

Basin compressibilty models based on Eq. (30) have been derived and adopted265

for land subsidence simulation by, among others, Baú et al. (2002), Ferronato266

et al. (2003), Teatini et al. (2011), and Jha et al. (2015).267

Note that for cM to be strictly positive, the condition b1 > 1 must hold.268

In turn, since φ (Eq. 29) needs be theoretically between 0 and 1, the following269

condition is also necessary:270

0 <
a1 · b1 · z

b1−1

(ρs − ρw) · g
≤ 1 (31)

Such inequality is met if:271

0 ≤ z ≤ zmax =

[

(ρs − ρw) · g

a1 · b1

]
1

b1−1

(32)

Similar to (25), condition (32) indicates that at depth larger than zmax the272

porosity vanishes, and the porous medium behaves like an elastic continuum,273

with a negligible compressibility or, in other words, an almost rigid basement.274

One may also observe that, according to Eq. (29), the porosity at z = 0 is equal275

to 1, which implies unrealistically high values of φ at shallow depth. This may276

be observed from the orange profiles in Figure 1b.277

An attractive alternative to the power compressibility model (Eqs. 26-30)278

may be derived by assuming an “exponential” porosity model:279

φ (z) = φmin + (φ0 − φmin) · e
−

z
λ (33)

where φ0 and φmin are the porosity values at z = 0 and z → ∞, and λ is a scale280

length that regulates the rate of decrease of φ along the depth z. This model281

appears to be more robust than the previous one, since realistic values of φ can282

be prescribed even at shallow depth. In addition, the porosity vanishes asymp-283

totically (i.e., only at large depth) and no constraints, such as (25) and (32),284

are needed.285
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Based on Eqs. (1-2), the total vertical stress associated with the porosity286

model (33) is given by:287

σz (z) = [ρs · (1− φmin) + ρw · φmin] · g · z

+ (ρs − ρw) · (φ0 − φmin) · g · λ ·
(

e−
z
λ − 1

)

(34)

from which (Eq. (3)):288

obg (z) = [ρs · (1− φmin) + ρw · φmin] ·g+(ρs − ρw) ·(φ0 − φmin) ·g ·λ ·
e−

z
λ − 1

z
(35)

Example profiles for φ (z) (Eq. (33)) and obg (z) (Eq. (35)) are given by the289

yellow solid lines in Figure 1.290

The compressibility cM (z) associated with the exponential porosity model291

(Eq. (33)) can be calculated by substituting Eq. (35) into (16), which yields:292

cM (z) =
(φ0 − φmin)

(ρs − ρw) · g · λ
· e−

z
λ (36)

According to Eq. (36), cM decreases exponentially with z, from a surficial value293

equal to (φ0−φmin)
(ρs−ρw)·g·λ , to zero asymptotically.294

Here, it is worth highlighting the role played by the scaling coefficient λ. Low295

values of λ represent highly compressible and heterogeneous basins, where cM296

decreases sharply as z increases. Vice versa, large values of λ represent generally297

low-compressible and pseudo-homogeneous basins, where cM is reduced very298

smoothly as z increases.299

3. The Nucleus of Strain Equations300

The nucleus of strain (NoS) equations (Mindlin, 1936; Mindlin and Chen,301

1950; Geertsma, 1966) describe the displacement of the traction-free horizontal302

surface of a three-dimensional homogeneous semi-infinite system, in which a unit303

increase in pore pressure occurs in a small unit volume located at depth c from304

the surface (Figure 2). The horizontal and vertical displacement components305
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(uh, uv) are (Geertsma, 1973):306

(a): uh (r) =
c∗M · (1− ν)

π
·

r

(c2 + r2)
1.5

(b): uv (r) =
c∗M · (1− ν)

π
·

c

(c2 + r2)
1.5

(37)

where c∗M and ν are the vertical uniaxial compressibility and the Poisson ratio307

of the (homogeneous) porous medium, respectively, and r is the radial coordi-308

nate with respect to a vertical axis crossing the NoS location. Note that since309

uh/uv = r/c, uh and uv are equal for r = c.310

Figure 2: Three-dimensional semi-infinite space in which the NoS is situated. Because of

the homogeneity assumption, the displacement components are symmetric with respect the

vertical axis crossing the NoS.

For this analysis, it comes in handy to normalize Eqs. (37) with respect to311

the displacement uv (0) =
c∗M ·(1−ν)

π·c2
, which leads the following dimensionless NoS312

equations:313

(a): uh (r) =
uh (r)

c∗
M

·(1−ν)

π·c2

=
c2 · r

(c2 + r2)
1.5

(b): uv (r) =
uv (r)

c∗
M

·(1−ν)

π·c2

=
c3

(c2 + r2)
1.5

(38)
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Introducing the dimensionless radial coordinate R = r/c in Eqs. (38) yields:314

(a): uh (R) = R ·
(

1 +R2
)−1.5

(b): uv (R) =
(

1 +R2
)−1.5

(39)

