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A B S T R A C T   

In the last decade, increasing costs and organizational concerns regarding the funding and allocation of financial 
resources have led to significant attention being given to financial flow and its effects on planning decisions 
throughout supply chain networks. This study aims to develop a simulation-optimization model to integrate the 
financial and physical flows in a supply chain planning problem under economic uncertainty. The simulation- 
optimization model includes a mixed-integer linear programming model and a simulation-based optimization 
model that are connected through an iterative process. The economic value added (EVA) index is used to measure 
the financial performance of the supply chain. This study extends the literature on two research domains namely 
supply chain planning and finance and simulation-optimization modelling for supply chain management. The 
proposed model applies a scenario approach to cope with economic uncertainty in the supply chain. To 
demonstrate the efficiency of the proposed model, the performance of the proposed model in solving a test 
problem from the recent literature is compared with the performance of a conventional simulation-based opti-
mization and mixed-integer linear programming approaches. The results of the study show a minimum of 6% 
improvement in the EVA obtained from the proposed simulation-optimization model compared to the EVA 
obtained from the simulation-based optimization model in all the studied scenarios. Moreover, the standard 
deviation of the EVA obtained from the proposed simulation-optimization model is at least 69% lower than the 
EVA obtained from the mixed integer programming model in all the studied scenarios. This shows that the 
proposed simulation-optimisation approach is more robust to economic uncertainty than the mixed-integer linear 
programming approach.   

1. Introduction 

The efficient management of the supply chain (SC) is not a tool which 
only helps organizations to gain a competitive edge but is a requirement 
that allows them to survive in a highly competitive business environ-
ment. SC management (SCM) connects the participants involved in a 
value chain of a product or service through modelling the physical, 
financial, and information flows across the chain. An SC system can be a 
complex system as it encompasses autonomous entities (i.e. suppliers, 
manufacturers, retailers), the processes in a value chain of a product or 
service such as procurement, production, distribution, and the un-
certainties which might be internal such as uncertainty in the distribu-
tion lead time or external such as uncertainty in the end customers’ 

demands [1]. Various planning decisions need to be made to manage 
this complex system [2]. 

All these planning decisions are impacted by financial resource 
allocation. That is to say, implementing planning decisions relies on the 
availability of financial resources [3]. For instance, a new facility in a SC 
cannot be opened unless the funding mechanism is explicit. Moreover, 
optimising planning decisions may save financial resources. For 
example, optimizing inventory decisions leads to savings in financial 
resources which in turn can provide the required resources for imple-
menting other planning decisions such as production capacity expan-
sion. Therefore, Incorporating the financial aspect of SCM in SC 
planning models ensures the availability of financial resources for 
implementing planning decisions and also provides opportunities on 
saving financial resources [4,5]. 

The financial aspect of SCM is incorporated in SC planning models in 
two ways: (1) considering costs associated with SC activities such as 
production and inventory holding and deducting these costs from SC 
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revenue to measure SC profitability; (2) considering the flow of cash 
which moves from the customers who are the only source of money in an 
SC to other SC members (i.e., retailers, distributors, suppliers). The 
smooth flow of cash within an SC enables SC members to meet their 
operations expenses and also invest the excess cash, inflow minus the 
required, for a return. The challenge faced by the SC members is to 
decide on the level of cash to be held for operations expenses as they 
strive to make a trade-off between adequacy of cash for meeting oper-
ations expenses and minimizing the opportunity cost which is incurred 
as a result of holding cash. 

Literature on SCM merely considers the costs associated with SC 
activities and ignores the flow of cash within SCs [6,7]. Recently more 
attention has been given to the study of the cash flow through SCs in 
addition to the cost of activities (e.g., [5,8–10]). These studies consider 
various sources of uncertainty. The most frequently considered source of 
uncertainty is demand uncertainty (e.g., [10–12]). However, there are 
limited studies that consider economic uncertainty which refers to un-
certainties in microeconomic, macroeconomic, financial and market 
conditions. Economic uncertainty has a significant impact on both the 
profitability of SCs and the flow of cash within SCs. For instance, 
increasing short-term and long-term interest rates leads to the increased 
cost of debt for SC members and consequently reduced profitability of 
the SC. From a cash flow perspective, this increases the opportunity cost 
of holding cash by SC members and also reduces the availability of cash 
for SC members as the investors’ willingness to invest in the stock 
market decreases. Therefore, considering the economic uncertainty in 
SC planning and finance models results in obtaining a more accurate 
indication of profit and cash flow dynamics within an SC. To measure 
the impact of economic uncertainty on SC profitability, we need to 
employ indicators which consider the cost of capital employed by a SC 
when calculating SC profitability. Economic value added (EVA) is a 
metric that deducts the cost of capital employed by a SC from its income 
to provide a more realistic representation of SC profitability. Moreover, 
studies in the literature have not considered cash holding cost as an 
element in SC total cost. Incorporating cash holding cost into the SC total 
cost enables us to minimise the opportunity cost of holding cash by 
minimizing the level of cash held by SC members. 

To address the gaps in the literature, we develop a simulation- 
optimization framework that incorporates cash flow modelling and 
uncertainties in macroeconomic and microeconomic parameters in an 
SC planning problem. The developed model adds the cash holding cost 
to SC’s total cost. The reason for choosing the simulation-optimization 
methodology is its ability to integrate the benefits of both simulation 
and optimization. Optimization models are capable of identifying the 
optimal SC decisions but incorporating complexities including nonlinear 
relationships, delays, and feedback loops that exist in cash and physical 
flows of the SCs significantly increases their computational cost. On the 
other hand, simulation models are powerful tools for modelling the SC 
complexities, however, they are not able to determine the optimal SC 
decisions. This makes simulation-optimization an effective tool for 
addressing complex SC problems [13,14]. 

The rest of the paper is organised as follows: the literature review is 
presented in Section 2. The problem description and the proposed 
simulation-optimization approach are described in Section 3. Section 4 
elaborates the model formulation. Section 5 illustrates the applicability 
of the proposed model through a case study. Finally, conclusions and 
directions for future research are given in Section 6. 

2. Literature review 

Two major research domains that are relevant to this study are: SC 
planning and finance and simulation-optimization modelling for SC 
management. Therefore, the literature review is organized in line with 
these two major research domains. This study integrates these research 
strands to address an integrated SC physical and financial flows planning 
problem under microeconomic and macroeconomic uncertainties. 

2.1. SC planning and finance 

Several works incorporated financial flow modelling into the SC 
planning problem. Table 1 provides a summary of the SC planning and 
finance literature. There are two main gaps in the literature. Firstly, 
much of the literature has developed mixed integer linear programming 
(MILP) models that ignore nonlinearities, delays, and feedback loops 
that exist in the physical and financial flows of the SCs (e.g., [[15–19]]). 
Naraharisetti et al. [16] developed a MILP model that considered budget 
constraints. Zhang et al. [19] presented a MILP model that aimed to 
minimize the cash conversion cycle in an SC. Ramezani et al. [17] 
developed a MILP model that aimed to identify the optimal financial 
decisions such as the optimal level of current and fixed assets in an SC. 
Simulation-optimization modelling which is an efficient tool for 
capturing the nonlinearities, delays, and feedback loops that exist in the 
physical and financial flows of the SCs, remains underrepresented in the 
literature [20–22]. Although Utama et al. [23] highlighted the efficiency 
of simulation-optimisation for addressing the integrated SC planning 

Table 1 
SC planning and finance literature.  

Author(s) Modelling Approach Model Objectives Uncertain 
Parameters 

Melo et al. [15] MILP Min Total cost – 

Naraharisetti 
et al. [16] 

MILP Max Net present 
value 

– 

Zhang et al. [19] MILP Min Total cost 
Min cash 
conversion cycle 
Max Service level 

– 

Puigjaner and 
Laínez [24] 

Simulation- 
optimization 

Min Environmental 
impact 
Max Change in 
Equity 

Demand 
Price 
Interest rates 

Longinidis and 
Georgiadis 
[12] 

MILP Max Economic 
value added (EVA) 

Demand 

Nickel et al. [25] MILP Max Total financial 
benefit 

Demand 
Interest rates 

Longinidis and 
Georgiadis 
[26] 

Mixed integer non- 
linear programming 
(MINLP) 

Max EVA 
Max the Altman’s 
Z-score 

Demand 
Interest rates 
Risk-free rate 
of interest 
Expected 
return of the 
market 

Ramezani et al. 
[17] 

MILP Max Change in 
Equity 

– 

Cardoso et al. 
[11] 

MILP Max Net present 
value 
Min financial risk 

Demand 

Arani and Torabi 
[27] 

MILP Max Net present 
value 

Demand 

Yousefi and 
Pishvaee [5] 

MILP Max EVA Exchange rate 

de Matta [28] Linear Programming 
(LP) 

Max Total profit Product cost 
Transfer price 

Wang and Huang 
[29] 

MILP Max shareholder 
value 

Demand 
Exchange rate 

Albrecht and 
Steinrücke 
[30] 

MILP Max Total profit – 

Razavian et al. 
[10] 

MILP Max Total profit Demand 

Wolff et al. [18] MILP Min Total cost – 

Kalantari et al. 
[31] 

Goal programming Min Total profit – 

This study Simulation- 
optimization 

Max EVA Demand 
Interest rates 
Risk-free rate 
of interest 
Expected 
return of the 
market  
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problems. To fill this gap, we present a simulation-optimization model 
which incorporates SC dynamics including nonlinearities, delays, and 
feedback loops that exist in the physical and financial flows of the SCs. 
Applying simulation-optimization modelling results in identifying the 
optimal SC decisions in a more realistic environment as the 
simulation-optimization is an efficient approach for capturing SC 
dynamics. 

Secondly, there is limited research that considers uncertainties in 
both microeconomic and macroeconomic parameters (e.g., [24–26]). 
Puigjaner and Laínez, [24] considered demand, price, and interest rate 
uncertainties. Nickel et al. [25] considered demand and interest rates 
uncertainties. Longinidis and Georgiadis [26] considered uncertainties 
in demand, interest rates, expected return of the market, and the 
risk-free rate of interest. de Matta [28] considered uncertainties in the 
product price and transfer price. To fill this gap, we consider the un-
certainties in both microeconomic and macroeconomic parameters 
including demand, interest rates, expected return of the market, and the 
risk-free rate of interest. 

Thirdly, to the best of our knowledge no study incorporates cash 
holding cost into SC total cost. This enables us to minimise the oppor-
tunity cost which is incurred as a result of holding cash by SC members. 
To fill this gap, we consider cash holding cost in SC total cost. 

