
1. Introduction
Due to climate change, the rate of extreme weather events like extreme rainfall events, heat waves, cyclones, 
typhoons, severe thunderstorms, etc., has increased, in which the frequency and intensity of precipitation play a 
significant direct and indirect role (Awasthi et al., 2022; Li et al., 2021). Along with other parameters, precipitation 
is one of the meteorological variables responsible for different types of weather formation (Gavahi et al., 2022). 
Rainfall is crucial as it is a commonly available source of water for agriculture (Yang et al., 2020). So, variations 
in rainfall are closely connected to the cultivation calendar, hence playing an important role in the economy of 
any country. Whereas, extreme rainfall events are accountable for numerous socioeconomic losses, particularly in 
urban areas, as well as human losses due to natural disasters (Cabré et al., 2016; Corada-Fernández et al., 2017; 
Dash et al., 2015; Shi et al., 2021). Hence, it is important to understand the spatial and temporal characteristics 
of rainfall in the warming atmosphere.

Due to change in the normal composition of the atmosphere, pollution level is increasing gradually due to which 
different natural phenomenon are varied that ultimately poses a serious effect on society in different ways (Awasthi 
et al., 2017). To understand the behavior/pattern of rainfall, Satellite microwave and infrared (IR) remote-sensing 
data have been used to calculate monthly and daily precipitation over the oceans, as well as over land. Nowadays, 
algorithms have been created that generate near real-time hourly or 3-hourly precipitation of resolution of 0.25° 
or finer resolution. After quantitative assessments, this type of high-resolution and near real-time data can be 
highly valuable in different types of research related to hydrology, weather, climate, etc.

The 2015 Paris Agreement recommended, “Holding the increase in the global average temperature to well below 
2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial 
levels” (UNFCCC,  2015). The concentrations of greenhouse gases (GHGs) must fall before 2060 to accom-
plish the 1.5°C warming objective, whereas to achieve the 2°C warming target, GHGs must fall before 2085 
(Sanderson et al., 2016). Due to the change in the concentration of GHGs, the ocean warming pattern changes and 
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hence show different climate response in term of precipitation in the atmosphere (Chadwick et al., 2013; Long 
et al., 2014; Pattnayak et al., 2018).

Temperature and rainfall data is used mainly for understanding the various climate trends. Alteration in the 
rainfall volume, frequency, distribution, and intensity is supposed to be a consequence of climate change (Duan 
et al., 2015, 2019; Zhang et al., 2012) which requires immediate thought and in-depth investigation. Change and 
variability in climate due to an increase in GHGs result in change in the rainfall pattern throughout the world 
(Bhatla et al., 2016; Deng et al., 2019; Gergis & Henley, 2017; Pattnayak, Tindall, et al., 2019; Singh et al., 2019). 
In the Indian context, several studies demonstrate a decrease in the number of rainy days and total annual precip-
itation and an increase in the frequency of heavy rainfall events (Dash & Hunt, 2007; Dash et al., 2009; Goswami 
et al., 2006; Lal, 2003; Maharana et al., 2022). The southwest monsoon season (June–September), brings about 
60%–90% of India's yearly rainfall, which is crucial for the nation's economy (Joshi & Rajeevan, 2006; Pattnayak, 
Panda, et al., 2019). Rainfall's pattern, intensity and frequency play an important role in irrigation and extreme 
events like drought and flood, etc (Guo et al., 2018; Kulshrestha et al., 2009). Hence, seasonal and annual rainfall 
and changes in extreme rainfall are important to understand, and proper investigation is required.

Lacombe and McCartney (2014) carried out a rainfall analysis from 1951 to 2007 and showed increasing trends 
in rainfall in southern peninsular India and decreasing trends in rainfall over central India. Increasing trends in 
precipitation during autumn and winter, whereas decreasing trends during monsoon and spring were reported by 
Pal and Al-Tabbaa (2011) based on the analysis for the period of 1954–2003. Many other studies were done by the 
authors in which rainfall pattern, distribution, frequency, etc. of different North Indian states were studied, that 
is, Haryana (Chauhan et al., 2022; Nain & Hooda, 2019), Himachal Pradesh (Jaswal et al., 2015), Punjab (Kaur 
et al., 2021), Rajasthan (Mundetia & Sharma, 2014; Pingale et al., 2013), Uttarakhand (Malik & Kumar, 2020) 
and Uttar Pradesh (Guhathakurta et al., 2020). Mondal et al. (2022) showed that the extreme precipitation events 
across South Asia may increase up to 3.5%–6.6% due to increase in warming from 1.5 to 2.0°C. Based on the 
Community Earth System Model low warming (CESM-LWR) experiment, authors studied a worldwide evalua-
tion of precipitation extreme forecasts under 1.5 and 2°C warming scenarios and revealed that in central Africa, 
eastern South America, and northern high latitudes, consecutive dry days (CDD) will occur less frequently (Ju 
et al., 2021). G. Wang et al. (2020) found that the extreme precipitation increased by two times with an addition 
of 0.5°C warmer climate.

