
1. Introduction
The burial of carbon in the marine realm exerts a controlling influence on the global carbon cycle (Falkowski 
et al., 2000). In particular, the burial of organic carbon (OC) in marine sediments is the largest long-term net sink 
for carbon on Earth (Burdige, 2007), with 200 megatonnes of carbon buried in this manner per year (Mt C yr −1, 
Canadell et al., 2021). Thus, OC burial in marine sediments plays a key role in controlling atmospheric CO2 on 
geological timescales. Therefore, knowing the factors controlling the size, efficacy, and longevity of this sink is 
vital for understanding long-term carbon cycling (Burdige, 2007; Hedges & Keil, 1995).

The vast majority of OC reaching the seafloor is remineralized before burial within the sediment (on average 87% 
of OC is remineralized at the sediment water interface; Burdige, 2007), meaning it returns to the equilibrating 
ocean-atmosphere CO2 system. Burial of the OC fraction which does not get remineralized is highly dependent on 

Abstract Preservation of organic carbon (OC) in marine and terrestrial deposits is enhanced by bonding 
with reactive iron (FeR). Association of OC with FeR (OC-FeR) provides physical protection and hinders 
microbiological degradation. Roughly 20% of all OC stored in unconsolidated marine sediments and 40% of 
all OC present in Quaternary terrestrial deposits is preserved as OC-FeR, but this value varies from 10% to 
80% across global depositional environments. Here, we provide a new assessment of global OC-FeR burial 
rates in both marine and terrestrial environments, using published estimates of OC associated with FeR, carbon 
burial, and probabilistic modeling. We estimate the marine OC-FeR sink between 31 and 70 Mt C yr −1 (average 
52 Mt C yr −1), and the terrestrial OC-FeR sink at between 146 and 917 Mt C yr −1 (average 446 Mt C yr −1). In 
marine environments, continental shelves (average 17 Mt C yr −1) and deltaic/estuarine environments (average 
11 Mg C yr −1) are the primary settings of OC-FeR burial. On land, croplands (279 Mt C yr −1) and grasslands 
(121 Mt C yr −1) dominate the OC-FeR burial budget. Changes in the Earth system through geological time 
impact the OC-FeR pools, particularly in marine settings. For example, periods of intense explosive volcanism 
may lead to increased net OC-FeR burial in marine sediments. Our work highlights the importance of OC-FeR 
in marine carbon burial and demonstrates how OC-FeR burial rates may be an order of magnitude greater in 
terrestrial environments, but here OC-FeR stocks are most sensitive to the anthropogenic impacts of climatic 
change.

Plain Language Summary Most biomass, which is organic carbon (OC) accumulated in living 
organisms, decomposes to carbon dioxide and enters Earth's atmosphere, but some escapes complete 
decomposition, becoming stored in soils on land, and in sediments under the ocean. This storage of OC is part 
of a global carbon sink that helps to balance carbon dioxide levels in Earth's atmosphere over time, and any 
process that impacts OC storage may alter Earth's climate. Iron oxide minerals protect OC from decomposition, 
enhancing carbon storage in soils and sediments. Here, we collated measurements of OC associated with iron 
oxides from hundreds of observations world-wide. Combining these data with estimates of the global carbon 
sink and modeling, we evaluate the importance of iron minerals for OC burial. Half a billion tonnes of OC is 
buried every year bound to iron minerals or 14% of the global carbon sink. The largest sinks for iron-bound OC 
in the ocean are continental shelves and deltas, whilst the greatest proportions of iron-bound OC are found in 
volcanic ash deposits. Croplands and grasslands are the largest contributors to iron-bound OC burial on land, 
locations vulnerable to changes in land use and climate.
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a range of environmental factors such as the oxygen exposure time and sedimentation rate (Hartnett et al., 1998), 
so that burial efficiency varies from >70% to <0.3% between depositional settings (Dunne et al., 2007). However, 
it is also important to understand these environmental factors in the context of other physiochemical mechanisms 
which may impact and, in particular, enhance the preservation of OC during sedimentation (Curti et al., 2021; 
Lalonde et al., 2012; Longman et al., 2019; Schrag et al., 2013).

In marine environments, large fractions of sedimentary OC are associated with the mineral matrix via sorption to 
clays or reactive metals (Keil & Mayer, 2014; Mayer, 1994). The association of OC to reactive metals, particu-
larly to reactive iron (FeR) oxy(hydroxide) phases such as ferrihydrite, provides physical protection (Figure 2) and 
prevents microbiological degradation (Keil et al., 1994). Complexation of organic molecules with metals such 
as iron is another stabilization mechanism, albeit one that has mostly been studied in terrestrial environments 
(e.g., Lützow et al., 2006; Monhonval et al., 2022). Therefore, the binding of OC to FeR (OC-FeR) represents 
an efficient mechanism by which OC escapes early diagenetic degradation in marine sediments and is buried to 
depths that are not in diffusive or advective connection with the overlying water column. Some evidence suggests 
these bonds can be destabilized under certain conditions such as by Fe reducing microbes (Zhao et al., 2017), or 
via transformation reaction during early diagenesis (Kleber et al., 2021), but the majority of evidence suggests 
reactive Fe minerals promote long-term OC protection. In marine environments, between 10% and 80% of the OC 
pool is bound to FeR (e.g., Dicen et al., 2019; Faust et al., 2020; Lalonde et al., 2012; Longman, Gernon, Palmer, 
& Manners, 2021; Ma et al., 2018; Salvadó et al., 2015; Shields et al., 2016; Sun et al., 2020) and therefore this 
carbon-iron coupling constitutes a significant OC burial mechanism.