Fourthly, the previous studies consider price as an uncontrollable 
parameter. They are the either consider price as a given parameter (e.g., 
[5,26,31]) or consider price as an uncertain parameter (e.g., [24,28]). In 
this study, we formulate price as a controllable parameter and identify 
its optimal value. 

As it is shown in Table 1, this study makes four contributions to the 
literature on SC planning and finance: (1) It uses simulation- 
optimisation which is an under-represented modelling approach in the 
literature. Although its efficiency has been highlighted [23], (2) It 
considers the uncertainties in both microeconomic and macroeconomic 
parameters as opposed to much of the literature which consider either 
macroeconomic or microeconomic parameters, (3) It incorporates cash 
holding cost into SC total cost as opposed to previous studies which 
ignore this, and (4) formulate price as a controllable parameter and 
identifies its optimal value as opposed to literature which consider price 
as a given parameter or an uncertain parameter. 

2.2. Simulation-optimization modelling for SC management 

Simulation-optimization modelling refers to any combination of 
simulation and optimization approaches [32]. Shanthikumar and Sar-
gent [33] classified simulation-optimization models into two main cat-
egories: (1) hybrid models in which simulation and optimization 
approaches are combined into one single model, and (2) hybrid 
modelling that includes constructing independent simulation and opti-
mization models and then integrating the solution strategy through 
establishing a feedback structure. The hybrid models are further divided 
into simulation-based optimization and optimization-based simulation 
models. Simulation-based optimization (SBO) relates to incorporating 
optimization algorithms into simulation models to identify the optimal 
values for the decision parameters of the simulation model. The 
optimization-based simulation is concerned with the computation of the 
optimization model parameters using simulation or sampling of the 
optimization model scenarios using simulation [32,34]. 

A review of studies in simulation-optimization modelling for SC 
management has revealed two main gaps in the literature. Firstly, much 
of the literature applied discrete-event simulation (DES) as the simula-
tion approach in simulation-optimization models (e.g., [35–42]). Ding 
et al. [38] incorporated a non-dominated sorting genetic algorithm 
(NSGA-II) into a DES model to address an integrated network design, 
distribution and inventory planning problem. Otamendi and Doncel 
[41] consolidated GA and DES to manage the trade-offs between total 
cost and service reliability in a gas transmission SC. Altazin et al. [43] 
integrated a MILP and a DES model to address a train rescheduling 

problem in railway systems. Wery et al. [42] integrated a MILP model 
and a DES model to address a sales and operations planning problem in 
the softwood lumber industry. Chiadamrong and Piyathanavong [37] 
proposed a hybrid modelling framework in which a MILP model, a DES 
model and the OptQuest optimization toolbox were integrated to 
address an SC network design problem. Liu et al. [40] presented a hybrid 
modelling framework in which a multi-objective optimization model 
and a DES model were integrated to address a product design and service 
planning problem. System dynamics (SD) simulation that is more effi-
cient than the DES in tactical and strategic decision making in SCs is 
underrepresented. To fill this gap, we use SD as the simulation technique 
in a simulation-optimisation model. 

Secondly, SBO models solely optimize the performance of the 
simulation systems by identifying the optimal values for the decision 
parameters of the simulation models (e.g., [8,44–48]). Chu et al. [45] 
and Peirleitner et al. [48] developed SBO models to minimize the total 
cost of inventory systems by identifying the optimal values for the in-
ventory decision parameters. Duggan [46] and Aslam and Ng [44] 
developed SBO models to minimize the bullwhip effect by identifying 
the optimal values for the inventory decision parameters. Linnéusson 
et al. [47] presented a hybrid model that integrated SD and DES simu-
lation and an NSGA-II algorithm to determine the optimal maintenance 
decisions. Badakhshan et al. [8] minimized the cash flow bullwhip by 
identifying the optimal inventory and financial decision parameters. The 
performance of the simulation systems could be enhanced by identifying 
the optimal values for the decision variables of the simulation models 
such as the flow of products in the SC networks in addition to the de-
cision parameters of the simulation models. Gillis et al. [49] presented a 
hybrid model which integrated SD and GA to optimise response strate-
gies to epidemics. To this end, this paper presents a 
simulation-optimization framework which integrates an SBO model, 
including system dynamics and genetic algorithm, and an optimization 
model, MILP. The developed model framework optimizes production 
and distribution decision variables and inventory and financial decision 
parameters within the SD simulation model. 

This study makes two main contributions to the literature on 
simulation-optimisation modelling for SC management: (1) It employs 
SD which is an under-represented simulation technique as opposed to 
much of the literature which used DES as the simulation technique. SD is 
more efficient than the DES in tactical and strategic decision making 
[50], (2) It determines the optimal values for both decision variables and 
decision parameters of a simulation model as opposed to the previous 
studies which only identify the optimal values for the decision param-
eters of a simulation model. 

3. Problem description and modelling approach 

The general structure of the studied SC is depicted in Fig. 1. The SC 
includes four stages: (1) suppliers, (2) production centre, (3) distribution 
centres, and (4) retailers. In the downstream direction, suppliers provide 
raw material to the production centre. The products are then manu-
factured in the production centre and shipped to the retailers via dis-
tribution centres. The retailers are responsible for meeting customers’ 

demands, which are uncertain and fluctuate in line with the economic 
environment. In the upstream direction, customers pay for products 
purchased from the retailers. It is assumed that the distribution centres 
and retailers are owned by the production centre and consequently share 
a common profit. 

In the studied SC system, one product and multiple periods are 
considered. The suppliers can fulfil the entire order of the production 
centre, while the capacities of other SC members are restricted. The 
production centre can secure long-term and short-term loans. In this 
study, a MILP-SBO model is developed to maximize the economic 
profitability of the studied SC by identifying the optimal values for the 
following decisions: (1) The amount of raw material to be purchased 
from suppliers, (2) The production rate at production centre, (3) The 
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number of required suppliers and distribution centres, (4) The inventory 
levels at SC facilities, (5) The flow of products in the network, (6) The 
level of short-term and long-term liabilities, (7) The level of equity, (8) 
The level of fixed and current assets, (9) The level of cash, (10) Price of 
the product, (11) Profit distribution policy which denotes the dividends 
that is required to be paid to the shareholders. 

The modelling approach consists of building independent MILP and 
SBO models and thereafter integrating these two models to identify the 
optimal decisions. The connection between the two models is illustrated 
in Fig. 2. 

Firstly, by setting the initial price, desired cash, profit distribution 
policy, and desired inventories at the production centre, distribution 
centres, and retailers, the MILP model that aims to maximise the EVA is 
run to determine the structure of the SC including the open or close 
decision on distribution centres, select suppliers and the amount of raw 
material that should be purchased from each supplier. Moreover, the 
MILP model identifies the optimal values for the production rate at the 
production centre, inventory levels at SC members, the flow of products 
in the network, short-term and long-term liabilities, equity, fixed and 
current assets, and cash levels within the SC. 

In step 2, the solution suggested by the MILP model determines the 
structure of the SC in the system dynamics (SD) simulation model. A 
simulation-based optimisation (SBO) framework which incorporates the 
genetic algorithm into the SD simulation model is then developed to 

identify the optimal values for the price per tonne of the product, desired 
cash, profit distribution policy, and desired inventory levels at SC 
members. The procedure for the SBO framework is elaborated in Section 
4.2. It is worth mentioning that formulating the price of the product as a 
variable within the MILP model converts the MILP model into a non- 
linear model which significantly increases the computational time. 
The stocking capacities of the SC facilities would be more realistic if 
obtained by the SBO model in which inventory dynamics is considered. 

In step 3, the price, the profit distribution policy, the desired cash, 
and the desired inventories that are obtained from the SBO model are 
inputted into the MILP model in which the new optimal values to the 
decision variables explained in step 1 are determined. Taking the results 
of the second iteration from the MILP model, the SBO model is then run 
again to obtain a new solution containing the product price, the desired 
cash, the profit distribution policy and the desired inventories at the SC 
facilities (step 4). 

At this point, the information gathered from the MILP-SBO model is 
used to examine whether the current solution, which is the EVA of the 
network is higher than the EVA obtained in the previous run of the MILP- 
SBO model. If the termination criterion is satisfied, the solution sug-
gested by the MILP-SBO approach is accepted, otherwise, the results are 
used to revise the problem to be resolved by the MILP-SBO approach in 
the third iteration, and so on. The revision of the problem contains the 
revision of feasible intervals of the controllable parameters including 

Fig. 1. The structure of the studied SC.  

Fig. 2. The MILP-SBO modelling.  
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price, desired inventories at SC members, and desired cash. 

4. Model formulation 

4.1. Optimization model (MILP) 

The optimization model (MILP) is presented as follows. 

Indices  

Indices 
r Index of retailers r = 1, 2,…, R 
d Index of distribution centres d = 1, 2,…, D 
s Index of suppliers s = 1, 2,…, S 
t Index of period t = 1, 2,…,T  

Physical parameters  

Physical parameters 
ot Amount of raw material required for producing 1ton of product at the 

production centre during period t 
drt Demand placed to retailer r during period t 
caprmt Storage capacity for raw material at production centre during period t 
capt Storage capacity for products at the production centre during period t 
capddt Storage capacity for products at distribution centre d during period t 
caprrt Storage capacity for products at retailer r during period t 
prcapt Production capacity at the production centre during period t 
DIRMt Desired inventory of the raw material at the production centre at the end of 

period t 
PDIt Desired inventory of the products at the production centre at the end of 

period t 
DDIdt Desired inventory of the products at distributor d at the end of period t 
RDIrt Desired inventory of the products at retailer r at the end of period t  

Financial parameters  

Financial parameters 
rft Risk-free rate of interest during period t 
rmt Expected return of the stock market during period t 
STRt Short-term interest rate during period t 
LTRt Long-term interest rate during period t 
trt Tax rate during period t 
prit Price of product per ton during period t 
upct Unit production cost during period t 
tcst Transportation cost from supplier s to the production centre during period 

t 
tccdt Transportation cost from production centre to distributor centre d during 

period t 
tcddrt Transportation cost from distribution centre d to retailer r during period t 
hrt Holding cost per ton of raw material at the production centre during 

period t 
hpt Holding cost per ton of product at the production centre during period t 
hodt Holding cost per ton of product at distribution centre d during period t 
hsrt Holding cost per ton of product at retailer r during period t 
fcddt Fixed cost of distribution centre d during period t 
fcpt Fixed cost of production centre during period t 
fcrrt Fixed cost of retailer r during period t 
ucct Holding cost per unit of cash during period t 
rmcst Purchasing price of raw material from supplier s during period t 
drt Depreciation rate during period t 
csst Share of NOPAT in the form of cash during period t 
rmvt Value of raw material per ton during period t 
PDPt Profit distribution policy during period t 
DCSt Desired cash level at the end of period t 
DFAVdt Distribution centre d fixed assets value at the end of period t 
PCFAVt Production centre fixed assets value at the end of period t 
RFAVrt Retailer r fixed assets value at the end of period t  

