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Nonlocal correlations are a central feature of quantum theory, and understanding why quantum
theory has a limited amount of nonlocality is a fundamental problem. Since nonlocality also has
technological applications, e.g., for device-independent cryptography, it is useful to understand it as
a resource and, in particular, whether and how different types of nonlocality can be interconverted.
Here we focus on nonlocality distillation which involves using several copies of a nonlocal resource
to generate one with more nonlocality. We introduce several distillation schemes which distil an
extended part of the set of nonlocal correlations including quantum correlations. Our schemes are
based on a natural set of operational procedures known as wirings that can be applied regardless
of the underlying theory. Some are sequential algorithms that repeatedly use a two-copy protocol,
while others are genuine three-copy distillation protocols. In some regions we prove that genuine
three-copy protocols are strictly better than two-copy protocols. By applying our new protocols we
also increase the region in which nonlocal correlations are known to give rise to trivial communication
complexity. This brings us closer to an understanding of the sets of nonlocal correlations that can
be recovered from information-theoretic principles, which, in turn, enhances our understanding of
what is special about quantum theory.

INTRODUCTION

A bound on the strength of correlations realisable be-
tween pairs of measurement inputs and outputs in any
local theory was first shown by Bell [1, 2]. This bound is
exceeded in quantum theory and there are even stronger
correlations theoretically possible without enabling sig-
nalling [3, 4]. One way to better understand quantum
theory is to consider it in light of possible alternative
theories, which can be compared in terms of the corre-
lations they can create, and the implications access to
such correlations would have. For instance, it is known
that theories that permit strong enough correlations have
trivial communication complexity [5]. Furthermore, non-
local correlations have found applications in cryptogra-
phy, where they form a necessary resource for device-
independent quantum key distribution [6–9] and random-
ness expansion [10–12], for example. Since non-local cor-
relations serve as resources for information processing, it
is natural to ask about their interconvertability. In this
work we look at non-locality distillation [13], i.e., whether
with access to several copies of some non-local resource
we can generate stronger ones, which would have impli-
cations for the study of device-independent tasks in noisy
regimes, for instance.
Non-locality distillation is often analysed in terms of

wirings [13–19], which means interacting with systems by
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choosing inputs and receiving and processing outcomes
from those systems. This has the advantage that, firstly,
the distillation procedures apply to non-local quantum
correlations no matter how complicated the system these
have been obtained from and, secondly, these procedures
are applicable beyond quantum theory. A general the-
ory will prescribe various different ways to measure sys-
tems (in quantum theory, for instance, a measurement is
described by a POVM). Wirings form an operationally
natural sub-class that can be performed in any general-
ized probabilistic theory (GPT) [20] (including quantum
theory).

Previous work on non-locality distillation has focused
on specific protocols for the distillation of 2 copies of a
non-local resource (see e.g., [13–15, 17, 19]). The case of
more copies remains largely open, with only few specific
results [16, 18]. In part, this is because analysing non-
locality distillation is challenging: distillation protocols
act non-linearly on the correlations and hence cannot be
easily optimised. Furthermore, applying a successful 2-
copy protocol twice often decreases the non-locality again
(see e.g. [14] for an exception). Hence, understanding 2-
copy protocols provides little insight into the n-copy case.

In this Letter we describe a sequential adaptive algo-
rithm that uses wirings to distil non-locality. We use this
algorithm to explore the distillable region within the set
of non-local correlations, and the amount of distillation
possible. We demonstrate new wirings that allow distil-
lation of correlations that cannot be distilled with any
2-copy wiring protocol.

Our results have implications for communication com-
plexity. In this problem, Alice with input x and Bob
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with input y want to enable Alice to compute f(x, y) :
{0, 1}k × {0, 1}m → {0, 1}. We ask how much communi-
cation from Bob to Alice is required to do so. Communi-
cation complexity is said to be trivial if any such function
(no matter how large k and m) can be computed using
only one bit of communication. Shared maximally non-
local resources are known to make communication com-
plexity trivial in this sense [21]. A probabilistic notion of
trivial communication complexity was introduced in [5]
in which for any f we require the existence of p > 1/2
such that Alice can obtain the correct value of f(x, y)
with probability at least p for all x and y. In this paper,
when we talk about trivial communication complexity we
mean it in this probabilistic sense. A larger set of shared
states that render communication complexity trivial were
found in Refs. [5, 14]. Our results further enlarge this set,
demonstrating advantages of wirings beyond two copies.