Since carbon-iron interactions are preserved in sediments which are hundreds of thousands of years old (Faust 
et al., 2021; Longman, Gernon, Palmer, & Manners, 2021), these interactions must be irreversible or at least 
kinetically inhibited under ambient conditions, as reversible reactions such as hydrogen bonding, hydrophobic 
interaction and cation bridging would result in OC solubilization and breakdown (Burdige,  2007). Fe(III) in 
marine sediments is either supplied from precipitation of Fe(II) at the Fe(II)/Fe(III) redox boundary, or from 
direct deposition of lithogenic Fe (Longman, Gernon, Palmer, & Manners,  2021). It has a strong affinity to 
various ions (in addition to OC) which results in an association between organic and inorganic phases (Chen 
et al., 2014; Faust et al., 2021; Homoky et al., 2021; Lalonde et al., 2012; Riedel et al., 2013). Long lasting inter-
actions are formed between OC and nano-scale iron (oxyhydr)oxides such as ferrihydrite (Barber et al., 2017; 
Faust et al., 2021). A significant proportion of these interactions exists in the form of inner-sphere Fe-O-C, cova-
lent interactions between FeR and functional (especially carboxyl) groups (Barber et al., 2017; Curti et al., 2021; 
Keil & Mayer, 2014). Such interactions are thought to explain 25%–62% of OC-FeR bonds in coastal sediments, 
but are assumed to be less important for deep-sea sediments (Barber et al., 2017). Another mechanism is mono- 
and multi-layer sorption between OC and less reactive FeR (e.g., goethite and hematite) phases, thought to be 
especially important in terrestrial soils (Wagai & Mayer, 2007). Finally, the direct coprecipitation of OC with 
FeR is also thought to be an important process promoting the protection of OC at redox boundaries such as 
the oxic-anoxic boundary in marine sediments or peatlands (Chen et  al.,  2014; Lalonde et  al.,  2012; Riedel 
et al., 2013). To identify the predominant type of bonding present between OC and FeR in marine sediments, 
the molar ratio of FeR-bound OC to FeR (OC:FeR) has been used as a simplistic indicator (Figure 2). Low values 
(<1) indicate OC-FeR association to be mono-layer sorption, while higher ratios indicate co-precipitation (Wagai 
& Mayer,  2007). However, OC:FeR values can be altered by factors other than the bonding mechanism. For 
example, organic matter composition can influence the OC:Fe ratio regardless of the bonding mechanism (Chen 
et al., 2014; Eusterhues et al., 2011; Mikutta & Kaiser, 2011), and especially low OC:Fe ratios might be biased 
as the chemical extraction of OC bound to FeR typically includes FeR that is not associated with OC (Fisher 
et al., 2020). Moreover, besides the strong affinity of OC with FeR, phosphate, arsenic, and transition metals also 
bind to iron (oxyhydr)oxide surfaces (e.g., Berner, 1973; Feely et al., 1991; Müller et al., 2002) and can therefore 
influence the OC:Fe ratio (Chen & Sparks, 2018). Marine sedimentary downcore data of As, Fe and FeR imply 
that arsenic sorption changes the mineral surface properties and reactivities of the Fe(III) phases and, therefore, 
their capacity to bind to OC (Chen & Sparks, 2018; Faust et al., 2021). Due to these complexities in natural bioge-
ochemical systems, OC:FeR values should only be interpreted with these caveats in mind.

In addition to its impact on OC storage in the marine realm, OC-FeR bonding also plays an important role in 
terrestrial OC cycling. Research in soils has been ongoing for many more years than it has in marine sedi-
ments, since the development of the technique to extract Fe oxides from soil matrices in the 1950s (Mehra & 
Jackson, 1958). Most recent estimates suggest that in soils, OC-FeR may account for 40% of the total carbon 
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inventory (Chen et al., 2020; Wagai & Mayer, 2007; Zhao et al., 2016), and may act to either enhance (Milne 
et al., 2015) or reduce nutrient bioavailability (Vitousek et al., 2010; Walker & Syers, 1976).

Similar processes to those that occur in marine sediments drive OC-FeR interactions in terrestrial environments, 
but the dominant mechanisms depend more strongly on the climatic conditions and associated differences in, for 
example, seasonality, rainfall, or vegetation. For example, ligand exchange processes likely dominate sorption in 
tropical forest soils, which are rich in minerals with protonated hydroxyl groups (Shen, 1999), and depleted in 
the 2:1 phyllosilicates that dominate OC sorption in temperate forest topsoils (Kaiser & Guggenberger, 2003). In 
systems with high OC:Fe ratios such as peatlands, co-precipitation likely dominates OC-FeR interactions (Joss 
et al., 2022; Patzner et al., 2020; Riedel et al., 2013), while complexation is important in thawing permafrost soils 
(Monhonval et al., 2022). Terrestrial environments also differ from most marine settings in the regularity and 
intensity of redox fluctuations, as in the association with wetting and drying cycles that can act to break down 
OC-FeR (Bhattacharyya et al., 2018). However, preferential preservation of OC-FeR relative to the bulk organic 
matter pool is still observed in terrestrial settings, with mineral-bound carbon observed to have longer turnover 
times than bulk soil carbon in temperate soils (e.g., Torn et al., 1997) and to be significantly older than bulk soil 
carbon in permafrost soils (Mueller et al., 2015, 2017).

Whatever the bonding and transformation mechanisms taking place in marine and terrestrial environments, 
OC-FeR interactions appear to provide a mechanism which reduces the breakdown of OC during early diagene-
sis, thereby enhancing its burial efficiency (Lalonde et al., 2012). This protection allows OC to survive through 
the oxic zone, below which oxidation and OC breakdown occur at much slower rates (Hartnett et  al.,  1998; 
Henrichs, 1992). Hence, the OC-FeR coupling serves as a protective mechanism for the shuttling of OC across 
the layers of most active remineralization in sediments and soils. As mentioned above, the amount of OC asso-
ciated with FeR (fOC-FeR) is between 10% and 80% in marine sediments, but the most frequently mentioned 
value is around 20%. Since the initial publication of Lalonde et al. (2012), a number of studies have estimated 
the fOC-FeR in a range of new locations and depositional environments, highlighting the OC-Fe variability in 
marine (e.g., Faust et al., 2020; Salvadó et al., 2015; Shields et al., 2016) and terrestrial systems (e.g., C. Mu 
et al., 2020; Huang et al., 2021; Joss et al., 2022). However, no comprehensive effort has been made to collate and 
evaluate these new data. Here, we provide a new assessment of global OC-FeR burial rates in a variety of marine 
and terrestrial environments, using published estimates of fOC-FeR, OC burial, and probabilistic modeling to 
re-evaluate the size of the “rusty carbon sink” (Eglinton, 2012) and outline the contributions of individual Earth 
surface environments to this estimate.

