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ABSTRACT
The fractionmodel has beenwidely used to represent a range of engineering systems. To accurately
identify the fraction model is however challenging, and this paper presents a regularised fast recur-
sive algorithm (RFRA) to identify both the true fractionmodel structure and the associated unknown
model parameters. This is achieved first by transforming the fraction form to a linear combination of
nonlinear model terms. Then the terms in the denominator are used to form a regularisation term
in the cost function to offset the bias induced by the linear transformation. According to the struc-
tural riskminimisation principle based on the new cost function, themodel terms are selected based
on their contributions to the cost function and the coefficients are then identified recursively with-
out explicitly solving the inversematrix. The proposedmethod is proved to have low computational
complexity. Simulation results confirm the efficacy of the method in fast identification of the true
fraction models for the targeted nonlinear systems.
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1. Introduction

Machine learning is a powerful tool for technological
progress and has been widely adopted for approximat-
ing nonlinear dynamic systems (Yildiz et al., 2017).
The nonlinear system modelling has been a sub-
ject of intensive research in the past decades, and
various machine learning regression (Singh & Dhi-
man, 2021) models have been proposed, such as poly-
nomial nonlinear models (Paduart et al., 2010; Wang
et al., 2021; C. Yang et al., 2020), rational mod-
els (Austin et al., 2021; Zhu et al., 2015, 2019), support
vectormachine (SVM)based regressionmodels (Liang
& Zhang, 2021; Suykens et al., 2002) and neural net-
workmodels (Du et al., 2022; Qiao et al., 2018; Z. Yang
et al., 2020), to just name a few.

Among them, polynomial nonlinear regression
models are the most popular machine learning regres-
sion methods due to their simplicity to develop and
capture complex relationships between system inputs
and system outputs (Gambella et al., 2021). In par-
ticular, the rational model which is a ratio of two
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polynomials has attracted more attentions in the com-
munity as many engineering systems can be mod-
elled as the ratio of two linear-in-the-parameter equa-
tions (Andreev & Borulko, 2017; Curtain & Mor-
ris, 2009; Hussein & Batarseh, 2011; Kambham-
pati et al., 2000; Swarnakar et al., 2017, Dec; Zhu
et al., 2019), each consisting of some base func-
tions. They are often referred to fraction models, and
the rational models which all consist of polynomial
terms in both numerator and denominator is a special
case (Li, 2005). The fraction model has the capability
of concisely approximating a wide range of nonlinear
systems, while traditional models such as nonlinear
polynomial ARX models, neural networks, support
vector machines (SVM) (J. Zhang et al., 2012) may
become overly complex in order to achieve the same
level of modelling accuracy.

To fit a fraction model using the training data is
a machine learning regression modelling problem. To
establish an accurate fraction model, an efficient auto-
matic learning method is the key to both determine
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the model structure and identify unknown parame-
ters. This is however technically challenging, and for
rational models as a special case, the solutions fall
into two major categories. The first one is to trans-
form the rational form to a linear-in-the-parameter
expression (Billings & Zhu, 1991, 1994). Based on
the transformed system, various algorithms have been
developed to identify a suitable model structure and
in the meantime to identify the unknown linear coef-
ficients (Billings & Mao, 1998; Billings & Zhu, 1991;
Zhu, 2003, 2005; Zhu&Billings, 1996; Zhu et al., 2017).
These algorithms all have the same aim to itera-
tively offset the bias by updating the coefficients and
the regressors based on the variance of estimation
errors. The resultant models identified by these well-
established methods are often less complex, though
they still suffer from high computation complexity.
The other approach is directly selecting the base func-
tion using the orthogonal methods, such as an orthog-
onal rational model estimation (Billings & Zhu, 1994)
and Stieltjes process (Austin et al., 2021).

In particular, the popular orthogonal least square
(OLS) method has been widely used for identifying
a range of nonlinear models including the rational
models (Zhu & Billings, 1996) although the conven-
tional OLS scheme is still computationally expen-
sive, particularly for backward model reduction. To
reduce the computational complexity, Li et al pro-
posed a fast recursive algorithm (FRA) (Li et al., 2005).
The FRA framework has further led to the develop-
ment of a series of effective algorithms for nonlin-
ear system modelling, such as the two-stage stepwise
algorithm (Li et al., 2006), two-stage OLS method (L.
Zhang et al., 2015), least squares support vector
machine (LSSVM) (Zhao et al., 2015) as well as meth-
ods to construct compact RBF networks (Deng et al.,
2012, 2013, 2010). This paper will use the similar
algorithmic framework to build fraction models for
nonlinear systems, aiming to both develop a compact
model and reduce the computational complexity.

A challenge for identifying the fraction model is
to eliminate the bias caused by the errors intro-
duced by the transformation. To tackle this chal-
lenge, variousmethods have been proposed to estimate
the errors (J. Chen et al., 2018; Jin & Weng, 2019;
Manela & Biess, 2021; Piga & Tóth, 2014). In order
to penalise the bias induced by the linear transforma-
tion, this paper adopts a negative regularisation term
to penalise the errors introduced into the transformed

linear model. In essence, the regularisation term is
used to balance the linear model estimation error and
the bias of the estimated parameters due to the lin-
ear transformation (Ohlsson et al., 2010). The regu-
larisation method proposed by Tikhonov (Tikhonov
& Glasko, 1965) and its variants (Luo et al., 2016;
Münker & Nelles, 2016; L. Zhang et al., 2019) have
been widely used in machine learning to reduce the
bias introduced into the parameter estimation. Popu-
lar regularisation methods include the �0 regularisa-
tion, �1 regularisation and �2 regularisation (Castella
et al., 2018; Luo et al., 2016; Senhaji et al., 2020;
Tao et al., 2015; Torres-Barrán et al., 2018) where the
weight of the regularisation term is often set positive
to avoid over-fitting, while in this paper a negative
weight is applied to the penalty term to reduce the bias
introduced by the linear transformation. However, the
weight has to be sufficiently small to ensure that the
contributions to the cost function are positive.

Within the regularisation framework, to choose a
suitable regularisation term is critical, and a number
of kernel functions have been used to define the reg-
ularisation term (Birpoutsoukis et al., 2017; T. Chen
et al., 2014; Pillonetto, 2018). The kernel method
which performs a nonlinear data transformation has
been widely applied in system identification, machine
learning and function estimation (Bai et al., 2014; T.
Chen et al., 2014;Hofmann et al., 2008; Pillonetto&De
Nicolao, 2010; Pillonetto et al., 2014). Reproducing
kernel Hilbert spaces (RKHSs) (Pillonetto et al., 2014;
Valencia & lvarez, 2017) is a popular one. Similarly,
in this paper, the inner product of nonlinear mapping
terms in the denominator is added to the cost func-
tionwith the aim to reduce the bias caused by the linear
transformation. The effectiveness of this treatment will
be assessed in the simulation section.

Given the quadratic cost function as a trade-off
between the linear model error and model parameters
bias caused by linear transformation, a regularised fast
recursive algorithm is proposed in this paper to solve
the optimisation problem. The main contributions in
this paper are summarised as follows:

• A duality formulation is introduced to translate
the fraction model identification problem to a
quadratic linear regression problem. Based on the
structural risk minimisation principle, the dual lin-
ear regression problem is minimised by a variant of
the least squares solution. In essence, identification
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of a fractionmodel is thus translated to solving a lin-
ear regression problem, thus significantly reduced
the computational complexity.

• To eliminate the bias induced by the linear-in-the-
parameters transformation and to recover the true
fraction model rather than identify a parsimonious
model, a regularisation term is added to the cost
function. The optimisation problem can be easily
solved by a regularised least-squares method.

• To automatically identify both the fraction model
coefficients and the fraction model structure, a reg-
ularised fast approach (RFRA) is proposed based on
the original fast recursive algorithm (Li et al., 2005).
Unlike the locally regularised automatic construc-
tion (LRAC) method (Du et al., 2012), the regu-
larisation matrix does not have to be a diagonal
matrix when using the novel regularised fast recur-
sivemethod. In order to efficiently evaluate the can-
didate base function, a recursive net contribution
is developed. The proposed RFRA method simpli-
fies the calculation of the net contribution of model
terms and computation of the least squares equa-
tions for the coefficients by defining a set of recur-
sive matrices, and the fraction model structure is
determined according to the net contribution easily.

• Finally, the complexity of the proposed method
is analysed and compared with the well-known
orthogonal method proposed in Zhu and Billings
(1996) to confirm its efficiency.

The remainder of the paper is organised as fol-
lows. The fraction model identification problem is
formulated in Section 2. Section 3 gives some neces-
sary preliminaries for the proposed algorithm. Then
a regularised fast method is detailed in Section 4,
covering the principle of the new method, fast com-
putation of the net contribution of model terms, fast
computation of model coefficients, and computational
complexity analysis. Simulation case studies are pre-
sented in Section 5. Finally, Section 6 concludes this
paper.

2. Problem formulation

2.1. Fractionmodel

Considering a multiple-input single-output system,
the fraction model can be expressed as the ratio of two

linear-in-the-parameter models.

y(t) = a(t)
c(t)

+ e(t) =
∑r

i=1[pni(x(t)) · θni]∑h
j=1[pdj(x(t)) · θdj]

+ e(t)

(1)
where y(t), x(t) = [x1(t), . . . , xq(t)] and e(t) are the
model output, the model input vector with q dimen-
sion and the model error at time instant t, respectively.
pni represents the ith nonlinear base mapping term of
the numerator and pdj represents the jth nonlinear base
mapping term of the denominator. r and h denote the
numbers of the nonlinear terms in the numerator and
in the denominator of the fraction model respectively.
Also θni and θdj represent the coefficients of the ith
regressor in the numerator and the jth regressor in the
denominator respectively.