NON-LOCALITY AND WIRINGS

Correlations of inputs x, y and outputs a, b are de-
scribed by conditional probability distributions P (ab|xy),
and we refer to these as a box or a behaviour. In the
context of non-locality, we usually imagine these corre-
lations as generated by two parties, Alice and Bob, who
each choose an input (x and y respectively) and obtain
an output (a and b respectively). The correlations they
can generate according to any theory that is consistent
with special relativity have to be non-signalling, meaning

∑

b

P (ab|xy) =
∑

b

P (ab|xy′) ∀ a, x, y, y′,

and the same holds with the roles of Alice and Bob (i.e.,
a, x and b, y) exchanged. A box is called local if it can
be written

P (ab|xy) =
∑

λ

P (a|xλ)P (b|yλ)P (λ) ∀ a, b, x, y .

In the language of Bell inequalities, there is a variable Λ
that takes the value λ with probability P (λ). Boxes that
cannot be written in this form are non-local.
In the case of two binary inputs and outputs, i.e.,

a, b, x, y ∈ {0, 1}, the set of all local boxes is the con-
vex hull of 16 local deterministic boxes PL

i (ab|xy) =
δa,µx⊕ν δb,σy⊕τ for µ, ν, σ, τ ∈ {0, 1}, i = 1 + τ + 2σ +
4ν + 8µ, and the set of all non-signalling boxes is the
convex hull of these local boxes and 8 extremal non-
local boxes [4, 22] PNL

i (ab|xy) = 1
2
δa⊕b,xy⊕µx⊕νy⊕σ for

µ, ν, σ ∈ {0, 1}, i = 1 + σ + 2ν + 4µ. Up to symmetry,
the Clauser-Horne-Shimony-Holt (CHSH) inequality [23]
is the only one that restricts the set of local boxes. Non-
locality can hence be quantified in terms of the CHSH
value CHSH(P (ab|xy)) = E00 + E01 + E10 − E11, with
Exy = P (a = b|xy)− P (a ̸= b|xy).
Because we work in a black-box picture, the most gen-

eral operation we consider for each party is a wiring. We

describe here the deterministic wirings; the most gen-
eral wirings are convex combinations of these. Consider
a party with access to n-boxes with inputs xj and out-
puts aj with j = 1, . . . , n. They “wire” these together
to form a new box with input x and output a. The
most general deterministic wiring comprises choosing a
box to make the first input to and then making a chosen
input, then using the output of that box to choose the
second box and the input to that second box and so on.
We label the ith box chosen ji(x, aj1 , . . . , aji−1

) and its
input xji(x, aj1 , . . . , aji−1

). The final outcome is chosen
depending on the overall input and all previous outcomes
a(x, aj1 , . . . , ajn). Thus, if Alice and Bob each do wirings
on shares of n boxes, they generate a new box P (ab|xy).
Our main question is then: given several copies of a

non-local box, are there wirings for Alice and for Bob such
that the resulting box is more non-local than the original?
In the case of two non-signalling boxes each with binary
inputs and outputs, the possible wirings have been fully
characterised [24]. Nevertheless, even in this case, decid-
ing whether these can result in more non-locality for a
specific box is computationally intensive: there are 82 de-
terministic wirings that each party can perform for each
input [24], leading to a total of 824 possibilities (one of the
82 for each input of each party). To make the computa-
tion more tractable, we optimise the wirings of one party
with a linear program, while iterating over 822 wirings for
the other (see Appendix A for more details). We use this
linear programming technique to illustrate the regions
in which distillation is possible for various 2-dimensional
cross-sections (CSs) of the no-signalling polytope in Fig-
ure I. In this work we consider three regions:

CS I : ωPNL
1 +

η

2
(PL

1 + PL
6 ) + (1− ω − η)PO

CS II : ωPNL
1 + ηPL

1 + (1− ω − η)PO (1)

CS III : ωPNL
1 +

η

2
(PL

1 + PL
9 ) + (1− ω − η)PO ,

where PO = 3/4PNL
1 +1/4PNL

2 is local and η, ω ≥ 0 with
η + ω ≤ 1.
We analysed the distillability within these cross sec-

tions. Among the optimal protocols we recovered several
that were previously known [15, 26]. The protocols of [15]
(called ABL+1, 2) are sufficient to characterize the two-
copy distillability in CS II (see Figure I), and CS III is
two-copy non-distillable. The observation that ABL+2
achieves no distillation in CS I shows that optimal pro-
tocols depend on the cross-section.
The above analysis is generally not useful for analysing