2. Material and Methods
2.1. Qualifying OC-FeR Extraction Methodologies

The standard method for assessing the amount of OC associated with FeR in marine sediments is the 
citrate-bicarbonate-dithionite (CBD) method (Fisher et  al.,  2021). This method was originally developed to 
extract Fe oxides from clays and soils (Mehra & Jackson,  1958), with widespread application to OC-FeR in 
marine sediments since the study of Lalonde et al. (2012). For the FeR extraction, dry and homogenized sediment 
samples are subjected to a short (15 min) high temperature (80°C) leach in buffered 0.1 M sodium dithionite 
(Fisher et al., 2021). Despite concerns regarding the capacity of this approach to liberate not only the operational 
defined reactive Fe phases (Fisher et al., 2020, 2021), it is the most reliable method and therefore remains as 
the standard (Fisher et al., 2020). Its ubiquity as a method also means it is suitable for a synthesis of this nature, 
with all collated literature using nominally the same method. As such, the limitations should be the same for all 
studies, and comparison should be feasible. In our compilation, we include most studies that present an estimate 
of OC-FeR via the CBD method in marine sediments (see Table  S1). Historically, quantification of mineral 
phases associated with OC in terrestrial settings has more commonly deployed methods based on dispersion and 
density fractionation (Kögel-Knabner et al., 2008). However, the classical CBD method for direct quantification 
of fOC-FeR has been recently deployed in numerous settings such as grasslands (Fang et al., 2019), forests (Zhao 
et al., 2016), wetlands (Wang et al., 2017), and peatlands (Huang et al., 2021). Several terrestrial studies have 
also modified the original method by extending extraction times (16 hr vs. 15 min), reducing temperature (room 
temperature vs. 80°C) and omitting citrate from the extraction buffer (Coward et al., 2017; Wagai & Mayer, 2007; 
Wagai et al., 2013). This methodological variation includes a weak HCl rinse following dithionite extraction to 
redissolve Fe precipitated as acid-volatile sulfides and associated OC (Coward et al., 2017; Wagai & Mayer, 2007; 
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Wagai et al., 2013). An inorganic dithionite extraction has the benefit of enabling direct quantification of OC 
in the supernatant and does not appear to result in significantly different extractable Fe concentrations (Coward 
et al., 2017), whilst a lower temperature may be beneficial for subsequent analyses of OC composition. However, 
the benefit of extending the extraction time under oxic conditions has been questioned (Fisher et al., 2021). Other 
works have therefore opted to use anoxic conditions when extending the extraction period (Joss et  al.,  2022; 
Patzner et al., 2020). Such comparative studies suggest that the highlighted methodological variations have mini-
mal influence on quantification of OC-FeR itself, and we therefore include all currently existing studies utilizing 
(variations of) the dithionite-based method in our compilation for terrestrial environments.

2.2. Statistical Analysis

We collate all individual results of fOC-FeR and group them by marine depositional environment (Figure  1, 
Table S1). The grouping is intentionally broad, as this allows for variability in environmental factors within the 
group to be accounted for by the Monte Carlo statistics. All continental shelf and slope sediments are represented 
in one group (Shelves and Slopes), with a second group representing all estuarine/deltaic sediments (Deltaic), a 
third for anoxic and euxinic environments (Anoxic) and a final group representing deep-sea environments (Abys-
sal). We use the classification of Hedges and Keil (1995) to determine deltaic sediments, which accounts for input 
of riverine material onto shelves and slopes. We also include groups on fjord sediments, tephra, mangroves, salt 
marshes and seagrass, to highlight their potential importance as OC burial locations (C. M. Duarte et al., 2005; 
Longman et al., 2019; Smith et al., 2015). In the absence of directly observed fOC-FeR, FeR in fjord sediments 
is assumed to have the same fOC-FeR values as continental shelves (as the OC retained in these environments is 
a mix of terrigenous and marine OC, similar to shelf sediment; Faust & Knies, 2019), whilst the fOC-FeR in salt 
marshes and seagrass is assumed to be similar to mangrove sediments. For each of these groups we use the indi-
vidual fOC-FeR measurements to derive averages and standard deviation values that we use in further modeling 
(Table 1). All individual studies used, all raw data and an indication of groups are in Table S1, with locations in 
Figure 1.

To estimate the size of the “rusty carbon sink” in marine environments, we use the data collated in combina-
tion with estimates of total OC burial in each location (Figures 3 and 4). To estimate the OC burial represented 
by each group, we use the yearly OC burial estimates of Hedges and Keil (1995). For the group Shelves and 
Slopes we combine shelf and slope estimates of carbon burial from the groups “Shelves and upper slopes,” 
“Biogenous sediments” (representing high productivity regions of the shelves), and “Shallow-water carbonates” 
(representing OC associated with the burial of inorganic carbonate). For the Deltaic group, we use the estimate 
of “Terrigenous deltaic-shelf sediments” from Hedges and Keil (1995). For the Anoxic group we use the “Anoxic 
basins” designation, and for the abyssal group we combine the estimates of “pelagic Biogenous sediments” 

Figure 1. Map with indication of all study locations used in this work. Marine sites are highlighted with green circles, whilst 
terrestrial sites are indicated with yellow squares.

 19449224, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

B
007447 by T

est, W
iley O

nline L
ibrary on [09/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Global Biogeochemical Cycles

LONGMAN ET AL.

10.1029/2022GB007447

5 of 18

and “Pelagic sediments” (Hedges & Keil, 1995). To estimate carbon burial 
in fjords, we use published estimates (Cui et al., 2016; Smith et al., 2015). 
For tephra, we use an OC value of 0.3 wt% (Longman, Gernon, Palmer, & 
Manners, 2021), an estimate of 1 km 3 deposited per year (Pyle, 1995) and 
a density of 1,400 kg/m 3 (Gudmundsson et al., 2012). For mangroves, salt 
marsh and seagrass sediment, we use previously published estimates (C. M. 
Duarte et al., 2005). Despite only having fOC-FeR estimates for mangrove 
sediments, we consider all three locations separately, to highlight their poten-
tially large carbon sequestration capacity. All marine carbon burial estimates 
may be found in Table 1. For each location in the marine environment, we 
develop a range of estimates of this value, which we term the OC-FeR burial 
rate. This term represents a value of OC buried in concert with FeR, which 
does not consider future processing of the OC which may occur after burial.

For terrestrial carbon, we use published estimates of OC stocks and fOC-FeR 
for a range of locations (Figures 2 and 4). As with marine environments, we 
use broad groupings and divide the terrestrial carbon stock into five catego-
ries. The first group is “Forest Soils” which combines estimates of temperate, 
boreal and tropical forest soils to make a single estimate of the entire OC 
stock (Table 1). For grasslands, we use the published values of White et al. 
(2000), and for croplands we take the recent estimate by Zomer et al. (2017). 
The fourth group, “peatlands,” uses estimates of global OC stock in peat-
lands from Yu et  al. (2010) and contains data on fOC-FeR collected from 

bogs and fens in China (Huang et al., 2021) as well as selected data from bogs and fens in northern Sweden 
(Patzner et al. (2020), excluding samples from permafrost-supported palsas included in that data set). The fifth 
group, “thermokarst regions,” collates fOC-FeR estimates from the northern circumpolar permafrost region (Joss 

Figure 2. Illustration of the two types of binding mechanism discussed in this 
work. First is adsorption, whereby organic carbon (OC) compounds adhere to 
the reactive Fe surfaces, a process that results in lower OC:FeR ratios. Second 
is co-precipitation, whereby OC and FeR precipitate at the same time, and 
result in higher OC:FeR ratios.

