
This is a repository copy of Memory-aware Optimization for Sequences of Sparse Matrix-
Vector Multiplications.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/197077/

Version: Accepted Version

Proceedings Paper:
Zhang, Y, Li, S, Yuan, F et al. (4 more authors) (2023) Memory-aware Optimization for
Sequences of Sparse Matrix-Vector Multiplications. In: 2023 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 15-19 May 2023, St Petersburg, Florida,
USA. IEEE , pp. 379-389. ISBN 979-8-3503-3767-9

https://doi.org/10.1109/IPDPS54959.2023.00046

This is an author produced version of a conference paper published in 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), made available
under the terms of the Creative Commons Attribution License (CC-BY), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Memory-aware Optimization for Sequences of

Sparse Matrix-Vector Multiplications

Yichen Zhang∗, Shengguo Li∗, Fan Yuan†, Dezun Dong∗, Xiaojian Yang∗, Tiejun Li∗, Zheng Wang‡

∗National University of Defense Technology, China

{zhangyichen, nudtlsg, dong, yangxj, tjli}@nudt.edu.cn
†Xiangtan University, China

fyuan@smail.xtu.edu.cn
‡University of Leeds, United Kingdom

z.wang5@leeds.ac.uk

Abstract—This paper presents a novel approach to optimize
multiple invocations of a sparse matrix-vector multiplication
(SpMV) kernel performed on the same sparse matrix A and dense
vector x, like Ax,A2x, · · · , Akx, and their linear combinations
such as Ax + A2x. Such computations are frequently used in
scientific applications for solving linear equations and in multi-
grid methods. Existing SpMV optimization techniques typically
focus on a single SpMV invocation and do not consider oppor-
tunities for optimization across a sequence of SpMV operations
(SSpMV), leaving much room for performance improvement. Our
work aims to bridge this performance gap. It achieve this by
partitioning the sparse matrix into submatrices and devising a
new computation pipeline that reduces memory access to the
sparse matrix and exploits the data locality of the dense vector
of SpMV. Additionally, we demonstrate how our approach can
be integrated with parallelization schemes to further improve
performance. We evaluate our approach on four distinct multi-
core systems, including three ARM and one Intel platform.
Experimental results show that our techniques improve the
standard implementation and the highly-optimized Intel math
kernel library (MKL) by a large margin.

Index Terms—Sparse matrix-vector computation, color re-
ordering parallelizaiton, multi-cores

I. INTRODUCTION

The sparse matrix-vector multiplication (SpMV) operation

is one of the most common operations in scientific and high-

performance (HPC) workloads. An SpMV operation, y = Ax,

multiplies a sparse matrix A of size n × n by a dense

vector x of size n, and then produces a dense vector y of

size n. Despite its prevalence and importance, SpMV is is

often responsible for the performance bottleneck [1]–[3]. Un-

fortunately, optimizing SpMV for modern CPU architectures

presents significant challenges [4]–[6]. In particular, SpMV is

characterized by low arithmetic intensity and irregular memory

access patterns [7], [8], making memory optimization for

SpMV kernels highly important.

Efforts have been made to optimize SpMV by optimizing

the sparse matrix storage format [5], [9]–[11] and the computa-

tion kernel [12], [13]. These prior optimizations have primarily

focused on the computation of a single, isolated SpMV invoca-

tion. While important, they ignore the optimization opportuni-

ties for a sequence of SpMV (SSpMV) operations [14], [15].

An SSpMV pattern involves performing a series of SpMV

operations, such as Ax,A2x,A3x, · · · , Akx, and their linear

combinations, such as A2x + Ax, where the same sparse

matrix A is reused across invocations. This computing pattern

is commonly seen in solving eigenvalue problems [16]–[19],

linear equations [20], [21], and multigrid methods [22] that

underpin various scientific applications. Given the ubiquity

and importance of SSpMV in scientific computing, there is a

critical need to identify optimization opportunities for SSpMV.