whether repeated distillation of a box can lead to a cer-
tain CHSH-value. Applying a wiring that works for two
boxes to two copies of the generated box often does not
give a further increase in non-locality, in which case a
switch of wirings is needed to distil further. While there
are boxes that cannot be distilled at all with wirings (e.g.
isotropic boxes [27]), the maximum CHSH value that can
be distilled using multiple copies of a specific resource
box is unknown. This means that we do not know how
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FIG. I. Protocols sufficient to characterise the two-copy dis-
tillability (both the distillable region and the strongest ampli-
fication) for two CSs (cf. Eq.(1)). The optimal two-copy pro-
tocols for CS II are the two protocols from [15] (ABL+1,2),
while for CS I the protocol of [13] (FWW) is optimal in some
cases. The shading indicates where the corresponding pro-
tocol is optimal, with the boundary indicated by the black
line (see Appendix A for details of the protocols). The dot-
ted curve indicates the boundary of the set of correlations
realisable in quantum theory (computed using the conditions
in [3, 25]).

resourceful (multiple copies of) most non-local boxes are
for information processing. For instance, shared boxes
render communication complexity trivial if their initial

CHSH value is greater than CHSH(P (ab|xy)) = 4
√

2
3
[5].

The complete set of boxes that render commuication
complexity trivial is unknown, although an additional
region was found with the protocol of [14].

SEQUENTIAL ALGORITHMS FOR

NON-LOCALITY DISTILLATION AND

REDUCTION OF COMMUNICATION

COMPLEXITY

While a repeated application of a successful 2-copy
protocol often does not increase the non-locality further,
there are various ways to combine different 2-copy wirings
(see Appendix B). Here, we focus on the specific struc-
ture illustrated in Figure II. Our serial algorithm con-
sists in optimising the wiring to be applied in every step,
which is done in terms of a hybrid procedure of iterating
over wirings and linear programming (see Appendix B
for a detailed description of the algorithm). Applying
our serial algorithm, we are able to extend the region of
non-local boxes known to trivialise communication com-
plexity, see Figure III.
Our algorithm furthermore provides us with a way to

systematically derive new non-locality distillation proto-
cols for multi-copy non-locality distillation. When per-
forming two-steps of the serial algorithm, we find the
three-copy protocol below to be successful.
In the first step, a box is created from two copies of a

box P with inputs (outputs) labelled x1, y1 (a1, b1) and

FIG. II. A serial architecture for combining nonlocal resources
(gray) in a sequential manner. The first step on the left de-
picts the usual two-copy distillation scheme. Each subsequent
iteration uses another copy of the original box and the previ-
ously generated one. Our sequential algorithm optimises the
protocol at each round. See Appendix B for details.

FIG. III. Region of trivial communication complexity in CS I.
The light-gray part was identified in [5]. The dark-gray re-
gion includes boxes that trivialise communication complexity
through (up to 4) iterations of ABL+1. The red points (and
everything on their right) collapse communication complexity
using our serial algorithm. The black solid chord is that of
Figure I (left) and indicates a change in protocol for the red
points – see Appendix B for details, including analysis of the
black points in the figure.

x2, y2 (a2, b2) respectively (first step in Figure II). Then
this is wired to another copy of P , P (a3b3|x3y3), using
the functions

x1 = x = x′, x2 = x⊕ ā1, a = a1 ⊕ a2, x3 = xā

y1 = y = y′, y2 = yb1, b = b1 ⊕ b2, y3 = y ⊕ b, (2)

a′ = a⊕ a3, b′ = b⊕ b3,

where ⊕ is the logical xor and z̄ = z ⊕ 1. This new
protocol distils in CS II a strict superset of non-local
boxes compared to the previously known 3-copy distil-
lation protocol of [16] (in contrast to CS I where the
protocol of [16] is superior). For completeness we intro-
duce the protocol from [16] in Appendix C and we refer
to it as HR. The region in which the new protocol distils
in CS II is also shown in Appendix C.
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GENUINE THREE-COPY DISTILLATION

PROTOCOLS

When considering 3-copy distillation, the variety of
possible protocols is vastly increased. In this case we can
derive new protocols that outperform the previous ones
in terms of the boxes for which they offer distillation.
For this, we introduce a genuine three-copy distillation
protocol, which is one that cannot be reduced to a con-
catenation of 2-copy protocols, i.e., is not of the form of
Figure II. Consider the following wiring, where ∨ denotes
the logical or operation:

x1 = x2 = x̄, x3 = x̄a1 ∨ x̄a2, a = a1a3 ∨ a2a3 ∨ ā1ā2ā3,

y1 = y2 = y, y3 = yb1 ∨ yb2 ∨ ȳb̄1b̄2, (3)

b = ȳb1b3 ∨ ȳb2b3 ∨ yb1b̄3 ∨ yb2b̄3 ∨ ȳb̄1b̄2b̄3 ∨ yb̄1b̄2b3.