Average fOC-FeR ± 1 
SD (%)

Average annual OC 
burial ± 1 SD (Mt/yr)

Average OC:Fe ± 1 
SD (molar ratio)

Average annual OC-FeR 
burial (Mt/yr) n References for OC burial

Marine sediments

 Shelves and slopes 18.59 ± 9.44 89 ± 16.99 3.6 ± 2.7 16.99 225 Hedges and Keil (1995)

 Deltaic 15.34 ± 13.88 70 ± 10.73 2.1 ± 1.8 10.73 102 Hedges and Keil (1995)

 Anoxic 24.67 ± 3.86 1 ± 0.25 14.3 ± 7.9 0.25 7 Hedges and Keil (1995)

 Abyssal 13.27 ± 8.73 8 ± 1.15 7.3 ± 4.5 1.15 13 Hedges and Keil (1995)

 Fjords 18.59 ± 9.44 19.4 ± 3.4 3.6 ± 2.7 3.40 Cui et al. (2016)

 Tephra 79.02 ± 12.92 3.6 ± 2.79 3.7 ± 1.1 2.79 14 Longman, Mills, et al. (2021)

 Mangroves 14.5 ± 4.99 26.1 ± 3.81 7.9 ± 4.8 3.81 6 Duarte et al. (2005)

 Seagrass 14.5 ± 4.99 60.4 ± 8.76 7.9 ± 4.8 8.76 Duarte et al. (2005)

 Salt marshes 14.5 ± 4.99 27.4 ± 3.97 7.9 ± 4.8 3.97 Duarte et al. (2005)

 Total marine 20.22 ± 15.52 304.9 ± 15 3.8 ± 2.6 51.85 406

Terrestrial sediments

 Peatlands 9.51 ± 9.67 n/a 5.75 ± 5.78 n/a 17 n/a

 Thermokarst 16.54 ± 12.61 n/a 3.05 ± 3.68 n/a 90 n/a

 Forests 12.63 ± 14.96 783 ± 157 5.23 ± 8.45 45.96 52 Pan et al. (2011)

 Grasslands 5.26 ± 3.74 500 ± 100 5.32 ± 12.25 120.69 9 Scurlock and Hall (1998)

 Croplands 22.45 ± 14.44 1,375 ± 950 6.36 ± 12.66 279.48 18 Zomer et al. (2017)

 Total terrestrial 14.9 ± 13.41 2,658 ± 402 3.86 ± 8.08 446.13 186

Note. The average fOC-FeR values, and the standard deviations presented alongside were used for Monte Carlo simulation of the total OC-FeR sink (see Section 2). This 
was completed using the estimates of carbon burial presented here, along with the publications from which they were taken.

Table 1 
Average Fractions of Organic Carbon Associated With Reactive Iron (fOC-FeR) and Molar Ratio of OC to Iron (OC:Fe) for All Environments Considered Here
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et al. (2022) and selected data from Patzner et al. (2020)), as well as from permafrost regions in the Qinghai–
Tibet Plateau (C. C. Mu et al., 2016; C. Mu et al., 2020; Liu et al., 2022). The estimate of global carbon stock in 
these regions combines an estimate of carbon stored in thermokarst areas of the northern circumpolar permafrost 
region (Olefeldt et al., 2016), as well as estimates of the permafrost carbon stock in the Tibetan Plateau (Ding 
et al., 2016). This estimate does not account for total FeR-OC in permafrost as data is only available from areas 
with thermokarst features and not the large areas of continuous permafrost of the northern hemisphere or deep 
permafrost deposits (e.g., the Yedoma domain). However, given that around 50% of peatland carbon in the north-
ern hemisphere overlies permafrost (Hugelius et al., 2020) it is expected that a significant fraction of the peatland 
pool may be vulnerable to transformation during permafrost thaw.

For environments where rates of annual carbon accumulation were reliably available (all except thermokarst and 
peatland regions), we could also estimate the annual burial rate of OC-FeR for certain terrestrial environments as 
we have done for the marine realm (forests, grasslands, and croplands). This approach uses the burial estimates of 

Figure 3. Box plots of collated fraction of organic carbon stock associated with FeR (fOC-FeR) (a) and OC:Fe molar ratio (b) 
data from marine environments. For both panels, all marine settings are highlighted in green, with the combined values for 
the marine realm in blue. All individual settings in the terrestrial environment are in yellow, with the combined estimates in 
orange.
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the period 2000–2007 from soils in forest environments (Pan et al., 2011). For grasslands, we use the published 
values of Scurlock and Hall (1998); for croplands we take the recent estimate by Zomer et al. (2017). The distinc-
tion of burial rates and total stocks is important in the terrestrial environment as the timescales of turnover in 
terrestrial environments can vary greatly, for example, decadal timescales in forest soils compared to thousands 
of years in peatlands and permafrost-impacted regions.

To make a most likely estimate of the amount of OC burial in each environment, we use a Monte Carlo based 
approach (see Longman, Gernon, Palmer, Jones, et al., 2021). For this, the average and standard deviations of 
the fOC-FeR values for each environment were calculated (Figures 2 and 3). For OC burial, we use average and 
standard deviations of published estimates. For environments where data are not available, we apply an artificial 
20% standard deviation for modeling purposes (Table 1). We use Rstudio and the package rtruncnorm to perform 
10,000 iterations of each variable. For each iteration, we multiply the OC burial value by the fOC-FeR estimate to 
attain a single estimate of OC-FeR burial. We then perform statistical analyses on the full set of iterations to derive 
most likely ranges of OC burial. We then combine all individual simulations for each group to attain 10,000 
simulations of global OC burial via the “rusty carbon sink” in both marine and terrestrial locations (Figure 5).

2.3. Assumptions Used in the Calculations

Burial rates of OC as presented by Hedges and Keil (1995) are a simplification of the true marine carbon cycle. 
These OC burial rates do not consider variability in sediment type, oxidation state of sediment, proportions of 
terrestrial versus marine OC, the rate of lithogenic input to the location, and the proportion of allochthonous 
versus autochthonous OC content, all variables which may impact the local fOC-FeR of a sediment package 
(Faust et al., 2021; Lalonde et al., 2012; Longman, Gernon, Palmer, & Manners, 2021). However, these burial 
rate estimates provide a first and first order estimation of how much OC may be buried in certain locations, and 
they provide a means to compare previously published results more systematically across diverse environments.