Eqs. (39) indicate that the normalized NoS displacement components depend on315

the scaled radial coordinate R, rather than the radial coordinate r itself. Note316

also that since the NoS depth c is not an independent variable for uh (R) and317

uv (R), these are invariant with respect to c. This is due to the nature of the318

system, which is semi-infinite, and any variation of c is equivalent to a simple319

change of the spatial scale. Consequently the shape of the displacement bowl320

remains the same, while only the displacement amplitude is changed.321

The NoS Eqs. (37) may be used to assess the land subsidence due to fluid322

extraction from subsurface formations (see Section 4), using a value of cM esti-323

mated at the formation depth (Geertsma, 1966, 1973). For example, in the case324

of the compressibility model (30) the medium compressibility c∗M is:325

c∗M,1 =
b1 − 1

a1 · b1
· c−b1 (40)

Eq. (40) allows for expressing Eq. (30) in the following equivalent form:326

cM (z) = c∗M,1 ·
(z

c

)

−b1
(41)

Similarly, in the case of the compressibility model (36) the medium compress-327

ibility c∗M takes on the value:328

c∗M,2 =
(φ0 − φmin)

(ρs − ρw) · g · λ
· e−

c
λ (42)

Using Eq. (40), Eq. (36) can be modified as:329

cM (z) = c∗M,2 · e
−

z−c
λ (43)

Figure 3 shows the profiles of cM vs. z according to Eqs. (41) (the orange solid330

line) and (43) (the yellow solid line). In these examples, the two profiles are331

characterized by the same compressibility value c∗M at a NoS depth c = 2,000332

m. The same value is used to draw the profile of cM (z) in the homogeneous333

case (the blue solid line).334
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Figure 3: Examples of compressibility models for normally consolidated sedimentary basins

where cM is either constant, or decreasing with the depth according to a power law (Eq. (30))

or an exponential law (Eq. 36)).

Eqs. (41) and (43) show that cM (z) ≥ c∗M for 0 ≤ z ≤ c, and cM (z) < c∗M335

for z > c (see also Figure 3). In both scenarios, the porous medium is stiffer336

below and softer above the depth c with respect to the homogeneous case. Con-337

sequently, the homogeneity assumption is likely to lead to an underestimation338

of the surface displacement. The amplitude of this error depends largely on the339

degree of heterogeneity of cM , which is determined by the coefficients b1 and λ340

for the compressibility models (41) and (43), respectively.341

It is worth noting that the NoS Eqs. (37) and (39) are valid under the homo-342

geneity assumption, which, however idealized, is subject to the constraint (25).343

In practical terms, it seems reasonable to apply Eqs. (37) if the depth zmax in344

Equation (25) is significantly larger, say 10 times, than c, since at this depth the345

displacement amplitude is negligible compared to that at the surface. And since346

zmax is inversely proportional to cM (see Eq. (25)), such application seems more347

suited for low-compressible basins. By imposing the condition zmax ≥ 10 ·c, the348
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following constraint is thus derived:349

cM ≤ c∗M,max =
φ0

1− φ0
·

1

· (ρs − ρw) · g · 10 · c
(44)

where c∗M,max represents the compressibility upper bound that ensures that the350

hypothesis of homogeneity is physically meaningful for the application of the351

NoS equations (37). Inequality (44) indicates that c∗M,max is inversely propor-352

tional the NoS depth c, and increases with the surface porosity φ0. Profiles of353

c∗M,max vs. φ0 are graphed in Figure 4 for different values of c. ”Feasible” values354

of cM are represented by the regions below each of the profiles.355
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Figure 4: Feasible regions of the homogeneous compressibility cM as functions of the surface

porosity φ0 and the NoS depth c. Note, for example, that for values of φ0 around 0.4, and

c=2000 m, c∗
M

should not exceed 2×10−9 Pa−1.

3.1. The heterogeneous case356

The main goal of this work is derive surrogate forms of Eqs. (37) applicable357

to sedimentary basins with a compressibility heterogeneously distributed as in358

Eqs. (30) and (36). This analysis relies on an extensive series of numerical tests359
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conducted using the finite-element (FE) model SUBAXS (Gambolati et al.,360

2001), which solves the equilibrium equations governing the deformation of an361

axial-symmetric medium. Such a model uses a “infinite gradient” formulation362

to simulate reservoirs with a pore pressure discontinuity at their boundary, and363

is thus particularly suited to simulate the NoS effects.364

3.1.1. Numerical setup365

In these numerical tests, the semi-infinite domain is approximated by a366

cylindrical domain with a 50,000-m radius and a 20,000-m depth, with the367

NoS located on the cylinder axis at depth c=2,000 m from the upper bound-368

ary. Both the lower and the lateral boundaries of the domain are subject to369

no-displacement constraints, while the upper boundary, representing the land370

surface, is “traction-free”, that is, unconstrained. Because of the radial symme-371

try, the three-dimensional (3D) problem is reduced to a two-dimensional (2D),372

axial-symmetric problem. Such setting is depicted in Figure 5.

Figure 5: Axial-symmetric conceptual model for the FE simulation of the surface displacement

components associated with the NoS. The surface boundary is unconstrained and the left

boundary (i.e. the axial-symmetry axis) is fixed horizontally (uh = 0). Both the bottom and

the lateral boundaries are fully fixed (uh = uv = 0).