According to one of the reports by the Intergovernmental Panel on Climate Change in 2007 that dry climate 
zones are anticipated to get drier and wet climate zones to become wetter (IPCC, 2007). Hence, it is important 
to understand the past behavior of rainfall patterns to forecast their future occurrence, so that proper risks asso-
ciated with extreme precipitation events will be designed. Moreover, precipitation plays a significant role in 
the economic growth of a country (Damania et al., 2020), hence it is interesting and important to discuss the 
precipitation pattern of India, which is emerging as one of the strongest economies across the globe. Earlier 
researchers reported that the 1.5 and 2°C scenarios might lead to higher warming at the regional scale, particu-
larly over the landmass of the Northern Hemisphere (Karmalkar & Bradley, 2017; Sahu et al., 2008; Sharma & 
Babel, 2014; Tiwari et al., 2014; Vautard et al., 2014; Xu et al., 2017). Therefore, it is a challenge for the econ-
omist and Government to design balanced strategies and plans to fulfill the Paris Agreement's target along with 
the economic growth of India. In this paper, the authors present the performance of precipitation for four periods 
that is, preindustrial period (1871–1890), present (1986–2005), 1.5 and 2° scenario to understand and project  the 
future climate scenario. The 1.5 and 2° scenario periods have been considered based on global temperature anom-
alies reaching respective values in the CMIP5 models (Maharana et al., 2020).

2. Study Region
The northern states of India occupy the largest region of the country comprising seven states Haryana, Himachal 
Pradesh, Jammu and Kashmir (J&K), Punjab, Rajasthan, Uttar Pradesh, and Uttarakhand. This part of the country 
has consistently outperformed India's national average in terms of GDP, with the region accounting for approx-
imately 26% of the national GDP. The dominant geographical features of North India are the Indus-Gangetic 
Plain and the Himalayas, which demarcate the region from the Tibetan Plateau and Central Asia. The northern 
part of India is endowed with immense topographical diversity, historical monuments, different cultures, wildlife 
parks and sanctuaries, holy temples and rivers, and diversified climatic conditions. The entire northern part of the 
country shares its borders with countries like Pakistan, China, Nepal, and Bhutan (Figure 1). Toward its north is 
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the Himalayas which define the boundary between the Indian subcontinent 
and the Tibetan plateau. To its west is the Thar desert, shared between North 
India and Pakistan and the Aravalli Range, beyond which lies the state of 
Gujarat. The Vindhya mountains are, in some interpretations, taken to be the 
southern boundary of North India. The predominant geographical features of 
North India are the Indo-Gangetic plain, which spans the states of Punjab, 
Haryana, and Uttar Pradesh, the Himalayas, which lie in the states of Uttara-
khand, Himachal Pradesh, and J&K, and the Thar desert, which lies mainly 
in the state of Rajasthan. The states of Himachal Pradesh, Uttarakhand, and 
J&K also have a large forest coverage.

The northern state of India lies mainly in the temperate zone. The general 
pattern of this region is cold winters, hot summers, and moderate monsoons. 
It is one of the most climatically diverse regions on Earth. The region 
receives heavy rain in the plains and light snow in the Himalayas (J&K, 
Himachal Pradesh, and Uttarakhand) through two primary weather patterns: 
the Indian Monsoon and the Western Disturbances. The monsoon carries 
moisture northwards from the Indian Ocean, occurs in late summer, and is 
important to the autumn harvest (Jain & Chatterjee, 1972; Katiyar, 1990). 
Western Disturbances is an extratropical weather phenomenon that carries 
moisture eastwards from the Mediterranean Sea, the Caspian Sea, and the 
Atlantic Ocean (Datta & Gupta, 1967; Dimri, 2004; Tiwari et al., 2014; B. 