In this paper, we introduce a new approach for optimizing

sequence sparse matrix-vector multiplication (SSpMV) by

leveraging the sparse matrix data locality across consecu-

tive SpMV invocations. Our approach involves revising the

classical SSpMV computation pipeline used by mainstream

algorithms to reduce the number of data accesses to the

sparse matrix A. Specifically, we divide the sparse matrix into

submatrices and reorganize the elements of dense vectors x

to merge computation across multiple SpMV operations and

reduce the number of data accesses to submatrices, without

altering the computation semantics or outcome. As we will

show later in the paper, our approach can half the number

of memory accesses to the submatrices in certain scenarios,

significantly reducing the memory overhead. To expose more

parallelism, we then employ the algebraic block multi-color

ordering (ABMC) algorithm [23] to rearrange the elements of

matrix A. Crucially, this preprocessing step is a one-off cost

and hence its overhead can be amortized if matrix A is reused

multiple times in SSpMV.

Our techniques have been implemented in the open-source

FBMPK library1. FBMPK is designed to support generic

sequence sparse matrix-vector multiplication (SSpMV) of the

form y =
∑k

i=0
αiA

ix, where αi are real or complex

constants. We evaluate our approach by applying it to the

sparse matrix-power-vector kernel (MPK) [14], [15], which

represents an instance of SSpMV. We test the performance of

our system on four multi-core systems: three ARM systems,

including Phytium (FT) 2000+ [24], Kunpeng (KP) 920 [25],

and Thunder X2 [26], as well as an Intel platform. Experimen-

tal results show that FBMPK improves the standard SSpMV

implementation by an average of 1.50x (up to 2.27x) on ARM

1Code and data are available at https://github.com/Fliange/FBMPK

a b

c d e

f g

row_ptr[] = [0 2 2 5 7]

col_idx[] = [0 2 0 1 3 2 3]

values[] = []a b c d e f g

A =

Fig. 1. Sparse matrix A and its corresponding CSR storage format.

Algorithm 1: The standard MPK of Akx

Input: Matrix A, vector x and k.
Output: Vector y.

1 for power = 0 to k − 1 do
2 SpMV(A, x, y)
3 x = y
4 end
5 function SpMV(A, x, y):

6 for i = 0 to A.nrow − 1 do
7 sum = 0
8 for j=A.row ptr[i] to A.row ptr[i+ 1]− 1 do
9 sum+ = A.val[j] ∗ x.val[A.col ind[j]]

10 end
11 y.val[i] = sum
12 end
13 end

platforms. On the heavily optimized Intel Math Kernel Library

(MKL) [27], FBMPK improves the performance by an average

of 1.73x (up to 2.32x).

This paper makes the following contributions:

• It proposes a new, better algorithm to compute SSpMV

(Section III-B);

• It shows how the dense vector storage format can be

tailored to improve the memory access latency of SSpMV

(Section III-C);

• It demonstrates how the multi-color reordering algorithm

can be employed to expose parallelism for SSpMV (Sec-

tions III-D and III-E).

II. BACKGROUND

A. The CSR Sparse Matrix Storage Format

In this paper, we describe and evaluate the proposed tech-

niques using the compressed sparse row (CSR) format [28].

This format is widely used to store sparse matrices. However,

our techniques can be equally applied to other mainstreamed

row-major sparse matrix storage formats.

As shown in Fig 1, the CSR format explicitly stores col-

umn indices and nonzeros in arrays col_idx and values,

respectively. Both arrays col_idx and values are of size

nnz, where nnz is the number of nonzero elements of the

input matrix A. CSR uses a vector row_ptr, which points

to row starts in indices and data, to query matrix values. The

length of row_ptr is n+ 1, where n is the number of rows

of matrix A and the last item of row_ptr is the total number

of the nonzero elements of the matrix.

B. The Sparse Matrix-Power-vector Kernel

Unlike prior work that focuses on optimizing a single SpMV

innovation, our work targets SSpMV, where the sparse matrix

(a)

Color 2

Color 3

Color 1

(b)

Fig. 2. An ABMC method with a block size of 2 and 3 colors (a), and a
potential outcome for applying ABMC to a sparse matrix (b). Each dot in (a)
corresponds to a row of the matrix in (b).

A is used multiple times in more than one SpMV invocation.

One representative example of SSpMV is the sparse matrix-

power-vector kernel (MPK) . The MPK kernel performs a series

of SpMV operations on sparse matrix A and vector x, as

Ax, A2x, A3x, · · · , Akx, where the power, k, is a constant

number. Compared to a single SpMV operation where A and x

are used only once, the matrix and vector are reused multiple

times across SpMV innovations in MPK. Note that the MPK

is widely seen in multigrid methods [22] and solutions for

eigenvalue problems [16]–[19] and linear equations [20], [21].