Physical decision variables  

Physical decision variables 
SRrt Sale rate of retailer r during period t 
PRt Production rate during period t 
Xst Quantity of raw material purchased from supplier s during period t 

(continued on next column)  

(continued ) 
Ydt 

=

{ 1 if distribution centre d is open during period t
0 if distribution centre d is closed during period t 

Zst 
=

{ 1 if supplier s is active during period t
0 if supplier s is not active during period t 

SCdt Quantity of products shipped from production centre to distribution centre 
d during period t 

SDIdrt Quantity of products shipped from distribution centre d to retailer r during 
period t 

FIRt Inventory level of the raw material at production centre at the end of period t 
FIPt Inventory level of products at production centre at the end of period t 
FIOdt Inventory level of products at distribution centre at the end of period t 
FISt Inventory level of products at retailer at the end of period t  

Financial decision variables  

Financial decision variables 
STLt Short-term liabilities at the end of period t 
LTLt Long-term liabilities at the end of period t 
Et Equity at the end of period t 
CSt Cash level at the end of period t 
FAt Fixed assets at the end of period t 
CAt Current assets at the end of period t 
DPRt Depreciation during period t 
RAt Receivable accounts at the end of period t 
INRt Inventory value at the end of period t 
NOPATt Net operating profit after tax during period t 
NISt New issued stocks during period t  

4.1.1. Objective function 
The economic profitability of the studied SC is measured by the 

economic value added (EVA) index. The EVA [51] is a widely used index 
which integrates financial and economic performance indicators. This 
indicator rectifies the optimistic interpretation of a company’s perfor-
mance by deducting the cost of employed capital from its net income. 
Economic situation has a significant impact on the cost of employed 
capital. Therefore, in presence of economic uncertainty it is critical to 
use EVA rather than profitability which ignores the cost of employed 
capital. The formulation of the EVA is given in Eq. (1), where NOPAT is 
the net operating profit after tax reported in the income statement and 
WACC is the weighted average cost of capital, a figure representing the 
real costs concerned with the sources of capital employed by the com-
pany [52]. 

EVAt =
∑T

t=1

[NOPATt −(WACCt)ICt] (1) 

The WACC (2) is the return needed to compensate capital providers, 
i.e. creditors and stakeholders and is obtained by multiplying the cost of 
debt (CD) and cost of equity (CE) by their proportional weight and then 
taking the sum of the results. The cost of debt is the weighted average of 
short-term and long-term liabilities. The cost of equity is measured by 
the capital asset pricing model (CAPM) which contains three elements. 
The first element is the risk-free rate of interest (rft ) which is the reward 
for placing capital in a risk-free asset such as government bonds. The 
second element, the difference between the expected return of the stock 
market (rmt ) and (rft ), is the reward for placing capital in an investment 
which requires taking risks such as stock market bonds. The third 
element, the risk measure (β) is the amount of systematic risk present in 
an asset. Invested capital (IC) (3) accumulates the amount of financing 
from debt and equity. 

WACCt =

⎛

⎜
⎝

Et

ICt

(
rft +

(
rmt

− rft

)
β
)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Cost of equity

⎞

⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

STLt + LTLt

ICt

(
STLt

TLt

STRt +
LTLt

TLt

LTRt

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Cost of debt

(1− trt)

⎞

⎟
⎟
⎟
⎠

(2) 
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ICt = STLt + LTLt + Et ∀t. (3) 
To calculate the NOPAT (4), the earnings before interest and taxes 

(EBIT) is multiplied by 1 minus tax rate (tr). The EBIT which is the gross 
income of a company is calculated by subtracting the total cost (TC) 
from the net sales (NTS). The revenue of the SC (6) is obtained by 
multiplying the sale amounts of each retailer by the price and aggre-
gating the results. 
NOPATt = EBITt(1− trt) ∀t. (4)  

EBITt = NTSt − TCt ∀t. (5)  

NTSt =
∑R

r=1

SRrtprit ∀t. (6) 

The total cost (7) of the chain contains the production cost at the 
production centre (PC), the transportation cost between centres (TRC), 
the inventory holding cost at the centres (HC), fixed costs of the centres 
(FC), cash holding cost (CC), and the cost of raw material purchased 
from the suppliers (RMC). Eq. (8) shows the operating cost at the pro-
duction centre which is obtained via multiplying production rate (PR) 
and unit production cost (upc). The operating costs are the costs asso-
ciated with the required activities to produce final products. The 
transportation cost (TRC)(9) includes the transportation cost from the 
supplier to the manufacturer (tc), the manufacturer to the distributor 
(tcc), and the distributor to the retailer (tcd). Eq. (10) represents the 
inventory holding cost incurred by the manufacturer, distribution cen-
tres, and retailers. This cost encompasses the holding cost of the raw 
material (hr) and the holding cost of the product (hp) at the production 
centre, in addition to the holding cost of safety stock at the distribution 
centres and retailers. The unit holding cost of raw material is set to 10% 
of the raw material price. The unit holding costs of the product at pro-
duction centre (hp), dsitribution centres (ho), and retailers (hs) are set to 
10% of the product price. 
TCt = PCt + TRCt + HCt + FCt + CCt + RMCt + DPRt ∀t. (7)  

PCt = upctPRt ∀t. (8)  

TRCt =
∑S

s=1

tcstXst +
∑D

d=1

tccdtSCdt +
∑R

r=1

∑D

d=1

tcddrtSDIdrt ∀t. (9)  

HCt = hrt

(
FIRt + FIRt−1

2

)

+ hpt

(
FIPt + FIPt−1

2

)

+
∑D

d=1

hodt

(
FIOdt + FIOdt−1

2

)

+
∑R

r=1

hsrt

(
FISt + FISt−1

2

)

∀t. (10) 

The fixed cost (11) contains all the expenses incurred by an SC 
member such as employee salaries, and these do not depend on the 
number of goods and services provided by the member. This cost is 
obtained for the distribution centres by multiplying the fixed cost (fcd) 
by a binary variable that indicates the activity of the distribution centre. 
The fixed costs of the production centre (fcp) and retailers (fcr) are not 
multiplied by the binary variable as it is assumed they are situated fixed 
in locations. Companies hold cash to pay their suppliers for their services 
and also cover unexpected expenses which may arise. Cash holding cost 
(12) is the opportunity cost of choosing to hold cash rather than 
investing in more profitable options such as purchasing stock. This cost 
in each period is calculated by multiplying unit cash cost (ucc) by the 
average amount of cash during the period. The raw material cost (13) is 
the cost of purchasing raw material from different suppliers which is 
determined by multiplying the amount purchased (X) by the price of 
each unit (rmc). Depreciation (DPR) is calculated in constraint (14) by 

multiplying fixed assets value and depreciation rate (dr). 

FCt =
∑D

d=1

fcddtYdt + fcpt +
∑R

r=1

fcrrt ∀t. (11)  

CCt = ucct

(
CSt + CSt−1

2

)

∀t. (12)  

RMCt =
∑S

s=1

Xstrmcst ∀t. (13)  

DPRt = drtFAt ∀t. (14)  

4.1.2. Constraints 
In this section, the constraints of the model which were categorised 

into physical flow constraints and financial flow constrains are 
presented. 

4.1.2.1. Physical flow constraints. Constraint (15) shows the inventory 
level of raw material held in the production centre at each period is 
equal to the inventory left at the end of the previous period plus the 
amount of the purchased material from the suppliers minus the amount 
consumed for producing the final products. The available inventory of 
products held in the production centre at the end of period t (16) equals 
the inventory held at the end of period t − 1 plus production rate during 
the period, minus products transported from the plant to distribution 
centres during the same period. 

FIRt =
∑S

s=1

Xst − PRtot + FIRt−1 ∀t. (15)  

FIPt = PRt −
∑D

d=1

SCdt + FIPt−1 ∀t. (16) 

Constraints (17) and (18) state that the inventory level at each 
distributor and retailer is equal to the amount of product that flows into 
the member inventory from the upstream echelon plus the inventory 
that is left over from the previous time, minus the amount of product 
that flows out of the member to the downstream echelon. 

FIOdt = SCdt −
∑R

r=1

SDIdrt + FIOdt−1 ∀d, t. (17)  

FISrt =
∑D

d=1

SDIdrt − SRrt + FISrt−1 ∀r, t. (18) 

Constraint (19) enforces the number of products shipped from each 
retailer to be less or equal to the end customer demand. 
SRrt ≤ drt ∀r, t. (19) 

Constraint (20) enforces the sum of products sold to end customers to 
be equal to the sum of the products sent to the retailers. Constraint (21) 
states that the sum of products shipped to the retailers should be equal to 
the products sent to the distribution centres. 

SRrt =
∑D

d=1

SDIdrt ∀r, t. (20)  

∑R

r=1

SDIdrt = SCdt ∀d, t. (21) 

Constraint (22) ensures that at least one of the suppliers is active at 
each period. Constraint (23) ensures that at least one of the distribution 
centres is open at each period. 
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∑S

s=1

Zst ≥ 1 ∀t. (22)  

∑D

d=1

Ydt ≥ 1 ∀t. (23) 

Constraints (24)-(27) state that the inventory levels at the production 
centre, distribution centres and retailers at any period must be greater 
than their specified safety stock levels known as the desired inventories 
(DI) which are determined by the SBO model. 
DIRMt ≤ FIRt ≤ caprmt ∀t. (24)  

PDIt ≤ FIPt ≤ capt ∀t. (25)  

YdtDDIdt ≤ FIOdt ≤ Ydtcapddt ∀t, d. (26)  

RDIrt ≤ FISrt ≤ caprrt ∀t, r. (27) 
Constraint (28) controls the production rate of the production centre 

not to exceed the available production capacity and not to be lower than 
zero. 
0 ≤ PRt ≤ prcapt ∀t. (28)  

4.1.2.2. Financial flow constraints. Constraint (29) formulates the basic 
equation of the balance sheet. This equation illustrates the equality of 
the assets to equity (E) and debts. The assets comprises of fixed assets 
(FA) and current assets (CA) while the debts includes short-term liabil-
ities (STL) and long-term liabilities (LTL). 
FAt + CAt = Et + STLt + LTLt ∀t. (29) 

The fixed assets (FA) value (30) at the end of each period is deter-
mined by aggregating the fixed assets of the SC members and then 
deducting the depreciation. 

