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Positioning and Contour Extraction of Autonomous

Vehicles Based on Enhanced DOA Estimation

By Large-scale Arrays
He Xu, Wei Liu, Senior Member, IEEE, Ming Jin, Member, IEEE, and Ye Tian, Member, IEEE

Abstract—As an important branch of internet of vehicle (IoV)
systems, autonomous vehicle (AV) positioning based on direction-
of-arrival (DOA) estimation has received extensive attention in
recent years. In this paper, an AV positioning method under
unknown mutual coupling is proposed within the framework
of large-dimensional asymptotic theory (LAT). Firstly, enhanced
and closed-form DOA estimation is achieved by jointly exploiting
large-scale uniform linear arrays (ULAs), Toeplitz rectification
and the phase transformation result associated with the sample
covariance matrix; secondly, a more reliable subset/set of DOAs is
constructed according to the signal-to-noise at receivers; finally,
robust AV positioning is achieved with the reliable subset/set.
Motivated by satisfactory DOA estimation performance, an AV
contour extraction scheme is developed with the aid of two
antennas installed on an AV. The proposed method shows several
salient advantages compared with existing methods, including
improved resolution and accuracy, reduced computational com-
plexity, robustness to mutual coupling and unreasonable DOA
estimates, as well as the ability to effectively extract AV contour
information.

Index Terms—Internet of Vehicle (IoV), autonomous vehicle
(AV) positioning, contour extraction, enhanced DOA estimation,
large-scale ULA, mutual coupling.

I. INTRODUCTION

A
S an important part of Internet of Vehicle (IoV) sys-

tems, autonomous vehicles (AVs) have become a major

current innovation hotspot and development direction of the

automotive industry [1]. To guarantee the safety and security

of autonomous driving, the accurate location and the contour

information of AVs are required. In most scenarios of IoVs,

global positioning system (GPS) based vehicle positioning

is a common and basic strategy [2]. However, the current

commercial GPS may suffer from long latency and inadequate

accuracy, which cannot meet the positioning requirements of

autonomous driving in IoV business [3]. Meanwhile, for some

conditions, such as tunnels and cloud cover, the GPS may fail

to work. Under such circumstances, exploiting collaborative

positioning methods to improve vehicle positioning accuracy,
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continuity and stability has become one of the key develop-

ment trends in IoV systems.

Collaborative positioning techniques often estimate the po-

sitions of target vehicles with radio signal strengths (RSSs),

time of arrivals (TOAs), time difference of arrivals (TDOAs)

or direction of arrivals (DOAs), which are measured with

reference signals at wireless communication devices, such as

wireless access points (APs) and base stations (BSs) [4], [5].

In [6] and [7], RSS-based methods are proposed to achieve

target vehicle positioning via multiple BSs, which have the

advantage of simplicity. However, these methods require a

priori knowledge of the path-loss exponents (PLEs), which

is difficult to obtain accurately because of the complexity

of wireless channels. In [8]–[10], TOA- and TDOA-based

methods are investigated, and their performance relies on

accurate synchronization of different clocks. Since perfect

synchronization is not easily available among LTE BSs/nodes

in practice, it is difficult for these methods to achieve a

satisfactory positioning performance. Different from TOA- and

TDOA-based methods, DOA-based methods are more likely

to obtain accurate vehicle positioning results, because they

are relatively insensitive to time delay measurements and

an accurate clock synchronization is not required [11]. As

a competitive candidate, several DOA positioning methods

utilizing LTE BSs or wireless APs have been investigated

[12]. Recently, by combining DOA and TOA or DOA and

TDOA, the matrix pencil (MP) method and the semi-definite

programming (SDP) method for positioning using LTE signals

are introduced in [13] and [14], respectively. However, like

TOA- and TDOA-based methods, these joint methods are

also sensitive to delay measurements. With this consideration,

in this work, we focus on a DOA-based AV positioning

architecture.

Many DOA estimation methods have been developed under

different frameworks, such as the traditional multiple signal

classification (MUSIC) method [15], the estimation of signal

parameters via rotational invariance techniques (ESPRIT) [16]

and their variations [17]–[22] in the classical asymptotic theory

(CAT) framework; the G-MUSIC method [23], the conditional

G-MUSIC method [24] and the R-MUSIC method [25] in

the large-dimensional asymptotic theory (LAT) framework; the

matching pursuit based methods [26], [27], the ℓ1-norm mini-

mization based methods [28]–[30], and the sparse Bayesian

learning (SBL) based methods in the sparse representation

(SR) framework [31], [32]. In particular, the MUSIC-like [33]

and the SBL [34] based methods are proposed for vehicle
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positioning in IoV systems in the past few years, and these

two are good attempts for vehicle localization from a DOA

estimation perspective. However, they still face the following

challenges when applied to vehicle positioning in an actual

IoV environment.

• The existing DOA-based vehicle positioning methods are

normally developed for small-scale arrays and exploit

spectral search to achieve DOA estimation. As a result,

they suffer from not only performance degeneration in

closely-spaced vehicle scenarios due to insufficient array

aperture, but also high computational complexity, which

makes them difficult to meet the actual needs of au-

tonomous driving in terms of positioning accuracy and

complexity.

• Most of existing DOA estimators are based on ideal/well-

calibrated sensor arrays. However, in practice, array un-

certainties, such as the mutual coupling, gain-phase errors

and sensor location errors always exist, which could

degrade the DOA estimation performance substantially

[35]–[37]. Although the MUSIC-like method in [33] takes

the unknown mutual coupling into consideration, the

spectral search cannot be avoided.

• Both the MUSIC-like method [33] and the SBL method

[34] utilize multiple DOAs provided by the BSs or

wireless APs directly for vehicle localization. In fact, due

to the influence of factors such as the transmission loss

and the incident angle, not all DOA estimates are accurate

enough and how to choose the best subset of estimation

results in order to achieve a robust performance is still a

challenge.

To tackle the mentioned problems above, an AV posi-

tioning and contour extraction method is proposed in this

work, employing large-scale uniform linear arrays (ULAs)

with unknown mutual coupling. Different from the existing

DOA-based vehicle localization methods, the proposed one is

developed in the LAT framework, leading to an improved AV

positioning performance. The main contributions of the work

are:

1) Instead of utilizing general small-scale arrays, large-

scale ULAs are employed, and the impact of un-

known mutual coupling and finite samples for the high-

dimensional scenario is considered. In the proposed

approach, firstly, a linear transformation is performed for

eliminating unknown mutual coupling; then, a two-stage

strategy which jointly exploit the Toeplitz rectification

and the phase transformation in the LAT framework

is developed for improving the estimation of sample

covariance matrix (SCM) and its corresponding eigen-

vectors, leading to a super-resolution and closed-form

DOA estimate. To our best knowledge, it is the first

time to apply this two-stage statistical enhancement to

achieving vehicle localization in the field of IoV. More-

over, it should be emphasized here that the considered

scenario matches well with the application scenarios of

AVs in 5G/6G IoV systems, representing a good step in

the realization of highly reliable autonomous driving of

AVs.