To identify the fraction model from the training
data, the system (1) can be expressed in the matrix
representation first. Then the cost function of the cor-
responding dual quadratic linear regression problem
can be calculated and further simplified. Suppose N
data samples {x(t), y(t)}Nt=1 are used for model iden-
tification, Equation (1) can be formulated as

y = a � c + e = (Pn�n) � (Pd�d) + e (2)

where y = [y(1), . . . , y(N)]T is the model output vec-
tor. a = [a(1), . . . , a(N)]T is the numerator sample
vector. c = [c(1), . . . , c(N)]T is the denominator sam-
ple vector. The components of a � c are (a � c)l =
a(l)/c(l), 1 =< l <= N. e = [e(1), . . . , e(N)](T) is the
model error vector. Pn = [pn1, . . . , pnr] ∈ �N×r is the
selected nonlinear mapping matrix for the numera-
tor with pni = [pni(x(1)), . . . pni(x(N))]T, i = 1, . . . , r.
�n = [θn1, . . . , θnr]T ∈ �r×1 is the coefficients vec-
tor for the numerator. Pd = [pd1, . . . , pdh] ∈ �N×h

is the selected nonlinear mapping matrix for the
denominator with pdj = [pdj(x(1)), . . . , pdj(x(N))]T,
j = 1, . . . , h.�d = [θd1, . . . , θdh]T ∈ �h×1 is the coef-
ficients vector for the denominator.

2.2. Transformation to linear-in-the-parameter
formulation

Fractionmodels are not naturally linear in the parame-
ters and its identification presents a challenge. To iden-
tify fraction models, an elementwise product of the
two vectors is first defined, namely Hadamard prod-
uct using � to denote the product (Nielsen, 2019).
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Suppose α and β are two vectors of the same dimen-
sion, then the lth component of α � β is (α � β)l =
α(l)β(l).

To obtain the matrix representation of the corre-
sponding linear system in the sense of least squares,
both sides of Equation (2) are Hadamardmultiplied by
’c ∈ �N×1’, thus:

y � c = a � c � c + e � c = a + e � c

= (Pn�n) + e � c = y � (Pd�d) (3)

Expanding Pd�d and Pn�n in (3) gives

y � (pd1 · θd1 + pd2 · θd2 + · · · + pdh · θdh)

= (pn1 · θn1 + pn2 · θn2 + · · · + pnr · θnr) + e � c
(4)

Thereby,

y � pd1 · θd1 + y � pd2 · θd2 + · · · + y � pdh · θdh

= (pn1 · θn1 + pn2 · θn2 + · · · + pnr · θnr) + e � c
(5)

Then all the terms except ’y � pd1 · θd1’ are moved to
the right side, resulting in a linear-in-the-parameter
model

y � pd1θd1 = (pn1 · θn1 + pn2 · θn2 + · · · + pnr · θnr)

− y � pd2 · θd2 − · · · − y � pdh · θdh

= [pn1, pn2, . . . , pnr · θnr]

× [θn1, θn2, . . . , θnr]T

− [y � pd2, · · · , y � pdh]

· [θd2, . . . , θdh]T + e � c

= [pn1, . . . , pnr,−y � pd2, . . . ,−y � pdh]

× [θn1, . . . , θnr, θd2, . . . , θdh]T

+ e � c (6)

By defining Y = y � pd1θd1,� = [pn1, . . . , pnr,−y �
pd2, . . . ,−y � pdh] and � = [θn1, . . . , θnr, θd2, . . . ,
θdh]T, the system can be reformulated as follows:

Y = ��+ c � e = ��+� (7)

where θd1 generally takes the value of 1, pd1 = 1N×1,
Y = [y(1) · pd1(1), . . . , y(N) · pd1(N)]T = [y(1), . . . ,
y(N)]T is the output vector of new system, � =
[θn1, · · · , θnr, θd2, . . . , θdh]T is the new system linear
parameter vector, � = [c(1)e(1), . . . , c(N)e(N)]T is

Figure 1. The structure of the new linear-in-parameters system.

the coloured noise of the new system, � = [φ1, . . . ,
φM] = [pn1, . . . , pnr,−y � pd2, . . . ,−y � pdh]withM
regressors for inclusion in the model, where M =
r+ h−1.

2.3. Model identification challenges

By transforming the fraction model in the linear-
in-the-parameter form, the model identification is
simplified to a linear regression problem. Both the
least squares method and the likelihood estimation
are two well-established methods. Here the least
squares method (LS) is applied to model equation (7)
given that the distribution of the training samples is
unknown prior.

For the new system formulated in Equation (7),
the input matrix and output vector of the model
are [x1, . . . , xq, y] ∈ �N×(q+1) and Y ∈ �N×1, respec-
tively. Thenm candidate nonlinear features ϕi(x1, . . . ,
xq, y), i = 1, . . . ,m are generated if the true system
is unknown a priori. Generally speaking, if the true
model is unknown, then various parsimonious non-
linear models such as polynomial models and other
linear-in-the-parametermodels can be built to achieve
equivalent modelling performance under certain con-
ditions (Li & Peng, 2007). Thus, a polynomial is often
used to approximate a range of nonlinear systems. To
this end, ϕi can be defined as a polynomial term. If
the system model is partially known a priori, then
fundamental knowledge can be obtained for an engi-
neering system (Li, 2005) based onwhich fundamental
functions (ϕi) can be identified, such as exponential,
fraction order polynomial terms, trigonometric, or
rational functions, etc. The resultant model structure
is illustrated in Figure 1.

In statistics, there exists biased parameter estima-
tors to dominate any unbiased parameter estimator
in terms of the mean squared error (MSE) (Hong
et al., 2008), therefore there is always a requirement
to balance the variance and bias using the least square
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method. In LSmethod, the linear coefficients� can be
estimated by

�̂ = (�T�)−1�TY (8)

In theory, for the linear-in-the-parameter system sub-
ject to white noise, the least square solution of the
coefficients (E[�̂]) is equal to the true value � if
the sample number is sufficiently large. However, for
the system in Equation (7), the linear coefficients in
Equation (8) can be described as

�̂ = (�T�)−1�T(��+�) = �+ (�T�)−1�T�

(9)
It is clear that the noise� in Equation (9) comes from
c � e defined in Equation (7), therefore it is a coloured
noise. From Figure 1, � is correlated with e as it is
included in the information of the output y. Therefore,
the expectation of estimation coefficients (E[�̂]) is
�+ E[(�T�)−1�T�] rather than�. Thus, the least
square method applied to system (7) has a bias term
in the solution, and it is necessary to eliminate the bias
to improve the generalisation performance of a parsi-
monious model or to identify the true system model
from a model candidate term pool consisting of the
true model terms.

From Equation (9), it is clear that the bias is
related to the selected terms of the denominator and e.
Accordingly, an improved method is proposed in the
following to eliminate the bias.

3. Preliminaries

Through the linear transformation, noises have been
introduced into both input and outputs of the new sys-
tem (2). Furthermore, the output-error is a coloured
noise which is the response excited by the white noise
of the original system. Given the coloured noise, the
conventional recursive least square method leads to
a biased solution. To achieve unbiased coefficients
estimation, a similar process to the reproducing ker-
nel Hilbert space (RKHS) method (Pillonetto, 2018)
which uses the inner products of the denominator is
employed to mitigate the contribution of the bias to
the cost function. By adding a regularisation termwith
a negative weight, it is possible to eliminate the bias
introduced into the estimation of the original system.

3.1. The original cost function

Lemma 3.1: Suppose e = [e(1), . . . , e(N)] obeys a
Gaussian distribution with zero mean, for given suf-
ficient enough data samples, then Hadamard product
((c � e)T(c � e)) satisfies:

(c � e)T(c � e) = �T� = 1
N

· cTc · eTe (10)

The proof is given as follows.

According to the multiplication of matrices, the right
side of Equation (10) can be expanded as

cTc · eTe =
N∑
i=1

c2(i)
N∑
j=1

e2(i)

= (c2(1) + · · · + c2(N))

N∑
j=1

e2(j)

= c2(1)
N∑
j=1

e2(j) + · · · + c2(N)

N∑
j=1

e2(j)

= (c � e)T(c � e) + c2(1)
N∑
j=2

e2(j) + · · ·

+ c2(i)
N∑

j=1&j�=i

e2(j) + · · ·

+ c2(N)

N−1∑
j=1

e2(j) (11)

If the system error ‘e’ is a white noise with the vari-
ance ‘σ 2

e ’, Equation (11) can be reformulated as follows
given that there are sufficient data samples.

cTc · eTe = �T�+ c2(1) · (N − 1) · σ 2
e + · · ·

+ c2(i) · (N − 1) · σ 2
e + · · ·

+ c2(N) · (N − 1) · σ 2
e

= �T�+
N∑
i=1

c2(i) · (N − 1) · σ 2
e

= �T�+
N∑
i=1

c2(i) · N − 1
N

eTe

= �T�+ N − 1
N

cTc · eTe (12)

Accordingly, Equation (10) is true.