We find larger regions of distillable boxes as compared
to the two-copy case, see Figure IV. In CS III no 2-copy

FIG. IV. Region of distillation by means of the 3-copy wiring
of Eq.(3) bounded by the green lines. The blue and orange
lines show the region of optimal 2-copy distillation in CS I, as
in Figure I (left). The green shaded area in CS I depicts where
our protocol leads to higher CHSH values than all previously
known protocols (i.e., 2-copy and 3-copy FWW, ABL+1, HR).
In CS III no 2-copy non-locality distillation is possible and
the ability to distil is unlocked only when given access to at
least 3 copies of a non-local box where use of a genuine 3-
copy protocol is imperative. The dotted curve indicates the
boundary of the set of quantum-realizable correlations.

distillation is possible, while with 3 copies it is. Fur-
thermore, the increase in the region of boxes that al-
low for distillation is considerably larger than that of HR
(which is nearly indistinguishable from ABL+1, see also
Figure VIII in the Appendix).
Additionally we find 3-copy protocols that increase the

region where communication complexity is trivial. In
particular

x1 = x2 = x, x3 = xa2 ∨ xā1 ∨ x̄ā2a1,

a = a3a2 ∨ a3ā1 ∨ ā3ā2a1, y1 = y2 = y, y3 = yb2 ∨ yb̄1,

b = b3b2 ∨ b3b̄1 ∨ b̄3b̄2b1. (4)

We illustrate the use of this protocol for trivialising com-
munication complexity in Figure V. In addition, we find

FIG. V. Regions of trivial communication complexity with
various protocols. The green region is from repeated use of our
genuine 3-copy protocol of Eq.(4), the blue bounded region is
from repeated use of ABL+1 and the dashed gray bounded
region is from repeated use of HR. In the magnified view
(right) we see a small region where our new 3-copy protocol
outperforms HR and any possible 2-copy protocol.

that in CS I, starting from any point with ω > 0 on the
line ω = 1−η we can distill arbitrarily close to a PR box
by repeatedly iterating this protocol (see Appendix D).
We observe, that as compared to using 2-copy protocols
(even sequentially), 3-copy protocols provide further ad-
vantages.
Additionally, all the protocols introduced here, i.e.,

those of (2), (3) and (4) work in a full dimensional subset
of the space of no-signalling correlations. This space is
8 dimensional for bipartite non-signalling boxes with bi-
nary inputs and outputs. The form of our distillation pro-
tocols (and many others in the literature) implies that the
difference between the initial and final CHSH value is a
polynomial in the parameters of the initial box P (ab|xy)
and hence continuous in these parameters. Thus, for any
distillable point not on the boundary of the polytope,
there exists an eight-dimensional ball around it that is
also distillable.

CONCLUSIONS

We have found a genuine 3-copy protocol that distils
nonlocality for boxes in which distillation with two copies
is impossible and shown that there are 3-copy protocols
that outperform all 2-copy protocols (and sequential ap-
plications thereof). For the latter we employed an opti-
mization technique for 2-copy wiring protocols. Although
this optimization furthers our understanding, it remains
limited to cases with small numbers of inputs and outputs
and there remains much more to discover about nonlo-
cality distillation.
Whether the principle of non-trivial communication

complexity [5] defines a closed set of correlations [28] that
allows for a simple characterisation and lies well between
quantum and non-signalling sets is an open question of
interest for the foundations of quantum theory. Indeed,
finding a sensible generalised probabilistic theory that
leads to a set of correlations between the non-signalling
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and quantum set with a simple geometric description has
been a conundrum. The present work suggests that a
better understanding of multi-copy non-locality distilla-
tion may give us insights into such a set, namely that of
a GPT whose only restriction is imposed by the princi-
ple of non-trivial communication complexity. This would
further advance the recent research program of experi-
mentally ruling out generalised probabilistic theories due
to the correlations they produce in networks [29, 30].