2) Instead of using DOA estimates provided by multiple

base stations (BSs) directly, we exploit information

about the received SNR and the relationship between

estimation accuracy and incident angle to select a re-

liable subset/set of DOA estimates, and then achieve

robust vehicle positioning with those preferred DOA

information. As demonstrated by simulations, it is a

simple but very effective method and it is also the first

time to apply such a method to promoting the robustness

of DOA-based vehicle positioning.

3) The proposed positioning method can yield decimeter

or even centimeter-level positioning accuracy even for

closely-spaced vehicle scenarios. When SNR ≥ 10 dB,

and the numbers of sensors and samples are 80 and

100, respectively, the proposed method can yield a posi-

tioning accuracy within 0.3 m with 100% availability,

and be carried out in less than nine milliseconds on

MATLAB with a 2.0 GHz CPU. That is, the method

can meet the requirements of absolute position accuracy,

service availability and latency in 5G standardization in

conformance with the 3rd Generation Partnership Project

(3GPP) TS 22.261 [38], [39].

4) Due to the high positioning accuracy, we further extract

contour information of the vehicle with the aid of two

antennas installed. In detail, a configuration scheme for

antennas is first designed, and then information about

vehicle moving direction and the location of two an-

tennas is exploited to achieve coarse contour estimation

of the vehicle. Moreover, the fundamental requirement

for the two antennas on DOA separation for contour

extraction is analyzed and the feasibility of this scheme

is validated by numerical simulations. In literature, con-

tour extraction of vehicles is almost always achieved by

various imaging methods. To our best knowledge, this is

the first time to approach this problem from the DOA-

based perspective, which provides another simple but

effective tool for tackling this challenge.

The remainder of this article is organized as follows. In

Section II, an AV positioning system using three collaborative

BSs, and the data model for DOA estimation with large-

scale ULAs with unknown mutual coupling are presented. The

enhanced DOA estimation method is described in Section III.

The robust AV positioning and contour extraction scheme is

demonstrated in Section IV. Numerical examples are provided

in Section V, and conclusions are drawn in Section VI.

Notations: Capital boldface letters, lower-case boldface let-

ters and lower-case italic letters are used to represent matrices,

vectors and scalars, respectively. Superscripts (·)∗, (·)T , (·)H
and (·)−1

and (·)† represent the conjugate, transpose, conju-

gate transpose, inverse and pseudo inverse operators, respec-

tively. E{·} stands for the statistical expectation, ⊙, diag{·}
and det[·] denote the Hadamard Schur product, diagonalization

and determinant operators, respectively. Moreover, IM is the

M×M identity matrix, Jm is the M×M shift matrix, whose

elements on the mth superdiagonal equal 1 and 0 elsewhere,

and 0M×N is the M × N -dimensional all-zero matrix. ∠[·]
represents the phase of a complex number, and Teoplitz{r}
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Fig. 1. Illustration of AV positioning system using multiple BSs.

the symmetric Toeplitz matrix constructed by the vector r.

Re {·} and Im {·} stand for the real part and imaginary part

of a complex value, respectively. tr {·} represents the trace of

a matrix. Finally, ∥·∥, N (·), a.s.−−→ and
D−→ indicate the spectral

norm, the normal distribution, almost certain convergence and

convergence in distribution, respectively.

II. POSITIONING SYSTEM AND DATA MODEL

Consider an AV positioning system shown in Fig. 1, where

three collaborative BSs are employed, each equipped with a

large M -element ULA with interspacing d. By assumption, all

the three BSs are configured to work in the same way. Each

AV terminal carries a wireless signal transmitter with a unique

identification label. The BS first estimates the DOA of the

target vehicle, and then applies the cross-positioning principle

to achieve AV localization. The key point lies in a robust and

accurate DOA estimation. For simplicity, it is assumed that

there are K AVs on the same plane, whose transmitted signals

are uncorrelated and impinge on a BS from distinct DOAs θk,

k = 1, . . . ,K. Using the first element of the ULA as the phase

reference point, the received array signal at a BS at time instant

t can be expressed as

y(t) = CAs(t) + n(t) =
K
∑

k=1

a(θk)sk(t) + n(t) (1)

where y(t) = [y1(t), . . . , yM (t)]T ∈ C
M×1, s(t) =

[s1(t), . . . , sK(t)]T ∈ C
K×1, n(t) = [n1(t), . . . , nM (t)]T ∈

C
M×1, A = [a(θ1), . . . a(θk), . . . ,a(θK)]T ∈ C

M×K ,

a(θk) = [1, e−jwk , . . . , e−j(M−1)wk ]T ∈ C
M×1 and

wk = 2πd sin θk/λ with λ denoting the carrier wavelength.

C ∈ C
M×M is a mutual coupling matrix (MCM) with a

symmetric Toeplitz structure. In practice, the mutual coupling

coefficients are approximately zero when the distance between

antennas is larger than a given threshold; thus, C is typically

expressed as

C = Toeplitz{[1, c1, . . . , cP , 0, . . . , 0]} (2)

where 0 < |cP | < · · · < |c1| < 1 and P < M .

Suppose that the noise n(t) is zero-mean, complex white

Gaussian distributed and is independent of the signal s(t), the

covariance matrix of y(t) is given by

Ry = E{y(t)yH(t)} = CAPsA
HCH + σ2

nIM ∈ C
M×M

(3)

where Ps = diag{σ2
1 , σ

2
2 , . . . , σ

2
K} with σ2

k representing the

received signal power of the kth source, and σ2
n is the variance

of additive noise. In case of N samples, Ry can be estimated

by the unstructured SCM

R̂y =
1

N

N
∑

t=1

y(t)yH(t) ∈ C
M×M . (4)

For the classical asymptotic case where M is fixed and N →
∞, R̂y is a consistent estimator of Ry . Unfortunately, in actual

IoV scenarios for AV positioning utilizing large-scale arrays,

the number of available samples N is limited and normally

of the same order as the number of sensors M , since the

location of the fast-moving AVs can only be assumed to be

fixed for a very short period of time. In this situation, R̂y

is no longer a good estimator of Ry [40]. In the following,

we will develop an efficient scheme to achieve satisfactory

DOA and positioning results in the scenario where N is of

the same order as M , to meet the requirement of an actual

AV positioning.

III. ENHANCED DOA ESTIMATION

A. Mutual Coupling Elimination

The symmetric Toeplitz structure of MCM can be

exploited to eliminate its influence. Defining T =
[0(M−2P )×P , IM−2P ,0(M−2P )×P ], we have

⌣

Ry = TRyT
T =

⌣

AC̄PsC̄
H

⌣

A
H

+ σ2
nIM−2P , (5)

where
⌣

A = [
⌣
a(θ1), . . . ,

⌣
a(θK)] consists of the middle M̄ =

M − 2P rows of A, and C̄ = diag{σ̄2
1 , σ̄

2
2 , . . . , σ̄

2
K} with

σ̄2
k =

∑P
p=−P c|p|e

−jpwk .