Figure 4. Example outputs of Monte Carlo modeling, displaying impact of fraction of organic carbon stock associated with FeR (fOC-FeR) (color of points) on total 
carbon burial in the specific environment via OC-FeR (y-axis) when compared to total carbon burial in that environment (x-axis). Panel (a) shows the modeling for 
continental shelves while panel (b) is the modeling for deep-sea abyssal environments.
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Because of the simplified methodology, our approach makes the following assumptions: First, that the location 
of OC-FeR bond formation does not impact our estimates. Whether OC-FeR bonds present in marine sediments 
were formed in a terrestrial environment and then transferred into the ocean, or formed in a marine sediment 
itself is not something our method can distinguish, and so we assume it is not significant in large-scale OC 
burial estimates. Second, we assume that OC-FeR is no more susceptible to decomposition in anoxic conditions 
than typical OC, a conclusion supported by the fOC-FeR values of anoxic basins being similar to oxic locations 
(Lalonde et al., 2012). Finally, as we develop estimates of annual OC-FeR burial, we do not consider the impact 

Figure 5. Outputs of Monte Carlo modeling exercise for marine sedimentary environments. Displayed here are the range of possible C burial values for each of the 
environments considered. Panel (a) shows box plots for each of the individual terrestrial environments (in yellow), with the synthesis of terrestrial C burial in orange. In 
panel (b), individual box plots for each of the marine environments are displayed in green, with the synthesis of the “rusty carbon sink” in marine sediments in blue.
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of further burial and changing redox conditions in the sediment column through diagenesis on the sink of carbon. 
It has been shown that OC-FeR bonds persist through early diagenesis and burial (Faust et al., 2021; Longman, 
Gernon, Palmer, & Manners, 2021), but studies on this topic are in their infancy and many data are lacking, so it 
is possible that changing porewater Eh and pH conditions during burial may reduce the stability of OC-FeR bonds.

We account for the inherent uncertainties in our burial assumptions by using a Monte Carlo based approach to 
estimate the burial of OC with FeR that considers the error terms—those that provide a range of burial rates above 
and below the mean estimates of Hedges and Keil (1995) to represent a realistic range of possible OC burial 
values. As a result, we do not present our model outputs as single average data values, but as most likely ranges.

3. Results and Discussion
3.1. New Estimates of fOC-FeR

Our compilation of data from marine locations yields an overall fOC-FeR of 20.22% ± 15.52% (1 SD, n = 406). 
This fraction of OC bound to reactive Fe is remarkably similar to the estimate of Lalonde et al. (2012) and numer-
ous subsequent studies (e.g., Faust et al., 2021; Salvadó et al., 2015; Shields et al., 2016), despite the addition 
of 364 new study sites, indicating the comparability of their initial approach and the robustness of their earlier 
conclusions. The present compilation, however, affords a new perspective on how global OC burial is influenced 
by FeR to greater and lesser extents across many depositional environments (Table 1).

For oxic continental shelves and slopes, fOC-FeR (18.59% ± 9.44%, 1 SD, n = 225) was very similar to Lalonde 
et al. (2012), who derived an estimate of 18.41% ± 9.37% (1 SD, n = 12). However, for other environments, we 
estimate average fOC-FeR values that are distinct from previous work (Table 1). For example, abyssal sediments 
were previously thought to contain fOC-FeR of 20.89% ± 9.38% (1 SD, n = 5), but our expanded data compi-
lation suggests a lower value of 13.72% ± 8.73% (1 SD, n = 13). We make a similar revision to lower average 
values of fOC-FeR in deltaic environments, from 21.66% ± 7.55% (1 SD, n = 16) to 15.34% ± 13.88% (1 SD, 
n = 102) (Figure 3). This diminished fOC-FeR in deltaic sediments is particularly important as these environ-
ments are thought to be the single largest sink for total OC in the marine environment (Hedges & Keil, 1995). 
This revision does not reduce the importance of deltaic locations for OC burial, but demonstrates that OC-FeR 
burial is not as dominant as in other locations. In contrast, high fOC-FeR values for a range of new environments 
were found, such as marine tephra deposits, which are thought to be potentially important settings for OC burial 
(Longman et al., 2019). Indeed, the estimates of fOC-FeR from these locations are the highest recorded (average 
79.02% ± 12.92%, 1 SD, n = 14), suggesting that OC-FeR bonding is potentially most prevalent in marine loca-
tions with regular deposition of chemically unweathered, fine-grained volcanogenic material (Longman, Gernon, 
Palmer, & Manners, 2021). We also considered other OC-rich peripheral marine environments in this study, such 
as mangroves, seagrass meadows and salt marshes (Figure 3). For these environments, we use the fOC-FeR of 
mangrove sediments (average 14.50% ± 13.00%, 1 SD, n = 6), as we assume this to be similar in other peripheral 
locations of high OC burial. These locations are known to be extremely efficient locations for OC burial (C. M. 
Duarte et al., 2005; Fourqurean et al., 2012; Pendleton et al., 2012).

We provide the first estimates of fOC-FeR across a diverse range of terrestrial environments. In terrestrial soils, 
our compilation indicates an average fOC-FeR of 14.84% ± 13.46% (1 SD, n = 191). Previous estimates across all 
terrestrial environments are not available for comparison, but this value for terrestrial soils is considerably lower 
than often-cited values of up to 40% (Chen et al., 2020; Zhao et al., 2016), and most similar to our revised esti-
mate for deltaic environments. As we found for marine sediment, fOC-FeR values also vary between the terrestrial 
environments studied here, from cropland with the highest average fOC-FeR (22.45% ± 14.44%; 1 SD, n = 18) to 
grassland with the lowest: 5.26% ± 3.86% (1 SD, n = 15). Peatlands show an average fOC-FeR of 9.95% ± 9.67% 
(1 SD, n = 17), with thermokarst environments containing an average fOC-FeR of 16.54% ± 12.61% (1 SD, 
n = 90). Such environments contain stocks of OC that are especially vulnerable to rising temperatures and altered 
hydrology attributed to anthropogenic climate change, emphasizing the importance of understanding the role 
of FeR in mediating the size and long-term stability of these OC sinks (Lovelock & Duarte, 2019; Pendleton 
et al., 2012).
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3.2. OC:FeR Molar Ratio as an Indicator of Bond Type