As such, it represents an important application class.

Algorithm 1 outlines the standard implementation of the

MPK. This is achieved by performing a sequence of SpMV

operations, i.e., xi = Axi−1 with i = 1, · · · , k using a

standard SpMV kernel for each invocation. In this paper,

we use the standard MPK implementation as the baseline

to evaluate our approach. Our goal is to reduce the memory

access latency of MPK to improve its performance.

C. Matrix Reordering Techniques

Matrix reordering is a commonly used technique in

SpMV and direct methods for solving sparse linear equa-

tions. The widely used reordering methods include reverse

Cuthill–McKee algorithm (RCM) [29] to improve data lo-

cality, level scheduling [30], [31] to introduce parallelism in

solving sparse triangular linear systems, and so on. Our work

utilizes the Algebraic Block Multi-Color Ordering Method

(ABMC) [32] to partition and reorder the sparse matrix to

expose computation parallelism. The ABMC method extends

the block multi-color ordering that is widely used to solve

unstructured problems [33]. Fig 2(a) illustrates the ABMC

method with nine blocks and three colors, where each block

contains two nodes (or rows) and blocks with the same color

can be processed in parallel. Fig 2(b) shows a potential

outcome of applying the ABMC method to partition and

reorder elements of a sparse matrix.

III. OUR APPROACH

In this section, we use the MPK method (see Section II-B)

as a working example to explain our approach. However, our

techniques can be equally applied to other SSpMV kernels in

the form of y =
∑k

i=0
αiA

ix.

A. Submatrices for Sparse Matrix A

Our approach partitions and stores sparse matrix A as

submatrices. Specifically, we split A into three submatrices,

A = U + L + D, where U and L are the upper and lower

triangular matrices, respectively, and D is the diagonal matrix.

Note that we store D as a vector to reduce storage and

computation overhead. With our matrix partitioning strategy,

the SpMV operation of Ax can then be computed as Ax =
(D + L + U)x = Lx + (D + U)x or (L + D)x + Ux. As

we will describe in the next subsection, this strategy allows

us to merge the computation across SpMV invocations to

reduce the number of memory accesses to submatrices L and

U to improve performance. We note that a similar matrix

partitioning strategy was used in a different context to optimize

the symmetric Gauss-Seidel (SYMGS) method [34].

B. A New SSpMV Processing Pipeline

With our sparse matrix partitioning strategy in place, we

can now develop a new and better SSpMV processing pipeline

across SpMV invocations. We describe our approach in this

subsection, using the standard MPK implementation as a

reference baseline.

Standard MPK. Fig 3(a) outlines the processing pipeline of

the standard MPK, which computes the result by multiplying

sparse matrix A with the outcome of the previous SpMV

invocation. This strategy requires k memory accesses to ma-

trix A for an MPK kernel of Akx0, which is computed as

xi = Axi−1; i = 1, · · · , k.

Forward-backward MPK. As depicted in Fig 3(b), our

proposed processing pipeline, namely forward-backward MPK

(FBMPK), consists of two stages: a forward and a backward

stage. By splitting A into A = D+L+U , an SpMV operation

y = Ax is translated into computing the sum of three terms,

y = Dx+Lx+Ux ≡ xd+xL+xU . Here, xL = Lx denotes

the contribution of L and x to vector y, and so do xd = Dx,

and xU = Ux. With our implementation, we compute xL and

xU in the forward and the backward stages respectively.

Forward stage. Fig 4 shows the process of computing x1 =
Ax0, focusing on the forward stage. First, we compute the

product of U and x0 in parallel and temporarily store the result

in xU1
(= Ux0); see Fig 4(a). In the forward stage, we access

rows of L from top to bottom. Crucially, we compute Lx0

and Lx1 in a pipelined manner. This is done by merging the

computation process of xL1
and xL2

. This is illustrated in

Fig 4(b), where xL1
= Lx0 and xL2

= Lx1. Let’s consider

the particular row highlighted in Fig 4(b). This row is used to

compute the fourth element of vector xL1
. Since the submatrix

L stores the lower triangular elements, only the first three

elements of x1 are required to compute the fourth entry of

xL2
. Since the elements of x1 have already been computed,

we can start computing the fourth entry of xL2
. In essence, our

optimization exploits pipeline parallelism across two SpMV

invocations to improve computation parallelism. We note that

the computed entry of xL1
will be immediately combined

with xU1
and xd1

to compute the element of x1, as shown in

Fig 4(c). The computed elements of xL2
will be temporarily

stored in xL2
, which will be used in the backward stage.