Wang, 2006). They primarily occur during the winter season and are critically important for the spring harvest, 
which includes the main staple food of North India, wheat (B. Wang, 2006).

2.1. Data and Methodology

Historical and future climate data have been obtained from the Fifth Coupled Model Inter-comparison Project 
(Taylor et al., 2012). The models used in this study are listed in Table 1, along with their host institutions, and 
the abbreviations used in this study. There are 26 climate models from CMIP5 that have been considered for this 
study. For evaluating the model simulations, fifth generation ECMWF reanalysis ERA5 (Hersbach et al., 2020) 
have been used in the present work. The recent study by Mahto and Mishra (2019) have demonstrated that ERA5 
outperforms other reanalysis products such as ERA-Interim, Japanese 55-year Reanalysis (JRA-55) and Modern 
Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) over Indian region, including 
seasonal precipitation, maximum and minimum temperatures, total runoff, evapotranspiration, and soil moisture. 
Rivoire et  al.  (2021) compared moderate to extreme daily precipitation from the ERA-5 reanalysis with two 
observational gridded data sets, EOBS and CMORPH. Their assessment reveals that the observational dataset 
agrees well with more than 80% of the grid points on average across the globe. Therefore, it has been used as a 
reference dataset for selecting models out of the 26 CMIP5 models. The models have been validated for the refer-
ence period. Further, Climatic Research Unit (CRU) gridded rainfall (Harris et al., 2014) with 0.5° grid resolution 
at land points have been considered. To compute model bias against CRU observations, the CMIP5 data at coarser 
resolution has been interpolated to the CRU data at finer resolution onto a 0.5° × 0.5° grid. The multi-model 
ensemble has been calculated in a similar way. For calculating the interannual variations, the climatic fields have 
been computed by masks of the corresponding states, then the grid points present within the mask have been 
averaged. Analysis of the future projections has been carried out at the model resolution (without applying any 
interpolation).

Sub-selecting a representative subset from available General Circulation Models (GCMs) provides an efficient 
approach to generating a set of regional climate projections which represent the range of future climates indicated 
by the full ensemble (McSweeney et al., 2012). The methodology employed to select the CMIP5 GCMs which 
perform satisfactorily over India is to generate higher-resolution scenarios of future climate for North India under 
1.5 and 2° scenarios. The models were first assessed in their simulation of a realistic baseline climate, with unsat-
isfactory models being eliminated before; second, a subset of models was selected to span the range of projected 
changes in precipitation. The approach of the evaluation criteria and the method is described in Table 2. The eval-
uation criteria were set out according to the phenomenon those are highly important for the Indian monsoon viz. 

Figure 1. Elevation map of north India from the Global Land Data 
Assimilation System (Rodell et al., 2004).
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all India rainfall, low-level Somali jet, upper-level easterly jet and monsoon trough. The evaluation was carried 
out based on the model which capture these phenomena. These features were compared with the ERA5 datasets. 
Here the most important and difficult decision occurs in allocating a model its position on the performance scale 
(Table 3) between “Include” and “Exclude.” The models were included for the study which possesses satisfactory 
performance in simulating the key monsoon feature outlined in Table 2. We compare the performance summary 
information in Table 4 with the projections for future change in mean rainfall to assess which models are to 
be eliminated, according to the decision-making framework set out in Table 2. Based on the decision-making 
framework, six models have shown satisfactory performance. The performance scores in the final column of 
Table 4 allocated based on the following criteria: Criteria for overall “Implausible” highlighted in Peach: any 
one category is scored “implausible,” or 4 or more categories scored “Significant biases” shown in Orange color. 
Overall Significant Biases: Two “Significant Biases” or three “Biases”/“Significant Biases,” of which at least 
one is “Significant biases.” Overall, Biases (Yellow): One “Significant Biases,” or two or more “Biases.” Overall 
Satisfactory: Fewer than three “Biases.” Thus, those six models were chosen to study the future projection in this 
study shown in Green in Table 4.