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 1621

Considering the coloured noise ’�’ in Equation (7),
the sum of squared coloured noises can be calculated
as follows:

�T� = cTc · eTe
N

(13)

where� = Y −�� and e = y − a � c are the linear-
in-the-parameter system error vector and the original
system error vector respectively. To estimate coeffi-
cients (�), the denominator (c) of the original system
in Equation (2) can be written as follows:

c = 	�+ E (14)

where	N×M withM = r+ h−1 andE together repre-
sent the nonlinear mappingmatrix Pd in Equation (2).
M represents the number of the regressors for inclu-
sion in themodel. E = 1N×1 with sizeN × 1 represent
the constant bias (pd1) of the denominator on the left.
	N×M = [ψ1 · · ·ψM] = [0 · · · 0 pd2 · · · pdh] is aug-
mented from the terms ([pd2, . . . , pdh]) of the denom-
inator being moved to the right side, hence they are
referred to augmented terms in the following context.
And

ψρ =
{
0 ρ = 1, . . . , r
pdj ρ = r + 1, . . . ,M; j = 2, . . . , h

Notice from Equation (13) that the cost function using
the sum of the squared fraction system errors can be
computed by:

Jo = eTe = N�T�

cTc
(15)

3.2. The dual solution

To minimise the modelling error, Equation (15) is
often used as the criterion. However, the cost func-
tion is nonlinear with respect to themodel coefficients.
To this end, a linear optimisation algorithm is a well-
known approach for many nonlinear problems, for
example, the least squares SVM is identified by solv-
ing linear equations in the dual instead of solving a
quadratic programming problem with inequality con-
straints in the primal (Mall & Suykens, 2015). Thus,
instead of using a complex nonlinear derivative-based
methods, similar to Pillonetto et al. (2014), a linear
dual problem combining the original linear cost func-
tion and the inner product of the denominator sam-
ple vector, is proposed as the cost function which is
expressed in Proposition 3.1.

Proposition 3.1: Subject to the existence of ’λ’ which
satisfies ’min(�T�+ λcTc) = 0’, minimising the cost
function (16) for the transformedmodel (7) is equivalent
to minimising (15) for the original model (2).

J = �T�+ λcTc

= (Y −��)T(Y −��)

+ λ(	�+ E)T(	�+ E)

= YTY −�T�TY − YT��+�T�T��

+ λ�T	T	�+ λ�T	TE + λET	�+ λETE
(16)

where �T� is used to evaluate the estimation error
of the transformed linear-in-the-parameter system in
Equation (7). From the expansion of Equation (16),
λ�T	T	�+ λ�T	TE + λET	� includes the reg-
ularisation parameter λ and the �1 and �2 norms
of the estimated coefficients (�). Thus, λ	T	 +
λ	TE + λET	 with the regularisation parameter λ is
used as the regularisation penalty term. Meanwhile,
’min(�T�+ λcTc) = 0’ is the minimum value of the
cost function (16), i.e. the optimal cost function.

The proof of the Proposition 3.1 is given below.
Considering the new cost function, the minimum

estimation is given when the partial derivative of the
cost function with respect to the coefficients is equal
to zero. Thus, the coefficients can be estimated using:

∂J
∂�

= −2�TY + 2�T��+ 2λ	T	�+ 2λ	TE
(17)

Setting Equation (17) equal to zero, the optimal coef-
ficients are given as

�̂ = (�T�+ λ	T	)−1(�TY − λ	TE) (18)

Similarly, for the nonlinear original cost function in
Equation (15), its partial derivative with respect to the
coefficients is calculated as

∂Jo
∂�

= ∂((Y −��)T(Y −��)/(	�)T(	�))

∂�

= N

⎛
⎜⎜⎜⎝

(−2�TY + 2�T��)

((	�+ E)T(	�+ E))

((	�+ E)T(	�+ E))2
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−
((Y −��)T(Y −��))

(2λ	T(	�+ E))

((	�+ E)T(	�+ E))2

⎞
⎟⎟⎟⎠ (19)

To calculate the partial derivative in Equation (19)
using the optimal coefficients, 2λ	T	�+ 2λ	TE is
added in the first part, thus

∂Jo
∂�

= N

⎛
⎜⎜⎜⎝

(−2�TY + 2�T��+ 2λ	T	�

+2λ	TE)((	�+ E)T(	�+ E))

((	�+ E)T(	�+ E))2

− ((Y −��)T(Y −��))(2λ	T(	�+ E))

((	�+ E)T(	�+ E))2

−
(2λ	T	�+ 2λ	TE)

((	�+ E)T(	�+ E))

((	�+ E)T(	�+ E))2

⎞
⎟⎟⎟⎠ (20)

Obviously, the first part of the numerator in Equation
(20) is the partial derivative in Equation (17). Substi-
tuting Equation (18) into Equation (20), the first part
of Equation (20) is zero and it can be rewritten as
follows after N is left out:

∂Jo
∂�

= −((Y −��̂)T(Y −��̂))(2λ	T(	�̂+ E))

((	�̂+ E)T(	�̂+ E))2

−
(2λ	T	�̂+ 2λ	TE)

((	�̂+ E)T(	�̂+ E))

((	�̂+ E)T(	�̂+ E))2
(21)

Since both (Y −��̂)T(Y −��̂) and (	�̂+ E)T

(	�̂+ E) are scalars, extracting 2λ	T(	�̂+ E)

after changing its position, then (21) can be expressed as

∂Jo
∂�

= −(2λ	T(	�̂+ E))(min(�T�+ λcTc))

((	�̂+ E)T(	�̂+ E))2

= −(2λ	T(	�̂+ E))(min(J))

((	�̂+ E)T(	�̂+ E))2
(22)

Now setting Equation (22) equal to zero, yielding

min(�T�+ λcTc) = 0 (23)

The above derivations show that if there exists a neg-
ative number λ which makes the dual problem in
Equation (16) of system (7) equal to zero for the opti-
mal coefficients, then the minimum of J is zero, and

Equations (22) and (23) are satisfied. Thus, λ should
be optimised to ensure that its absolute value is suffi-
ciently small such that (�T�+ λcTc) >= 0, and our
study shows that the order of itsmagnitude is generally
no greater than −4. This shows that the identifica-
tion of the fraction system is equivalent to optimising
the proposed dual problem, and the proposed dual
problem (16) can be solved based on the regularised
least squares. It should be noted that the regularisa-
tion penalty term (λ	T	 + λ	TE + λET	) has only
three parts and they are only related to part of the
model coefficients. This is different from conventional
regularisation problem where penalty is applied to all
model coefficients. To reduce the computation com-
plexity of the regularised least squares, this paper pro-
poses to simplify the general regularised least squares
according to the FRA framework.

4. Regularised fast recursive algorithm

According to Section 3, the fraction system is iden-
tifiable using the proposed primal–dual solution. To
solve the transformed quadratic cost function, the
least squares methods are most popular. In par-
ticular, the orthogonal least squares (OLS) (Zhu
& Billings, 1996) and the fast recursive algorithm
(FRA) (Li et al., 2006, 2005) can not only be used
for parameters estimation, but also for model struc-
ture selection. Among them, the FRA method solves
the least squares problem recursively without requir-
ing matrix decomposition, and it further allows both
fast forward and backward model identification. In
the following, an regularised fast recursive method is
presented.

4.1. The principle of regularised fast recursive
method

4.1.1. Model term selection based on the regularised
cost function
Referring to Li et al. (2005), a fast calculation of the
net contribution of each term chosen into the model
is a key. As discussed earlier, the cost function can be
defined as

J = YTY −�T�TY − YT��+�T�T��

+ λ�T	T	�+ λ�T	TE + λET	�+ λETE
(24)
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Substituting the optimal coefficients Equation (18)
into Equation (24), the corresponding minimal cost
function is given as follows and the simplification pro-
cedure is given in Appendix 1:

J = YT(I −�(�T�+ λ	T	)−1�T)Y

+ 2λYT	(�T�+ λ	T	)−1�TE

+ λET(I − λ	(�T�+ λ	T	)−1	T)E (25)

The elegance of the FRA approach lies in the efficient
and stable calculation of the net decrease in the cost
function when a candidate term is added to the model
and the model coefficients can be efficiently obtained
using backward substitution (Li et al., 2005). This
framework also allows for both forward and backward
model identification (Li et al., 2006). In this paper, to
select the regressors and estimate the coefficients effi-
ciently using RFRA, a proper selection criteria with
the associated coefficient estimation method needs to
be derived and implemented using a simplified and
efficient computational framework.

Therefore, in the following, the net contribution of
each model term will be derived first based on the
cost function (25) for the RFRA. Then, the four stages
of the RFRA method are introduced in detail. Firstly,
a cost function is designed for the fraction system
identification based on the dual transformation. Sec-
ondly, according to the conventional regularised least
squares method, the selection criteria and the coeffi-
cients are calculated based on Equations (25) and (18).
Thirdly, recursive matrices are defined to derive a
simplified and efficient computational framework for
calculating the net contributions of model terms and
the model coefficients. Finally, to identify the fraction
model using RFRA, the elements of recursive matri-
ces can be updated recursivelywithout incurringmuch
calculations. Substituting these recursive matrices into
the target equations, the regressors are selected and the
coefficients are estimated respectively. The schematic
of the proposed RFRA is illustrated in Figure 2.