Backward stage. Like the forward stage, the backward stage

computes Uxi to obtain xUi+1
(with i = 1 in Fig 4). The result

will then be added with xL2
produced in the forward stage and

xd2
= Dx1. Finally, we obtain MPK x2 = Ax1. As shown in

Fig 4(d), submatrix U in the backward stage is accessed from

bottom to top, and entries of x2 are also computed bottom-

up. Therefore, the multiplication of U and x2 can also be

computed in the backward stage of Fig 4(d), from bottom to

top. To this end, we merge the compute processes of xUi
and

xUi+1
in the backward stage, for i = 1, 2, . . . , k − 1.

Memory optimization. In FBMPK, two consecutive vectors

are computed together. In the forward stage of Fig 4(b), the

contributions of submatrix L to vectors xi and xi+1, xLi
and

xLi+1
, are computed at the same time. As a result, we only

visit the submatrix L once in the forward stage. Similarly, in

the backward stage, submatrix U is only accessed once and

used to update both xUi
and xUi+1

. As shown in Fig 3(b),

to compute the MPK Akx, FBMPK needs to access U for

2 + ⌊k−1

2
⌋ = k

2
+ 1 times and L for k

2
times when k is

even, and both U and L for 1 + k−1

2
times when k is odd.

Therefore, FBMPK needs to access matrix A for roughly k+1

2

times. Comparing with the standard MPK which accesses k

times of A, the memory access of FBMPK is reduced nearly

by half.

C. Optimize Memory-Access to Vector: Back to Back

In MPK computation, dense vectors are typically stored in

a separate array of length n. FBMPK visits the same position

of two vectors in a row to update the latter vector. However,

the two vectors are physically stored independently, hindering

data locality. Fig5 demonstrates the access of two vectors xi

and xi+1 in the iterative process. To enhance locality, we

merge these two vectors into a single array of length 2n,

while logically separating them. The two vectors are stored

interleaved, as depicted as vector xy in Fig5.

D. Matrix Reordering for Parallelization

So far, we have described our techniques under the as-

sumption of a single-threaded MPK kernel. When parallelizing

the kernel, data dependence must be addressed. For instance,

Fig 6 illustrates the potential dependence that can occur

when multiple threads access submatrix L and vector x

simultaneously. The figure shows how each parallel thread

processes a row in a 5 × 5 matrix L. If thread 4 completes

the computation of xL1
[4] (the bottom element of vector xL1

)

first, it will proceed to compute xL2
(the bottom element

of vector xL2
). However, as threads 0 and 1 may not have

finished calculating xL1
[0] and xL1

[1] (the top two elements

in xL1
), a synchronization point must be inserted to pause

thread 4 until the other parallel threads complete their work.

Unfortunately, synchronization barriers can incur substantial

overhead for fine-grained parallelism and should be avoided

if possible.

 x2

 x0

 x1

 x0

+

+

 x1

+

…
 xk-1

 xk-2

+
 xk-1

+

Forward-backward Iterative Order

 x0x1 =

 x1x2 =

 x2
x3 =

…
 xk-1

xk =

S
ta

n
d

a
rd

Itera
tiv

e
O

rd
er

= +

forward

forward

backward

A

A ULhead

tail

(a) (b)

Fig. 3. Overview of two MPK methods. The baseline method, shown in (a), uses the standard iterative order. Our new forward-backward method, shown
in (b), performs MPK calculations in forward-backward iterative order. The baseline needs to read the matrix k times from memory. By comparison, our

forward-backward method only needs to read the full matrix from memory k+1

2
times. Note that, we ignore the representation of the diagonal matrix.

 x0 =
 x0 = x0 =

𝑼 𝑳 𝒅𝒙𝑼𝟏 𝒙𝑳𝟏 𝒙𝒅𝟏
 x1 =

𝑳 𝒙𝑳𝟐
 x1 =

𝑼 𝒙𝑼𝟐
 x1 =

𝒅 𝒙𝒅𝟐…

forward

backward

Data waiting for calculation

Data under computing

Data has been calculated

Direction of calculation

𝒙𝟏𝒙𝑳𝟏 𝒙𝒅𝟏𝒙𝑼𝟏
+ + =

reduction

(𝐚)

(𝐛)

head

(𝐜)

(𝐝)
…

Fig. 4. How FBMPK performs computation for x2 = A2x0 (i.e, x1 = Ax0, x2 = Ax1) for yellow rectangles in Fig 3. FBMPK requires 1.5 memory
accesses to matrix A by exploiting data reuse. By comparison, the standard MPK needs to access A twice.