Table 1 
Details of Selected CMIP5 GCMs Used in This Study

Modeling group Group acronym
Model 

designation
Spatial 

resolution

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology 
(BOM), Australia

CSIRO-BOM ACCESS1-0 1.25° 𝐴𝐴 ×  1.875°

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology 
(BOM), Australia

CSIRO-BOM ACCESS1-3 1.25° 𝐴𝐴 ×  1.875°

Beijing Climate Center, China Meteorological Administration BCC bcc-csm1-1 2.8° 𝐴𝐴 ×  1.875°

Beijing Climate Center, China Meteorological Administration BCC bcc-csm1-1-m 1.125° 𝐴𝐴 ×  1.125°

College of Global Change and Earth System Science, Beijing Normal University GCESS BNU-ESM 2.8° 𝐴𝐴 ×  1.875°

Canadian Centre for Climate Modeling and Analysis CCCMA CanESM2 2.8° 𝐴𝐴 ×  2.8°

National Center for Atmospheric Research NCAR CCSM4 1° 𝐴𝐴 ×  1°

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC CMCC-CM 0.75° 𝐴𝐴 ×  0.75°

Centre National de Recherches Météorologiques CNRM-CERFACS CNRM-CM5 1.4° 𝐴𝐴 ×  1.4°

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland 
Climate Change Centre of Excellence

CSIRO-QCCCE CSIRO-Mk3-6-0 1.8° 𝐴𝐴 ×  1.8°

EC-EARTH consortium ICHEM EC-EARTH 1.125° 𝐴𝐴 ×  1.125°

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3 2° 𝐴𝐴 ×  2°

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2G 2° 𝐴𝐴 ×  2°

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2M 2° 𝐴𝐴 ×  2°

Met Office Hadley Centre MOHC HadGEM2-AO 1.2° 𝐴𝐴 ×  1.8°

Met Office Hadley Centre MOHC HadGEM2-CC 1.2° 𝐴𝐴 ×  1.8°

Met Office Hadley Centre MOHC HadGEM2-ES 1.2° 𝐴𝐴 ×  1.8°

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 2° 𝐴𝐴 ×  4°

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-MR 2° 𝐴𝐴 ×  4°

Institut Pierre-Simon Laplace IPSL IPSL-CM5B-LR 2° 𝐴𝐴 ×  4°

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute and 
National Institute for Environmental Studies

MIROC MIROC5 1.4° 𝐴𝐴 ×  1.4°

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute and 
National Institute for Environmental Studies

MIROC MIROC-ESM 3° 𝐴𝐴 ×  3°

Max Planck Institute for Meteorology MPI-M MPI-ESM-LR 1.8° 𝐴𝐴 ×  1.8°

Max Planck Institute for Meteorology MPI-M MPI-ESM-MR 1.8° 𝐴𝐴 ×  1.8°

Meteorological Research Institute MRI MRI-CGCM3 1° 𝐴𝐴 ×  1°

Norwegian Climate Centre NCC Nor-ESM1-M 2° 𝐴𝐴 ×  2°
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The model simulations are available from 1860 to 2100. This historical period of simulation has been divided 
into two periods, the pre-industrial period (1870–1900) and the present-day climate (1976–2005). The historical 
simulations have been forced by observed atmospheric composition changes (including Green House Gas (GHG), 
natural and anthropogenic aerosols, and volcanic forcing), solar variations, and time-evolving land cover in a bid 
to simulate the observed climate of the recent historical period. The projected climate simulations have been 
forced by GHGs, solar constant, ozone, and aerosol are kept changing with time.

3. Results and Discussion
The results have been analyzed broadly in two categories, namely model validation for the reference period and 
future climate projections. First, the model simulations have been validated against the corresponding observa-
tions in terms of climatology and interannual time scales. Further, the climate change in the two future scenarios 
with respect to the preindustrial and present periods has been analyzed in detail.