It is interesting to see that the mutual coupling coefficients

are embedded in the diagonal matrix C̄, which implies that the

influence of unknown mutual coupling is eliminated effective-

ly. On the other hand, it can be further observed that the SCM

is transformed from the Hermitian structure into a complex

Toeplitz structure, which in fact provides a basic condition for

the enhancement of SCM in the next subsection.

Remark 1: It can be observed from (5) that the application

of linear transformation has reduced the array aperture by 2P ,

which is a drawback and reduces the maximum number of

resolvable sources. However, since for most practical scenarios

we usually have P = 2 or 3 [41], [42], given the large-scale

array employed for IoV applications (M ≫ P ), such an array

aperture loss will have a minimal/tolerable effect.

B. Two-stage Strategy for Enhanced DOA Estimation

To obtain a robust and optimal DOA estimate, a two-stage

statistical enhancement method is adopted. The first stage is to

enhance the SCM via Toeplitz rectification, while the second



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, FEBRUARY 2022 4

stage is to enhance eigenvalues and eigenvectors by exploiting

the asymptotic property of the “spiked” covariance matrix.

Stage A: Toeplitz rectification is a widely used approach to

improve the SCM that holds a Toeplitz structure statistically

[43]. For an M̄ × M̄ matrix Υ, the process of Toeplitz

rectification is performed as

Ξ (Υ) =
M̄−1
∑

m=−M̄+1

1

M̄ − |m|Tr (ΥJm)J−m, (6)

where J−m stands for (Jm)T , and J0 = IM̄ . Subsequently,

the rectified SCM can be given by

⌣

Rr = Ξ(
⌢

Ry), (7)

where
⌢

Ry stands for the estimation of
⌣

Ry with N samples.

The rectified SCM R̂r leads to a norm-consistent estimator,

which implies that the converge ||
⌣

Rr −
⌣

Ry|| a.s.−−→ 0 holds as

M̄,N →∞, and M̄/N = c ∈ (0,∞) [25].

Suppose that the number of sources K is estimated accu-

rately with the linear shrinkage based minimum description

length (LS-MDL) [44] or the bayesian information criterion

(BIC) variant [45] criterion, then, by performing eigenvalue

decomposition (EVD) on
⌣

Rr, we have

⌣

Rr = ÛsΣ̂sÛ
H
s + ÛnΣ̂nÛ

H
n , (8)

where Σ̂s = diag{λ̂1, . . . , λ̂K}, Σ̂n = diag{λ̂K+1, . . . , λ̂M},
and λ̂i(i = 1, . . . ,M) are eigenvalues of R̂r in descending

order. Ûs ∈ C
M×K and Ûn ∈ C

M×(M−K) are the signal

subspace and the noise subspace corresponding to Σ̂s and Σ̂n,

respectively. According to the subspace theory, the following

relationship holds

[

Ûs1

Ûs2

]

=

[

⌣

A1C̄
⌣

A2C̄

]

G =

[

⌣

A1
⌣

A1Ψ

]

Ḡ, (9)

where Ûs1 (Ûs2) and
⌣

A1 (
⌣

A2) are the first (last) M̄ −1 rows

of Ûs and
⌣

A, respectively. Ψ = diag{e−jw1 , . . . , e−jwK},
G ∈ C

K×K and Ḡ = C̄G ∈ C
K×K are matrices.

Defining Γ = Ḡ−1ΨḠ, the estimate of Γ is given by

Γ̂ = Û
†
s1Ûs2. (10)

It is clear that the eigenvalues of Γ̂ is just the estimates of

the diagonal elements of Ψ, which means that the DOAs of

K sources can be estimated as

θ̂k = sin−1 (−λ∠[γk]/2πd) , k = 1, . . . ,K, (11)

where γk is the kth eigenvalue of Γ̂.

It has been studied that Toeplitz rectification can yield an

improved DOA estimation performance, provided that SNR

is not sufficiently high [25]. Unfortunately, in high SNR

situations, their corresponding estimators often suffer from

the so-called “saturation phenomenon” (see the corresponding

simulation results in [25] for details), primarily because the

difference ||∑N
t=1 s(t)s

H(t)/N − Ps|| converges to 0 at a

rate slower than O(N−1/2). As a result, the unbiased signal

subspace cannot be achieved regardless of SNR.

Stage B: To tackle the problem associated with the “satura-

tion phenomenon”, the asymptotic properties of eigenvalues

and eigenvectors of
⌣

Rr are exploited. Note that
⌣

Rr can

be regarded as a kind of “spiked” covariance matrix [46],

whose convergence characteristics of K largest eigenvalues

λ̂1, . . . , λ̂K and their corresponding eigenvectors û1, . . . , ûK

under the case that M̄,N → ∞, and M̄/N = c ∈ (0,∞)
satisfy

λ̂k
a.s.−−→

{

(σ2

n+αk)(σ
2

nc+αk)
αk

, αk > σ2
n

√
c

σ2
n(1 +

√
c)2, αk ≤ σ2

n

√
c,

(12)

|ûH
k wk|2 a.s.−−→

{

α2

k−σ4

nc
αk(αk+σ2

nc)
, αk ≥ σ2

n

√
c

0, αk ≤ σ2
n

√
c,

(13)

where αk and wk stand for the true eigenvalues and eigen-

vectors of
⌣

AC̄PsC̄
H

⌣

A
H

, respectively.

According to (12) and (13), we can further derive that the

following holds

α̃k =
1

2
{λ̂k−σ̂2

n(1+c)+

√

[λ̂k − σ̂2
n(1 + c)]2 − 4σ̂2

nc}, (14)

√

M̄(ûk − βkwk)
D−→ N (0, (1− β2

k)IM̄ ), (15)

where σ̂2
n = 1

M̄−K

∑M̄
i=K+1 λ̂i, βk =

α̃2

k−σ̂4

nc
α̃k(α̃k+σ̂2

nc)
. Formula-

tion (15) implies that ûk can be written as

ûk = βkwk + n̄k, k = 1, . . . ,K, (16)

where n̄k ∈ C
M̄×1 is a random vector with E{n̄k} = 0 and

E{n̄kn̄
H
k } =

√

1−β2

k

M̄
IM̄ .