Vector 𝒙𝒊
Vector 𝒙𝒊+𝟏Vector 𝒙𝒚

Fig. 5. Different ways of memory access of dense vector.

1

2

3

4 5

1

2

3

4 5Thread 4

Thread 0

……

L L𝒙𝑳𝟏 𝒙𝑳𝟐𝒙𝟎
Fig. 6. Data dependencies under multithreading.

Our approach to parallelizing FBMPK involves utilizing the

ABMC algorithm [23] to rearrange the matrix elements. The

algorithm organizes the matrix elements into blocks and uses

coloring to indicate dependencies, so blocks with the same

color can be processed simultaneously. The maximum number

of elements in each block can be set, with a trade-off between

performance and parallelism, and our implementation allows

the user to specify the number of blocks, with a default of

either 512 or 1024. In this work, we use the Colpack [35]

library to assign colors to blocks.

E. Putting Together

Algorithm 2 describes our FBMPK algorithm with the

amendments to the matrix and vector storage formats our

parallelization strategy. This algorithm computes Asx, s ≤ k

where s is an odd number. A similar algorithm can also be

devised to compute Asx when s is an even number.

The operations of head and tail are parallel SpMV (Lines 3
and 31). During the forward-backward process, computations

are performed in parallel in the same color (Line 6) after

applying the ABMC algorithm to partition the matrix. The

number of blocks for each thread task are allocated in advance.

At computation time, each thread gets the start and end of the

row respectively (Lines 7 and 19). In the forward stage, Lines

11 and 12 are the core of the algorithm, which completes the

calculation of xL twice. Vector xy is the interleaved storage

Algorithm 2: Parallel FBMPK for computing Akx

Input: matrix L, matrix U , vector dia, vector x, and k.
Output: vector y.

1 Function FBMPK_odd(L, U , dia, y, x, k)
2 // Computing submatrix U in head.
3 do SpMV (U, x, tempvec) in parallel.
4 for power = 0 to k − 1 do
5 // Computing submatrix L in forward order.
6 Blocks of each color are calculated in parallel.
7 for rowi = start[t] to end[t]− 1 in thread t do
8 sum0 = tmpvec[rowi] + dia[rowi] ∗ xy[rowi ∗ 2]
9 sum1 = 0.0

10 for j = L.row ptr[rowi] to

L.row ptr[rowi + 1]− 1 do
11 sum0+ = L.val[j] ∗ xy[L.col ind[j] ∗ 2]
12 sum1+ = L.val[j] ∗ xy[L.col ind[j] ∗ 2 + 1]
13 end
14 xy[rowi ∗ 2 + 1] = sum0
15 tmpvec[rowi] = sum1+dia[rowi]∗xy[rowi∗2+1]
16 end
17 // Computing submatrix U in backward order.
18 Blocks of each color are calculated in parallel.
19 for rowi = end[t]− 1 to start[t] in thread t do
20 sum0 = tmpvec[rowi]
21 sum1 = 0.0
22 for j = U.row ptr[rowi + 1]− 1 to

U.row ptr[rowi] do
23 sum0+ = U.val[j] ∗ xy[U.col ind[j] ∗ 2 + 1]
24 sum1+ = U.val[j] ∗ xy[U.col ind[j] ∗ 2]
25 end
26 xy[rowi ∗ 2] = sum0
27 tmpvec[rowi] = sum1
28 end
29 end
30 // Computing submatrix L in tail.
31 do SpMV (L, xy, lvec) in parallel.
32 y = lvec+ tmpvec+ diavec
33 end

TABLE I
HARDWARE PLATFORMS USED IN EVALUATION.