Some of our distillation protocols work within the set
of quantum correlations (see Figure IV). [See also [31]
for recent work aiming to distil quantum correlations.]
Being wirings, they are much simpler to perform than
entanglement distillation protocols [32]. It would be in-
teresting to explore applications of these for information

processing.
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Appendix A: Optimising over all two-copy non-locality distillation protocols

In order to establish whether a non-local box is amenable to 2-copy non-locality distillation, it is convenient (and due
to the large number of possible protocols even necessary) to find ways to search and optimise over all such protocols.
This can be achieved using Linear Programming. Specifically, while iterating over the extremal wirings of one party,
we can optimise the operations of the other this way.
To see how this is possible, notice that the correlations obtained from wiring two boxes Q1(a1b1|x1y1), Q2(a2b2|x2y2)

are

P (ab|xy) =
∑

xi,yi,ai,bi

Q1(a1b1|x1y1)Q2(a2b2|x2y2)χx(ax1x2|a1a2)ξy(by1y2|b1b2),

where χx(ax1x2|a1a2) and ξy(by1y2|b1b2) describe Alice’s and Bob’s wirings upon receiving input x and y respectively.
For a deterministic wiring, χx(ax1x2|a1a2) ∈ {0, 1} for all a, a1, a2, x1, x2, and the wiring x1 = 0, x2 = a1 and
a = a1 ⊕ a2 would correspond to χ(ax1x2|a1a2) = δx1,0δx2,a1

δa,a1⊕a2
, for example.

A wiring on Alice’s side is made up of |x| · |a| vectors χx(a) = (χx(ax1x2|a1a2))a1a2x1x2
. In the case of 2-inputs and

2-outputs, these are straightforward to characterise since the wirings there are exactly the allowed measurements in a
generalised probabilistic theory of non-local boxes [33]. Specifically, to have a valid wiring in this case, it is necessary
and sufficient that the output distribution on any 2-input 2-output non-signalling box returns a valid probability
distribution, i.e., for any Q ∈ {PL

i , P
NL
j }i,j

0 ≤
∑

a1,a2,x1,x2

χx(x1x2a|a1a2)Q(a1a2|x1x2) ≤ 1 ∀x, a, (A1)

∑

a,a1,a2,x1,x2

χx(x1x2a|a1a2)Q(a1a2|x1x2) = 1 ∀x. (A2)

These are linear constraints on the vectors χx(a).
Furthermore, CHSH(P (ab|xy)) is a linear function of the P (ab|xy), which in turn is linear in χx(a). Thus, we

can optimise the distilled non-locality over Alice’s wirings with a linear program. Although this procedure works
well when Alice and Bob each hold halves of two 2-input 2-output systems, going beyond this case presents several
challenges:

1. With more than two systems the number of wirings on Bob’s side significantly increases.

2. Sticking with two systems but increasing the number of inputs and outputs for each system significantly increases
the number of wirings.

3. With more than two systems it is possible that the linear program optimizing over Alice’s operations outputs a
vector χx that is not a wiring.

The presence of such non-wirings for three systems was first noticed in [24]. In the main text we motivated the
use of wirings based on maintaining validity of the results in any GPT. Allowing the non-wirings that come from
such a linear program does not significantly alter the theory-independence in the sense that Eq.(A1) and Eq.(A2)
are minimal requirements hence if no additional restrictions are placed on the theory any χx output by the linear
program should be valid. Nevertheless it may be unnatural to allow non-wirings for Alice while restricting to wirings
for Bob. Hence one would either like to add all the non-wirings valid in any theory to the set of Bob’s possibilities,
or remove non-wirings from the set of possible operations of Alice.
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Wiring class Number of wirings
in class

Elements χ(a, a1, a2, x1, x2) = 1 if the
following holds: (otherwise zero)

Label of wiring for each
µ, ν, σ, δ, ϵ ∈ {0, 1}

Constant 2
x1 = x2, a = µ

µ+ 1

One-sided 8
x1 = x2 = µ, a = aν+1 ⊕ σ

(4µ+ 2ν + σ + 1) + 2

XOR-gated 8
x1 = µ, x2 = ν, a = a1 ⊕ a2 ⊕ σ

(4µ+ 2ν + σ + 1) + 10

AND-gated 32
x1 = µ, x2 = ν,

a = (a1 ⊕ σ)(a2 ⊕ δ)⊕ ϵ

(16µ+8ν+4σ+2δ+ϵ+1)+18

Sequential 32
xµ+1 = ν, x(µ⊕1)+1 = aµ+1 ⊕ σ,

a = a(µ⊕1)+1 ⊕ δaµ+1 ⊕ ϵ

(16µ+8ν+4σ+2δ+ϵ+1)+50

TABLE I. Labelling of 2-copy wirings. To iterate over all extremal wirings for Bob, we consider all combinations of ξ0(b), ξ1(b)
from the above list, i.e., 822 wirings.