Motivated by the fact that

√

(1− φ2
k)/M̄ → 0 as M̄ →∞,

n̄k is omitted here, and subsequently we have

ûk ≈ βkwk, k = 1, . . . ,K. (17)

With (17), the enhanced signal subspace is constructed as

Us = [β̄−1
1 û1, . . . , β̄

−1
K ûK ]. (18)

Finally, DOA estimation is performed after replacing Ûs

with Us. Let θ̂k denote the estimated DOA of the kth source

and c = [1, c1, . . . , cP ]
T . Since ā(θk)σ̄

2
k = B(θk)c and

EH
n ā(θk)σ̄

2
k = 0(M̄−K)×1, we have

EH
n B(θk)c = 0(M̄−K)×1, (19)

B(θk) =











e−jPwk e−j(P−1)wk + e−j(P+1)wk · · · 1 + e−j2Pwk

e−j(P+1)wk e−jPwk + e−j(P+2)wk · · · e−jPwk + e−j(2P+1)wk

...
... · · ·

...

e−j(M−P−1)wk e−j(M−P−2}wk + e−j(M−P )wk · · · e−j(M−2P−1}wk + e−j(M−1)wk











.
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Algorithm 1: Two-stage Strategy for DOA Estimation

1: Calculate the SCM R̂y with N samples, and carry out

linear transformation using T to get
⌢

Ry .

Stage A:

2: Form the rectified SCM
⌣

Rr via Toeplitz rectification.

3: Perform EVD on
⌣

Rr to obtain λ̂k and ûk, k ∈ [1,K].
Stage B:

4: Calculate α̃k and ûk by (14) and (17), respectively.

5: Construct the enhanced signal subspace Us according

to (18), and further divide it into Ûs1 and Ûs2.

6: Obtain the estimate of Γ by Γ̂ = Û
†
s1Ûs2.

7: Perform EVD on Γ̂ to obtain eigenvalues γ1, . . . , γK .

8: Estimate K DOAs by θ̂k = sin−1 (−λ∠[γk]/2πd).
9: Form Qk and further estimate c based on (21).

where En ∈ C
M̄×(M̄−K) denotes the noise subspace of R̄x,

and B(θk) ∈ C
M̄×(P+1) is given at the bottom of this page.

Define Qk = BH(θk)EnE
H
n B(θk), and then the mutual

coupling estimation problem can be transformed into the

following optimization problem,

min cHQkc, s. t. dT c = 1, (20)

where d = [1, 0, . . . , 0]T . By using the well-known Lagrange

multiplier method, c can be estimated by

ĉ =
1

K

K
∑

k=1

Q−1
k d

dTQ−1
k d

. (21)

The proposed two-stage strategy for enhanced DOA estima-

tion is summarized in Algorithm 1.

Remark 2: The proposed method is computationally more

efficient than the MUSIC-Like method [33]. For the latter,

the major computations involved are to form one M × M
SCM, to perform its EVD and to conduct a spectrum search,

whose total number of complex multiplications required is

O{M2N + 4
3M

3 + M2(P + 1)G + M(P + 1)2G}, where

G is the number of searching grids. For the proposed method,

the major computations involved are only to form one M̄×M̄
SCM and to perform its EVD, and the process of mutual

coupling estimation can be avoided since it is not necessary

for DOA estimation. Therefore, the total number of multipli-

cations required is O{M̄2N + 4
3M̄

3}, which is much lower

than the MUSIC-Like method.

C. Cramér-Rao Bound

The Cramér-Rao Bound (CRB) serves as the benchmark

for the performance analysis, which is obtained by taking the

inverse of the Fisher information matrix (FIM). The vector of

unknown parameters is given by

η =
[

θT ,κT , ξT
]T

(22)

where θ = [θ1, . . . , θK ], κ = Re{c} and ξ = Im{c}. Then,

the (m,n)th element of the FIM is given by

Fm,n = Ntr

{

R−1
y

∂Ry

∂ηm
R−1

y

∂Ry

∂ηn

}

. (23)

Defining Ȧ = [∂a (θ1)/∂θ1, . . . , ∂a (θK)/∂θK ], Ā = CA,

Ċκm
= −j · Ċξm = Toeplitz

[

0, eTm,01×(M−P−1)

]

, where

em is the P -dimensional column vector with 1 at its m-th

element and 0 elsewhere, we can obtain that [47], [48]

Fθθ = 2NRe
{

(PsĀ
HR−1

y ĀPs)⊙ (ȦHCHR−1
y CȦ)

T

+(PsĀ
HR−1

y CȦ)⊙ (PsĀ
HR−1

y CȦ)
T
}

Fθκn
= 2NRe

{

diag
{

PsĀ
HR−1

y Ċκn
APsĀ

HR−1
y CȦ

}

+ diag
{

PsĀ
HR−1

y ĀPsA
HĊκn

R−1
y CȦ

}}

Fθξn = 2NRe
{

diag
{

PsĀ
HR−1

y ĊξnAPsĀ
HR−1

y CȦ
}

+ diag
{

PsĀ
HR−1

y ĀPsA
HĊξnR

−1
y CȦ

}}

Fκmκn
= 2NRe

{

tr
{

R−1
y Ċκm

APsĀ
HR−1

y ĀPsA
HĊκn

}

+ tr
{

R−1
y Ċκm

APsĀ
HR−1

y Ċκn
APsĀ

H
}}

Fκmξn = 2NRe
{

tr
{

R−1
y Ċκm

APsĀ
HR−1

y ĀPsA
HĊξn

}

+ tr
{

R−1
y Ċκm

APsĀ
HR−1

y ĊξnAPsĀ
H
}}

Fξmξn = 2NRe
{

tr
{

R−1
y ĊξmAPsĀ

HR−1
y ĀPsA

HĊξn

}

+ tr
{

R−1
y ĊξmAPsĀ

HR−1
y ĊξnAPsĀ

H
}}

.

Consequently, F is given by

F =





Fθθ Fθκ Fθξ

Fκθ Fκκ Fκξ

Fξθ Fξκ Fξξ



 . (24)

Finally, the CRB for DOA estimation can be obtained by

taking the inverse of F as

CRBθ =

√

1

K

∑K

i=1
[F−1]ii. (25)

IV. VEHICLE POSITIONING AND CONTOUR EXTRACTION

A. Vehicle Positioning

For simplicity, three collaborative BSs with known coor-

dinates B1(L1x, L1y), B2(L2x, L2y), and B3(L3x, L3y) are

employed for the AV localization, as illustrated in Fig. 1.

Consider an AV with its center point located at S(x, y) and

its DOAs corresponding to three BSs are θk1, θk2, and θk3,

respectively. Then, the following equations hold,

tan θk1 =
L1y − y

x− L1x
, (26)

tan θk2 =
y − L2y

x− L2x
, (27)

tan θk3 =
L3x − x

y − L3y
, (28)

and S(x, y) can be determined by
{

x1 =
L1y−L2y+L1x tan θk1+L2x tan θk2

tan θk1+tan θk2

y1 =
L1y tan θk2+L2y tan θk1+(L1x−L2x) tan θk1 tan θk2

tan θk1+tan θk2

(29)
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Algorithm 2: Procedure to Select Reliable Subset/Set of

DOAs

Input: The rectified
⌣

Rr, DOAs {θk1, θk2, θk3} given by three

BSs, and received SNRs. The number of reliable DOAs

τ , with its initialization τ = 3. ϵ1=2 dB, ϵ2 = 75◦.

Output: Reliable subset/set of DOAs and the AV location.

1: if max(SNRi,k)−min(SNRi,k) > ϵ1
Remove the DOA θkī corresponding to min(SNRi,k),
τ ← τ − 1.