FAt =
∑D

d=1

DFAVdYdt + PCFAVt +
∑R

r=1

RFAVrt − DPRt ∀t. (30) 

Constraint (31) formulates the current assets (CA) which is composed 
of cash (CS), receivable accounts (RA), and inventory value (INR). 
CAt = CSt + RAt + INRt ∀t. (31) 

Constraint (32) shows the amount of cash available which is ob-
tained by aggregating the total amount of loans (STL+ LTL), newly is-
sued stocks, and the operating profit which is accessible in the form of 
cash. The portion of the operating profit that is not accessible in the form 
of cash is accumulated in the receivable accounts (RA) (33). 
CSt = csstNOPATt + NISt + CSt−1 ∀t. (32)  

RAt = (1− csst) NOPATt + RAt−1 ∀t. (33) 
Constraint (34) indicates the inventory value which is determined 

via multiplying the sales price of each member in their corresponding 
inventory and then taking the sum of the results. 

INRt = FIRt rmvt +

(

FIPt +
∑D

d=1

FIOdtYdt +
∑R

r=1

FISrt

)

pri ∀t. (34) 

The equity value (E) at any period is calculated in constraint (35) by 
aggregating the accumulated equity from the previous period, net 
operating profit after tax (NOPAT) that is not distributed amongst 
shareholders and new stocks that are issued. 
Et = (1−PDPt)NOPATt + Et−1 + NISt ∀t. (35) 

Constraint (36) ensures that the cash level at the end of each period is 
greater than the safety cash level known as desired cash level deter-
mined by the SBO model. 

DCSt ≤ CSt ∀t. (36)  

4.2. Simulation-based optimization (SBO) model 

The MILP model presented in the previous section ignores the dy-
namics of the physical and financial flows including nonlinearities, de-
lays, and feedback loops that exist in the physical and financial flows. 
Considering these within the MILP model converts it into a non-linear 
model and increases its computational time significantly. To identify 
optimal values for the inventory and financial decision parameters in a 
more efficient way we present an SBO framework that integrates an SD 
simulation model and a Genetic algorithm (GA). 

4.2.1. SD simulation model 
The SD simulation model considers the dynamics of the physical and 

financial flows and therefore represents a more realistic view of these 
flows in the studied SC. Fig. 3 illustrates the stock and flow diagram for 
the physical flow. It considers the dynamics of the physical flow from 
three perspectives: (1) delays in physical flow including distribution 
lead time between raw material supplier and manufacturer, production 
lead time at the manufacturer, distribution lead time between manu-
facturer and distribution centre, and distribution lead times between 
distribution centre and retailers. All these parameters are set to 1 week; 
(2) feedback loops such as material inventory control loop that modifies 
the material order quantity in line with the material inventory. The 
higher the material inventory, the lower the material order quantity; (3) 
formulating non-linear relationships between the decision parameters 
and variables by incorporating decision parameters into their corre-
sponding module. The decision parameters have been highlighted in 
Fig. 3. For instance, to calculate the raw material order, the gap between 
the desired and actual material inventory is divided by the material 
inventory adjustment time (MIAT). Inventory decision parameters for 
the retailers and the distributor including the desired inventory (DI), the 
desired supply line (DSL), the forecasting parameter for inventory 
adjustment (α), and the forecasting parameter for supply line adjustment 
(β) are added to their corresponding order quantity module. Production 
decision parameters including the minimum order processing time 
(MOPT), safety stock coverage (SSC), inventory adjustment time (IAT), 
manufacturing cycle time (MCT), and WIP adjustment time (WIPAT) are 
added to the production module. Material decision parameters including 
material safety stock coverage (MSSC), minimum material inventory 
coverage (MMIC), and material inventory adjustment time (MIAT) are 
incorporated into the material order quantity module. 

Fig. 4 shows the stock and flow diagram for the financial flow. 
Similar to Fig. 3, It considers the delays and feedback loops in the 
financial flow. The delay in financial flow is payment lead time which is 
set to 4 weeks. It also formulates non-linear relationships between the 
decision parameters and variables by incorporating financial decision 
parameters into cash collection, cash payment, NOPAT, WACCC, and 
invested capital modules. These include unit production cost (UPC), 
collection policy (m), payment policy (n), desired cash (DC), profit dis-
tribution policy (PDP), new stock parameter (NSP), and sales price (SP). 
SD simulation model cannot identify the optimal values of the inventory 
and financial decision parameters as it is not an optimiser. To determine 
the optimal values of the inventory and financial decision parameters, 
SD simulation needs to be integrated with an optimiser, e.g., the Genetic 
Algorithm (GA). This is explained in Section 4.2.2. 

The Appendix provides stock and flow diagrams of the physical and 
financial flows in which a detailed explanation of the non-linear re-
lationships between the decision parameters and variables, delays and 
feedback loops that exist in the physical and financial flows are given. 
The definition of the inventory and financial decision parameters are 
also provided in the Appendix. 

SD simulation models need to be validated through validation tests. 
Three validation tests including a model structure test, boundary 
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adequacy test, and extreme condition test were employed to validate the 
developed SD simulation model. The model structure test evaluates 
whether the structure of the model matches the structure of the system 
being modelled [53]. In our model, every element of the model has a 
real-world counterpart in the physical and financial flows of the studied 
SC. The boundary adequacy test examines whether model boundaries 
match the purpose for which the model is designed [53]. As the objec-
tive of our model is to maximize economic profitability (EVA) for the 
studied SC, all of the factors affecting the EVA have been included in the 
model. The extreme condition test is used to show the robustness of our 
developed simulation model [54]. The extreme condition test assesses 
whether the model behaves appropriately according to its input values 
[54]. For example, the demand for a product goes to zero when there is a 
significant increase in the price [54]. In our developed model, EVA 
grows significantly when the sales price per unit of the product that is a 

model input increases dramatically. 

4.2.2. The genetic algorithm (GA) 
The GA identifies the optimal values for the inventory and financial 

decision parameters in the SD simulation model. A detailed explanation 
of GA is given in Streichert [55]. GAs do not require derivative infor-
mation found in analytical optimisation, but work well with numerically 
generated data, possess the ability to jump out of local minimum, and 
are able to optimise continuous and discrete parameters, particularly the 
continuous parameters [56]. GA is a perfect fit for optimising the SD 
simulation model in this study as the inventory and financial decision 
parameters that need to be optimised are continuous and the objective 
function presented in Eq. (37) is not available in an explicit form and is 
measured using the SD simulation model. 

To optimise SD models using GAs, each solution known as a 

Fig. 3. Stock and flow diagram of physical flow.  

Fig. 4. Stock and flow diagram of financial flow.  
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chromosome is represented by an array of elements, where each position 
in the array pertains to a possible parameter value. A solution pool 
named population is formed by a set of chromosomes. The algorithm 
starts with setting up a population of random possible solutions. In this 
study, the random solutions are generated within the range of parame-
ters defined by Eq. (38). The chromosomes are then evaluated based on 
the objective function to obtain the fitness of the solution. A fitness value 
shows how good each solution is in satisfying an objective function. We 
use the mean of the EVA presented in Eq. (37) as the fitness function of 
the GA. Applying the rule of survival of the fittest, the strongest solutions 
are selected from the population. We use the roulette wheel selection 
method to select the strongest solutions. Subsequently, solutions with 
higher fitness are combined to produce new solutions by performing a 
crossover operator. These solutions are known as parent solutions. We 
use the single-point crossover method. To ensure maintaining variety in 
the overall population, new solutions may then be subjected to small 
variations from parent solutions called mutation operator. We use the 
single-point mutation method. Each population then represents a gen-
eration, and the process continues until predefined stopping criteria are 
met, such as convergence of fitness over generations or reaching the 
maximum number of generations (Lu et al., 2012). We set the stopping 
criteria to be 300 generations. 

Similar to the MILP model, the objective of the SBO model is to 
maximize the economic profitability of the studied SC that is measured 
by the EVA index. The objective function (37) is formulated as maxi-
mizing the mean of the EVA over the simulation period. Maximizing 
EVA is achieved by identifying the optimal values for the inventory and 
financial decision parameters of the simulation model that have been 
highlighted in Figs. 3 and 4. The feasible intervals for inventory and 
financial decision parameters are defined by Eq. (38). 

Objective function : Max EVA = Max μEVA Where μEVA =

∑T

t=0EVA

T
(37) 

Decision parameters: 
αD, αR1,αR2,αR3, βD, βR1, βR2, βR3, m, n,

DDI,DDSL,DC, IAT,MIAT,MSSC,MCT,MMIC,MOPT,PDP,R1DI,

R1DSL,R2DI,R2DSL,R3DI,R3DSL, SP,NSP, TAOR, UPC,WIPAT 

Subject to: 
0 ≤ αD, αR1,αR2,αR3 ≤ 1; 0 ≤ βD, βR1, βR2, βR3 ≤ 1; 0 ≤ m, n ≤ 1; 0 ≤ DDI

≤ 60; 0 ≤ R1DI, R2DI, R3DI  

≤ 30; 0 ≤ DDSL ≤ 60; 0 ≤ R1DSL,R2DSL,R3DSL ≤ 30; 1 ≤ IAT ≤ 5; 1

≤ MIAT ≤ 5; 0 ≤ MSSC ≤ 2;

0 ≤ SSC ≤ 2; 0 ≤ MMIC ≤ 5; 1 ≤ MOPT ≤ 3; 0 ≤ PDP ≤ 1; 200 ≤ SP

≤ 300; 0 ≤ NSP ≤ 1;

80 ≤ UPC ≤ 120; 1 ≤ WIPAT ≤ 5; 0 ≤ DC ≤ 2000; 1 ≤ MCT ≤ 3 (38) 
SBO is a modelling framework which incorporates an optimisation 

algorithm into a simulation model to determine the optimal simulation 
parameters configuration [57]. In SBO, the optimisation objective 
function is estimated using a simulation model [44]. The framework of 
the SBO is shown in Fig. 5. SBO is an iterative process which is launched 
by an optimization algorithm, i.e., GA that generates the initial values to 
the inventory and financial decisions parameters within the ranges 
defined by Eq. (38). The simulation model is then run using the gener-
ated values to evaluate system performance, i.e., mean of the EVA pre-
sented in Eq. (37). Thereafter, the performance measures are fed back 
into the optimization algorithm. Based on this feedback a new set of 
inventory and financial decision parameters are generated and inputted 
into the simulation model for evaluation [58]. This iterative process 

continues until a user-specified stop criterion such as performing a 
defined number of evaluations or the maximum number of generations 
is met [59]. We set the stopping criteria to be 300 generations. 