3.1. Model Validation

Rainfall variability has been represented in terms of a box and whisker plot for the period of 1976–2005 on the 
basis of 6 CMIP5 models and ensemble with respect to the CRU (Figure 2). The minimum, first quartile (Q1), 
median, third quartile (Q3), and maximum of the box plots in the figure are used to compare the distribution of 
rainfall during the period among the different data sets. It is observed on the basis of symmetry of different plots, 
that variability is minimum in the case of ensemble data with respect to CRU in comparison to other data sets. Box 
plot in case of ensemble data shows a minimum spread, and is tightly grouped, more symmetrical, and skewed in 
comparison to other data sets. The confirmation of model validation and selection of the best-mapped data set is 

Table 2 
Summary of Evaluation Methods Employed

Evaluation criteria Evaluation method

All India Rainfall Calculate the rainfall over Indian land points in both IMD observation and CMIP5 models. 
The bias more than one standard deviation is considered as significant bias

Low level Somali jet Comparison by visual inspection of circulation at 850 hpa in CMIP5 models with ERA5 
(Hersbach et al., 2020) for the summer monsoon months that is, June–September, 
looking for evidence that key features are captured. Misplaced flow or mis-directed 
flow are considered more serious biases than systematic errors in strength of flow.

Upper-level easterly jet Comparison by visual inspection of circulation at 200 hpa in the CMIP5 models with ERA5 
(Hersbach et al., 2020) for the summer monsoon months that is, June–September, 
looking for evidence that key features are captured. Misplaced flow or mis-directed 
flow are considered more serious biases than systematic errors in strength of flow.

Monsoon trough Comparison by visual inspection of the MSLP in CMIP5 models with ERA5 (Hersbach 
et al., 2020) for the summer monsoon months that is, June–September, looking for 
evidence that key features are captured. Misplaced flow or mis-directed flow are 
considered more serious biases than systematic errors in strength of flow.

Table 3 
Decision Making Matrix for Potential Elimination of Ensemble Members

Model simulations

Outliers Other models predict similar outcomes too.

Model Performance Model suffers shortcomings sufficiently serious 
to significantly reduce our confidence in its 

projections (“Implausible”)

Exclude Exclude: These models can be avoided 
without affecting the range of projected 

outcomes

Model suffers significant shortcomings which 
we cannot clearly link to confidence in its 
projections. (“Biases/Significant Biases”)

Include: We do not have strong evidence 
to exclude these outcomes from the 

projections

Exclude: These models can be avoided 
without affecting the range of projected 

outcomes

Model performance is satisfactory (“Satisfactory”) Include Include
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Table 4 
Summary of Model Performance

Note. Peach = “Implausible,” Orange = “Significant Biases,” yellow = “Biases” and green = “Satisfactory.” Overall performance scores in the final column are 
allocated based on the following criteria: Criteria for overall “Implausible” (Peach): Any one category is scored “implausible,” or four or more categories scored 
“Significant biases.” Overall Significant Biases (Orange): Two “Significant Biases” or three “Biases”/“Significant Biases,” of which at least one is “Significant biases.” 
Overall Biases (Yellow): One “Significant Biases,” or two or more “Biases”*. Overall Satisfactory: Fewer than three “Biases”*.
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shown in Figure 3. Taylor diagrams are drawn to understand which model is most realistic for the approximation 
on the basis of correlation coefficient and standard deviation. In most of the states, except Himachal Pradesh, 
the correlation coefficient value is maximum (>0.8) for the Ensemble in comparison to other models. It is also 
observed that the deviation is less than or equal to 20% for the ensemble data set for all the states except Punjab. 
Based on the median, standard deviation, and correlation values of most of the states, it is observed that error and 
uncertainty in the ensemble mean plot are minimal in comparison to other models. This is the reason that in the 
coming section data on the basis of ensemble means are taken into main focus for further analysis and discussion.

The precipitation climatology in the ensemble mean of CMIP5 models has been validated with the CRU observa-
tion for the present/reference periods (1976–2005) as shown in Figure 4. The left and middle columns represent 
mean precipitation based on the CRU and CMIP5 model during the years 1976–2005, while the right column 
(Figure 4c) shows the difference between the model and observation. The starting year is chosen as 1976 since the 
precipitation data from the CMIP5 model are available from that year. The ENSEMBLE mean can reproduce the 
mean rainfall features over the North Indian states as in the CRU observation, such as low rainfall over Rajasthan, 

Figure 2. Box and whisker plot of annual rainfall as observed by CRU and simulated by CMIP5 Models over (a) Haryana, (b) Himachal Pradesh, (c) Jammu and 
Kashmir, (d) Punjab (e) Rajasthan, (f) Uttar Pradesh, and (g) Uttarakhand for 1976–2005.
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and high rainfall along the Gangetic plains and foothills of the Himalayas. The model shows a bipolar bias, that 
is, wet bias over the Himalayas and dry bias over central India.