2: else if max(|θki|) > ϵ2
Remove the DOA θkī corresponding to max(|θki|),
τ ← τ − 1.

3: end

4: if τ = 2
Output reliable subset of DOAs, consisting of the re-

maining two DOAs, and determine the AV location by

(29) or (30) or (31).

5: else

Output reliable set of DOAs, consisting of all the three

DOAs, and determine the AV location by (32).

6: end

or
{

x2 =
(L1y−L3y) tan θk3+L1x tan θk1 tan θk3−L3x

tan θk1 tan θk3−1

y2 =
(L3x−L1x) tan θk1+L3y tan θk1 tan θk3−L1y

tan θk1 tan θk3−1

(30)

or
{

x3 =
(L3y−L2y) tan θk3+L2x tan θk2 tan θk3+L3x

tan θk2 tan θk3+1

y3 =
(L3x−L2x) tan θk2+L3y tan θk2 tan θk3+L2y

tan θk2 tan θk3+1 .
(31)

Obviously, using only two of three collaborative BSs, the

location of AV can be determined. For a better performance,

the common strategy is to perform the average operation, and

the resulting coordinates of S(x, y) are given by

x =
1

3

∑3

i=1
xi, y =

1

3

∑3

i=1
yi. (32)

However, a direct application of the average operation may

not always be a good choice for vehicle positioning, and the

positioning accuracy may benefit from selecting a reliable

subset of DOAs instead of the entire set [49], [50].

The received signal to noise ratios (SNRs) and the imping-

ing DOAs of the same vehicle for different BSs could be

quite different in practice. It is well known that if the received

SNR of a BS is much lower than that of other BSs, and its

corresponding DOA is close to the end of the visible region

(i.e., θ → ±90◦), then the DOA information provided by such

a BS is no longer beneficial for the vehicle positioning and

should be ignored.

Based on this observation, we propose to jointly exploit the

received SNR and the impinging DOA information to select

a more reliable subset/set of DOA estimates first, and then

perform the AV positioning with preferred DOAs. Suppose

that the received SNR of the ith BS to the kth source is pre-

estimated in some way or simply estimated by

SNRi,k = 10 lg
(

P̂s(k, k)/σ̂
2
n

)

, i ∈ [1, 3], k ∈ [1,K], (33)

Fig. 2. Scheme for contour extraction by installing two antennas.

Fig. 3. Illustration to obtain the information of vehicle movement direction.

where P̂s(k, k) = Â†Ĉ−1(R̂r − σ̂2
nIM )(ĈH)−1(ÂH)†, and

Â and Ĉ are the estimates of A and C corresponding to

the ith BS, respectively. In detailed implementation, when

the difference between maximum SNR and minimum SNR

is greater than 2 dB, the DOA corresponding to the minimum

SNR will be ignored, and the reliable subset is built from the

remaining two DOAs. On the other hand, if the received SNRs

of three BSs are similar, we further select the reliable subset of

DOAs according to the value of estimated DOAs. Specifically,

if the absolute value of a DOA is greater than 75◦, it will

be ignored, and the remaining two DOAs form the reliable

subset. However, if the three DOAs can meet all the conditions

above, they are supposed to be all reliable, and constitute the

reliable set for positioning as a whole. The detailed procedure

for selecting the reliable subset/set of DOA estimates for a

certain AV positioning result is provided as Algorithm 2.

B. Vehicle Contour Extraction

Through extensive simulations, it is found that the proposed

method is capable of achieving decimeter or even centimeter-

level positioning accuracy for closely-spaced vehicles, which

motivates us to further extract contour information of the ve-

hicle by installing antennas with different identification labels

on one vehicle. To achieve a reasonable contour extraction

result, two key points need to be solved, i.e., configuration of

suitable antennas and required DOA resolution capacity for

the adopted DOA estimation method.

1) Configuration of antennas: In general, one can deploy

multiple antennas on an AV with different carrier frequencies,

which can provide an optimal and robust AV contour extrac-

tion result, since different wireless signals can be distinguished

via bandpass filtering at the receiver side. However, such a

deployment will undoubtedly increase system overhead and

is also not in line with the current development trend of

communication and sensing integration. Therefore, we here

mainly consider the scenario that multiple antennas have
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Fig. 4. Scene description for required DOA resolution capacity.

the same carrier frequency. Under such a circumstance, in-

stalling two antennas with different identification labels on

two diagonal positions of one vehicle will be a good choice,

as depicted in Fig. 2. On the one hand, two antennas can

effectively realize the extraction of AV contour information

and simultaneously save the cost. On the other hand, more

antennas with same frequency band are actually not conducive

to effective antenna identification. To avoid ambiguity, the

information of movement direction of the vehicle provided by

the location information of two adjacent short period of time

(i.e., t2 > t1 & t1 → t2) is utilized here, whose principle is

shown in Fig. 3. By combining the information of vehicle

movement direction and the location of two antennas, the

coarse contour of the vehicle can be determined.

2) Required DOA Resolution Capacity: High DOA resolu-

tion capacity of closely spaced antennas is a fundamental re-

quirement for successful AV contour extraction. For simplicity,

we only consider the required DOA resolution ability for one

BS, the scene description and related parameter definitions are

shown in Fig. 4. Suppose that the distance of two antennas

for a given AV is fixed at df . Based on the trigonometric

relationship, we have

sin∆θ =
df
dr

sinφ, (34)

which implies that the required DOA resolution must satisfy

∆θ ≤ arcsin

[

sinφ

dr
df

]

. (35)

Obviously, the resolution requirement increases as sinφ/dr
decreases. For instance, when φ = 30◦, df = 6 m, and dr =
300 m, ∆θ ≤ 0.573◦; while φ = 40◦ and dr = 200 m lead

to ∆θ ≤ 1.105◦. Moreover, as φ may be a small value or

even zero for certain orientation of the vehicle, the current BS

cannot distinguish two antennas. Therefore, it is necessary to

point out that the DOA resolution of at least two BSs must

simultaneously satisfy (35) to ensure a continuity of contour

extraction.

Remark 3: Note that the contour information of a vehicle

is typically acquired by imaging methods [51], [52]. The

proposed method provides another simple but effective way to

extract the vehicle contour information, which is very useful

and can be exploited as an auxiliary technology for safety

driving in IoV environments.

Fig. 5. RMSE and PO of DOA estimation versus SNR with M = 50, and
N = 100, DOAs={10◦, 12◦, 13◦, 15◦}.

V. NUMERICAL SIMULATIONS

In this section, performance of the proposed method is

evaluated in comparison with the traditional ESPRIT (using

the mutual coupling elimination mechanism, and named as

T-ESPRIT), the MUSIC-Like method in [33] and the CRB.