Suppose the model (2) has a maximum of (m +
1)/2 regression terms both in the numerator and
the denominator, the matrix of candidate regres-
sion terms for (2) can be initially set as Ω(m+1)/2 =
[1,ω1, . . . ,ω(m−1)/2]. Then the transformed linear
model (7) has a maximum of m regression terms
because the constant term in the denominator should
have beenmoved as a part of the output. The matrix of
candidate regression terms in (7) can be initially set as

Qm = [ϕ1, . . . ,ϕm] = [1,ω1, . . . ,ω(m−1)/2,−y � ω1,
. . . ,−y � ω(m−1)/2] and the corresponding auxiliary
matrix for regularisation can be initially set as Υ m =
[κ1, . . . , κm] = [0, 0, . . . , 0,ω1, . . . ,ω(m−1)/2] respec-
tively, where the indices of the elements inQm−k+1 and
Υ m−k+1 at the kth iteration start from k, and thus ϕi
and κ i are the (i − k + 1)th candidate terms in the can-
didate regression matrix Qm−k+1 and the augmented
matrix Υ m−k+1, respectively.

After the kth regressors has been selected into
the model (7), the selected regression term matrix is
recorded as �k = [φ1, . . . ,φk] and the selected aug-
mented term matrix is recorded as 	k = [ψ1, . . . ,
ψk]. Then the remaining candidate regressor matrix
and the candidate augmented matrix are Qm−k =
[ϕk+1, . . . ,ϕm] and Υ m−k = [κk+1, . . . , κm] respec-
tively. Thus the optimal model coefficients and the
corresponding cost function are given as

�̂k = (�T
k�k + λ	T

k	k)
−1(�T

kY − λ	T
kE) (26)

Jk = YT(I −�k(�
T
k�k + λ	T

k	k)
−1�T

k )Y

+ 2λYT	k(�
T
k�k + λ	T

k	k)
−1�T

kE

+ λET(I − λ	k(�
T
k�k + λ	T

k	k)
−1	T

k )E
(27)

Before introducing the regularised fast recursive
algorithm, a recursive matrix at the kth iteration is
defined as

Mk � �T
k�k + λ	T

k	k (28)

And the inversion of M−1
k = (�T

k�k + λ	T
k	k)

−1

can be computed as follows

M−1
k =

⎡
⎣ Mk−1

�T
k−1φk

+λ	T
k−1ψk

φTk�k−1 + λψT
k	k−1 φTkφk + λψT

kψk

⎤
⎦

−1

=
[
Fk−1 gk−1
gTk−1 f k−1

]
(29)

where �k−1 = [φ1, . . . ,φk−1] and 	k−1 = [ψ1, . . . ,
ψk−1].
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Figure 2. The schematic of the proposed RFRA method.

Given thatMk · M−1
k = I, then Fk−1, gk−1 and f k−1

can be calculated as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fk−1 = [Mk−1 − (�T
k−1φk + λ	T

k−1ψk)

(φTk�k−1 + λψT
k	k−1)/(φ

T
kφk + λψT

kψk)]−1

gk−1 = −Fk−1(�
T
k−1φk + λ	T

k−1ψk)

/(φTkφk + λψT
kψk)

f k−1 =

(φTkφk + λψT
kψk)

+(φTk�k−1 + λψT
k	k−1)Fk−1

(�T
k−1φk + λ	T

k−1ψk)

(φTkφk + λψT
kψk)

2

(30)
According to the matrix inversion lemma [A +
BCD]−1 = A−1 − A−1B[DA−1B + C−1]−1DA−1,
Fk−1 can be computed as follows

Fk−1 = M−1
k−1 +

M−1
k−1(�

T
k−1φk + λ	T

k−1ψk)

(φTk�k−1 + λψT
k	k−1)M−1

k−1

φTkφk + λψT
kψk

−(φTk�k−1 + λψT
k	k−1)M−1

k−1
(�T

k−1φk + λ	T
k−1ψk)

(31)
Thus, after kth selection, the cost function of
Equation (27) becomes

Jk = YT(I −�kM−1
k �T

k )Y + 2λYT�kM−1
k 	T

kE

+ λET(I − λ	kM−1
k 	T

k )E (32)

Assuming the regression term ϕi is selected from
the candidate matrix Qm−k at (k + 1)th selection,
the selected regression term matrix becomes �k+1 =
[�k,ϕi] and the selected augmented regression term
matrix is 	k+1 = [	k, κ i], while the remaining can-
didate regressor matrix and the candidate augmented
matrix are Qm−k−1 = [ϕk+1, . . . ,ϕi−1,ϕi+1, . . . ,ϕm]
and Υ m−k−1 = [κk+1, . . . , κ i−1, κ i+1, . . . , κm]
respectively.

Thus, the cost function is updated as follows

Jk+1 = YT(I −�k+1M−1
k+1�

T
k+1)Y

+ 2λYT�k+1M−1
k+1	

T
k+1E

+ λET(I − λ	k+1M−1
k+1	

T
k+1)E (33)

whereMk+1 = �T
k+1�k+1 + λ	T

k+1	k+1.
Then, the net contribution of the selected term (ϕi)

is given as

δJk+1 = Jk+1 − Jk (34)

In order to simplify the calculations, three recur-
sive matrices (indexed with (1), (2) and (3)) at (k +
1)th iteration, recorded as R(1)

k+1, R
(2)
k+1 and R(3)

k+1, are
defined as

R(1)
k+1 � I −�k+1M−1

k+1�
T
k+1 (35)
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R(2)
k+1 � I − λ	k+1M−1

k+1	
T
k+1 (36)

R(3)
k+1 � −�k+1M−1

k+1	
T
k+1 (37)

where the matrix sizes of R(1)
k+1, R

(2)
k+1 and R(3)

k+1 are all
N byN, andR(1)

0 = IN×N ,R
(2)
0 = IN×N ,R

(3)
0 = 0N×N .

Having defined these three recursive matrices, the
explicit formulation to efficiently calculate the net con-
tribution can be derived first. According to the calcu-
lation ofM−1

k using Equations (30) and (31), the recur-
sive matrices defined in Equations (35), (36) and (37)
can be recursively updated as follows

R(1)
k+1 = R(1)

k −

(R(1)
k ϕi + λR(3)

k κ i)(ϕ
T
i

(R(1)
k )T + λκTi (R(3)

k )T)

(ϕT
i R

(1)
k ϕi + λκTi R

(2)
k κ i

+2λϕT
i R

(3)
k κ i)

× k = 0, . . . ,m − 1, i = k + 1, . . . ,m.
(38)

R(2)
k+1 = R(2)

k −

(R(2)
k κ i + (R(3)

k )Tϕi)

(κTi (R(2)
k )T + ϕT

i R
(3)
k )

(ϕT
i R

(1)
k ϕi + λκTi R

(2)
k κ i

+2λϕT
i R

(3)
k κ i)

× k = 0, . . . ,m − 1, i = k + 1, . . . ,m.
(39)

R(3)
k+1 = R(3)

k −

(R(1)
k ϕi + λR(3)

k κ i)

(κTi (R(2)
k )T + ϕT

i R
(3)
k )

(ϕT
i R

(1)
k ϕi + λκTi R

(2)
k κ i

+2λϕT
i R

(3)
k κ i)

× k = 0, . . . ,m − 1, i = k + 1, . . . ,m.
(40)

The proof of these properties in Equations (38)–(40) is
given in Appendix 2.

In addition, based on the definitions in
Equation (35)–(37), several properties can be inferred
as given in Equations (41)–(44).

R(1)
k = (R(1)

k )T; R(2)
k = (R(2)

k )T,

k = 0, 1, . . . ,m − 1. (41)

R(1)
k = (R(1)

k )2 + λR(3)
k (R(3)

k )T; k = 0, 1, . . . ,m − 1.
(42)

R(2)
k = (R(2)

k )2 + (R(3)
k )TR(3)

k ; k = 0, 1, . . . ,m − 1.
(43)

R(3)
k = R(1)

k R(3)
k + R(3)

k R(2)
k ; k = 0, 1, . . . ,m − 1.

(44)

Then, the cost function Jk at the kth iteration can be
reformulated as

Jk = YTR(1)
k Y + λETR(2)

k E + 2λYTR(3)
k E + λETE

k = 0, . . . ,m − 1. (45)

And, the net contribution of the selected term (ϕi) in
Equation (34) can be rewritten as

δJk+1(ϕi) = YT(R(1)
k+1 − R(1)

k )Y

+ λET(R(2)
k+1 − R(2)

k )E

+ 2λYT(R(3)
k+1 − R(3)

k )E

+ (λETE − λETE)

= YT(R(1)
k+1 − R(1)

k )Y

+ λET(R(2)
k+1 − R(2)

k )E

+ 2λYT(R(3)
k+1 − R(3)

k )E

× k = 0, . . . ,m − 1. (46)

According to the properties given in
Equations (38)–(39), Equation (46) can be calculated
as follows

δJk+1(ϕi) = −

YT(R(1)
k ϕi + λR(3)

k κ i)

(ϕT
i (R(1)

k )T + λκTi (R(3)
k )T)Y

(ϕT
i R

(1)
k ϕi + λκTi R

(2)
k κ i

+2λϕT
i R

(3)
k κ i)

− λ

ET(R(2)
k κ i + (R(3)

k )Tϕi)

(κTi (R(2)
k )T + ϕT

i R
(3)
k )E

(ϕT
i R

(1)
k ϕi + λκTi R

(2)
k κ i

+2λϕT
i R

(3)
k κ i)

− 2λ

YT(R(1)
k ϕi + λR(3)

k κ i)(κ
T
i

(R(2)
k )T + ϕT

i R
(3)
k )E

(ϕT
i R

(1)
k ϕi + λκTi R

(2)
k κ i

+2λϕT
i R

(3)
k κ i)

× k = 0, . . . ,m − 1. (47)

4.1.2. Fast computation of net contributions of model
terms to the cost function
Note that there are m−k candidate terms (i.e. i = k +
1, . . . ,m) to be evaluated at the (k + 1)th iteration,



1626 L. ZHANG ET AL.

and in order to select a new term φk+1 in �k+1 to
be included into the model, one needs to calculate
δJk+1(ϕi) (i = k + 1, . . . ,m) using (47) and the candi-
date term which is selected as φk+1 for inclusion into
the model must have the maximal net contribution to
the cost function, i.e.