The mean precipitation simulated by CMIP5 models during the reference period is compared with the corre-
sponding CRU values in Figure 4c and white patches depict a small difference lying within −1 to 1 mm/day. The 
model has a significant difference compared to the observation based on CRU. Figure 4c shows that the difference 
in the precipitation is negative for Rajasthan (up to −2 units), whereas other states have a positive value of the 
precipitation difference. This indicates that the model underestimated the value of precipitation in Rajasthan, 
whereas for other states, values are overestimated. It is also observed that overall precipitation during the period 
(1976–2005) was lower in Rajasthan in comparison to other North Indian states. The precipitation is slightly 

Figure 3. Taylor diagram of annual rainfall as observed by CRU and simulated by CMIP5 Models over (a) Haryana, (b) Himachal Pradesh, (c) Jammu and Kashmir, 
(d) Punjab (e) Rajasthan, (f) Uttar Pradesh, and (g) Uttarakhand for the period 1976–2005.
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overestimated in most of the states except in Rajasthan, J&K, Himachal Pradesh, and Uttarakhand as compared 
to the other states.

3.2. Future Projection of Precipitation

Four scenarios/periods are investigated in the present study. These periods are categorized as the present/reference 
period (1975–2005), 1.5, and 2° which are compared with the preindustrial period (1871–1890). Figure 5 shows 
mean precipitation in the preindustrial, present, 1.5, and 2°C scenarios and changes during the three scenarios 
with respect to the preindustrial period based on the ENSEMBLE mean of the models. The left column represents 
the mean precipitation of the preindustrial period, and the middle column presents the mean precipitation for the 
present, 1.5, and 2.0°C scenarios. The right column represents the projected changes by taking the differences 
between various scenarios with respect to preindustrial periods. Figures 5c and 5e show almost common behav-
ior, which indicates that precipitation decreased during the reference period and in a 1.5°C scenario with respect 
to the preindustrial period. Whereas Figure  5g indicates an increase in precipitation up to 0.5  mm/day with 
respect to the 2°C scenario, and white patches are also observed which depicts a small difference in precipitation 
during 2°C with respect to the industrial period. The precipitation is likely to increase up to 0.7 mm/day during 
the 2°C scenario in almost all observed northern states of India. Based on the 1.5°C scenario, all the states show 
a significant decrease in precipitation, which is interesting to understand.

Figure 6 represents the box plots that display the ensemble spread, medians, interquartile (IQ) ranges, and outliers 
of the changes in the different rainfall for seven states at the preindustrial, present, and two warming levels of 1.5 
and 2°C scenarios. Based on the median and interquartile range of precipitation values of seven states shown by 
the box plot in Figure 6, it is observed that rainfall values observed during the present period and 1.5°C scenario 
are almost similar to that of preindustrial values for almost all the studied states. Whereas the value of precipi-
tation in a 2°C scenario shows a large range in comparison to the preindustrial values. Large interquartile range 
of rainfall during the 2°C scenario in comparison to the preindustrial, present, and 1.5°C scenarios signifies the 
high rainfall during the 2°C scenario.

It is observed from the Heatmap of annual rainfall (Figure 7) that precipitation is maximum during the 2°C 
scenario in comparison to the present and 1.5°C scenario. Both Heatmap and box-whisker plots clearly indicate 
the increase in rain events during the warming scenario of 2°C. Similar remark was given by Lee et al. (2018) in 
which the conclusion was done that extreme precipitation is projected to increase very strongly in a 2°C scenario.

3.3. Return Period of the Extreme Rainfall Events in the Future Scenarios

The incidence of intense rainfall events is a popular topic across the world since the repercussions of such occur-
rences are the primary cause of human deaths from natural disasters as well as innumerable socioeconomic losses 
(Marengo et al., 2009). In addition, some of the studies have predicted a rise in the recurrence of intense rainfall 

Figure 4. Climatology of precipitation from CRU observation (left panel) and CMIP5 ensemble mean (middle panel) for the base line period (1976–2005). The right-
hand panel represents the bias between the model and observation.
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events (De Oliveira et al., 2014; Niyogi et al., 2017; Zou & Ren, 2015). Keep this thing in mind, Figure 8 repre-
sents the return level of extreme events for all the seven states in the Preindustrial period, Present Period, 1.5 and 
2.0°C scenarios as simulated by ensemble mean. Our analysis shows that their predominance of rainfall estimates 
higher than 7 mm in all the return periods. It is observed that northern states which are close to the Himalayas 
that is, J&K, Uttarakhand, and Himachal Pradesh show a large return level of more than 10 mm that reaches up 
to 15–20 mm in the return periods of more than 60 years. It is also observed that the recurrence level of rainfall 
increases in all the states and the rise is maximum as per 2°C scenario.