In addition to estimates of fOC-FeR, our synthesis provides the OC:Fe molar ratio in each environment (where 
available; Figures 2b and 6, Table 1). This ratio has been used in the past to infer predominant bonding styles, with 
low values (below 1) indicating mono-layer adsorption, and higher values indicative of co-precipitation (Faust 

Figure 6. Ranked variable contributions of reactive iron (FeR) to the storage and burial of organic carbon (OC) in the soils and sediments of (a) terrestrial and (b) 
marine environments. To the left, idealized diagrams depict component storage and burial of OC via interactions with FeR in terrestrial and marine environments. Burial 
rates (OC-FeR, Mt C yr −1) and fractions (fOC-FeR) are derived from the average outputs of Monte Carlo model simulations. To the right, stacked area charts depict 
the ranked order of components within which the fraction of OC stock attributed to FeR (fOC-FeR) is highest relative to other OC burial mechanisms. A color scale 
denotes the molar ratio of OC:Fe within the OC-FeR pools. Y-axis labels correspond to the components environments denoted in the idealized diagrams. Component bar 
thickness is proportional to the OC-FeR burial rate relative to the summed total in the marine or terrestrial environment.
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et al., 2021; Wagai & Mayer, 2007). The overall averages for both marine (3.82 ± 4.25 m/m, 1 SD, n = 338) and 
terrestrial (3.86 ± 8.08 m/m, 1 SD, n = 131) OC:Fe are remarkably similar, which might imply overall similar 
processes dictating OC-FeR bonding on land and in the ocean, and that coprecipitation is the predominant mecha-
nism responsible for creating OC-FeR associations observed across Earth's surface environments. However, indi-
vidual environments show considerable deviation from this average (Figure 2). In marine environments, OC:Fe 
is notably lowest in estuarine/deltaic (2.12 ± 1.89 m/m, 1 SD, n = 79), shelves and slopes (3.60 ± 3.21 m/m, 1 
SD, n = 215), and tephra-rich locations (3.68 ± 4.89 m/m, 1 SD, n = 14). This is consistent with a supply of 
OC-FeR derived from the terrestrial environment, in which sorption is the dominant bonding mechanism (Faust 
et al., 2021; Shields et al., 2016). In other environments, such as anoxic (14.33 ± 10.14 m/m, 1 SD, n = 7) and 
abyssal sites (7.32 ± 5.12 m/m, 1 SD, n = 13), co-precipitation of FeR and OC seems to be dominant, as suggested 
by Lalonde et al. (2012). Mangrove sediments show some of the highest values (7.87 ± 4.83 m/m, 1 SD, n = 13), 
indicating that such sediments, which are often anoxic at shallow sediment depth (Clark et  al.,  1998; Noël 
et al., 2015), are sustaining co-precipitation of Fe and OC. Terrestrial environments show an overall much greater 
spread of data, with the ranges of grasslands (5.32 ± 12.25 m/m, 1 SD, n = 9) and croplands (6.36 ± 12.66 m/m, 
1 SD, n = 18) being especially variable. The generally low average values, however, do support previous work 
indicating that sorption of OC to FeR primarily occurs on land (Wagai & Mayer, 2007).

3.3. Re-Assessment of Global OC Preservation by Reactive Fe

We use a Monte Carlo based approach to estimate the stock of OC associated with FeR, based on new estimates of 
fOC-FeR across the full range of marine and terrestrial carbon-accumulating environments and previous estimates 
of their total OC accumulation rates (Figures 3 and 4).

In the oceans, we find a most likely range for the OC-FeR sink of 31–70 Mt C yr −1 (5th–95th percentile), with 
an average of 52 Mt C yr −1 (Figure 5). This estimate is roughly 25% of the total global marine sedimentary OC 
sink (200 Mt C yr −1; Canadell et al., 2021), and emphasizes the importance of OC coupling to metal (oxyhydr)
oxides in controlling the burial of OC in the marine environments. On land, we find the FeR-associated sink of 
OC between 171 and 946 Mt C yr −1 (5th–95th percentile) with an average of 472 Mt C yr −1 (Figure 5). This is 
equivalent to roughly 40% of all carbon sequestered in forest environments worldwide per year (Pan et al., 2011), 
and around 15% of the entire OC sink on land (3,610 Mt yr −1; Keenan & Williams, 2018). By combining the 
estimates for marine and terrestrial settings, we yield a total global FeR-associated OC burial rate between 222 
and 995 Mt C yr −1 (5th–95th percentile), with an average of 524 Mt C yr −1 (Figure 5)—equivalent to roughly 5% 
of anthropogenic carbon emissions in the year 2020 (Friedlingstein et al., 2020).

Our approach also allows us to estimate and compare the size of the OC-FeR sinks between depositional envi-
ronments (Figure 6). The most important settings for marine OC-FeR accumulation are continental shelves and 
slopes (average 17 Mg C yr −1) and deltaic/estuarine environments (average 11 Mg C yr −1), accounting for 33% 
and 21% of the total annual marine OC-FeR sink, respectively (Figures 4 and 5). These are the first estimates of 
OC-FeR burial attributed to specific depositional environments of the ocean, and appear to match our understand-
ing that continental shelves and slopes are key settings for marine OC burial in general (Bianchi et al., 2018; Blair 
& Aller, 2012). We also provide the first estimates for OC-FeR burial in fjords (3.4 Mt C yr −1), volcanic tephra 
(2.8 Mt C yr −1), mangroves (3.6 Mt C yr −1), salt marshes (8.8 Mt C yr −1), and seagrass sediment (4 Mt C yr −1); 
see Figure 6. Our findings illustrate the comparative roles each of these environments play in contributing to 
the burial of OC via FeR. For example, despite having one of the smallest burial rates of OC, the extremely high 
fOC-FeR in tephra deposits (79.02% ± 12.92%; Longman, Mills, et  al.,  2021) indicates that, gram for gram, 
volcanic tephra provides the most efficient OC burial via FeR in marine sediments (Figure 6).