protocol
name

wiring analytic boundary of the region of
distillation (ω as a function of η)

CHSH value of the distilled box

FWW [13] x1 = x2 = x
y1 = y2 = y
a = a1 ⊕ a2
b = b1 ⊕ b2

ω = 1− 3η + 2
√

1− 3η + 3η2

η ∈ [1/2, 1]

1
2

[

(1 + ω)2 − 3η2 + 6η(1 + ω)
]

ABL+1 [15] x1 = x
y1 = y
x2 = x⊕ a1 ⊕ 1
y2 = yb1
a = a1 ⊕ a2 ⊕ 1
b = b1 ⊕ b2 ⊕ 1

ω = −η + 1√
3

√

3− 4η + 4η2

η ∈ [0, 1]

1
4

[

3ω2 + 8ω − η2 + η(4 + 6ω) + 5
]

TABLE II. Optimal 2-copy distillation protocols for CS I.

In the case of 2 copies of a box, in order to optimise the distilled non-locality over all wirings of Alice and Bob, we
iterate over the 822 extremal wirings of Bob, as found in [33] and displayed in Table I, while optimizing Alice’s wiring
for each such choice with a linear program as described above.
Using this technique we can find whether there is a successful protocol for 2-copy non-locality distillation for any

non-local box with two inputs and two outputs. In the following we illustrate this on CSs I and II (cf. Eq.(1)). In both
cases, the full optimisation shows that two protocols are sufficient for characterising the region of 2-copy distillation
in a CS. None of the points that are not distillable with either of these protocols can be distilled with any other
2-copy wiring there. In both CSs, we can choose non-locality distillation protocols from the literature to achieve
this, i.e., known protocols are among the optimal ones when considering the region of distillation. Specifically, the
region of distillation of CS I can be characterised in terms of the protocol from [13], which we call FWW here, as
well as a protocol from [15], called ABL+1 here, which are both given in the Tables II and III. The parameters ω
and η are chosen like in Figure I. Since the boundary of this region can be established as those boxes P for which
2-copy distillation leads to a box P ′ such that CHSH(P (ab|xy)) = CHSH(P ′(ab|xy)), this region can be characterised
analytically.
The two CSs are displayed in Figure I. The black line where the two protocols work equally well is analytically

characterised as

ω = 5η − 3 ,
1

2
(1 +

1√
13

) ≤ η ≤ 2

3
(A3)

in CS I and

ω = −2
√
6− 3

5
(η − 1) ,

1

25
(9 +

√
6) ≤ η ≤ 1 (A4)

in CS II.
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protocol
name

wiring analytic boundary of the region of
distillation (ω as a function of η)

CHSH value of the distilled box

ABL+2 [15] x1 = x2 = x
y1 = y2 = y
a = a1a2
b = b1b2

ω = 3− 11η + 2
√

3− 18η + 31η2

η ∈ [1/3, 1]

1
8

[

ω2 + 10ω − 3η2 + η(6 + 22ω) + 13
]

ABL+1 [15] x1 = x
y1 = y
x2 = x⊕ a1 ⊕ 1
y2 = yb1
a = a1 ⊕ a2 ⊕ 1
b = b1 ⊕ b2 ⊕ 1

ω = − 4
3
η + 1

3

√

9− 18η + 25η2

η ∈ [0, 1]

1
4

[

3ω2 + 8ω − 3η2 + η(6 + 8ω) + 5
]

TABLE III. Optimal 2-copy distillation protocols for CS II.

We remark here that previously, heuristics to simplify the optimisation over two-copy protocols have been proposed.
For instance, the method in [34] suggests to reduce the search over 824 protocols to a manageable number of only
3152, by only considering protocols that preserve the PR-box, PNL

1 . Using linear programming, as proposed here, has
the advantage that it takes all distillation protocols into account. In contrast, the heuristic from [34] discards various
protocols, e.g., FWW and ABL+2, that despite not preserving PNL

1 , are useful for non-locality distillation—they are
even among the optimal 2-copy distillation protocols in CS I—so this shortcoming is pertinent.

Appendix B: Sequential non-locality distillation into the region of trivial communication complexity

In some situations we would like to distil non-locality up to a certain value that is useful for a specific task, e.g.
because a particular CHSH score is needed in a device-independent scenario, or because we want to draw conclusions
about the properties of those correlations, e.g. that they are unnatural since they imply that communication complexity
is trivial. For this purpose, 2 copies of a non-local box are usually not sufficient. Since the repeated application of
a fixed protocol is generally not successful in this respect either, it is natural to combine different protocols instead.
There are various “architectures” that such combinations can take, two of which are displayed in Figure VI.