4. Conclusion
For policy formulation, it is essential to understand the behavior of variation in rainfall in the present, industrial 
and future global warming levels. This study performs a detailed analysis of rainfall behavior in four periods that 
is, preindustrial period (1871–1890), present (1986–2005), 1.5° scenario, and 2° scenario are cautiously studied 
to recognize and project the future climate scenario. There were 26 CMIP5 climate models considered for this 
study. However, only six models were selected based on the capability of simulating the different aspects of rain-
fall and its associated mechanism.

An interesting feature is seen in the 1.5°C scenario, the precipitation is likely to decrease in most of the states 
except J&K. However, in 2°C scenario, the precipitation is likely to increase in all the North Indian states except 
Himachal Pradesh. There is no significant change is likely to occur in Rajasthan in both scenarios. This result is 
consistent with Dash et al. (2015) and Pattnayak et al. (2017). The return period of the extreme rainfall events 
is likely to increase in all the states in both the scenarios. In a 2°C scenario, there is a three-fold rise likely to 

Figure 5. Annual mean rainfall (mm/day) as ensemble mean CMIP5 models during the reference period (1975–2004), preindustrial period and projected in the 1.5 and 
2° scenarios. The right-hand side panels show the corresponding projected changes with respect to the reference period.
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increase in extreme rainfall events. These projections are associated with a range of limitations and uncertainties 
which are driven mainly by the model and scenario uncertainties (Dash et al., 2015; Pattnayak et al., 2017) and 
it is generally more reliable at the global scale than at smaller regional scales (Taylor et al., 2012). The uncer-
tainties are more where the region has sharp orography gradient, and the coarse-resolution global models are 
not able to represent this heterogeneity in the orography. Thus, the uncertainty is more in Himachal Pradesh, 
Jammu and Kashmir and Uttarakhand which are on the foothills of Himalayas and has sharp topographic gradi-
ent. Multi-model ensemble means approaches try to represent the uncertainties in regional climate projections in 
a reasonable manner which have been addressed in this study. Inter-model comparison shows that there are large 
uncertainties within the CMIP5 model projections. Overall, this study robustly provides some conclusions with 
some degree of confidence, but it still has some limitations. The major limitation is the resolution of the models, 
the selected models are very coarse resolution. This coarser resolution makes it difficult to reduce the uncertainty 
at the local scale. Further, this type of study is required to help the policymakers to adapt to the 1.5 and 2°C 
scenarios. Our plan is to extend the present work in the future to study the changing climate extreme under future 
climate change scenarios using CMIP6 climate model outputs.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Figure 6. Comparison of annual rainfall in Preindustrial period, Present Period, 1.5 Degree Scenario and 2.0 Degree Scenario as simulated by CMIP5 Models over (a) 
Haryana, (b) Himachal Pradesh, (c) Jammu and Kashmir, (d) Punjab (e) Rajasthan, (f) Uttar Pradesh, and (g) Uttarakhand through box-whisker plot.
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Figure 7. Heatmap of annual rainfall in the Preindustrial period, Present Period, 1.5 Degree Scenario and 2.0 Degree Scenario as simulated by CMIP5 Models over (a) 
Haryana, (b) Himachal Pradesh, (c) Jammu and Kashmir, (d) Punjab, (e) Rajasthan, (f) Uttar Pradesh, and (g) Uttarakhand.

 23335084, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002671 by T

est, W
iley O

nline L
ibrary on [10/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

PATTNAYAK ET AL.

10.1029/2022EA002671

13 of 15

Data Availability Statement
All data used in this study are freely available and can be requested from the authors or obtained directly 
from the source: CRU data (http://www.cru.uea.ac.uk/data), ERA5 data (https://cds.climate.copernicus.eu/#!/
search?text=ERA5&type=dataset) and CMIP5 data (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
projections-cmip5-daily-single-levels?tab=form).
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