373

To discretize such system, a FE mesh is created with 64,186 nodes and374

127,148 triangular elements. The mesh includes 291 horizontal layers char-375
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acterised by different values of cM based on the compressibility models (30)376

and (36). A uniformly distributed change in pore pressure of ∆p = 1 Pa is377

prescribed within the elements of a “small” cylinder, of radius rr=10 m and378

thickness br=10 m, centered at the location of the NoS. In order to calculate379

the surface displacement components associated with the NoS, the surface dis-380

placements obtained numerically are divided by Vr ·∆p, where Vr = brπr
2
r is the381

volume of the ”activated” cylinder. Figure 6 shows a comparison of the surface382

displacement profiles obtained with the analytical solution (39) and with SUB-383

AXS. The differences are negligible, which indicates the constructed FE mesh384

has a sufficiently fine resolution.
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Figure 6: Radial profiles of the surface displacement horizontal and vertical components for a

generic nucleus of strain located at depth c, obtained analytically (solid lines) and numerically

(dotted lines). The displacements are normalised with respect to the axial vertical surface

displacement (Eq. 37b for r=0), whereas the radial distance is scaled with respect to the NoS

depth, c.

385
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3.1.2. NoS Semi-analytical Solution386

Preliminary numerical tests conducted with SUBAXS reveal that Eqs. (39)387

can be extended to the conditions of heterogeneity of sedimentary basins char-388

acterised by the compressibility models (41) and (43). The following normalized389

NoS equations are thus proposed:390

(a): uh (R) = αh ·R ·
(

1 +R2
)βh

(b): uv (R) = αv ·
(

1 +R2
)βv

(45)

where αh, βh, αv, and βv are coefficients to be determined by fitting the Eqs. (45)391

to the numerical solutions obtained using SUBAXS (see Section 3.1.3). Once392

these coefficients are calculated, the Eqs. (45) are substituted back into Eqs. (37)393

in place of Eqs. (39), which leads to the following surrogate NoS solution:394

(a): uh (r) =
c∗M · (1− ν)

π · c2
· αh ·

r

c
·

[

1 +
(r

c

)2
]βh

(b): uv (r) =
c∗M · (1− ν)

π · c2
· αv ·

[

1 +
(r

c

)2
]βv

(46)

In Eqs. (46), c∗M represents the vertical uniaxial compressibility calculated at395

the depth c, that is, c∗M,1 (Eq. 40) for the compressibility power model, and c∗M,2396

(Eq. 42) for the compressibility exponential model.397

Using basic principles of linear elasticity, it is possible to demonstrate that,398

even in the heterogeneous case, the normalized displacement functions uh (R)399

and uv (R) (Eqs. (45)) do not depend on the NoS depth c, and thus on the c∗M400

value, but only of the degree of heterogeneity of cM , as quantified by b1 for the401

compressibility model (41), and by the length λ scaled to the NoS depth c, that402

is λ′ = λ/c, for the compressibility model (43).403

This is has important implications on the computational cost of this analysis,404

since the coefficients αh, βh, αv and βv can be quantified using a single reference405

value of c, which is set to 2,000 m in these tests. Of course, the NoS depth will406

still affect the actual surface displacement amplitude through the terms c and407

c∗M in Eqs. (46).408
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3.1.3. Fitting Approach409

The coefficients αh, βh, αv and βv of the surrogate NoS Eqs. (45) can be410

determined by minimising separately the square residual non-linear functions:411

(a): Fh (αh, βh) =

Ns
∑

i=1

[uh (Ri)− uhi]
2

(b): Fv (αv, βv) =

Ns
∑

i=1

[uv (Ri)− uvi]
2

(47)

where (uhi, uvi) are the normalized NoS displacement components calculated412

–numerically– at the generic surface node i (i = 1, 2, ..., Ns) of the 2D grid used413

to discretize the subsurface system, and (uh (Ri) , uv (Ri)) are the corresponding414

components calculated using Eqs. (45). The minimization of the two functions415

Fh (αh, βh) and Fv (αv, βv) is here carried out using a non-linear least-square416

technique, such as the “trust-region-reflective” method (Coleman and Li, 1996).417

Examples of fit results are presented in Figure 7, which shows the profiles418

of the displacement components uh(R) and uv(R), along with the fitted pro-419

files based on Eqs. (45), with the coefficients αh, βh, αv, and βv calculated by420

minimizing Eqs. (47). Figure 7a reports the case of a power compressibility421

model (Eq. 41) with b1 = 1.1, for which the resulting fitting coefficients are:422

αh = 3.21097 , βh = −2.04310, αv = 1.51600, and βv = −2.02741. Likewise,423

Figure 7b reports the case of an exponential compressibility model (Eq. 43)424

with λ/c = 1, for which the resulting fitting coefficients are: αh = 1.81680 ,425

βh = −1.78647, αv = 1.47040, and βv = −1.93010 .426

For both compressibility laws, the fit of the NoS Eqs. (45) to the numer-427

ical solution is deemed satisfactory. Some minor discrepancies are observed428

for large R values, where the numerical displacement values result somewhat429

smaller than the fitted displacement profiles. These discrepancies are due to the430

approximation introduced in the numerical simulation by setting up the semi-431

infinite space as a laterally finite cylindric domain with a fixed lateral boundary,432

and are expected to have a negligible impact on overall displacement results, as433

they are limited to lower-order of magnitude displacements occurring at large434

radial distance.435

21



(a) (b)

10
-3

10
-2

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10
-3

10
-2

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 7: Fitted profiles of the normalized NoS displacement components uh and uv vs. the

scaled radial distance R = r/c obtained in the cases of: (a) a power compressibility model

(Eq. (41)) with b1 = 1.1; (b) an exponential compressibility model (Eq. (41)) with λ/c = 1.