�Jk+1(φk+1) = max
Qm−k

�Jk+1(ϕi) (48)

However, calculating the net contribution ofm−k can-
didate terms using (47) will consume a large amount
of computing resources including memory and time,
to further simplify the calculations, a few intermediate
matrices A(l) � [a(l)

j,i ] ∈ �m×m, b(l) � [b(l)
i ] ∈ �1×m

(l = 1, 2, 3, 4) are further introduced to calculate the
net contribution to the cost function of the remain-
ing m−k candidates. For A(l), the elements a(l)

j,i are
given by:

a(1)
j,i �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, j > i
φTj (R(1)

j−1)φi, j ≤ i ≤ k
φTj (R(1)

j−1)ϕi j ≤ k, i = k + 1, . . . ,m

ϕT
j (R(1)

k )ϕi
j = k + 1, . . . ,m,
i = j, . . . ,m

(49)

a(2)
j,i �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, j > i
ψT

j (R(2)
j−1)ψ i, j ≤ i ≤ k

ψT
j (R(2)

j−1)κ i, j ≤ k, i = k + 1, . . . ,m

κTj (R(2)
k )κ i

j = k + 1, . . . ,m,
i = j, . . . ,m

(50)

a(3)
j,i �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, j > i
ψT

j (R(3)
j−1)φi, j ≤ i ≤ k

ψT
j (R(3)

j−1)ϕi, j ≤ k, i = k + 1, . . . ,m

κTj (R(3)
k )Tϕi

j = k + 1, . . . ,m,
i = j, . . . ,m

(51)

a(4)
j,i �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, j > i
φTj (R(3)

j−1)ψ i, j ≤ i ≤ k
φTj (R(3)

j−1)κ i, j ≤ k, i = k + 1, . . . ,m

ϕT
j (R(3)

k )κ i
j = k + 1, . . . ,m,
i = j, . . . ,m

(52)

where the first three terms in each equation are used
for recursive update of the elements, while the last
term in each equation is used to calculate the net con-
tribution of a candidate term and only the diagonal
elements are used.

For b(l), the elements b(l)
i for the remaining candi-

dates at (k + 1)th iteration are given by:

b(1)
i �

{
YT(R(1)

i−1)φi i ≤ k
YT(R(1)

k )ϕi i = k + 1, . . . ,m
(53)

b(3)
i �

{
YT(R(3)

i−1)ψ i i ≤ k
YT(R(3)

k )κ i i = k + 1, . . . ,m
(54)

b(2)
i �

{
ET(R(2)

i−1)ψ i i ≤ k
ET(R(2)

k )κ i i = k + 1, . . . ,m
(55)

b(4)
i �

{
ET(R(3)

i−1)
Tφi i ≤ k

ET(R(3)
k )Tϕi i = k + 1, . . . ,m

(56)

where the first term in each equation is used for recur-
sive update of the elements, while the last term in each
equation is used to calculate the net contribution.

Because of the symmetrical property and the prop-
erties in Equations (41)–(44), it is evident that a(1)

j,i =
(a(1)

j,i )T, a(2)
j,i = (a(2)

j,i )T, b(1)
i = (b(1)

i )T and b(3)
i =

(b(3)
i )T.
Using Equation (38) and the definition of a(1)

j,i in

Equation (49), a(1)
j,i can be recursively computed. Tak-

ing the second term of (49) as an example, it can be
recursively updated as follows

a(1)
j,i = φTj (R(1)

j−1)φi = φTj R
(1)
j−2φi

−

φTj (R(1)
j−2φj−1 + λR(3)

j−2ψ j−1)

(φTj−1(R
(1)
j−2)

T + λψT
j−1(R

(3)
j−2)

T)φi

(φTj−1R
(1)
j−2φj−1 + λψT

j−1R
(2)
j−2ψ j−1

+2λφTj−1R
(3)
j−2ψ j−1)

= φTj R
(1)
j−2φi −

(a(1)
j−1,j + λa(3)

j−1,j)(a
(1)
j−1,i + λa(3)

j−1,i)

a(1)
j−1,j−1 + λa(2)

j−1,j−1 + 2λa(3)
j−1,j−1

(57)

This updating procedure based on (38) will continue
until the recursive matrix reaches the values R(1)

0 , then

a(1)
j,i = φTj φi −

j∑
s=1

(a(1)
s,j + λa(3)

s,j )(a(1)
s,i + λa(3)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s
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j ≤ i ≤ k (58) By adopting the similar recursive procedure to the
other terms in (38), a(1)

j,i can be calculated as follows

a(1)
j,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φTj φi −
j−1∑
s=1

(a(1)
s,j + λa(3)

s,j )(a(1)
s,i + λa(3)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j ≤ i ≤ k

φTj ϕi −
j−1∑
s=1

(a(1)
s,j + λa(3)

s,j )(a(1)
s,i + λa(3)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j ≤ k, i = k + 1, . . . ,m

ϕT
j ϕi −

k∑
s=1

(a(1)
s,j + λa(3)

s,j )(a(1)
s,i + λa(3)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j = k + 1, . . . ,m, i = j, . . . ,m

(59)

Similarly, a(2)
j,i , a

(3)
j,i , a

(4)
j,i , b

(1)
i , b(3)

i , b(2)
i and b(4)

i can
be quickly calculated as follows using the properties
Equations (38)–(40).

a(2)
j,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψT
j ψ i −

j−1∑
s=1

(a(2)
s,j + a(4)

s,j )(a(2)
s,i + a(4)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j ≤ i ≤ k

ψT
j κ i −

j−1∑
s=1

(a(2)
s,j + a(4)

s,j )(a(2)
s,i + a(4)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j ≤ k, i = k + 1, . . . ,m

κTj κ i −
k∑

s=1

(a(2)
s,j + a(4)

s,j )(a(2)
s,i + a(4)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j = k + 1, . . . ,m, i = j, . . . ,m

(60)

a(3)
j,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
j−1∑
s=1

(a(2)
s,j + a(4)

s,j )(a(1)
s,i + λa(3)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j ≤ i ≤ k

−
j−1∑
s=1

(a(2)
s,j + a(4)

s,j )(a(1)
s,i + λa(3)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j ≤ k, i = k + 1, . . . ,m

−
k∑

s=1

(a(2)
s,j + a(4)

s,j )(a(1)
s,i + λa(3)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j = k + 1, . . . ,m, i = j, . . . ,m

(61)

a(4)
k+1,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
j−1∑
s=1

(a(1)
s,j + λa(3)

s,j )(a(2)
s,i + a(4)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j ≤ i ≤ k

−
j−1∑
s=1

(a(1)
s,j + λa(3)

s,j )(a(2)
s,i + a(4)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j ≤ k, i = k + 1, . . . ,m

−
k∑

s=1

(a(1)
s,j + λa(3)

s,j )(a(2)
s,i + a(4)

s,i )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

j = k + 1, . . . ,m, i = j, . . . ,m

(62)

b(1)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
YTφi −

j−1∑
s=1

(b(1)
s + λb(3)

s )(a(1)
s,j + λa(3)

s,j )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

i ≤ k

YTϕi −
k∑

s=1

(b(1)
s + λb(3)

s )(a(1)
s,j + λa(3)

s,j )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

i = k + 1, . . . ,m

(63)
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b(3)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
j−1∑
s=1

(b(1)
s + λb(3)

s )(a(2)
s,k+1 + a(4)

s,k+1)

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

i ≤ k

−
k∑

s=1

(b(1)
s + λb(3)

s )(a(2)
s,k+1 + a(4)

s,k+1)

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

i = k + 1, . . . ,m

(64)

b(2)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
ETψ i −

j−1∑
s=1

(b(2)
s + b(4)

s )(a(2)
s,j + a(4)

s,j )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

i ≤ k

ETκ i −
k∑

s=1

(b(2)
s + b(4)

s )(a(2)
s,j + a(4)

s,j )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

i = k + 1, . . . ,m

(65)

b(4)
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
j−1∑
s=1

(b(2)
s + b(4)

s )(a(1)
s,j + λa(3)

s,j )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

i ≤ k

−
k∑

s=1

(b(2)
s + b(4)

s )(a(1)
s,j + λa(3)

s,j )

a(1)
s,s + λa(2)

s,s + 2λa(3)
s,s

i = k + 1, . . . ,m

(66)

Noticing from Equations (47) and (49)–(56), the
net contribution of any candidate term ϕi (i = k +
1, . . . ,m) at (k + 1)th iteration can be quickly calcu-
lated as follows

δJk+1(ϕi) = (b(1)
i + λb(3)

i )2

a(1)
i,i + λa(2)

i,i + 2λa(3)
i,i

+ λ(b(2)
i + b(4)

i )2

a(1)
i,i + λa(2)

i,i + 2λa(3)
i,i

+ 2λ(b(1)
i + λb(3)

i )(b(2)
i + b(4)

i )

a(1)
i,i + λa(2)

i,i + 2λa(3)
i,i

(67)

Equation (67) gives a simplified formulation for cal-
culating the net contribution with low demand on
computation and memory resources. Accordingly, the
regressor with the maximum net contribution will be
selected from the candidates based on their net con-
tributions δJk+1(ϕi). The selected term will then be
moved to the (k + 1)th position of the matrix �k+1
and denoted as φk+1.