The source signals are BPSK modulated with equal power,

and the mutual coupling coefficients are set to be c =
[1, 0.7ejπ/5, 0.3e−jπ/12]T . The inter-element distance d equals

λ/2, and the SNR is defined as SNR = 10 log 10(σ
2
k/σ

2
n). Five

metrics are adopted for performance evaluation. The first one

is the root mean square error (RMSE) of DOA estimation.

The second one is the probability of outlier (PO). The third

one is the absolute error (AE) of AV positioning. The fourth

one is the average runtime. And the last one is the AV

contour extraction error (CEE). RMSE, PO, AE and CEE are

respectively defined as

RMSE =

√

√

√

√

1

N̄K

N̄
∑

n̄=1

K
∑

k=1

∆θ̄2k,n̄, (36)

PO = 1− 1

N̄

N̄
∑

n̄=1

f (∆θk,n̄, 0.1
◦), (37)

AE =
1

KN̄

K
∑

k=1

N̄
∑

n̄=1

dk,n̄, (38)
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Fig. 6. RMSE and PO of DOA estimation versus the number of samples N

with SNR=0 dB, and M = 50, DOAs={10◦, 12◦, 13◦, 15◦}.

CEE =
1

N̄

N̄
∑

n̄=1

(d1,n̄ + d2,n̄), (39)

where the parameter ς̂k,n̄ denotes the estimate of ςk in

the n̄th Monte Carlo trial, ∆θk,n̄ = |θ̂k,n̄ − θk|, and

f(∆θk,n̄, 0.1
◦) = 1 if and only if each ∆θk,n̄ ≤ 0.1◦, and

d2k,n̄ = [(x̂k,n̄ − xk)
2 + (ŷk,n̄ − yk)

2]. For all simulations

below, N̄ is fixed at 500.

A. DOA Estimation Performance Versus SNR

In the first simulation, we compare the DOA estimation

performance for different methods at different SNRs, and their

RMSE and PO curves are shown in Figs. 5(a) and 5(b),

respectively. Four signals transmitted by four different AVs

from DOAs {10◦, 12◦, 13◦, 15◦} are considered. The number

of searching grids in MUSIC-Like method is 1801 with a

0.1◦ interval. M = 50, N = 100, and SNR varies from -

10 dB to 30 dB. It can be seen that the MUSIC-Like method

suffers from a performance breakdown at 10 dB SNR, while

the proposed one can avoid this effectively. As shown, our

method outperforms the T-ESPRIT method in the whole SNR

region and follows the CRB very well. Meanwhile, it also

performs better than the MUSIC-Like method when SNR ≤
15 dB; this robust performance plays an important role at

the following stage for AV positioning. In addition, it should

also be noted that the MUSIC-Like method outperforms the

proposed one for SNR > 15 dB, which can be explained as

Fig. 7. RMSE and PO of DOA estimation versus the number of sensors M

with SNR=0 dB, and N = 100, DOAs={10◦, 12◦, 13◦, 15◦}.

follows: there exists some array aperture loss for the proposed

method in the presence of mutual coupling, and when the

received SNR is large enough, the impact of array aperture

loss on the DOA performance will be greater than that of

the mutual coupling, leading to the under performance of the

proposed method. Moreover, the PO indicates the resolution

capability of the method to closely-spaced sources, as the

minimum angle separation among four sources is only 1◦.

Overall, we can say that the proposed method can achieve

super resolution, and provides an effective way for high-

performance AV positioning in actual IoV environments.

B. DOA Estimation Performance Versus N and M

In the second simulation, we examine the DOA estimation

performance of the proposed method for different number of

samples N and different number of sensors M . In Fig. 6,

N varies from 50 to 400 in steps of 50 with SNR=0 dB,

and M = 50, while in Fig. 7, M varies from 30 to 100

with SNR=0 dB, and N = 100. The other conditions are

the same as in the first simulation. As can be seen from

Figs. 6 and 7, the estimation performance of the proposed

method becomes better with the increase of both N and

M as expected. Meanwhile, the proposed method has again

outperformed the other methods in terms of RMSE and PO.

On the other hand, it can also be found that the performance

of the MUSIC-Like method improves only slightly with the

increase of N , as shown in Fig. 6, which can be explained in
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Fig. 8. Computational costs of the proposed method and the MUSIC-Like
method versus M and N , with SNR=0 dB, DOAs={10◦, 12◦, 13◦, 15◦}.

30 40 50 60 70 80 90 100
0

5

10

15

20

Number of sensors

La
te

nc
y 

(m
s)

 

 

Run on 2.0 GHz CPU ( actual )
Run on 2.0 GHz CPU ( theoretical )

Fig. 9. Latency of positioning service versus M .

that the four sources are not effectively distinguished for the

MUSIC-Like method under the current simulation condition.

C. Average Runtime Versus M and N

Fig. 8 shows the computational cost required by the pro-

posed method in comparison with the MUSIC-Like method for

different M and N . The number of searching grids in MUSIC-

Like method is 180 with a 1◦ interval. The other configurations

are the same as those in Fig. 7. It can be clearly observed that

the proposed method is computationally more efficient than the

MUSIC-Like method, which implies that the proposed one is

more suitable for real-time positioning requirement of AV. As

Fig. 10. AE of AV positioning versus SNR of BS1 with M = 50, N = 100.
(a) Scenario 1. (b) Scenario 2.
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Fig. 11. Availability with 0.3 m positioning accuracy versus M and SNR
under the Scenario 1 with N = 100.

shown in Fig. 9, for M ≤ 80 and N = 100, the proposed

method can be carried out in less than nine milliseconds on

MATLAB of a MacBook Pro laptop with Intel Core i5-2.0

GHz CPU and 3733 MHz LPDDR4X. That is, the proposed

method can meet the 10 ms latency requirement of location

services in 5G [38], [39]. Note that the actual latency is slightly

larger than the theoretical one. This is because the CPU on the

MacBook Pro laptop is also occupied by other applications.

D. AV Positioning Performance for Different SNRs

The AV localization performance of different methods

is studied. The coordinates of three collaborative BSs are
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Fig. 12. Contour extraction result of the AV utilizing the proposed scheme,
with M = 50, N = 200, and SNR=20 dB.