3.1.4. Characterizing the Basin Compressibility Model Heterogeneity436

In order to extend the NoS Eqs. (45) to the heterogeneity conditions rep-437

resented by the compressibility models (41) and (43) it is necessary to derive438

closed-form expressions of the coefficients αh, βh, αv, and βv as functions of the439

parameters b1 and λ/c. To do so, it is important to first identify the intervals440

of variability of b1 and λ.441

In the case of the compressibility model (41), one needs to recall the con-442

straint (32) and derive a condition similar to inequality (44) for the homogeneous443

case. The following inequality is thus imposed:444

zmax =

[

(ρs − ρw) · g

a1 · b1

]
1

b1−1

≥ 10 · c (48)

The last relationship cannot be made explicit with respect to b1. However,445

by extracting the term a1 · b1 from Equation (40) and substituting it in (48)446

provides:447

c∗M,1 ≥ c∗M,1min
=

(b1 − 1) · 10b1−1

(ρs − ρw) · g · c
(49)

Inequality (49) quantifies the minimum value of the compressibility c∗M,1 for any448

given value of b1>1. These conditions are graphed in Figure 8 for several depth449
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values. Each profile delimits the feasible region of all possible combinations of450

c∗M,1 and b1. While Figure 8 indicates b1 has no upper bound, typical values451

of it are between 1 and 1.5. Indeed (see Eq. (30)), b1 represents the reduction452

in order of magnitude of cM per order of magnitude of depth increase. Such453

effect is graphed in Figure 9a, which shows a series of profiles of cM vs. z for454

increasing values of b1. The latter represents the negative slope of the cM vs. z455

profile on a double-log plot. A value b1=3, for example, implies that the basin456

compressibility decreases by as many as 1×103 times from a depth of 200 m,457

down to a depth of 2000 m, which appears to be a far-fetched scenario.458

10
-12

10
-10

10
-8

10
-6

10
-4

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Feasible

Regions

Figure 8: Feasible regions for the compressibility c∗
M,1

as function of the power coefficient b1

for several values of the depth c (see condition (49)).

In addition, based on the profiles in Figure 8, b1 values greater than 1.5 are459

viable only for relatively large values of the compressibility c∗M,1. For example,460

for c=2000 m, a value of b1=2 is possible only if c∗M,1 ≥c∗M,1min
= 3×10−7 Pa−1,461

which would be representative of an unusually compressible sedimentary basin.462

Figure 9b shows the φ vs. z profiles obtained using Equation (29), for a463
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Figure 9: Profiles of (a) cM vs. z and (b) φ vs. z according to a power model with increasing

values of b1, for a reference NoS depth c = 2000 m. In each instance, a c∗
M,1

value equal to

1.1·c∗
M,1,min

(see Eq. (49)) is selected.

reference depth c = 2000 m, different values of b1, and assuming c∗M,1 values464

slightly larger than c∗M,1min
(see (49)). One can observe that, for values of b1465

above 1.5 the porosity results very large even at depths of the order of c or less,466

which appears to be quite unrealistic. While this analysis will consider a range467

for b1 values between 1 and 2, it is thus important to bear in mind that values468

of such parameter above 1.5 do not seem quite realistic.469

With respect to the compressibility model (41), any positive value of λ pro-470

duces a viable distribution of cM (z) that does not violate any porosity con-471

straints, of course provided that 0 ≤ φmin ≤ φ0 ≤ 1. Therefore λ can theoreti-472

cally vary over several orders of magnitude. Still, there appear to be practical473

limitations for the selection of λ. Figure 10 shows profiles of cM and φ vs. z474

according to an exponential model (Eqs. (33) and (36)) with porosities φ0=0.45475

and φmin=0.05, and increasing values of λ. One can observe that values of476

λ lower than c produce a basin compressibility that varies dramatically along477

the depth (λ is proportional to the negative slope of the cM vs. z profile on a478

semi-log plot), with extremely high values at shallow depth, and unrealistically479

low values at large depth. While this analysis will consider a range of λ values480
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Figure 10: Profiles of (a) cM vs. z and (b) φ vs. z according to an exponential model with

increasing values of λ, for a reference NoS depth c = 2000 m. In each instance, the porosity

is assumed to decrease from a surficial value of 0.45 to 0.05 at large depth.