4.1.3. Fast computation ofmodel coefficients
The next step is then to develop effective for-
mula for estimating coefficients. According to the
definition (28), the optimalmodel coefficients (26) can
be rewritten as

�̂k = M−1
k (�T

kY − λ	T
kE) (68)

To use (35) and (37) to simplify the calculations, both
sides of (68) are multiplied by�k, yielding

�k�̂k = �kM−1
k (�T

kY − λ	T
kE)

= (I − R(1)
k )Y + λR(3)

k E (69)

Expanding�k�̂k in Equation (69) gives:

θ̂1φ1 + · · · + θ̂kφk = (I − R(1)
k )Y + λR(3)

k E (70)

Referring to Li et al. (2005), a recursive matrix at (k +
1)th iteration is defined as R(0)

k+1 � I −�k+1(�
T
k+1

�k+1)
−1�T

k+1 (where R(0)
0 = IN×N) for parameter

estimation using the backward substitution.
Then, both sides of Equation (70) are multiplied by

(R(0)
j−1φj)

T and consider the property R(0)
k φi = 0 (i <

k) (Li et al., 2005), yielding

k∑
i=j

θ̂i(R
(0)
j−1φj)

Tφi

=
k∑
i=j

θ̂iφ
T
j R

(0)
j−1φi

= (R(0)
j−1φj)

T((I − R(1)
k )Y + λR(3)

k E)

= (R(0)
j−1φj)

T(Y − R(1)
k Y + λR(3)

k E) j = 1, . . . , k.
(71)



INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 1629

For the final model consisting ofM = h+ r−1 regres-
sors, Equation (70) can be rewritten as

M∑
i=j

θ̂i(R
(0)
j−1φj)

Tφi = (R(0)
j−1φj)

T

× (Y − R(1)
M Y + λR(3)

M E), j = 1, . . . ,M. (72)

Obviously, the model coefficients of the last selected
term can be first calculated using (72) and then the
others can be backward recursively computed. How-
ever, the computation is still high due to the presence
of R(0)

j−1, R
(1)
k and R(3)

k . To simplify the calculations,
a recursive matrix A � [ak+1,i] ∈ �M×M and three
recursive vectors Y(k) ∈ �N×1, E(k) ∈ �N×1 and b �
[bk+1] ∈ �1×M are defined as

Y(k) � R(1)
k Y (73)

E(k) � R(3)
k E (74)

ak+1,i � φTk+1R
(0)
k φi (75)

bk+1 � (Y − Y(M) + λE(M))TR(0)
k φk+1 (76)

where k = 0, 1, . . . ,M − 1 representing the number
of selected model terms and i = k + 1, . . . ,M is the
index of the termwhose coefficient has been estimated.

For the selected model terms at (k + 1)th time,
Equation (72) can be rewritten as

M∑
i=k+1

θ̂iak+1,i = (R(0)
k φk+1)

T(Y − Y(M) + λE(M))

= bk+1 (77)

To further simplify Y(M) and E(M), two recursive
regressors φ(k)

i , ψ (k)
i are defined as follows:

φ
(k)
i � R(1)

k φi (78)

ψ
(k)
i � R(3)

k ψ i (79)

where k = 0, 1, . . . ,M − 1 and i = 1, 2, . . . , k.
To select M model terms, the output Y and the

regressors φi, ψ i, E will be recursively updated for M
times. Their updated notations are defined as Y(M),
φ

(M)
i , ψ (M)

i and E(M) respectively. Based on Equa-
tions (38), (40) (73), (74), (78) and (79), the four
vectors are recursively updated by R(1)

M or R(3)
M . Simi-

lar to the derivation of a(1)
k+1,i, the four vectors can be

calculated as

φ
(M)
i = φi −

M∑
j=1

(φ
(j−1)
j + λψ

(j−1)
j )(a(1)

j,i + λa(3)
j,i )

a(1)
j,j + λa(2)

j,j + 2λa(3)
j,j

(80)

ψ
(M)
i = −

M∑
j=1

(φ
(j−1)
j + λψ

(j−1)
j )(a(2)

j,i + a(4)
j,i )

a(1)
j,j + λa(2)

j,j + 2λa(3)
j,j

(81)

Thus

φ
(M)
i + λψ

(M)
i = φi −

M∑
j=1

(a(1)
j,i + λa(2)

j,i + λa(3)
j,i

+λa(4)
j,i )(φ

(j−1)
j

+λψ
(j−1)
j )

a(1)
j,j + λa(2)

j,j + 2λa(3)
j,j

(82)

And then

Y(M) = Y −
M∑
j=1

(φ
(j−1)
j + λψ

(j−1)
j )(b(1)

j + λb(3)
j )

a(1)
j,j + λa(2)

j,j + 2λa(3)
j,j

(83)

E(M) = −
M∑
j=1

(φ
(j−1)
j + λψ

(j−1)
j )(b(2)

j + b(4)
j )

a(1)
j,j + λa(2)

j,j + 2λa(3)
j,j

(84)

For the definitions of R(0)
k , Equations (75) and (76) are

similar as those defined in Li et al. (2005), and ak+1,i
and bk+1 can be calculated in a similar way as for the
calculation of a(1)

k+1,i using

ak+1,i = φTk+1φi −
k∑

j=1

(aj,k+1aj,i)
aj,j

(85)

bk+1 = (Y − Y(M) + λE(M))T�k+1 −
k∑

j=1

(bjaj,k+1)

aj,j

(86)

Accordingly, after updating these above matrices and
vectors inM iterations, Equation (77) can be reformu-
lated as follows:

θ̂j =
⎛
⎝bj −

M∑
i=j+1

θ̂iaj,i

⎞
⎠ /aj,j j = M,M − 1, . . . , 1.

(87)

Remark 1: To identify a fractionmodel using the pro-
posedRFRA, Equation (67) is first used formodel term
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selection, which computes the net contribution of a
candidate regression term to the cost function, then
Equation (87) is used for model coefficient estimation
once the model terms have been selected.

4.2. Regularisation analysis and the proposed
algorithm

In this paper, a regularisation term is used to com-
pensate the estimation bias which is induced by the
linear transformation. The value of the regularisation
parameter has to be carefully chosen, as inappropriate
value will either lead to the overfitting or underfit-
ting problem. According to Proposition 3.1, the reg-
ularisation parameter needs to satisfy Equation (23).
Furthermore, Equation (23) is based on known model
structure. However, the structure is unknown a prior,
therefore, the regularisation parameter has to be iden-
tified in two steps, including the selection of the mag-
nitude order of the regularisation parameter and value
refinement during the process.

The proposed method is detailed in Algorithm 1:

4.3. Computation complexity

The proposed algorithm, the orthogonal least sqare
method (OLS) (Billings & Zhu, 1994) and the fast
orthogonal identification method (Zhu & Billings,
1996) are all capable of simultaneously selecting the
model terms and estimating the linear parameters.
In Zhu and Billings (1996), it is shown that the fast
orthogonal identification method is computationally
more efficient than the conventional OLS method. In
the following, the computational complexity of the
proposed method will be compared with that of the
fast orthogonal identification algorithmwhen both are
applied to the identification problem including the
structure detection and the parameters estimation.

Suppose there are initially m candidate nonlinear
terms to build a fraction nonlinear dynamic model
expressed in Equation (2), M terms (M<m) will
be selected to construct the model from the candi-
date terms and the coefficients of the resultant model
should be estimated. The basic arithmetic operations
used in the two identification algorithms are addi-
tion/subtraction, andmultiplication/division. Accord-
ing to the procedures of RFRA in Algorithm 1, the

Algorithm 1 The regularised FRA algorithm for frac-
tion model identification
Require: the input matrix x ∈ �N×q, the output vec-

tor Y = y ∈ �N×1, the candidate base function
vectorQm ∈ �m×1, themaximum total number of
the denominator terms and the numerator terms
M.

Ensure: h selected terms form the numerator regres-
sion matrix Pn ∈ �h×N , r selected terms form the
denominator regression matrix Pd ∈ �r×N and
the first term pd1 of Pd is 11×N , the coefficient of
θd1 is 1, the selected regressors matrix of system
(7), the coefficients �̂ ∈ �M×1 and r + h = M.

1: Initialisation: form the candidate regression
matrix Qm = [ϕ1(x), · · · , ϕm(x)], set the regula-
tion parameters λ, the maximum number of the
selected regressors M, sse_Y = Y ′ ∗ Y , � = [] to
store the selected regressors for the model.

2: for k = 1 toM − 1 do
3: 1. calculate a(1)

i,j , a
(2)
i,j , a

(3)
i,j , a

(4)
i,j , b

(1)
j , b(2)

j , b(3)
j

and b(4)
j (i = 1, · · · , k, j = 1, · · · ,m − k) using

Equations (59)- -(63), Equations (65), (64) and
(66).