OC-FeR bonding is also an important feature of the terrestrial carbon cycle, accentuated by OC accumulation 
rates that are far higher than those estimated for the ocean. Our work shows grasslands and croplands accumu-
late more carbon each year through OC-FeR bonding than any other terrestrial environment. Croplands appear 
to be the most important single terrestrial environment for OC-FeR stocks (average 279 Mt C yr −1), followed 
by grasslands (average 121 Mt C yr −1), with these settings accounting for 59% and 26% of the terrestrial stock 
of OC-FeR, respectively. In addition to previous work which has displayed that higher environmental resilience 
promotes grassland stability (Dass et al., 2018), we propose that this stability may also relate to the large fOC-FeR 
in grassland soils.
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Explicit in our findings is that the OC-FeR sink on land is greater than in the ocean; average OC-FeR burial rates 
in ocean sediments are estimated to be 52 Mt yr −1 compared to 472 Mt yr −1 on land. However, it is important to 
recognize that OC reservoirs on land are smaller with comparatively shorter residence times than in the ocean 
(Carvalhais et  al., 2014), and it is ultimately the size of these OC reservoirs, and not their annual turnovers, 
that will impact the global carbon cycle on geological timescales (Table 1). Nonetheless, there is an important 
gap in our understanding of the linkages between terrestrial and marine OC-FeR stocks: the extent to which 
FeR-associations may facilitate the transfer of terrigenous OC into marine reservoirs is still unknown, but there 
are many indications that terrestrial OC-FeR enters the marine realm. Salvadó et al. (2015) found carbon isotope 
values were indicative of both substantial marine and terrestrial Fe-OC inputs to Arctic shelf surface sediments 
relative to typical shelves. Elsewhere, deep ocean relationships between dissolved Fe and electroactive humic 
substances have been used to suggest land-sea transfer of OC may be a regulatory feedback to the ocean's iron 
inventory and gross primary production (Whitby et al., 2020).

Our findings incorporate most previously published OC-FeR data to date, as outlined above, and encourage future 
scientific endeavors to better understand OC-FeR burial rates, by continuing to characterize the mechanisms that 
regulate the formation and fate of OC-FeR. That is, to understand under exactly which conditions OC transfor-
mations and protective bonds are formed with Fe (oxyhydr)oxides, and how these may alter or persist within and 
between depositional environments over time.

3.4. Implications for the Geological Past

With recent evidence indicating the long-term preservation of OC-FeR interactions (Faust et al., 2021; Longman, 
Gernon, Palmer, & Manners, 2021), the scale of the OC-FeR sink in marine sediments highlights OC-FeR bonding 
as an important component of the long-term carbon cycle. The capability of these bonds to survive for hundreds 
of thousands of years, at least in marine sediments, means that changes in the OC-FeR sink may have implications 
for carbon storage and global biogeochemical cycles on geological timescales (Faust et  al.,  2021; Longman, 
Gernon, Palmer, & Manners, 2021). For example, it is plausible that during periods in which intense OC-FeR 
coupling occurred, such as due to enhanced tephra deposition, OC preservation partially accounted for lowered 
pCO2 and global cooling (Longman et al., 2019).

Our findings reinforce the fact that continental shelves and slopes are key components of the OC-FeR sink. 
Modern continental configurations provide a shelf area which is small compared to periods of, for example, the 
Early Cretaceous (around 100 Ma) and Late Ordovician (around 440 Ma). At these times, shelf areas were more 
than double in size than the modern situation (Harrison et al., 1983; Walker et al., 2002). As such, these envi-
ronments were likely even more important for OC-FeR burial in the past than today. This is an example of how 
OC-FeR stock could change considerably with changing continental configurations (Berner & Canfield, 1989; 
Bjerrum et al., 2006). The size of this sink may be even greater when the impact of high sea levels on the area 
of peripheral vegetation and fjords is considered. But, reconstructing the size of these environments in geologi-
cal time is complicated by the challenges of paleo-shoreline reconstruction (Heine et al., 2015). Ultimately, the 
global burial of OC results from the balance of OC regeneration and burial across all Earth surface environments. 
As such, the effect that changes in one aspect of one OC-FeR sink may have on other OC-FeR sinks is not yet 
understood. For example, as continental shelves and their OC-FeR sink increase, the consequent decrease in 
peripheral vegetation may offset changes to the net burial of OC. Thus, to accurately account for changes in 
specific environments, paleoenvironmental reconstructions should aim to consider system changes to the carbon 
cycle holistically when possible.

An interesting and potentially significant driver of changes to OC burial through geological time is linked to the 
variable intensity of volcanism. During the emplacement of large igneous provinces and the emergence of arc 
volcanism, volcanogenic sedimentation rates in the ocean may have been far higher than today (Lee et al., 2018; 
McKenzie et al., 2016; Mills et al., 2014). If these volcanic systems produced large amounts of volcanic ash, as 
occurred in the Cretaceous and Ordovician (Lee et al., 2018; Longman, Mills, et al., 2021), it is possible the size 
of the ash-related OC-FeR burial rate was far greater than we report here for modern sediments. Estimates place 
the current annual production of ash at around 1 km 3 yr −1 (Longman et al., 2022; Pyle, 1995), but during periods 
of intense arc volcanism this value could be orders of magnitude greater. For example, individual eruptions from 
the Late Ordovician are known to have released >1,000 km 3 of ash. Other studies indicate these were not isolated 
events (Bryan et al., 2010; Ernst et al., 2021). Considering that tephra and tephra-hosting sediments contain the 
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highest fOC-FeR values, these periods likely had the potential to preserve more OC-FeR in marine sediments, 
considering that there was sufficient OC available to be paired with this increased FeR supply. For example, if we 
assume each 1,000 km 3 tephra deposition event had an ash density of 1,400 kg/m 3 (Gudmundsson et al., 2012) 
and buried 0.1 wt% OC and 80% fOC-FeR (Longman, Gernon, Palmer, & Manners, 2021), it would lead to the 
sequestration of 1,120 Mt C—equivalent to >20 times the annual C burial represented by OC-FeR interactions in 
the modern Earth system. This regardless of the impact of dispersed ash, which appears to lead to ∼10% increase 
in fOC-FeR in sediments surrounding ash (Longman, Gernon, Palmer, & Manners, 2021), and would have led 
to a second considerable carbon sink. The impact of volcanic material, however, is also highly dependent on the 
specific location of volcanoes (i.e., are they located close to an environment with high OC supply), and numerous 
features of the volcanism itself such as tephra chemistry, which dictates proportions of Fe oxides, and total Fe 
content.