4.3. MILP-SBO modelling 

The MILP-SBO approach seeks to utilize the advantages of both MILP 
and SBO models. In the MILP-SBO framework, the decisions recom-
mended by the MILP model and the decisions that are obtained by the 
balancing loops in the SD simulation model are integrated to determine 
the amount of raw material to be purchased, the production start rate 
and the shipment rates across the network. The material delivery rate 
(39) in this model is a function of the desired material order rate from 
the SD model and the material order rate from the MILP model. The 
production start rate (40) is determined by the desired production rate 
and the feasible production from the material determined by the SD 
model and the production rate recommended by the MILP model. The 
shipment rate of the manufacturer (MSRd)(41) is determined by the 
maximum shipment rate to each distributor, the desired shipment rate of 
each distributor, and the shipment rate suggested by the MILP model. 
The amount of products that are shipped from each distribution centre to 
each retailer (DSRdr) (42) is a function of the desired shipment rate of the 
distributor determined by the MILP model and the maximum shipment 
rate and the inventory of the distributor that are obtained from the SD 
model. The sale rate of each retailer (RSRr) (43) is calculated by its 
customer demand, its inventory level, and the sale rate obtained from 
the MILP model. Employing the optimal decision variables determined 
by the MILP model to decide on decision variables in the SD model re-
duces the levels of inventory held by SC members and the level of cash 
held at SC. 

Material order rate = Min

(

Desired material order rate,
∑S

s=1

Xst

)

(39)  

Production start rate =Min(Desired production start rate,

Feasible production from material,PRt)
(40)  

MSRd = Min(Maximum shipment rated,Desired shipemnt rated, SCdt) ∀d.

(41)  

DSRdr = Min(Retailer orderr,Distributor inventoryd, SDIdrt) ∀r, d. (42)  

RSRr = Min(drt,Retailer Inventoryr, SRrt) ∀r. (43)  

5. A case study 

The advantages of the MILP-SBO modelling are investigated by 
comparing it with the individual optimization and SBO methods through 
conducting empirical tests. The data for this case study is adopted from 
Longinidis and Georgiadis [12] and Longinidis and Georgiadis [26]. The 
range of parameter values expressed in Longinidis and Georgiadis [12] is 
extended to ensure that the optimal parameter values lie within the 
searching boundary. 

The numerical experiment is scaled as follows: the number of 
customer zones, retailers, and distributors is three; the number of 

Fig. 5. SBO framework.  
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production centres is one; the number of suppliers is two, and the 
number of periods is two one-year periods. Tables 2 and 3 present the 
production, inventory holding, and cash holding costs in each period. 
The transportation costs from suppliers to the production centre, from 
the production centre to distributors, and from distribution centres to 
the retailers are given in Tables 4–6, respectively. Tables 7 and 8 show 
the five parameters that represent economic uncertainty. Three sce-
narios are defined to reflect the uncertainties in five economic param-
eters including customer demand, expected return of the market, risk- 
free rate of interest, short-term interest rate, and long-term interest 
rate. It is assumed that in the first period, there is no economic uncer-
tainty but at the start of the second period, there are three potential 
conditions including boom, stagnation, and, recession and these lead to 
three scenarios. During a boom period, economic prosperity leads to the 
increased purchasing power of customers which results in excessive 
demand for products and services. The expected return of the market 
rises, as the investors who are optimistic about the future of the com-
panies present in the stock market increase their investment. The risk- 
free rate of interest, which is usually the interest rate of a govern-
mental bond, falls as the risk of default diminishes. The risk of the 
borrower’s default decreases, therefore financial institutions charge 
lower short-term and long-term interest rates. On the other hand, during 
a recession period, the aforementioned parameters move in the opposite 
direction. In a stagnation period, it is assumed that the past shapes the 
future because there are minor deviations in the value of parameters 
comparing the preceding period [26]. 

The sales price of the product and production capacity in each period 
are presented in Table 9. Three models are developed based on opti-
mization (MILP), SBO, and MILP-SBO methods. The results of each 
model are analysed and presented in the following sections. 

5.1. Optimization model (MILP) 

The values of the parameters in the optimization model (MILP) are 
randomly generated in the feasible interval of the parameter values 
using MATLAB software. For instance, to determine the unit production 
cost of the product in each period, two random data in the interval of 
[58–62] were generated. The MILP model focuses on identifying long- 
term decisions such as SC structure. Therefore, the material delivery 
and cash payment lead times are assumed to be zero; otherwise, the 
solving period must be subdivided into shorter periods, in this model 
weeks, to accommodate the lead times. Neglecting the lead times in 
material delivery and assuming zero safety stock, the MILP model rec-
ommends keeping no inventory at all with the SC members. Therefore, 
the EVA obtained from the MILP model is higher than the one gained 
from the SBO and MILP-SBO models that hold inventory, including 
finished goods and raw material. To establish a meaningful contrast 
between the MILP, SBO and MILP-SBO models, we assume that the SC 
members hold safety stock to hedge against the demand uncertainty. 
This reduces the EVA obtained from the MILP model compared to the 
case with zero safety stock. The MILP model is then used to determine 
the optimal network design and the production rates at the production 
centre. The computational time of the MILP model is low, less than 10 s, 
as it does not formulate the cash and inventory dynamics. Considering 
these converts the MILP model into a mixed integer non-linear pro-
gramming model (MINLP) and significantly increases the computational 
time. As Table 10 shows the storage locations and the supplier deter-
mined by the MILP model for each scenario. Considering the possible 

economic conditions at the start of the second year, the MILP model 
suggests purchasing the raw material from supplier no. 1 and to open 
Distribution centre no. 2. 

Table 11 illustrates the MILP model results for some physical and 
financial variables in each scenario. Demand variability is caused by the 
economic uncertainty driving the production rate. Demand growth in 
scenario 1, is adjusted by increasing the production rate, while the de-
mand shrinkage in scenario 3 is dealt through decreasing the production 
rate. In scenario 2, the MILP model recommends diminishing the pro-
duction rate at year two, although the customer’s demand has remained 
unchanged. The reason is that the demand is partially met by the safety 
stock. The equality of the right and left sides of the balance sheet in each 
period shows the accuracy of the financial modelling. The profitability, 
NOPAT, and the economic performance, EVA, of the chain decrease 
when the economy diminishes in size as increasing cost of goods sold is 
not offset by neither demand growth nor reduction in financing ex-
penses, i.e., cost of equity and cost of debt. 

The structure of the current assets in each year for the three scenarios 
is illustrated in Fig. 6. In all scenarios at the end of the second year the 
highest and lowest shares of the current assets belong to the cash and 
inventory values, respectively. The inventory level at the end of the 
second year for all scenarios is similar and is equal to the safety stock, 
despite the demand differences. The structure of the capital in each year 

Table 2 
Production and cash holding cost.  

Production cost Cash holding cost 
t = 1 t = 2 t = 1 t = 2 
58.6 60.9 1.06 1.10  

Table 3 
Inventory holding costs at SC members.  

Production centre Distributors Retailers 
t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 
58.6 60.9 8.2 8.9 8.2 8.9  

Table 4 
Transportation cost from suppliers to production centre.  

To  
From 

Production centre  

t = 1 t = 2 
Supplier 1 15.2 19.4 
Supplier 2 18.6 20.7  

Table 5 
Transportation cost from production centre to distribution centres.  

To  
From 

Distribution 
centre 1 

Distribution 
centre 2 

Distribution 
centre 3  

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 
Production centre 20.2 23.4 25.2 61.4 65.8 72.3  

Table 6 
Transportation cost from distribution centres to retailers.  

To  
From 

Retailer 1 Retailer 2 Retailer 3  

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 
Distribution centre 1 25.7 34.3 52.6 54.5 95.4 79.8 
Distribution centre 2 32.5 50.4 12.5 15.2 15.3 17.6 
Distribution centre 3 89.1 68.9 69.4 63.1 29.3 33.6  

Table 7 
Customers’ demands in the predicted economic scenarios.  

Scenario Customer 1 Customer 2 Customer 3  
t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 

S1 750 1125 730 1095 570 855 
S2 750 750 730 730 570 570 
S3 750 500 730 487 570 380  
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for all scenarios is depicted in Fig. 7. The MILP model in all three sce-
narios recommends using long-term liabilities as the source of financing 
due to its lower interest rates compared to short-term liabilities and 
issuing new stocks. The growth of equity at the second year for all sce-
narios is triggered by the addition to retained earnings which is set to be 
45 percent of the NOPAT. 

5.2. MILP, SBO and MILP-SBO models 

As explained in Section 4.3, the SBO model is constructed by incor-
porating genetic algorithms into the SD simulation model to identify the 
optimal values for the inventory and financial decision parameters of the 
simulation model that maximize the objective function, EVA. The pa-
rameters of the GA including the population size, crossover rate, and 
mutation rate are set to be 300, 0.8, and 0.1, respectively. The simula-
tion time step is one week. The MILP-SBO model uses the optimal de-
cision variables determined by the MILP model to decide on the quantity 
of the order to be placed with the suppliers, the production rate at the 
manufacturing site, and the shipment rates in the SC network. We also 
compare the performance of the MILP-SBO model with the MILP method 
proposed in the literature (e.g., [5,12]). 

The MILP model was implemented in GAMS (25.1.1 ver.) and solved 
using CPLEX (12.8.0.0 ver.) solver, and the SBO simulation model was 
implemented in MATLAB (2021a ver.). All models run in an Intel(R) 
Core(TM) CPU i7–10610U @2.60 GHz with 32GB RAM. 

5.2.1. Scenario 1 
Scenario 1 assumes a boom in the second year of the simulation that 

increases customer demand and expected return of the market and a 
decrease in risk-free rate of interest, short-term interest rate and long- 
term interest rate. In terms of computational time, there is no consid-
erable difference between the SBO and MILP-SBO models as both models 
consider the inventory and cash dynamics. The inventory and cash dy-
namics for the members in scenario 1 obtained from the SBO and MILP- 
SBO models are illustrated in Figs. 8(a)-(d) and 9(a)-(d), respectively. 
The MILP-SBO approach is more efficient than the SBO approach in 
managing the cash and inventory of the SC members as it uses the 
optimal values for the raw material order quantity, production rate, and 

Table 8 
Macroeconomic parameters values in the predicted economic scenarios.  