B1(0 m, 500 m), B2(0 m, 0 m), and B3(600 m, 0 m),
respectively. The number of sensors M and the number of

samples N at each BS are the same and equal to 50 and

100, respectively. Suppose that there are four AVs at the same

plane with their locations being S1(395.4525 m, 356.0671 m),
S2(370.4931 m, 357.7810 m), S3(395.7028 m, 332.0341 m)
and S4(85.5050 m, 484.9232 m). Two different scenarios are

considered. Scenario 1: the received SNR at each BS is the

same. Scenario 2: the received SNRs of different BSs are

different, and specifically, at BS3 it is 3 dB lower than those of

BS1 and BS2. The simulation result with respect to Scenario

1 is given in Fig. 10(a), from which we can see that the

proposed method can achieve the submeter level accuracy

when SNR≥ 10 dB and the centimeter level when SNR≥
25 dB. This satisfactory performance demonstrates that it can

provide a feasible way for the vehicle to realize autonomous

and safe driving. The simulation result with respect to Scenario

2 is given in Fig. 10(b), and it can be seen that when the

received SNRs of different BSs are different, the localization

performance of the compared methods based on the simple

average operation degrades significantly. In comparison, the

proposed one can provide a rather reliable performance under

such a circumstance. Moreover, the availability result of the

proposed method within 0.3 m positioning error is also tested

under Scenario 1, as shown in Fig. 11, where N = 100 and M
varies from 30 to 100. It can be seen that when SNR ≥ 10 dB

and M = 80, the proposed method can yield a positioning

accuracy within 0.3 m with 100% availability. Meanwhile,

the running time of our method is less than 10 ms under

these configurations, according to Fig. 9, which means that

the proposed method can meet the requirements of an absolute

position accuracy, the service availability and the latency for

5G localization, referring to the indicators corresponding to

the 6th service level in 3GPP TS 22.261 [38], [39], which are

0.3 m, 99.9% and 10 ms, respectively.

E. Intuitive Result for Contour Extraction

Now, we provide an intuitive result for contour extraction

of two AVs. The locations of antennas corresponding to two

TABLE I
PROPOSED AV CONTOUR EXTRACTION RESULT

SNR(dB)
CEE (m)

N=200 N=300 N=400 N=500

0 4.9482 3.9208 3.7255 3.4132
5 2.8199 2.3376 2.0512 1.8086

10 1.6464 1.3051 1.0849 0.9530
15 0.8934 0.6965 0.6313 0.5497
20 0.5106 0.4195 0.3538 0.3194
25 0.2861 0.2223 0.2065 0.1783
30 0.1564 0.1229 0.1049 0.1010

vehicles are shown in the left half of Fig. 12, and the extracted

contour result is given in the right half of Fig. 12. The number

of sensors M , the number of samples N and the received

SNR at each BS are the same and equal to 50, 200 and 20

dB, respectively. By comparing the gap/difference between the

true and estimated contours of two vehicles, we conclude that

the proposed method is capable of accurate contour extraction

of AVs. A more detailed design and realization on this aspect

will be a topic of our future research.

F. Contour Extraction Performance versus SNR and N

In the last simulation, the AV contour extraction perfor-

mance is further examined for different SNRs and number of

samples N . The BS configuration is the same as in the fifth

simulation, and an AV with coordinates of two antennas being

L1(200m, 100m) and L2(196.1921m, 96.1921m) is consid-

ered. The number of sensors M is set to 100, while SNR and

N vary from 0 dB to 30 dB in a step of 5 dB and 200 to 500 in

a step of 100, respectively. The AV contour extraction result is

shown in Table I. It can be seen that the proposed scheme can

yield a good contour extraction performance, which in fact

provides a feasible way for a safe and reliable autonomous

driving.

VI. CONCLUSION

A novel method for AV positioning exploiting large-scale

arrays has been proposed, where unknown mutual coupling is

taken into account. Different from the state-of-the-art methods

that utilize SCM and its corresponding eigenvectors directly,

Toeplitz rectification and phase compensation are jointly ap-

plied to enhance the SCM and eigenvectors. As a result, the

proposed method can provide a robust and super-resolution

DOA estimation performance. Concerning the computational

complexity, a shift invariance structure is constructed, which

yields closed-form DOA solutions leading to the significant

reduction in the computational complexity. Instead of using

DOA estimates provided by multiple collaborative BSs direct-

ly, an effective approach has been developed to select a more

reliable subset/set of DOA estimates first, and then achieve

AV localization with preferred DOA information. Furthermore,

given that the proposed method can reach the decimeter or

even centimeter-level positioning accuracy, an antenna based

scheme to extract the coarse contour information has been

introduced, which is a good attempt from the DOA estimation

perspective compared to the existing image based solutions.
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[23] X. Mestre and M. Á. Lagunas, “Modified subspace algorithms for DoA
estimation with large arrays,” IEEE Trans. Signal Process., vol. 56, no.
2, pp. 598-614, Feb. 2008.

[24] P. Vallet, P. Loubaton, and X. Mestre, “Improved subspace estimation
for multivariate observations of high dimension: the deterministic signals
case,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1043-1068, Feb. 2012.

[25] P. Vallet and P. Loubaton, “Toeplitz rectification and DOA estimation
with music,” in Proc. 2014 IEEE In. Conf. Acoust., Speech, Signal

Process. (ICASSP), 2014, pp. 2237-2241.

[26] S. F. Cotter, “A two stage matching pursuit based algorithm for DOA
estimation in fast time-varying environments,” in Proc. 2007 15th Int.

Conf. Digital Signal Process., 2007, pp. 63-66.

[27] K. Aghababaiyan, V. Shah-Mansouri, and B. Maham, “High-precision
OMP-based direction of arrival estimation scheme for hybrid non-uniform
array,” IEEE Commun. Lett., vol. 24, no. 2, pp. 354-357, Feb. 2020.

[28] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruc-
tion perspective for source localization with sensor arrays,” IEEE Trans.

Signal Process., vol. 53, no. 8, pp. 3010-3022, Aug. 2005.

[29] C. Zheng, G. Li, H. Zhang, and X. Wang, “An approach of DOA
estimation using noise subspace weighted ℓ1 minimization,” in Proc.

IEEE In. Conf. Acoust., Speech, Signal Process. (ICASSP), 2011, pp.
2856-2859.

[30] X. Xu, X. Wei, and Z. Ye, “DOA estimation based on sparse signal
recovery utilizing weighted l1-norm penalty,” IEEE Signal Process. Lett.,
vol. 19, no. 3, pp. 155-158, Mar. 2012.

[31] J. Dai and H. C. So, “Sparse bayesian learning approach for outlier-
resistant direction-of-arrival estimation,” IEEE Trans. Signal Process.,
vol. 66, no. 3, pp. 744-756, Feb. 2018.

[32] A. Das, “Real-valued sparse bayesian learning for off-grid direction-of-
arrival (DOA) estimation in ocean acoustics,” IEEE J. Ocean. Eng., vol.
46, no. 1, pp. 172-182, Jan. 2021.

[33] F. Wen, J. Wang, J. Shi and G. Gui, “Auxiliary vehicle positioning based
on robust DOA estimation with unknown mutual coupling,” IEEE Internet

of Things J., vol. 7, no. 6, pp. 5521-5532, Jun. 2020.

[34] H. Wang, L. Wan, M. Dong, et al., “Assistant vehicle localization
based on three collaborative base stations via SBL-based robust DOA
estimation,” IEEE Internet of Things J., vol. 6, no. 3, pp. 5766-5777,
Jun. 2019.

[35] Y. Tian and H. Xu, “Calibration nested arrays for underdetermined DOA
estimation using fourth-order cumulant,” IEEE Commun. Lett., vol. 24,
no. 9, pp. 1949-1952, Sep. 2020.