FIG. VI. Two architectures for combining an arbitrary number of resource boxes (gray) in a sequential manner. In each case,
the purpose of our sequential algorithm is to find new optimal wirings in each round. Thus, the serial architecture on the
left represents the serial algorithm introduced in Figure II. Similarly, the parallel architecture on the right will represent the
parallel algorithm.

Analysing all of the wirings that are possible in such a multi-round procedure is computationally infeasible. We
thus propose a sequential algorithm to (partially) optimise these procedures. This algorithm (in either version of
Figure VI, serial or parallel or some alternatives, analysed more carefully in [35]) proceeds as follows:

(1) Optimise the wiring step by step using the procedure outlined in Appendix A. As figure of merit to be optimised
we use the CHSH value here.

(2) Stop the procedure when either a certain round number is reached or when the CHSH value does not increase any
further.

When applying the serial algorithm to the black points from Figure III, choosing the serial architecture turned out
to be more effective than the parallel (in terms of distilled CHSH values). The tables below compare the findings of
the serial algorithm with repeated iterations of other protocols. We can furthermore compare the different types of
procedure. While we find that in CSs I and II, the serial procedure is more successful with respect to the increase
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CS I, point (η, ω) = (0.888, 0.1), CHSHinit = 2.2
CHSHfinal , after # iterations Serial Algorithm STRATEGIES

iter
#

two-copy
ABL+1,
blindly
repetitive

two-copy
FWW,
blindly
repetitive

two-copy
BS,
blindly
repetitive

Serial
Algorithm

Alice’s wiring
(χx=0 , χx=1)

Bob’s wiring
(χy=0 , χy=1)

1 2.2815 2.3525 2.2812 2.3525 (12, 18) (12, 18)
2 2.3837 2.5546 2.3823 2.4681 (12, 18) (12, 18)
3 2.4964 2.7191 2.4918 2.5546 (12, 18) (12, 18)
4 2.5885 2.5749 2.6186 (12, 18) (12, 18)

5 2.5927 2.6729 (12, 78) (74, 78)
6 2.7236 (70, 82) (12, 82)
7 2.7706 (12, 78) (74, 78)
8 2.8143 (70, 82) (12, 82)
9 ... ⟲ ⟲

10 ... ⟳ ⟳

36 3.2683 (70, 82) (12, 82)

41 3.2730 (12, 78) (74, 78)

TABLE IV. Data about the lower black point of Figure III. The wirings are described using the labellings of the last column
of Table I. The circular arrows denote the continued switching between the two strategies appearing on each side after the
4th iteration. The distilled CHSH values are recorded here as long as they increase. The yellow shaded entries compare final-
CHSH values when each scheme has used 8 identical resource boxes. We observe that (37 copies of) the initial box trivializes
communication complexity, a fact that only the serial algorithm reveals.

FIG. VII. Visualization of the data of Table IV (plus some further iterations that decrease the final-CHSH value). Here, the
superiority of the serial algorithm – as opposed to the independent repetition of a fixed protocol– makes the initial box surpass
the trivial communication complexity threshold (dashed line). The horizontal axis shows CHSH2 = E00 − E01 + E10 + E11.

in non-locality that is achieved, we have found other CSs where the parallel is favourable. For more details and the
analysis of further types of procedures we refer to [35].

Notice also that, after a few iterations, we recover the same iteration of wiring strategies for each party in the two
tables. This procedure corresponds to essentially exchanging the roles of the two players between iterations (and some
bit-flips):

ODD iterations : x2 = x, x1 = xa2, a = a1 ⊕ a2 ⊕ 1, y2 = y, y1 = y ⊕ b2 ⊕ 1, b = b1 ⊕ b2 ⊕ 1

EVEN iterations : x2 = x, x1 = x⊕ a2, a = a1 ⊕ a2 ⊕ 1, y2 = y, y1 = y(b2 ⊕ 1), b = b1 ⊕ b2 ⊕ 1.
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CS I, point (η, ω) = (0.575, 0.375), CHSHinit = 2.75
CHSHfinal , after # iterations Serial Algorithm STRATEGIES

iter
#

two-copy
ABL+1,
blindly
repetitive

two-copy
FWW,
blindly
repetitive

two-copy
BS,
blindly
repetitive

Serial
Algorithm

Alice’s wiring
(χx=0 , χx=1)

Bob’s wiring
(χy=0 , χy=1)