between 0.25·c and 200·c, one must be aware that scenarios where λ ≤ c are481

seemingly unrealistic.482

3.1.5. Fitting Parameter Functions483

In order to derive close form expressions of the coefficients αh, βh, αv, and484

βv as function of the parameters b1, for the compressibility model (41), and485

λ′, for the compressibility model (43), the FE model SUBAXS is run under486

the numerical setup presented in Section 3.1.1 for a series of heterogeneous cM487

scenarios identified by a set of b1 and λ′ values. For each of these scenarios, the488

normalized surface displacement components obtained numerically are fitted by489

the normalized NoS Eqs. (45) by applying systematically the regression approach490

presented in Section 3.1.3. The regression results are presented in Tables 1491

and 2. In the case of the compressibility model (41), 11 values of b1 are selected,492

spanning between 1.001 and 2. In the case of the compressibility model (43),493

25 values of λ′ are selected, spanning between 0.25 and 200.494

The analysis of Tables 1 and 2 reveals that all coefficients tend to vary495

smoothly and regularly, which suggests it is possible to derive closed-form ex-496
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Table 1: Fit coefficients αh, βh, αv , and βv calculated by minimizing Eqs. (47) for power

compressibility laws (Eq. 41) characterized by the b1 values given in the first column.

b1 αh βh αv βv

(/) (/) (/) (/) (/)

1.001 2.99734 -2.00225 1.49669 -2.00432

1.010 3.01676 -2.00602 1.49865 -2.00662

1.050 3.10309 -2.02266 1.50686 -2.01636

1.100 3.21097 -2.04310 1.51600 -2.02741

1.150 3.31875 -2.06315 1.52393 -2.03718

1.200 3.42631 -2.08281 1.53066 -2.04568

1.250 3.53361 -2.10208 1.53623 -2.05288

1.500 4.06324 -2.19262 1.54758 -2.06925

1.750 4.57535 -2.27356 1.53386 -2.05236

2.000 5.06298 -2.34510 1.49829 -2.00229

pressions of each of them as a function of the parameters b1 and λ′ using a497

non-linear regression approach. This is achieved by employing the same trust-498

region-reflective algorithm (Coleman and Li, 1996) adopted in Section 3.1.3.499

Particular care is taken in the selection of the regression models. In the500

case of the data presented in Table 1, a polynomial equation is adopted. The501

corresponding expressions for the fitting functions are a follows:502

αh (b1) = +0.72830 + 2.35740 · b1 − 0.09090 · b21

βh (b1) = −1.50392− 0.57540 · b1 + 0.07749 · b21

αv (b1) = +0.98655 + 0.83514 · b1 − 0.36083 · b21 + 0.03561 · b31

βv (b1) = −1.47798− 0.78966 · b1 + 0.26372 · b21

1 < b1 ≤ 2

(50)

The regression results are also visualized in Figure 11. Note that (Eqs. 50) the503

polynomial degree on b1 is 2 for the three coefficients αh, βh, and βv, whereas for504

the coefficient αv a degree equal to 3 is necessary. For all coefficients, the regres-505
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sion produces a coefficient of determination R2∼=1, which indicates a practically506

perfect fit to the data.
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Figure 11: Fitted profiles for the coefficients (a) αh and αv , and (b) βh and βv , as functions

of the power coefficient b1. The expressions for the fitting functions are given in Eqs. (50).

507

The data given in Table 2 show a more irregular behaviour than those in508

Table 1, and thus require devising a more complex regression model. In such509

case, the chosen fitting type function for each of the coefficients αh, βh, αv and510

βv, is the following:511

f (λ′) = q +

4
∑

i=1

mi · λ
′pi (51)

where q is a fixed constant, mi and pi (i=1,..,4) are regression coefficients, with512

pi < 0. The model (51) consists of a linear combination of four power functions513

plus a constant. The choice of the model (51) is driven by the observation that,514

for large values of λ′, the compressibility cM (z) tends to be homogeneous (see515

Figure 10a) and thus the modified NoS normalized displacement Eqs. (45) must516

tend asymptotically to Eqs. (39). For this to happen, αh and αv should tend517

to 1, and βh and βv should tend to -1.5 for λ′ → ∞, which is confirmed by the518

regression results reported in Table 2.519

Adopting power functions with negative exponents (i.e. mi·λ
′pi) allows for520

ensuring that any linear combination of them will tend asymptotically to zero,521
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so that f (λ′) → q for λ′ → ∞. Therefore, in order to ensure that the regression522

models may fit the data in Table 2, a constant value q = 1 is imposed to fit523

the coefficients αh and αv, and a constant value of q = −1.5 is imposed for the524

coefficients βh and βv.
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Figure 12: Fitted profiles for the coefficients (a) αh and αv , and (b) βh and βv , as functions

of the coefficient λ scaled to the NoS depth c. The expressions for the fitting functions are

given in Eqs. (52).