Scenario Parameter  

STR[s]
t=0 STR[s]

t=53 LTR[s]
t=0 LTR[s]

t=53 r[s]ft=0 r[s]ft=53 r[s]mt=0 r[s]mt=53 

S 1 7.00 5.60 4.00 3.00 2.50 2.00 5.00 6.00 
S 2 7.00 7.00 4.00 4.00 2.50 2.50 5.00 5.00 
S 3 7.00 8.40 4.00 5.00 2.50 3.00 5.00 4.00  

Table 9 
Sale price and production capacity.  

Sales price (pri)(GBP/Ton) Production capacity (prcap) (Tons of products) 
t = 1 t = 2 t = 1 t = 2 
235.6 270.94 2500 2500  

Table 10 
Optimal storage locations and supplier selection by the MILP model under scenario 1, 2, and 3.  

Decision variables Suppliers Distribution centres  
S1 S2 DC 1 DC 2 DC 3 

Open/Close 
Open=1 
Close=0 

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 
1 1 0 0 0 0 1 1 0 0  

Table 11 
Optimal values to the physical and financial flow variables.  

Decision 
variables 

Scenario 1 Scenario 2 Scenario 3  

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 
PR 2227.2 2500 2227.2 1890 2227.2 1207 
SC 2027.2 2660 2027.2 2050 2027.2 1367 
SDI 2007.2 2660 2007.2 2050 2027.2 1367 
SR 2007.2 2660 2007.2 2050 2027.2 1367 
FA+ CA 720,200 768,971 720,200 743,099 720,200 720,261 
LTL+

STL+ E 
720,200 768,971 720,200 743,099 720,200 720,261 

NOPAT 22,222 87,475 22,222 58,999 22,222 33,623 
EVA 38,779 7023 −26,187  

Fig. 6. Current assets structure.  

Fig. 7. Capital structure.  
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shipment rate between the SC members when deciding on these vari-
ables for the simulation model. Both the inventory peaks and the 
oscillation in inventory ranges for SC members fall after using the MILP- 
SBO approach. Moreover, the inflow and outflow of cash in the MILP- 
SBO model are lower than the ones from the SBO model. Lower in-
ventory and cash levels in the MILP-SBO model yield lower inventory 

and cash costs compared to the SBO model. Consequently, the EVA of 
the SC obtained from the MILP-SBO model, £38,045, is 16% higher than 
the EVA obtained from the SBO model, £32,840. To compare the per-
formance of the MILP-SBO and SBO models with the MILP model, 10 
random realisations of the macroeconomic parameters, i.e. short-term 
interest rate, long-term interest rate, risk-free rate of interest, and 

Fig. 8. Inventory and cash dynamics for the SC members in scenario 1 obtained from the SBO model.  

Fig. 9. Inventory and cash dynamics for the SC members in scenario 1 obtained from the MILP-SBO model.  
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expected return of the market, are uniformly generated by changing the 
values of these parameters reported in Table 8 in the range of [−15%, 
+15%]. These parameters are then inputted into the MILP, SBO, and 
MILP-SBO models and the EVA of each realisation for each model is 
calculated. Table 12 reports the EVAs obtained from all models for each 
realisation. The mean of the EVAs obtained from the MILP model is 17% 
and 1.2% higher than the SBO and MILP-SBO models, respectively. The 
reason for this is that the MILP model does not consider the inventory 
and cash dynamics in the SC as opposed to the SBO and MILP-SBO 
models. Therefore, the recommended cash and inventory levels at SC 
members by the MILP model is lower than the recommended levels by 
the SBO and MILP-SBO models. The standard deviation of the EVAs 
obtained from the MILP-SBO model is 61% and 95% lower than the SBO 
and MILP models, respectively. This shows that the MILP-SBO model is 
more robust to changes in macroeconomic parameters than the SBO and 
MILP models. The reason for this is that the MILP-SBO model identifies 
the optimal values of the inventory and financial decision parameters 
shown in Eq. (38) and it uses the minimum function to ensure the 
feasibility of production and distribution values shown in Eq. (39)-(43). 
While the SBO only determines the optimal values of the inventory and 
financial decision parameters, and the MILP only identifies the optimal 
values of the production and distribution values without considering SC 
dynamics in the physical and financial flows. 

5.2.2. Scenario 2 
Scenario 2 assumes stagnation in the second year of the simulation 

that results in stability in customer demand, expected return of the 
market, risk-free rate of interest, short-term, and long-term interest 
rates. The inventory and cash dynamics for the members in scenario 2 
obtained from the SBO and MILP-SBO models are illustrated in Figs. 10 
(a)-(d) and 11(a)-(d), respectively. The performance of the MILP-SBO 
approach in decreasing the inventory levels for the retailers and 
distributor is not noticeably better than the SBO performance, as there is 
stability in customer demands. Using the MILP-SBO approach leads to a 
significant reduction in the inventory levels for the manufacturer. The 
inventory of the manufacturer in the MILP-SBO model from week 30 
until the end of the simulation fluctuates in the range of [30,60] tonnes 
of product, while the inventory value at the same period in the SBO 
model remains stable at the level of 92 tonnes of product. Although the 
MILP-SBO approach does not significantly reduce the gap between the 
cash inflow and cash outflow, the number of weeks in which the cash 
outflow outstrips the cash inflow in the MILP-SBO model are 40 weeks, 
weeks 20 to 60, more than the SBO model that results in the lower cash 
costs in the MILP-SBO model compared to the SBO model. Lower in-
ventory levels at the manufacturer and the cash held in the SC in the 
MILP-SBO model yield lower inventory and cash costs compared to the 
SBO model. Consequently, the EVA of the SC obtained from the MILP- 
SBO model, £6849, is 14% higher than the EVA obtained from the 
SBO model, £6008. Table 13 reports the EVAs obtained from each model 
by changing the values of macroeconomic parameters reported in the 
range of [−15%, +15%]. These parameters are then inputted into the 

MILP, SBO, and MILP-SBO models and the EVA of each realisation for 
each model is calculated. The mean of the EVAs obtained from the MILP 
model is 16% and 2.6% higher than the SBO and MILP-SBO models, 
respectively. Similar to scenario 1, this is because the MILP model does 
not consider the inventory and cash dynamics and therefore, the rec-
ommended cash and inventory levels at SC members by the MILP model 
are lower than the levels recommended by the SBO and MILP-SBO 
models. The standard deviation of the EVAs obtained from the MILP- 
SBO model is 36% and 90% lower than the SBO and MILP models, 
respectively. This shows that the MILP-SBO model is more robust to 
changes in microeconomic parameters than the SBO and MILP-SBO 
models. Similar to scenario 1 this is because the MIP model ignores SC 
dynamics in the physical and financial flows and the SBO only de-
termines the optimal values of the inventory and financial decision pa-
rameters. While the MILP-SBO model identifies the optimal values of the 
inventory and financial decision parameters shown in Eq. (38) and it 
uses the minimum function to ensure the feasibility of production and 
distribution values shown in Eq. (39)-(43). 

5.2.3. Scenario 3 
Scenario 3 assumes recession in the second year of the simulation 

that results in a decrease in customer demand and expected return of the 
market and an increase in the risk-free rate of interest, short-term and 
long-term interest rate. The inventory and cash dynamics for the 
members in scenario 3 obtained from the SBO and MILP-SBO models are 
illustrated in Figs. 12(a)-(d) and 13(a)-(d), respectively. 

Compared to the SBO model, the MILP-SBO approach does not 
significantly diminish the inventory levels for the SC members. How-
ever, it reduces the oscillations in the inventory levels of the members. 
As in scenario 2, the gap between the cash inflow and cash outflow in the 
MILP-SBO model is not significantly lower than the one in the SBO 
model, while the number of weeks in which the cash outflow outstrips 
the cash inflow in the MILP-SBO model is 30 weeks, weeks 20 to 50, 
more than the SBO model. This results in lower cash costs in the MILP- 
SBO model compared to the SBO model. Consequently, the EVA of the 
SC obtained from the MILP-SBO model, £−26,657, is 6.18% higher than 
the EVA obtained from the SBO model, £−28,414. 

Table 14 reports the EVAs obtained from each model by changing the 
values of macroeconomic parameters reported in Table 8 in the range of 
[−15%, +15%]. The mean of the EVAs obtained from the MILP model is 
8% and 1.3% higher than the SBO and MILP-SBO models, respectively. 
Similar to scenarios 1 and 2, this is because the recommended cash and 
inventory levels by the MILP model is lower than the levels recom-
mended by the SBO and MILP-SBO models. The standard deviation of 
the EVAs obtained from the MILP-SBO model is 49% and 69% lower 
than the SBO and MILP models, respectively. This shows that the MILP- 
SBO model is more robust to changes in microeconomic parameters than 
the SBO and MILP-SBO models. This is explained by the same reason 
given in scenarios 1 and 2. 

Table 15 shows the number of iterations performed to meet the 
stopping criterion, which is no improvement in the value of the EVA 
obtained from the MILP-SBO model, in each scenario. For each iteration 
in each scenario, the GA was run 15 times. The results are reported in 
Table 16. The results indicate the maximum stopping iterations of three 
in scenario 1 and two in scenarios 2 and 3. Although, it is not feasible to 
prove the rapid convergence of the EVAs obtained from the MILP-SBO 
model for all the test results as the GA is a stochastic search algo-
rithm. The results of the comparison between the values of the EVA 
obtained from the MILP-SBO model and the values obtained from the 
MILP and SBO models are shown in Table 16. The MILP-SBO approach 
outperforms the SBO approach as it decreases the levels of cash and 
inventory in SC. 

6. Concluding discussion 

Integrating SC finance into SC planning is critical as it ensures the 

Table 12 
Sensitivity analysis on the models in scenario 1.  

No. of realisation MILP model SBO model MILP-SBO model 
1 39,964 32,893 37,993 
2 39,626 32,901 37,870 
3 39,979 32,667 37,953 
4 37,070 32,574 37,922 
5 38,070 32,543 38,003 
6 37,651 32,750 38,074 
7 37,565 32,808 37,904 
8 40,123 32,984 38,016 
9 37,235 33,111 37,919 
10 37,061 32,703 38,068 
Mean 38,434.4 32,793.4 37,972.2 
Standard deviation 1252.41 163.97 62.99  
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availability of the financial resources for implementing planning de-
cisions in SCs. Considering the economic uncertainty in SC planning and 
finance is of paramount importance as this improves the accuracy of the 
expected SC profit. To address an SC planning and finance problem 

nonlinearities, feedback loops and delays that exist in the physical and 
financial flows of SCs along with economic uncertainty need to be 
considered. 