FT 2000+ Thunder X2 KP 920 Xeon

#Cores 64 32 64 26
Sockets 1 2 2 2
#NUMAs 8 1 1 2
CPU Freq. 2.2GHz 2.5GHz 2.6GHz 2.1GHz
L1 cache 32KB 32KB 64KB 64KB
L2 cache 2MB 256KB 512KB 1MB
L3 cache None 32MB 64MB 35.75MB

vector introduced in section III-C. We always initialize x0 at

the even position of the vector xy. The merged result xi is

stored in the vector xy (Lines 14 and 26), and vector tmpvec

is used to temporarily store xL or xU (Lines 15 and 27).

IV. EXPERIMENTAL SETUP

A. Evaluation Platforms

We evaluate our approach on Intel and ARM platforms.

Table I lists the hardware platforms used, including three

ARMv8 multi-cores and an Intel Xeon Gold 6230R CPU.

Our main evaluation platform is FT 2000+, which implements

8 NUMA nodes with 64 cores. Since the data access across

NUMA nodes can cause significant performance degradation,

it is more challenging to optimize SSpMV on FT 2000+

TABLE II
INPUT MATRICES USED IN OUR EVALUATION

ID Input Rows(N) #nnz #nnz/N

1 afshell10 1.51M 52.67M 34.93
2 audikw 1 0.94M 77.65M 82.28
3 cage14∗ 1.51M 27.13M 18.02
4 cant 0.06M 4.01M 64.17
5 Flan 1565 1.56M 117.41M 75.03
6 G3 circuit 1.59M 7.66M 4.83
7 Hook 1498 1.50M 60.92M 40.67
8 inline 1 0.50M 36.82M 73.09
9 ldoor 0.95M 46.52M 48.86
10 ML Geer∗ 1.50M 110.88M 73.72
11 nlpkkt120 3.54M 96.85M 27.34
12 pwtk 0.22M 11.63M 53.39
13 Serena 1.39M 64.53M 46.38
14 shipsec1 0.14M 7.81M 55.46
∗These two matrices are unsymmetric. Others are symmetric.

than on other platforms. All hardware platforms run Linux

kernel version 4.19.46. Codes on ARM platforms are compiled

with GCC version 12.1 using the “-O3 -fopenmp” options,

and codes on Xeon are compiled with Intel compiler ICC

version 2022.1.2-146. We use numactl to interleave memory

allocation on all NUMA nodes.

B. Workloads

Table II lists the matrices used in our evaluation. The

matrices used in our evaluation are of different sizes and

sparsities. They cover various domains, including circuit sim-

ulation, optimization, structural and 2D/3D problems, and

directed weighted graphs. Therefore, the dataset can be useful

in testing the generalization ability of our approach. We also

include some of the same matrix inputs used in prior work

for optimizing SpMV [14], [36] and MPK [37] for a fair

comparison.

C. Evaluation Methodology

We run each test case 50 times on unloaded machines

and report the geometric mean of the runtime. Unless stated

otherwise, execution time always refers to the computation

time of SpMV or MPK. We also exclude the overhead for

splitting and reordering elements of the sparse matrix, as this

preprocessing step can often be performed offline when storing

the matrix data.

On the Intel platform, we compare to the baseline MPK

which uses the SpMV kernel from MKL. On the ARM

platform, we compare our approach and the baseline MPK

using the same optimized SpMV kernel. This SpMV kernel

is heavily optimized and can even outperform the MKL

implementation by 13% on our Intel platform.

V. EXPERIMENTAL RESULTS

In this section, we first show that our proposed SSpMV

processing pipeline, FBMPK, outperforms the baseline im-

plementation in the majority of the matrix inputs, with a

speedup of up to 2.32x (Section V-A). We then provide a

detailed analysis showing that our optimization scale well

to a larger number of SpMV invocations by reducing the

memory accesses (Sections V-B and V-C. We then quantify

the impact of individual optimizations (Sections V-D - V-F)

before showing the scalability of our approach (Section V-G).

A. Overall Performance

Figure 7 reports the speedup achieved by our proposed

FBMPK approach over the baseline MPK on four platforms

with power k = 5. FBMPK delivers notable speedups for most

input matrices, with an average performance improvement of

1.50x, 1.54x, 1.47x, and 1.73x on FT 2000+, Thunder X2, KP

920, and Intel Xeon, respectively. Additionally, we observed

a maximum speedup of up to 2.32x.

Recall that FBMPK roughly halves the number of memory

accesses matrix A. As the locality of SpMV is different when

accessing submatrices L and U compared to accessing the

original sparse matrix A, the reduction in memory accesses

translates into various speedup improvements across matrices.