[36] P. Chen, Z. Cao, Z. Chen, and X. Wang,“Off-grid DOA estimation using
sparse bayesian learning in MIMO radar with unknown mutual coupling,”
IEEE Trans. Signal Process., vol. 67, no. 1, pp. 208-220, Jan. 2019.

[37] K. Xiong, Z. Liu, and P. Wang, “SAGE-based algorithm for DOA
estimation and array calibration in the presence of sensor location errors,”
J. Syst. Eng. Electron., vol. 30, no. 6, pp. 1074-1080, Dec. 2019.

[38] A. Conti et al., “Location awareness in beyond 5G networks,” IEEE

Communications Magazine., vol. 59, no. 11, pp. 22-27, Nov. 2021.

[39] 3GPP Tech. Spec. Group Services and System Aspects, “Service re-
quirements for the 5G system; Stage 1 (Release 18),” TS 22.261 V18.2.0
(2021-03), Mar. 2021.

[40] Y. Tian, Y. Qin, Z. Dong, and H. Xu, “DOA estimation of coherently
distributed sources in massive MIMO systems with unknown mutual
coupling,” Digital Signal Process., vol. 111, pp. 102987, Jan. 2021.

[41] H. Liu, L. Zhao, Y. Li, et al., “A sparse-based approach for DOA
estimation and array calibration in uniform linear array,” IEEE Sensors

J., vol. 16, no. 15, pp. 6018-6027, Aug. 2016.

[42] J. Dai, X. Bao, N. Hu, C. Chang, and W. Xu, “A recursive RARE
algorithm for DOA estimation with unknown mutual coupling,” IEEE

Antennas Wireless Propag. Lett., vol. 13, pp. 1593-1596, 2014.

[43] P. Forster, “Generalized rectification of cross spectral matrices for arrays
of arbitrary geometry,” IEEE Trans. Signal Process., vol. 49, no. 5, pp.
972-978, 2001.

[44] L. Huang and H. C. So, “Source enumeration via MDL criterion based
on linear shrinkage estimation of noise subspace covariance matrix,” IEEE

Trans. Signal Process., vol. 61, no. 19, pp. 4806-4821, Oct. 2013.

[45] L. Huang, Y. Xiao, K. Liu, et al., “Bayesian information criterion for
source enumeration in large-scale adaptive antenna array,” IEEE Trans.

Veh. Technol., vol. 65, no. 5, pp. 3018-3032, May 2016.

[46] D. Paul, “Asymptotics of sample eigenstructure for a large dimensional
spiked covariance model,” Statist. Sinica, vol. 17, no. 4, pp. 1617-1642,
2017.

[47] B. Friedlander and A. J. Weiss, “Direction finding in the presence of
mutual coupling,” IEEE Trans. Antennas Propag., vol. 39, no. 3, pp. 277-
284, Mar. 1991.

[48] J. Xie, H. Tao, X. Rao, and J. Su, “Localization of mixed far-field
and near-field sources under unknown mutual coupling,” Digital Signal

Process., vol. 50, pp. 229-239, 2016.

[49] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE

Trans. Signal Process., vol. 57, no. 2, pp. 451-462, Feb. 2009.



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, FEBRUARY 2022 12

[50] S. Bartoletti, A. Giorgetti, M. Z. Win and A. Conti, “Blind selection of
representative observations for sensor radar networks,” IEEE Trans. Veh.

Technol.., vol. 64, no. 4, pp. 1388-1400, Apr. 2015.
[51] Z. Fan, J. Zhou, Da. Gao, and G. Rong, “Robust contour extraction for

moving vehicle tracking,” in Proc. Int. Conf. Image Process., Rochester,
NY, USA, 2002, pp. 625-628.

[52] P. Zhao, N. Wang, and Z. Pu, “Contour extraction of a moving vehicle
in visible images based on image fusion,” in Proc. Int. Conf. Machine

Learning and Cyber., Guangzhou, China, 2005, pp. 5216-5219.

He Xu received the B.E. and M.E. degrees from
the College of Communication Engineering, Jilin
University, Changchun, China, in 2010 and 2013,
respectively. From 2014 to 2020, she worked as a
Research Assistant in Yanshan University. She is
currently pursuing the Ph.D. degree in Faculty of
Electrical Engineering and Computer Science, Ning-
bo University, Ningbo, China. Her main research in-
terests include direction-of-arrival estimation, target
positioning, integrated sensing and communication.

Wei Liu (Senior Member, IEEE) received the B.Sc.
and L.L.B. degrees from Peking University, China,
in 1996 and 1997, respectively, the M.Phil. degree
from the University of Hong Kong in 2001, and
the Ph.D. degree from the School of Electronics
and Computer Science, University of Southampton,
U.K., in 2003.

He then worked as a Postdoctoral Researcher first
with Southampton and later with the Department
of Electrical and Electronic Engineering, Imperial
College London. Since September 2005, he has been

with the Department of Electronic and Electrical Engineering, The University
of Sheffield, U.K., first as a Lecturer and then a Senior Lecturer. He has
published more than 300 journal and conference papers, five book chapter-
s, and two research monographs titled Wideband Beamforming: Concepts

and Techniques (John Wiley, March 2010) and Low-Cost Smart Antennas

(Wiley-IEEE, March 2019), respectively. His research interests cover a wide
range of topics in signal processing, with a focus on sensor array signal
processing and its various applications, such as robotics and autonomous
systems, human-computer interface, radar, sonar, satellite navigation, and
wireless communications. He is a member of the Digital Signal Processing
Technical Committee of the IEEE Circuits and Systems Society and the
Sensor Array and Multichannel Signal Processing Technical Committee of the
IEEE Signal Processing Society (Vice-Chair from January 2019). He was an
Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING
from March 2015 to March 2019. He is currently an Associate Editor of
IEEE ACCESS, and an Editorial Board Member of the Journal Frontiers of

Information Technology and Electronic Engineering.

Ming Jin (Member, IEEE) received the B.E. and
Ph.D. degrees in electronic engineering from Xidian
University, Xi’an, China, in 2005 and 2010, respec-
tively. From 2013 to 2014, he was an Associate
Researcher with the School of Electrical, Computer
and Telecommunications Engineering, University of
Wollongong, Wollongong, NSW, Australia. He is
currently a Professor with the Faculty of Electrical
Engineering and Computer Science, Ningbo Univer-
sity, Ningbo, China. His research interests include
cognitive radio, optimization and machine learning.

Ye Tian (Member, IEEE) received the B.S. and
Ph.D. degrees from the College of Communication
Engineering, Jilin University, Changchun, China, in
2009 and 2014, respectively. He won a Huawei
scholarship in 2013 and was selected as a young
top talent by the Hebei Provincial Department of
Education in 2016. He is currently an Associate
Professor in Faculty of Electrical Engineering and
Computer Science, Ningbo University. He has pub-
lished more than 30 international peer-reviewed jour-
nal/conference papers and more than 10 patents.

His research interests include array signal processing, autonomous vehicle
positioning, massive MIMO as well as large-dimensional random matrix
theory.