MILP and SBO models have been applied by researchers to address 

Fig. 10. Inventory and cash dynamics for the SC members in scenario 2 obtained from the SBO model.  

Fig. 11. Inventory and cash dynamics for the SC members in scenario 2 obtained from the MILP-SBO model.  
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the SC planning and finance problem. MILP models help to identify the 
optimal values for the strategic and tactical decisions, while they ignore 
the nonlinearities, feedback loops and delays that exist in the physical 
and financial flows of the SCs. SBO models take into account the non-
linearities, feedback loops, and delays exist in the physical and financial 
flows of the SCs, while they cannot identify the optimal values for the 
strategic and tactical decisions such as the structure of the SC. MILP-SBO 
modelling is an effective tool for addressing the SC planning and finance 
problem as it can efficiently capture nonlinearities, delays, and feedback 
loops that exist in physical and financial flows of the SCs and is also able 
to identify the optimal values for the strategic and tactical decisions. In 
this study, a MILP-SBO approach is presented to solve a SC planning and 
finance problem under economic uncertainty. The proposed model aims 
to maximize the EVA generated in an SC and deals with economic un-
certainty by considering three predicted economic scenarios. 

6.1. Theoretical contributions 

This paper contributes to two research domains: SC planning and 
finance, and simulation-optimization modelling for SC management. SC 
planning and finance models (e.g., [15–17,19,25]) are mostly 

optimization models, i.e., MILP, that ignore the uncertainties in mac-
roeconomic parameters. To address this gap in the literature, we 
developed a simulation-optimization model in this study that considers 
the uncertainties in four macroeconomic parameters including 
short-term interest rate, long-term interest rate, expected return of the 
stock market, and the risk-free rate of interest in addition to the un-
certainty in one microeconomic parameter, i.e., demand. 
Simulation-optimization models that have been developed for address-
ing SC problems (e.g., [36,38–40,42,45]) predominantly applied 
discrete-event simulation (DES) as the simulation approach and ignored 
the flow of funds within SC networks. Moreover, these models solely 
optimized the decision parameters of the simulation models and do not 
provide the optimal values to the decision variables of the simulation 
models. To address this gap in the literature, the developed model in this 
study integrates planning of the financial and physical flows within SC 
networks through combining an optimization model, i.e., MILP, and a 
simulation-based optimization model that includes a system dynamics 
simulation model and a genetic algorithm. The developed MILP-SBO 
model identifies the optimal values for the decision variables of the 
simulation model such as the flow of products amongst SC members and 
production rate in addition to the optimal values for the decision pa-
rameters of the simulation model such as policies on payables and re-
ceivables. To demonstrate the feasibility of the developed 
simulation-optimization approach, it is applied to address an inte-
grated supplier selection, network design, production and inventory 
planning, and asset-liability planning problem in an SC system. 

The presented approach is initialized by solving the MILP model to 
determine the optimal values for the amount of raw material required to 
be purchased from the suppliers, the production rate at the 
manufacturing site, and the flow of finished products between the SC 
members considering the existing constraints in the financial and 
physical flows. The solution suggested by the MILP model is then used to 
construct the SBO model that formulates the distribution and payment 
lead times, the feedback loops, and nonlinearities rooted in an SC 
network. Thereafter, the embedded GA in the SBO model is run to 
identify the optimal values for the price per tonne of the product, the 

Table 13 
Sensitivity analysis on the models in scenario 2.  

No. of realisation MILP model SBO model MILP-SBO model 
1 6850 6047 6834 
2 6946 6068 6829 
3 7090 6007 6851 
4 6844 6016 6855 
5 6908 6009 6853 
6 7180 6047 6853 
7 7057 6050 6820 
8 6923 6040 6851 
9 7187 6015 6823 
10 7193 6058 6829 
Mean 7017.8 6035.7 6839.8 
Standard deviation 133.02 19.93 12.69  

Fig. 12. Inventory and cash dynamics for the SC members in scenario 3 obtained from the SBO model.  
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desired cash, the profit distribution policy, and the stocking capacities of 
the SC members. In the next stage, the constraints of the optimization 
problem are revised in accordance with the optimal parameter values 

recommended by the SBO model and the optimization problem is run to 
generate a new set of parameter values to be inputted into the SBO 
model. The iterative process between the MILP and SBO models con-
tinues until the stopping criterion which is no improvement in the value 
of EVA is met. The MILP-SBO approach enables the modeller to not only 
take into account the lead times, feedback loops, and nonlinearities 
which exist in the SC physical and financial flows, but also dramatically 
bridges the gap between the desired EVA, the EVA obtained from the 
MILP model, and the real EVA, the EVA gained from the SBO model. 

The performance of the MILP-SBO model in maximizing the EVA is 
compared with the performances of the SBO model under three eco-
nomic scenarios. The first scenario assumes boom at the second year of 
the simulation that results in increase in customer demand and expected 
return of the market and decrease in risk-free rate of interest, short-term 
interest rate and long- term interest rate. The MILP-SBO significantly 
reduced the inventory levels for the SC members and the cash held in the 
SC. Moreover, the EVA of the SC increased by almost 16% from £32,840 
to £38,045. The second scenario assumes stagnation at the second year 
of the simulation that results in stability in customer demand, expected 

Fig. 13. Inventory and cash dynamics for the SC members in scenario 3 obtained from the MILP-SBO model.  

Table 14 
Sensitivity analysis on the models in scenario 3.  

No. of realisation MILP model SBO model MILP-SBO model 
1 −26,173 −28,498 −26,590 
2 −26,388 −28,539 −26,632 
3 −26,093 −28,675 −26,645 
4 −26,448 −28,497 −26,614 
5 −26,299 −28,502 −26,563 
6 −26,211 −28,496 −26,611 
7 −26,104 −28,564 −26,576 
8 −26,265 −28,453 −26,534 
9 −26,233 −28,677 −26,586 
10 −26,375 −28,496 −26,665 
Mean −26,258.9 −28,539.7 −26,601.6 
Standard deviation 119.91 73.53 37.63  

Table 15 
Convergence of EVA obtained from MILP-SBO model in each scenario.  

Scenario Iteration 
number 

Fitness value   

Worst 
(Min) 

Best 
(Max) 

Mean Standard 
deviation 

Scenario 
1 

1 35,951 36,674 36,548 47.29 
2 37,163 37,794 37,658 26.24 
3 37,956 38,084 38,045 10.34 
4 37,956 38,076 38,023 9.67 

Scenario 
2 

1 5755 6129 6081 30.56 
2 6734 6872 6849 16.41 
3 6764 6841 6825 6.42 

Scenario 
3 

1 −29,344 −28,549 −28,574 28.19 
2 −27,063 −26,579 −26,657 12.65 
3 −27,009 −26,618 −26,673 10.54  

Table 16 
EVA obtained from the MILP-SBO model in each scenario.  

Scenarios EVA 
(GBP) 

Number of 
iterations 

Percentage 
difference between 
the MILP-SBO 
model and the 
MILP model 

Percentage 
difference between 
the MILP-SBO 
model and the SBO 
model 

Scenario 
1 

38,045 3 −1.89%  +15.85%  

Scenario 
2 

6849 2 −2.47%  +14.42%  

Scenario 
3 

−26,657 2 −1.79%  +6.18%  
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return of the market, risk-free rate of interest, short-term and long-term 
interest rates. The MILP-SBO significantly reduced the inventory levels 
at the manufacturer and the cash held in the SC. The EVA of the SC 
increased by 14% from £6008 to £6849. The third scenario assumes 
recession at the second year of the simulation that results in a decrease in 
customer demand and expected return of the market and increase in 
risk-free rate of interest, short-term and long-term interest rate. The 
differences between the inventory levels of the SC members in SBO and 
MILP-SBO models are negligible as a 50% reduction in customer demand 
at the second year makes holding high inventory levels unnecessary. 
However, the MILP-SBO model reduces the oscillations in the inventory 
levels of the members. The EVA of the SC increased by 6% from 
£−28,414 to £−26,657. The results of the sensitivity analysis on mac-
roeconomic parameters showed that the MILP-SBO model is more robust 
to changes in microeconomic parameters than the SBO and MILP-SBO 
models. 

6.2. Managerial implications 

Businesses need to keep sufficient cash to meet their operations ex-
penses such as buying raw material and also pay dividends to their in-
vestors. The higher the cash level held by a business, the lower the 
possibility of the business’ inability in meeting operations expenses and 
paying dividends. Although keeping a high cash level by a business 
ensures its capability in meeting operations expenses and paying divi-
dends, it imposes the cash opportunity cost on the business. In other 
words, the business is foregoing the return that would have been derived 
by investing the cash in alternative options to holding it such as 
investing the cash in the stock market. Therefore, managers need to 
make a trade-off between adequacy of cash for meeting business ex-
penses and minimizing the opportunity cost that the business incurs as a 
result of holding cash. This study helps the SC managers make this trade- 

off by considering cash holding cost as an element of the total cost of the 
business and ensuring the cash level of the business is minimized. 
Moreover, SC managers can monitor the cash level in the SC and assess 
the impact of cash retention policies on SC profitability by running what- 
if scenarios in the SBO model. 

SCs are exposed to uncertainties in macroeconomic and microeco-
nomic parameters that may have significant impacts on their profit-
ability. SC managers need to ensure that the impact of these 
uncertainties is taken into account while measuring the profitability of 
their SCs, otherwise the profitability of the SC may represent a 
misleading view of the financial health of the SC. To obtain a more ac-
curate SC profit, in this study, the impacts of uncertainties in four 
macroeconomic parameters including short-term interest rate, long- 
term interest rate, expected return of the market, and risk-free rate of 
interest and uncertainty in one macroeconomic parameter that is de-
mand on SC profit are considered. 

6.3. Limitations and future work 

The limitations of this work that need to be studied in the future 
research are as follows. Firstly, this study only examines the use of MILP- 
SBO approach to address an SC planning and finance problem. In future 
research other integrated SC planning problems such as integrated 
network design, distribution and transportation planning could be 
solved using the MILP-SBO approach or other hybrid modelling ap-
proaches. Secondly, the simulation approach applied in this study is SD, 
it would be interesting to investigate the capability of optimization-SBO 
models that employ simulation models rather than SD in addressing SC 
planning problems. Finally, multi-objective optimization can also be 
incorporated into the developed MILP-SBO model as an extension to the 
present study. 