525

The regression results are plotted in Figure 12. The corresponding expres-526

sions for the fitting functions are the following:527

αh (λ
′) = +1.0 + 0.09695 · λ′−0.43427

− 0.14667 · λ′−0.66569
+

+ 1.23850 · λ′−1.17592
− 0.36648 · λ′−1.57385

βh (λ
′) = −1.5− 0.00702 · λ′−0.00658

+ 0.00663 · λ′−0.50859
+

− 0.39860 · λ′−1.01653
+ 0.11240 · λ′−1.51377

αv (λ
′) = +1.0− 0.02142 · λ′−0.20560

+ 0.02882 · λ′−0.63825
+

+ 0.81722 · λ′−1.08414
− 0.35519 · λ′−1.50920

βv (λ
′) = −1.5− 0.02460 · λ′−0.06125

− 0.11286 · λ′−0.63908
+

− 0.49834 · λ′−1.22379
+ 0.20450 · λ′−1.71945

λ ≥ 0.25

(52)
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Even in this case, the regression produces a coefficient of determination R2∼=1528

for all coefficients, which indicates a practically perfect fit to the data.529

4. Land Subsidence Surrogate Model530

The surrogate NoS Eqs. (46) represent Green functions that can be used to531

calculate the surface displacement field associated with any generic pore pres-532

sure change distribution occurring in the subsurface. Based on the assumption533

of linear elasticity, the principle of linear superposition holds, and the surface534

displacement components (Ux, Uy, Uz) at any generic location (x, y) and time t535

are given by the following volume integrals:536

Ux (x, y, t) =

∫

Ω

c∗M (c) · (1− ν)

π · c2
· αh ·

r · ηx
c

·

[

1 +
(r

c

)2
]βh

·∆pt · dΩ

Uy (x, y, t) =

∫

Ω

c∗M (c) · (1− ν)

π · c2
· αh ·

r · ηy
c

·

[

1 +
(r

c

)2
]βh

·∆pt · dΩ

Uz (x, y, t) =

∫

Ω

c∗M (c) · (1− ν)

π · c2
· αv ·

[

1 +
(r

c

)2
]βv

·∆pt · dΩ

(53)

where Ω represents a 3D region of the subsurface where a pore pressure ∆p537

change occurs (e.g. an aquifer or a reservoir). Note that ∆pt = ∆p(x′, y′, c, t)538

with (x′, y′, c) ∈ Ω, and dΩ = dx′dy′dc. In Eqs. (53), r and (ηx, ηy) are the539

length and the cosine directors of the 2D vector (x− x′, y − y′).540

For a compressibility power model, c∗M (c) is given by Equation (40), and541

Eqs. (53) can be rearranged to:542

Ux (x, y, t) =e1 · αh (b1) ·

∫

Ω

r · ηx ·
[

1 +
(

r
c

)2
]βh(b1)

cb1+3
·∆pt · dΩ

Uy (x, y, t) =e1 · αh (b1) ·

∫

Ω

r · ηy ·
[

1 +
(

r
c

)2
]βh(b1)

cb1+3
·∆pt · dΩ

Uz (x, y, t) =e1 · αv (b1) ·

∫

Ω

[

1 +
(

r
c

)2
]βv(b1)

cb1+2
·∆pt · dΩ

(54)

where e1 = (b1−1)·(1−ν)
π·a1·b1

, and the coefficients αh(b1), βh(b1), αv(b1) and βv(b1)543

are given by the Eqs. (50).544
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For a compressibility exponential model, c∗M (c) is given by Equation (42),545

and Eqs. (53) become:546

Ux (x, y, t) = e2 ·

∫

Ω

r · ηx · e−
c
λ · αh

(

λ
c

)

c3
·

[

1 +
(r

c

)2
]βh(λ

c )
·∆pt · dΩ

Uy (x, y, t) = e2 ·

∫

Ω

r · ηy · e
−

c
λ · αh

(

λ
c

)

c3
·

[

1 +
(r

c

)2
]βh(λ

c )
·∆pt · dΩ

Uz (x, y, t) = e2 ·

∫

Ω

e−
c
λ · αv

(

λ
c

)

c2
·

[

1 +
(r

c

)2
]βv(λ

c )
·∆pt · dΩ

(55)

where e2 = (φ0−φmin)·(1−ν)
π·(ρs−ρw)·g·λ and the coefficients αh

(

λ
c

)

, βh

(

λ
c

)

, αv

(

λ
c

)

and547

βv

(

λ
c

)

are given by the Eqs. (52).548

4.1. Model Implementation and Testing549

The implementation of the surrogate land subsidence model relies on the550

solution of the integrals (54-55), which is carried out numerically by discretizing551

the domain Ω with an irregular grid whose resolution needs to be generally varied552

in relation to the spatial gradients of ∆p. Note that Ω does not represent the553

full subsurface system, but only the portion of it where a pore pressure change554

is observed or simulated.555

To validate the model, the case of a horizontal disk-shaped reservoir (Fig. 14)556

is considered. Such a reservoir has a 2000 m radius, a 20 m thickness, an average557

depth of 2000 m, and is subject to a uniform pore pressure change of 2 MPa.558

Three hypothetical sedimentary basin scenarios are considered: a homogeneous559

system with c∗M = 1× 10−9Pa−1; a heterogeneous system characterized by the560

compressibility model (41) with c∗M,1 = 1 × 10−9Pa−1 and b1 = 1.0291; and561

a heterogeneous system characterized by the compressibility model (43) with562

c∗M,2 = 1 × 10−9Pa−1 and λ = 3850 m. The cM (z) profiles associated with563

these three scenarios are graphed in Figure 13.564

The disk-shaped reservoir is discretized with a mesh consisting of Ne =565

4532 prismatic elements with triangular base, which allows for splitting each566

of the integrals (53) into the sum of as many terms. The surface displacement567

components are calculated at the Nn nodes of a surface grid, either regular or568
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Figure 13: cM vs. z profiles for a homogeneous basin with c∗
M