1 2.9212 2.8212 2.9162 2.9212 (12, 78) (74, 78)
2 3.0294 3.0096 3.0452 (70, 82) (12, 82)
3 3.1327 ⟲ ⟲

4 3.1930 ⟳ ⟳

5 3.2324 ⟲ ⟲

6 3.2562 ⟳ ⟳

7 3.2683 (12, 78) (74, 78)
8 3.2718 (70, 82) (12, 82)

TABLE V. Data for the higher black point of Figure III. The wirings are described using the labellings of the last column
of Table I. The circular arrows denote the continued switching between the two strategies appearing on each side after the
4th iteration. The distilled CHSH values are recorded here as long as they increase. The yellow shaded entries compare final
CHSH values when each scheme has used 4 identical resource boxes. We observe that (8 copies of) the initial box trivializes
communication complexity, and again, this is only revealed using the serial algorithm.

Cross Section CHSH value of the distilled box

I 1
16

[

ω3 − 5η3 +9ω2 +31ω+ η2(5+ 7ω)+ η(9+ 22ω+5ω2)+ 23
]

III 1
16

[

ω3+7η3+9ω2+31ω+η2(5+19ω)+η(−3+18ω+13ω2)+23
]

TABLE VI. Final CHSH function after one iteration of the protocol of Equation (3), for the two cross sections of Figure IV.

Appendix C: 3-copy distillation in the literature

So far, the 3-copy non-locality distillation protocol that was so far known in the literature was introduced in [16].
This is specified by the following functions that make up the protocol HR:

Alice’s side Bob’s side
x1 = x y1 = y
x2 = x⊕ a1 y2 = yb1
x3 = a2a1 ⊕ x(a1 ⊕ a2 ⊕ a1a2) y3 = b1 ⊕ b2b1 ⊕ y(b2 ⊕ b1b2)
a = a1 ⊕ a2 ⊕ a3 b = b1 ⊕ b2 ⊕ b3

In some parts of CS I, this protocol outperforms the 2-copy distillation protocol ABL+1 (around the point indicated
with the star in Figure VIII). At the point indicated with the star, HR can distill non-locality while no 2-copy protocol
can (thus, HR is also a genuine 3-copy protocol). However, the region around the starred point where this is possible
is extremely small (see Figure VIII). This is different for our genuine 3-copy protocols (Equations (3) and (4)), for
which this increase is considerable. Furthermore, we checked that HR, despite being a genuine 3-copy protocol, distills
nothing in CS III, unlike our genuine 3-copy protocol that unlocks distillation there (Figure IV).

Appendix D: Further properties of the novel OR-gated protocols

In this section we present some extra features of the protocols introduced in Equations (3) and (4). The protocol
of Equation (4) preserves the line (one dimensional convex combination)

ωPNL
1 + (1− ω)

PL
1 + PL

6

2
,
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FIG. VIII. The blue (gray) boundary includes the boxes that are distillable by the ABL+1 (HR). The gray region depicts the
set where HR achieves higher distilled CHSH-values than ABL+1. The bullet point corresponds to a box that is distillable
by ABL+1 but not by HR. Interestingly, the star (coordinates (η, ω) = ( 3

32
, 1
32
(2
√
227 − 3))) corresponds to a box that is not

distillable by ABL+1 (so, not distillable by any two-copy protocol) but it can be distilled by HR.

FIG. IX. Comparison of our new protocol (Equation (2)), displayed with the purple boundary, to the 3-copy protocol HR
from [16], displayed in gray for CS II. The protocol of Equation (2) distils a strict superset of the boxes that HR distils and
the non-locality increase at each point is also stronger than that of HR.

which is that subset of CS I corresponding to ω = 1− η. This means that an operation of the protocol maps any box
belonging to that line, back to that line. Each iteration n, n ≥ 1, of the protocol, updates the coordinate ω according
to the recurrence relation

ωn =
1

4
ωn−1(7− 4ωn−1 + ω2

n−1) , ω0 = ω. (D1)

A plot showing the sequence of steps starting at ω0 = 0.05 is shown in Figure X. From the shape of the curves it is
clear that for any initial ω ∈ (0, 1) repeated iterations allow us to generate a final box arbitrarily close to a PR box.
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FIG. X. The blue curve depicts the function f1(ω) =
1
4
ω2(7 − 4ω + ω2) while the brown the f2(ω) = ω, ω ∈ [0, 1]. The black

arrows lying in between represent all the steps from n = 1 to n = 10 of the recurrence relation (D1) for the case ω0 = 0.05.
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