Fig. 14. Detailed stock and flow diagram of the physical flow.  
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Appendix 

The detailed explanation of the equations in the SBO model is given as follows. Fig. 14 shows the detailed stock and flow diagram of the physical 
flow. It illustrates the relationships between the parameters and variables in the modules introduced in Fig. 3. 

Material order quantity module 

The material’s inventory (44) is replenished by the delivery of placed orders and depleted by the material usage rate. The suppliers are able to fulfil 
the entire order of the production centre. Therefore, the delivery rate of the raw material (45) is equal to the desired delivery rate of the manufacturer. 
The current material inventory level either meets the demand for required raw material for production or is able to fulfil part of the demand (46). 
d(Material Inventory)

d(t)
= Material delivery rate − Material usage rate (44)  

Material delivery rate = Desired material delivery rate (45)  
Material usage rate = Min(Production start rate×Material usage per unit,Material Inventory) (46)  

Production module 

The production start rate (47) is determined by the desired production rate and the feasible production from material inventory. The unfinished 
products are aggregated in work in process (WIP) inventory (48) and are converted into finished goods (FG) (49) after elapsing the production lead 
time (L2). The inventory of the finished products (50) is replenished by the production rate and depleted by the shipment to the suppliers. 
Production start rate = Min(Desired production start rate, Feasible production from materials) (47)  
d(WIP Inventory)

d(t)
= Production start rate − Production rate (48)  

Production rate = Delay(Production start rate,L2, initial value) (49)  
d(FG Inventory)

d(t)
= Production rate − Shipment rate (50)  

Distribution centres order quantity module 

The amount of products which are shipped to each distribution centre (MSRd) (51) is a function of desired shipment rate determined by the desired 
shipment rate of each distributor which is equal to the distributor’s order and the maximum shipment rate (52) that is calculated via dividing the on 
hand inventory of finished goods by a fixed minimum order processing time (MOPT) for the manufacturer. The on hand inventory of finished goods 
(53) is calculated by subtracting the shipped products from the finished goods inventory, and its value must always be positive. 
MSRd = Min(Maximum shipment rated,Desired shipment rated) ∀d. (51)  

Maximum shipment rated =
Manufacturer FG on hand Inventory

MOPT
∀d. (52)  

FG on hand Inventory = Max

(

0,Manufacturer FG Inventory−
∑d−1

d=1

MSRd

)

∀d. (53) 

The shipped products by the manufacturer to each distribution centre are accumulated in distributors supply lines (54) and arrive after a fixed lead 
time (Ld) (55) that represents the transportation time from manufacturer to each distribution centre. The inventory of each distributor (56) is 
replenished by arrival of the shipped products and depleted by shipment to the retailers. 
d(Distributord SL)

d(t)
= MSRd − Arrivald ∀d. (54)  

Arrivald = Delay(MSRd,Ld, initial value) ∀d. (55) 
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d(Distributord Inventory)

d(t)
= Arrivald − DSRd ∀d. (56)  

Retailers order quantity module 

The amount of products which are shipped from each distribution centre to each retailer (DSRdr) (57) is a function of the distributor on-hand 
inventory and the retailer order. The on-hand inventory of finished goods (58) for each distributor is calculated by subtracting the shipped prod-
ucts from its inventory, and its value must always be positive. It is assumed that retailer 1 precedes retailer 2 and retailer 2 precedes retailer 3 when the 
manufacturer ships the inventory to the distributors. 
DSRdr = Min(Retailer orderr,Distributor on hand inventoryd) ∀r, d. (57)  

Distributor on hand Inventoryd = Max

(

0,Distributor Inventoryd −
∑r−1

r=1

DSRdr

)

∀d. (58) 

The shipped products by the distributors to each retailer are aggregated in retailers supply lines (59) and arrive after a fixed lead time (Ldr) (60) 
which relates to the transportation time from each distributor to any retailer. The inventory of each retailer (61) is replenished by arrival of the 
shipped products and depleted by shipment to the end customers. Finally, each retailer either meets the demand of its end customer or is able to fulfil 
part of the demand by its current inventory level (62). 
d(Retailerr SL)

d(t)
=
∑D

d=1

DSRdr − Arrivalr ∀r. (59)  

Arrivalr = Delay(DSRdr,Ldr , initial value) ∀r. (60)  
d(Retailerr Inventory)

d(t)
= Arrivalr − RSRr ∀r. (61)  

RSRr = Min(ECDr,Retailer Inventoryr) ∀r. (62) 
Fig. 15 shows the detailed stock and flow diagram of the financial flow. It illustrates the relationships between the parameters and variables in the 

Fig. 15. Detailed stock and flow diagram of the financial flow.  
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modules introduced in Fig. 4. 
Cash collection and cash payment modules 

The inventory of cash (63) is replenished by receiving cash from end customers and is depleted by cash payment to suppliers and third-party 
creditors. The initial value of the cash level is the sum of short-term and long-term liabilities. Retailers collect part of customers’ order values in 
cash, while the remaining part of the customer debt is accumulated in receivable accounts (RA) and is paid after dc weeks. The cash inflow (64) is 
calculated by aggregating the customers’ cash payment and receivable accounts from dc weeks ago (65). The updated collection policy (um) (66) 
which is a parameter between 0 and 1 indicates the amount of customers’ order value that must be collected in cash and is calculated by adding the 
cash adjustment to the original collection policy. The updated cash collection policy cannot exceed 1. Adjustment for cash (67) is calculated via 
multiplying cash gap percentage and the forecasting parameter for cash adjustment (γ) which represents the aggressiveness of the decision maker in 
bridging the gap between the desired and current cash levels. The outflow of cash (68) is prompted by payment to the suppliers, repayment for short- 
term and long-term liabilities, investment for fixed assets, and the total cost. When the manufacturer places an order to his suppliers, he pays part of 
the order value in cash and the outstanding debt is paid after d1 weeks. The payment policy (n) that is a parameter between 0 and 1 shows the amount 
of manufacturer’s order value that must be paid in cash. The remaining part of the manufacturer’s debt is accumulated in payable accounts (PA) and is 
paid after d1 weeks (69). 
d(Cash)

d(t)
= Cash inflow − Cash outflow (63)  

Cash inflow =
∑R

r=1

um SRrpri + RA outflow (64)  

RA outflow = Delay(RA inflow, dc, initial value) (65)  
um = Min(m+CS Adjustment, 1) (66)  

Cash Adjustment = γ

(
Desired cash − cash

cash

)

(67)  

Cash outflow =
∑S

s=1

n XsSpris − PA outflow − STL payment − LTL payment − FA investment − Total cost rate (68)  

PA outflow = Delay(PA inflow, d1, initial value) (69)  

NOPAT and invested capital modules 

The total cost comprises the elements presented in Eq. (9). The production cost (70) is calculated via multiplying unit production cost (upc) by 
production start rate which might not be equal to the production rate recommended by the optimization model. The transportation cost (71) contains 
the shipment rates which are constrained by the maximum shipment capacity of each SC member. The inventory dynamics and cash dynamics are 
considered for measuring the inventory holding cost (72) and cash holding cost (73), respectively. While the optimization model solely takes into 
account the inventory and cash levels at the start and the end of each time period. The fixed cost is determined by the optimization model and inputted 
to the SBO model as an exogenous constant. The material order rate within the SBO model is recommended by the MILP model, therefore, the raw 
material costs determined by the simulation and optimization models are identical. 
PC = Production start rate × upc (70)  

TCR =
∑S

s=1

tcsXs +
∑D

d=1

tccdMSRd +
∑R

r=1

∑D

d=1

tcddrDSRdr (71)  

HC = hr Average(FIR) + hp Average(FIP) + ho Average(FIO) + hs Average(FIS) (72)  
CHC = ucc Average(CS) (73) 

The payment to the third-party creditors depletes the levels of short-term (74) and long-term liabilities (75) with a fixed rate. The initial levels of 
the short-term and long-term liabilities is determined by the optimization model. Finally, in each time period the equity (76) level rises by the share of 
NOPAT that is not distrusted amongst shareholders and new stocks that are issued. 
d(Short − term Liabilities)

d(t)
= −Short term liabilities payment (74)  

d(Long − term Liabilities)

d(t)
= −Long term liabilities payment (75)  

d(Equity)

d(t)
= NOPAT × (1− profit distribution policy) + new stock rate (76) 

The detailed explanation on the inventory and financial decisions parameters of the simulation model is given as follows. 
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αD,αR1,αR2,αR3: denote the aggressiveness of the members in bridging the gap between the desired and current inventory. 
βD,βR1,βR2,βR3: denote the level of consideration to the inventory on-orders at the time of order placement 
m = collection policy: denotes the share of the sales is required to be collected in cash 
n = payment policy: denotes the share of the raw material purchase is required to be paid in cash 
DDI,R1DI, R2DI, R3DI: denote the desired inventory by distributor and retailers 
DDSL,R1DSL,R2DSL,R3DSL: represent the desired inventory on order by distributor and retailers 
IAT = The inventory adjustment time: represents the time period over which the manufacturer seeks to bridge the gap between the desired and 
current inventory of finished products 
MIAT = The material inventory adjustment time: represents the time period over which the manufacturer seeks to bridge the gap between desired 
and current inventory of the raw material 
MSSC = The manufacturer safety stock coverage: represents the time period over which the manufacturer would like to maintain a safety stock 
coverage to hedge against volatility in distributor’s demand 
SSC = The safety stock coverage: represents the time period over which the manufacturer would like to maintain a safety stock coverage in order to 
meet any variations in distributor’s demands 
MMIC = The minimum material inventory coverage: represent the minimum material inventory required by the manufacturer 
MOPT = The minimum order processng time: denotes the minimum time required by the manufacturer to process and ship a distributor order 
PDP = The profit distribution policy: denotes the dividends that is required to be paid to the shareholders 
SP = The sales price: The price per tonne of product which is paid to the retailers by the customers 
NSP = New stock parameter : represents the level of the stock that should be issued 
UPC = The unit production cost: denotes the production cost per tonne of product at the manufacturer 
WIPAT = The WIP adjustment time: represents the time required for the manufacturer to adjust its WIP inventory to its desired level 
DC = The desired cash: denotes the level of cash desired to be held by the manufacturer 
MCT = The manufacturing cycle time: represents the average delay time of the production process for the products from start until completion of 
the product 
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