= 1 × 10−9Pa−1, and two

heterogeneous basins with b1 = 1.0291 (Eq. 41), and λ = 3850 m (Eq. 43). The c∗
M

value at

the depth c = 2000 m is the same in all scenarios.

irregular, as represented in Figure 14. Note that the reservoir mesh and the569

surface grid are independent from one another, and it is possible to reduce the570

surface grid to just a few points of interest where one might want to evaluate571

the displacement (Ux, Uy, Uz).572

Using a matrix notation, the surface displacements can be expressed as:573











Ux

Uy

Uz











=











Mx

My

Mz











· F (56)

where: Ux, Uy andUy are three Nn×1 vectors including the displacement com-574

ponents at the surface points; F is a Ne×1 vector, whose generic jth component575

equals the product Vj · ∆pj , where Vj is the volume of element j (j=1,..,Ne),576

and ∆pj is average pore pressure change in it; Mx, My, and Mz are Nn ×Ne577

matrices, whose generic mi,j coefficient are linked to the values of NoS surface578
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Figure 14: Schematic of the NoS based simulator, representing the reservoir system and the

surface domain (see Eqs. (49)).

displacement for the radial distance ri,j between the grid node i (i=1,..,Nn) and579

the element j’s centroid, and the element j’s depth cj (Figure 14).580

In the case of a cM compressibility power model, these coefficients are:581

mxi,j = e1 · αh (b1) ·
ri,j · ηxi,j

cb1+3
j

·

[

1 +

(

ri,j
cj

)2
]βh(b1)

myi,j
= e1 · αh (b1) ·

ri,j · ηyi,j

cb1+3
j

·

[

1 +

(

ri,j
cj

)2
]βh(b1)

mzi,j = e1 · αv (b1) ·
1

cb1+2
j

[

1 +

(

ri,j
cj

)2
]βh(b1)

(57)

whereas in the case of a cM compressibility exponential model, these coefficients582

are:583

mxi,j = e2 · αh

(

λ

cj

)

· e−
cj

λ ·
ri,j · ηx

c3j
·

[

1 +

(

ri,j
cj

)2
]βh

(

λ
cj

)

myi,j
= e2 · αh

(

λ

cj

)

· e−
cj

λ ·
ri,j · ηy

c3j
·

[

1 +

(

ri,j
cj

)2
]βh

(

λ
cj

)

mzi,j = e2 · αv

(

λ

cj

)

· e−
cj

λ ·
1

cj2
·

[

1 +

(

ri,j
cj

)2
]βv

(

λ
cj

)

(58)
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Eq. (56), together with Eqs. (57-58), indicate that the surrogate surrogate land584

subsidence model relies substantially on a “response-matrix” approach, where585

the coefficients of the matrix [UyUyUz]
T
depend on the characteristics of the586

mesh discretizing Ω, and the modified NoS Eqs. (45) which in turn account587

for the basin compressibility model. It is worth noting that, in the numerical588

calculation of the integrals (54-55), the resolution of the reservoir mesh needs589

to be high enough to minimize the truncation errors introduced by neglecting590

the variability of ri,j and cj within each element j.591

The results of the disk-shapep reservoir tests are summarized in Figure 15,592

which shows the horizontal and vertical surface displacement components along593

the radial distance from the center of the cylindric reservoir, for three investi-594

gated cM (z) scenarios. In each subpanel, surface displacements obtained with595

the surrogate semi-analytical model are compared with those from the numeri-596

cal model SUBAXS. All tests indicate a satisfactory match between the results597

of the two approaches, suggesting the surrogate semi-analytical model is suffi-598

ciently accurate.599

In the homogeneous case (Figs. 15a-b), the surrogate model is truly analyt-600

ically based since the displacements are calculated assuming a heterogeneous601

basin with an exponential compressibility model with a very large value of λ.602

Under these conditions, the fitting functions (52) are such that the surrogate603