4: 2. calculate the net contributions of all remain-
ing candidate model terms (Qm−k) to the cost
function based on Equation (67).

5: 3. select themodel term producing themaximal
net decrease to the cost function and save it in
the matrix � denoted as φk and the remaining
candidate model terms form a new candidate
regression matrix Qm−k = [ϕk+1, · · · ,ϕm].

6: 4. update sse_Y = sse_Y − δJk+1.
7: if sse_Y < 0 then
8: break
9: else
10: continue
11: end if
12: end for
13: coefficients Estimate
14: 1. Calculate φ(k−1)

k +λψ
(k−1)
k ,Y(M) and E(M) (k =

1, · · · ,M) based on the selected matrix � using
Equations (82), (83) and (84).

15: 2. Calculate ai,k (i = k, · · · ,M) and bk (k =
1, · · · ,M) using Equations (85) and (86).

16: 3. Estimate the coefficients using Equation (87).
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model term selection process should repeat M−1
times and there are m−k times for updating any of
a(1)
j,i , a

(2)
j,i , a

(3)
j,i , a

(4)
j,i , b

(1)
i , b(2)

i , b(3)
i , b(4)

i and the net
contribution at each selection. Thus the operations in
Equations (59)–(67) should be counted m−k times at
(k + 1)th selection. In addition, Equations (82)–(87)
only need to repeatM times because there areM coeffi-
cients for the selected terms. Thereby, for the proposed
method, the total number of addition/subtraction and
multiplication/division operations is:

C(RFRA) = 4NMm + 9mM(M − 1)

− 19M(M − 1)(2M − 1)
6

+ 5M(2m − M)

− 2NM(M − 1) + 3M2(M − 1)
2

+ 8NM − M − 4N

+ 3M(M − 1)
2

+ 7mM − 5M2 + NM2

− NM + 2M (88)

Referring to Zhu and Billings (1996), though there
are also M−1 selections, additional calculations are
however needed for the coefficients estimation and
for computing the errors at each selection iteration.
According to the implementation using Equation 5.4
in Zhu and Billings (1996), the total number of addi-
tion/subtraction and multiplication/division opera-
tions for the fast orthogonal method applied to the
same model identification problem is:

C(OLS) = 6NMm − 2NM(M − 1) + 8mM(M − 1)

+ 4Nm + 10NM − 9M(M − 1)
2

− 4N

− 13M(M − 1)(2M − 1)
6

+ (M − 1) + 22Mm (89)

The ratio of the computational complexity of the fast
OLS algorithm in Zhu and Billings (1996) and the
computational complexity of the proposed algorithm
is illustrated in Figure 3 as a function of the number
of candidate terms m and actual model size M. It is
graphically shown that the proposed method is com-
putationallymore efficient than the fast OLS algorithm
in all cases, and the efficiency is much higher as the
model size decreases.

Figure 3. The ratio of computational complexities between the
fast OLS method and the proposed method.

5. Simulation and analysis

Toverify the effectiveness of the proposedmethod, two
simulation examples are used. The first example is a
rational model. The second one is the case where the
regressors are not all polynomials. For each case, 1000
samples are generated with the same distribution of
input and error signals.

The input signals for generating the training and
testing samples are independent and uniformly dis-
tributed signals with amplitude range [−1, 1] and vari-
ance of 0. 33 and an independent zero mean Gaussian
error with variance 0. 01 is generated as used in Zhu
and Billings (1996), S. Chen et al. (1989).

The proposedmethod is then applied to identify the
system defined in Equation (90).

y(t) = a(t)
c(t)

+ e(t)

=
0.25y(t − 1) − 0.85y(t − 2)e(t − 2)

+u(t − 1)u(t − 2)
1 + 0.68y2(t − 1) + y2(t − 2)

+ e(t)

(90)

The rational fraction system in Equation (90) is a typi-
cal rational nonlinear autoregressive moving average
with eXogenous inputs (NARMAX) model (Waheeb
et al., 2019). Models of this kind include past inputs,
past outputs and past model errors which are the
differences between the estimated values and the
true values. Though incorporating the past error sig-
nal into the model may lead to a more accurate
model, they are often difficult to measure or make
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Table 1. Different regularisation parameters for Example 1.

Regularisation parameter −1e − 5 −1e − 9 1e−9 1e−5

Selected term u(t − 1)u(t − 2) u(t − 1)u(t − 2) u(t − 1)u(t − 2) u(t − 1)u(t − 2)
y(t − 1) y(t − 1) y(t − 1) y(t − 1)

y(t) · y2(t − 1) y(t) · y2(t − 2) y(t) · y2(t − 1) y(t) · y2(t − 2)
y(t − 2)u(t − 2) y(t) · y2(t − 1) y(t) · y2(t − 2) y(t) · u2(t − 2)
y(t − 2)ε(t − 2) y(t − 2)ε(t − 2) y(t) · u2(t − 2) y(t) · u2(t − 1)

Estimation parameters 0.9474 0.9977 0.9931 2.4071
0.2359 0.2471 0.2460 0.4250
0.6954 0.9722 0.6765 3.4022
0.0322 0.6772 0.9941 0.0364

−1.2269 −0.8541 −0.0125 2.6361
MSE of validation 6.5335e–04 9.6952e-05 1.0045e–04 0.0114

the modelling process rather complicated. It should
be noted that errors always exist in modelling nonlin-
ear systems (Nelles, 2020). The model error is often
decomposed into the bias and the variance. The bias
can be decreased to zero by increasing the model
nonlinearity, while the variance is significantly influ-
enced by the data size and data quality. Thus the
error in Equation (90) is often treated as known a
priori (Neji & Beji, 2000). In general, the errors are
assumed as independent Gaussian random variables
with zero mean and a finite variance, and the variance
is often given a priori. To this end, in this case study,
the variance is set to 0. 01. Accordingly, 27 polyno-
mial terms are generated first based on the principle
that the highest order is 2 and the maximal delays
of input, error and output signals are 2. According to
Equation (7), the candidate terms consist of 54 polyno-
mial regressors.

First, the regularisation parameter is symmetrically
adjusted around 0 and a number of trials are tested.
Table 1 shows four cases with different values for the
regularisation parameter. It is found that −9 is the
optimalmagnitude order for the regularisation param-
eter in Example 1. Then, the regularisation parameter
is fine tuned around the optimal magnitude order,
and the final value for the regularisation parameter is
chosen to be 1.8276e−9.

Then the rational fraction system in Equation (90)
is identified by the RFRA algorithm and the fast OLS
method in reference Zhu and Billings (1996), respec-
tively. The selected nonlinear terms from the above
54 nonlinear terms and their estimated linear parame-
ters are listed in Table 2. By comparing the parameters
obtained by the two algorithms, it is clear that the
parameters identified by RFRA algorithm are closer
to the actual parameters of the model, and the model
obtained is more accurate than that produced by the
fast OLS method in reference Zhu and Billings (1996).

Table 2. Comparison of estimation coefficients for Example 1.

Selection
order using
RFRA Selected term

True
Parameters

Estimated
Para-meters
using RFRA

Estimated
Parameters
using OLS

1 u(t − 1)· 1 0.9977 0.9973
u(t − 2)

2 y(t − 1) 0.25 0.2471 0.269
3 y(t) · y2(t − 2) 1 0.9722 0.963
4 y(t) · y2(t − 1) 0.68 0.6772 0.654
5 y(t − 2)· −0.85 −0.8541 −0.613

e(t − 2)

Finally, a more general fraction system given in
Equation (91), which contains both polynomials and
other nonlinear terms in the rational function, is used
as the second case study.

y(t) = a(t)
c(t)

+ e(t)

=
0.3y(t − 1) − 0.7y(t − 2)
+sin(u(t − 1)) + u(t − 1)

1 + exp(−y2(t − 1)) + u2(t − 2)
+ e(t)

(91)

Similarly, nonlinear candidate items are generated.
Considering the small number of samples which is
only 1000, different basis functions are used as the
numerator and denominator candidate terms, leading
to the generation of 52 candidate terms.

It is shown that the bias becomes greater in the
positive direction in Example 1, hence, similarly the
regularisation parameter is fine tuned along the neg-
ative values for Example 2. Following the same pro-
cedure in example 1, the regularisation parameter is
firstly coarsely adjusted and Table 3 shows some cases
with different values for the regularisation parameter.
After numerous trials, it is evident again that −9 is
the optimum magnitude order for the regularisation
parameter. Then, the regularisation parameter is fur-
ther fine tuned. It is noted that the magnitude order
of the MSE validation errors in all the two examples
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Table 3. Different regularisation parameters for Example 2.

Regularisation parameter −1e − 9 −1e − 6 0 1e−14

Selected term u(t − 1) u(t − 1) u(t − 1) u(t − 1)
y(t − 2) y(t − 2) y(t − 2) y(t − 2)
y(t − 1) y(t − 1) y(t − 1) y(t − 1)

sin(u(t − 1)) sin(u(t − 1)) sin(u(t − 1)) sin(u(t − 1))
y(t) · u2(t − 2) y(t) · u2(t − 2) y(t) · u2(i − 2) y(t) · u2(t − 2)

y(t)· y(t) · y(t − 2)· y(t) · exp(−u(t − 1)· y(t) · exp(−u(t − 1)·
exp(−y(t − 1)2) u(t − 2)) u(t − 2)) u(t − 2))

Estimation Parameters 0.9359 0.5795 1.5871 1.5871
−0.6642 −0.3586 −0.5697 −0.5697
0.2825 0.1573 0.243 0.243
0.9068 0.1828 0.7952 0.7952
0.8935 −0.0553 0.7864 0.7863
0.9597 0.4437 −0.2129 −0.2129

MSE of Validation 1.0693e–04 0.0016 1.3552e–04 1.3552e–04

Table 4. Structure selection and parameters estimation for
Example 2.