The rate of carbon turnover in soils (average of 23 years for complete turnover; Carvalhais et al., 2014) means 
they are unlikely to act as significant carbon sinks on geological (>100 kyr) timescales. However, it is possible 
that sequestration in peatlands can lead to long-term (million-year) burial, with the high fOC-FeR values contrib-
uting to high OC burial rates which are a feature of rapid burial to below the oxic zone. The formation of coal beds 
from ancient peatlands might attest to this (Dai et al., 2020), with peatlands proposed to have acted as important 
carbon sinks in the Pliocene and Paleocene (Kurtz et al., 2003; Panitz et al., 2016), although a link to FeR-related 
protection has not yet been demonstrated. The Paleocene, for example, was a time of significant worldwide peat 
accumulation (Kurtz et al., 2003), as was the Carboniferous period (Greb et al., 2006), and so the OC-FeR sink in 
these settings would have been far greater than it is today.

In marine systems, what remains to be understood is the relationship between two major OC preservation mech-
anisms, which predominately operate under different ocean redox states: the OC-FeR sink and the anoxic carbon 
sink. It is widely understood that anoxic conditions favor the preservation of OC in marine sediments because 
they do not sustain OC remineralization rates found in oxygen-replete environments (Demaison & Moore, 1980; 
but see Calvert and Pedersen (1992), for alternative view). However, under such reducing conditions, with plen-
tiful OC, the reduced availability of iron (oxyhydr)oxides could limit fOC-FeR values, and result in low total 
OC burial via OC-FeR. In oxygen-replete settings, the availability of OC could become the limiting resource for 
OC-FeR burial. For example, in regions where high tephra or terrigenous Fe deposition support comparatively 
high fOC-FeR, it could be the supply of OC that ultimately limits the capacity of FeR to increase OC-FeR burial 
rates. For these reasons, the significant potential of FeR supply to regulate a fraction of OC burial is clear, but its 
quantitative impact on the global carbon cycle requires further examination.

3.5. How Will the OC-FeR Sink Change Due To Anthropogenic Climate Change?

Our work has outlined the scale of the OC-FeR sink in the modern Earth system, but under anthropogenic climate 
change, this picture is likely to change. Rising global temperatures may increase primary productivity in some 
settings, and reduce it in others (Barange et al., 2014), meaning that the overall impact of shelf-sea productivity 
variations on OC preservation by FeR is unclear. It is likely that a series of impacts will be driven by sea-level 
rise worldwide (Rahmstorf, 2007). The flooding of lowland areas will result in an increase in the size of conti-
nental shelf area with the potential to alter carbon burial rates in these regions. For example, increased aridifi-
cation and decreased fluvial discharge across North America appears to be a trend set to continue (Overpeck 
& Udall,  2020), with the potential to change terrestrial and coastal marine carbon sinks, such as grasslands, 
forests and deltaic environments, including those already undergoing degradation (Giosan et al., 2014; Syvitski 
et al., 2009). Climate change poses threats to coastal environments such as seagrass and mangroves, due to the 
combined effects of acidification, warming and rising sea levels (B. Duarte et al., 2018; Gilman et al., 2008; 
Lovelock & Duarte, 2019).

A possible future impact on the stabilization of OC by iron minerals across terrestrial and marine environ-
ments stems from the fact that these associations may become less stable under anoxic conditions. The onset of 
anoxia promotes activity of anaerobic Fe(III)-reducing bacteria, which act to dissolve FeR phases. However, the 
potential for such states of anoxia to alter efficacy of mineral-organic preservation, and how this relates more 
generally to the reduced oxygen exposure time of OC, is not yet well understood. This is because redox gradi-
ents can also enhance the proportion of Fe minerals present as Fe (oxyhydr)oxides suited to the adsorption and 
co-precipitation of OC (Riedel et al., 2013). So despite zones of persistent ocean anoxia expanding as a result 
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of rising global temperatures (Altieri & Gedan, 2015), the impact of OC-FeR as a component of net OC burial 
is unclear. Climate models also predict that higher global temperatures will result in increased precipitation in 
the tropics (Feng et al., 2019; Su et al., 2017), with the potential to promote more anoxic soil conditions and a 
reduction in FeR minerals which could release solubilized iron minerals and associated OC as dissolved OC in 
these areas (Barcellos et al., 2018), enhancing the seaward transfer of these dissolved phases from the continents.

Temperature-driven thawing of permafrost will also increase waterlogging and anoxia in some northern perma-
frost regions (Kreplin et al., 2021). In extreme cases, permafrost thaw has been shown to result in almost complete 
loss of OC-FeR (Patzner et al., 2020), although the extent of this loss varies between vegetation types (C. Mu 
et al., 2020). On the other hand, permafrost thaw also opens new percolation pathways for groundwater drain-
age that can lead to surface drying (Kreplin et al., 2021). Such an increase in drainage and ingress of oxygen 
could alter redox cycling of Fe and the presence of OC-FeR. Projected increases in soil acidification associated 
with nitrogen fertilization (Tian & Niu, 2015) and acid deposition (Guo et al., 2010), may also impact the redox 
cycling of Fe and preservation of OC. Ye et al. (2022) found that pH is likely the key predictor of OC-FeR abun-
dance in terrestrial soils, suggesting any future decreases in soil pH may increase OC-FeR.

4. Conclusions, Caveats, and Outlook
Our work shows that in the marine environment, as much as 52 Mt C yr −1 is buried as OC-FeR, with the primary 
settings of burial being the continental shelves, slopes and deltaic environments. In terrestrial environments, the 
annual burial rate of OC-FeR is estimated to be 446 Mt C yr −1—an order of magnitude more than the OC-FeR 
buried per year in marine sediments—with as much as half of this terrestrial accumulation attributed to cultivated 
cropland soils. The significant size of these terrestrial stocks, the susceptibility of terrestrial carbon stores to pres-
sures resulting from land use and climate changes, and the potential transfer of these terrestrial stores to marine 
coastal environments means that OC-FeR needs to be better understood and monitored.

The conclusions presented here must be caveated by the fact that large areas of the globe are not well represented 
in our data sets (Figure 1). There are zero data available from south of the equator. We have no data from Africa 
as a continent, or from Australasia, and in the marine realm, no data are available for the southern Pacific, 
Atlantic and Indian Oceans. The data presented here should therefore be considered a starting point, as it is clear 
that more widespread data collection is next required to ensure conclusions drawn from the existing data are not 
biased by the skewed representation of Earth's surface environments. In spite of these caveats, however, we find 
that OC-FeR is an integral component of OC stocks across all of Earth's surface environments studied so far, and 
suggest it ought to be considered as such in future carbon accounting and sequestration strategies within critical 
zones on land and the closely connected marine realm.

Data Availability Statement
All data used in this publication is compiled from previous publications (see Table  S1). No new sedimen-
tary data were produced during this study. The model outputs may be found at https://doi.org/10.6084/
m9.figshare.19691905.
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