NoS Eqs. (45) are the same as the analytical NoS Eqs. (39). In this case, an604

analytical solution for a horizontal disk-shaped reservoir subject to a uniform605

pore pressure change was also derived by Geertsma (1973), and that solution is606

used here to benchmark the surrogate model (Figs. 15a-b).607

Results for the heterogeneous basins (Figs. 15c-f) demonstrate that both608

the horizontal and the vertical surface displacement are larger than those for609

the homogeneous basin (Figs. 15a-b). This is due to the differences in the610

distribution of cM (z) for the three investigated scenario (see Fig. 13). In these611

instances, the compressibility c∗M at the reservoir depth c is the same, but the612

degree of heterogeneity is significantly different, with both systems exhibiting613

a larger compressibility in the overburden and a lower one in the underburden614
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than in the homogeneous case. Consequently, the land subsidence, which reflects615

the three-dimensional effect of propagation of the aquifer compaction up to the616

surface, is larger for a system that has a more compressible overburden, which617

happens consistently with the compressibility models shown in Figure 13). The618

latter shows also that the power model exhibits a much larger compressibility619

in the overburden than the exponential model, which explains the larger surface620

displacements observed in Figure 15c-d as compared to those in Figure 15e-f.621

5. Conclusions622

The surrogate land subsidence model presented in this work applies to nor-623

mally consolidated sedimentary basins, where the compressibility cM decreases624

along the depth according to either power or exponential laws. In Section 2,625

compressibility models of such types have been investigated and simple equa-626

tions to derive cM (z) laws based on overburden gradient data have been derived.627

It is worth pointing that these equations rely on the assumption of “soft soil”,628

that is a porous medium with a compressibility significantly larger (at least 10629

times) than the particle compressibility cs.630

The surrogate land subsidence model applies to conditions of linear elasticity631

and stems from a semi-analytical form of the classic NoS equations extended632

to heterogeneous systems. Such a model is truly a hybrid between a numeri-633

cal model and an analytical one, as it uses closed-form parametric expressions634

for the NoS equations, with parameters that are retrieved numerically using a635

systematic combination of numerical test results and non-linear regressions as636

functions of the basin compressibility model parameters.637

While the examples presented here consider specifically power or exponential638

cM (z) models, it appears quite possible to apply the same approach to develop639

semi-analytical NoS equations for different compressibility model types, or even640

for under-consolidated basins during loading-unloading cycles.641

One of the strengths of this model lies in its computational parsimony. Built642

upon the NoS equations and the principle of linear superposition, the model is643
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formulated as an explicit ”response-matrix” scheme, where the forcing terms644

depend on the spatial distribution of the change in pore pressure in the subsur-645

face, and the matrix coefficients depend on the selected basin compressibility646

model. The model results quite easy to implement, and can be used estimate647

the land surface displacement associated with any simulated or observed 3D648

pore pressure change field. As such, the surrogate model is particularly suited649

for screening calculations, uncertainty quantification and risk analysis for sub-650

surface development in sedimentary basins.651

It is important to recognize that for more general real-world conditions, for652

example basins in which cM varies not only vertically but also horizontally,653

or with more complex (non-linear, elasto-plastic, etc.) constitutive laws, fully654

numerical models remain the best choice, although their application may be655

hindered by the limited availability of data needed for their calibration and656

validation.657
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Table 2: Fit coefficients αh, βh, αv , and βv calculated by minimizing Eqs. (47) for exponential

compressibility laws (Eq. 43) characterized by the λ′ values given in the first column.

λ′ αh βh αv βv

(/) (/) (/) (/) (/)

0.25 3.87569 -2.20892 1.83910 -2.29899

0.30 3.50634 -2.15502 1.86068 -2.32587

0.35 3.20810 -2.10415 1.84590 -2.30632

0.40 2.96651 -2.05858 1.81586 -2.27062

0.50 2.60465 -1.98320 1.74301 -2.19087

0.60 2.34999 -1.92486 1.67230 -2.11877

0.80 2.01967 -1.84198 1.55617 -2.00776

1.00 1.81680 -1.78647 1.47040 -1.93010

1.20 1.68035 -1.74680 1.40604 -1.87369

1.50 1.54339 -1.70477 1.33571 -1.81343

2.00 1.40640 -1.66011 1.25921 -1.74900

2.50 1.32438 -1.63189 1.21032 -1.70810

3.75 1.21548 -1.59237 1.14161 -1.65048

5.00 1.16131 -1.57175 1.10575 -1.62013

8.00 1.10067 -1.54783 1.06422 -1.58460

12.00 1.06714 -1.53422 1.04059 -1.56417

16.00 1.05043 -1.52734 1.02862 -1.55375

24.00 1.03375 -1.52040 1.01656 -1.54321

32.00 1.02543 -1.51691 1.01049 -1.53789

40.00 1.02044 -1.51482 1.00683 -1.53468

50.00 1.01645 -1.51313 1.00390 -1.53211

60.00 1.01379 -1.51201 1.00194 -1.53039

80.00 1.01047 -1.51061 0.99949 -1.52823

100.00 1.00848 -1.50976 0.99802 -1.52693

200.00 1.00450 -1.50807 0.99507 -1.52433
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Figure 15: Profiles of the surface displacement components ur and uz vs. the radial distance

r, obtained using the surrogate semi-analytical model and the numerical model SUBAXS

assuming (subpanels (a-b)) an homogeneous system, and and a heterogeneous system with

(subpanels (c-d)) b1 = 1.0291 and (subpanels (e-f)) λ = 3850m. Note that in the homogeneous

case (subpanels (a-b)) the surrogate model is truly based on the classic NoS equations (39),

and its solution is compared to the analytical model derived by Geertsma (1973).
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