Selection order Selected term True parameters
Estimated
parameters

1 u(t − 1) 1 0.9611
2 y(t − 2) −0.7 −0.6728
3 y(t − 1) 0.3 0.2871
4 u2(t − 2) 1 0.9299
5 exp(−y2(t − 1)) 1 0.9210
6 sin(u(t − 1)) 1 0.9618

could achieve to −4 even without fine-tuning. The
nonlinear regressors are selected and the coefficients
are estimated which are shown in Table 4. It is again
evident that the fraction system can be well identified
using the proposed method.

6. Conclusion

This paper has proposed a novel fast method to iden-
tify the fraction models where the model structure
and the coefficients are simultaneously estimated. The
identification of the fraction system is first trans-
formed to an equivalent quadratic optimisation prob-
lem by adding a regularisation term which is formu-
lated as the inner product of the denominator terms.
To solve the quadratic optimisation problem, a regu-
larised fast recursive algorithm is developed. The pro-
posed method is further validated by two simulation
examples to confirm its efficacy. The method can be
further applied to build the output layer of the tradi-
tional neural networks or the full connected layer of
the deep neural networks which can reduce the size of
the neural networks. However, a potential limitation
of the proposed method is the computational effort
to fine tune the regularisation parameter though we
have shown that it value has to be negative and can

not exceed YTY . It will inevitably cost more compu-
tations to optimise the regularisation parameter if the
system is too complex. Fast optimisation of the penalty
parameter will be a future research topic.
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Appendices

Appendix 1. Simplifying the regularized cost
function

According to the principles of matrix manipulation, the cost
function is simplified in Equation (A1).

J = YTY −�T�TY − YT��+�T�T��

+ λ�T	T	�+ λ�T	TE + λET	�

= YTY − (YT�− λET	)(�T�+ λ	T	)−1�TY

+ λETE − YT�(�T�+ λ	T	)−1(�TY − λ	TE)

+ (YT�− λET	)(�T�+ λ	T	)−1

×�T�(�T�+ λ	T	)−1(�TY − λ	TE)

+ λ(YT�− λET	)(�T�+ λ	T	)−1

×	T	(�T�+ λ	T	)−1(�TY − λ	TE)

+ λ(YT�− λET	)(�T�+ λ	T	)−1	TE

+ λET	(�T�+ λ	T	)−1(�TY + λ	TE) − λETE

= YTY − YT�(�T�+ λ	T	)−1�TY

+ λET	(�T�+ λ	T	)−1�TY

+ λETE − YT�(�T�+ λ	T	)−1�TY

+ λYT�(�T�+ λ	T	)−1	TE

+ (YT�− λET	)(�T�+ λ	T	)−1(�T�+ λ	T	)

× (�T�+ λ	T	)−1(�TY − λ	TE)

+ λYT�(�T�+ λ	T	)−1	TE

− λET	(�T�+ λ	T	)−1λ	TE

+ λET	(�T�+ λ	T	)−1�TY

− λET	(�T�+ λ	T	)−1λ	TE

= YTY + λETE − 2YT�(�T�+ λ	T	)−1�TY

+ 4λET	(�T�+ λ	T	)−1�TY

+ (YT�− λET	)(�T�+ λ	T	)−1(�TY − λ	TE)

− 2λET	(�T�+ λ	T	)−1λ	TE

= YTY + λETE − 2YT�(�T�+ λ	T	)−1�TY

+ 4λET	(�T�+ λ	T	)−1�TY

+ YT�(�T�+ λ	T	)−1�TY

− YT�(�T�+ λ	T	)−1λ	TE

− λET	(�T�+ λ	T	)−1�TY

+ λET	(�T�+ λ	T	)−1λ	TE

− 2λET	(�T�+ λ	T	)−1λ	TE

= YTY + λETE − YT�(�T�+ λ	T	)−1�TY

+ 2λET	(�T�+ λ	T	)−1�TY

− λET	(�T�+ λ	T	)−1λ	TE

= YT(I −�(�T�+ λ	T	)−1�T)Y

+ 2λYT	(�T�+ λ	T	)−1�TE

+ λET(I − λ	(�T�+ λ	T	)−1	T)E (A1)

Appendix 2. Proof of Properties of the recursive
matrices

From the definition of M−1
k in Equation (29), substitut-

ing Equations (30) and (31) to the definition of R(1)
k+1 in

Equation (35), the recursive formulation of R(1)
k+1 is given in

Equation (A2).

R(1)
k − R(1)

k+1 = �k+1M−1
k+1�

T
k+1 −�kM−1

k �T
k

= [
�k φk+1

] [
Fk gk
gTk f k

] [
�T

k
φTk+1

]
−�kM−1

k �T
k

= �kFk�T
k + φk+1g

T
k�

T
k +�kgkφ

T
k+1

+ φk+1f kφ
T
k+1 −�kM−1

k �T
k

= �kFk�T
k − φk+1

φk+1�
T
k + λψT

k+1	k

φTkφk+1 + λψT
k+1ψk+1

Fk�T
k

−�kFk
�T

kφk+1 + λ	T
kψk+1

φTkφk+1 + λψT
k+1ψk+1

φTk+1

+ φk+1

(φTk+1φk+1 + λψT
k+1ψk+1)

+(φTk+1�k + λψT
k+1	k)

Fk(�T
kφk+1 + λ	T

kψk+1)

(φTk+1φk+1 + λψT
k+1ψk+1)

2 φ
T
k+1

−�kM−1
k �T

k

= �kM−1
k �T

k +�k

M−1
k (�T

kφk+1 + λ	T
kψk+1)

(φTk+1�k + λψT
k+1	k)M−1

k

φTk+1φk+1 + λψT
k+1ψk+1

−(φTk+1�k + λψT
k+1	k)M−1

k
(�T

kφk+1 + λ	T
kψk+1)

�T
k

−

φk+1(φ
T
k+1�k + λψT

k+1	k)

M−1
k (�T

kφk+1 + λ	T
kψk+1)

(φTk+1�k + λψT
k+1	k)M−1

k �T
k

(φTkφk+1 + λψT
k+1ψk+1)

(φTk+1φk+1 + λψT
k+1ψk+1

−(φTk+1�k + λψT
k+1	k)M−1

k
(�T

kφk+1 + λ	T
kψk+1))

− φk+1
φTk+1�k + λψT

k+1	k

φTkφk+1 + λψT
k+1ψk+1

M−1
k �T

k

−�kM−1
k

�T
kφk+1 + λ	T

kψk+1

φTkφk+1 + λψT
k+1ψk+1

φTk+1
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−

�kM−1
k (�T

kφk+1 + λ	T
kψk+1)

(φTk+1�k + λψT
k+1	k)M−1

k
(�T

kφk+1 + λ	T
kψk+1)φ

T
k+1

(φTk+1φk+1 + λψT
k+1ψk+1

−(φTk+1�k + λψT
k+1	k)M−1

k
(�T

kφk+1 + λ	T
kψk+1))

(φTkφk+1 + λψT
k+1ψk+1)

+ φk+1(φ
T
k+1φk+1 + λψT

k+1ψk+1)φ
T
k+1

(φTk+1φk+1 + λψT
k+1ψk+1)

2
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(φTk+1�k + λψT
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k
(�T

kφk+1 + λ	T
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(φTk+1φk+1 + λψT
k+1ψk+1)

2 φ
T
k+1

+
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T
k+1�k + λψT

k+1	k)M−1
k

(�T
kφk+1 + λ	T

kψk+1)

(φTk+1�k + λψT
k+1	k)M−1

k
(�T

kφk+1 + λ	T
kψk+1)φ

T
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(φTk+1φk+1 + λψT
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2
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k
(�T
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k (�T
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−(φTk+1�k + λψT
k+1	k)M−1

k
(�T

kφk+1 + λ	T
kψk+1)

�T
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−
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−�kM−1
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k
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=
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k (�T

kφk+1 + λ	T
kψk+1)

−φk+1)((φ
T
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k+1	k)

M−1
k �T
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(φTk+1φk+1 + λψT
k+1ψk+1

−(φTk+1�k + λψT
k+1	k)M−1

k
(�T

kφk+1 + λ	T
kψk+1))

=

(R(1)
k φk+1 + λR(3)

k ψk+1)

(φTk+1(R
(1)
k )T + λψT

k+1(R
(3)
k )T)

(φTk+1φk+1 + λψT
k+1ψk+1

−(φTk+1�k + λψT
k+1	k)M−1

k
(�T

kφk+1 + λ	T
kψk+1))

=

(R(1)
k φk+1 + λR(3)

k ψk+1)

(φTk+1(R
(1)
k )T + λψT

k+1(R
(3)
k )T)

(φTk+1R
(1)
k φk+1 + λψT

k+1R
(2)
k ψk+1

+2λφTk+1R
(3)
k ψk+1)

(A2)

Similarly, it can be proved that Equations (39) and (40) are
indeed true.
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