There are some matrices with a speedup of more than 2x.

inline 1 and audikw 1 achieve a speedup of more than

2x, because these two matrices gain locality improvement

after ABMC reordering. Later in Section V-E we will give

a breakdown of our individual optimizations.

Across the various input matrices evaluated in our study,

matrix cant exhibits noticable performance variance between

ARM and x86 platforms. Specifically, on ARM platforms,

cant has the smallest dimension among all input data, with

only 62, 451 rows and the smallest number of elements. After

reordering, it is divided into 512 blocks, with only 77 blocks

(or even fewer) in one color to be run in parallel. Moreover,

each block contains an average of only 120 rows of sparse

matrix data. As a result, the computation workload of this

matrix is too small to cover the thread overhead when using

all physical cores. However, we found that using only 24

threads on the FT 2000+ platform yielded a speedup of 1.3x. In

Section V-G, we discuss how the number of threads can affect

performance. By comparison, the Xeon platform has only 26

hardware threads, yet our proposed FBMPK approach achieves

a speedup of 1.72x on cant. Overall, despite the variability in

performance across different matrices and platforms, FBMPK

consistently outperforms the baseline on most of the input

data, showing the advantages of our techniques.

B. Impact of SpMV Invocations

Figure 8 quantifies the performance impact of varying the

MPK power factor, k, from 3 to 9 on different platforms.

Generally, the benefits of our approach become increasingly

pronounced as k increases with more SpMV invocations. For

instance, when k = 3, our approach achieves an average

speedup of 1.29x, 1.34x, 1.31x, and 1.42x on FT 2000+,

Thunder X2, KP 920, and Intel Xeon, respectively. However,

as we increase k to 9, the average speedup improves to 1.64x,

1.70x, 1.65x, and 1.85x on FT 2000+, Thunder X2, KP 920,

and Intel Xeon, respectively.

An important reason for this improvement trend is that our

approach computes half of the matrix elements in the head and

tail parts, as depicted in Fig 3, and a larger number of k can

lead to more reduction in the memory accesses. Specifically,

when k = 3, there are 2 matrix memory accesses for A.

By contrast, the baseline method requires 3 matrix memory

accesses. When k = 9, our approach needs to access the

memory of matrix A 5 times, while the baseline method needs

to access the matrix in full for 9 times. In this case, our

approach reduces the number of memory accesses by nearly

half. Section V-C provides a more detailed analysis of memory

accesses using runtime profiling. Overall, our approach is

effective in reducing the memory accesses when computing

SSpMV through multiple SpMV invocations.

C. Memory Accesses Profiling

In this experiment, we use the LIKWID performance mon-

itoring tool [38] to further analyze memory accesses for

MPK. We measure the total amount of data read and write

from DRAM. We conduct this experiment on the Intel Xeon

platform and compare our approach with the MKL library.

Fig 9 gives the ratio of memory accesses of FBMPK over the

MKL baseline. It shows the reduction in memory access for

MPKs with power k = 3, 6 and 9, respectively.

In theory, the memory access ratio of our approach to

the MKL baseline is k+1

2k
. This translates to a reduction

of 67%, 58% and 56% over the baseline when k = 3, 6
and 9, respectively. In reality, the memory accesses can be

higher than theoretical number due to other overhead from

optimizations, such as increased vector accesses. For example,

in this experiment, when k is increased from 3 to 6 and 9, the

average ratio of matrix memory accesses decreased from 74%
to 65%, and then to 62%, respectively.

We also found that the decrease in memory access is directly

related to the sparsity of the matrix. The most sparse matrix

in our dataset is G3 circuit, which has only, on average, 4.83

elements per row. It means that one access to the vector once

is equivalent to one fifth visits of this matrix. The memory

access ratio for this matrix is 77% when k = 9, as vector

accesses dominate the total memory accesses. By contrast,

our approach gives the largest reduction on the measured

memory accesses of ML Geer, with a ratio of 58% when

k = 9. Overall, our approach can effectively reduce the

number of memory accesses compared to the baseline but

reduction changes depending on the sparsity of the matrix.

D. Vector Optimization Analysis

To demonstrate the impact of individual optimizations on

the performance of our approach, we created an implementa-

tion variant that only incorporates our forward-backward (FB)

method (Section III-B), which we compared with a version

featuring the back-to-back (BtB) vector optimization (Section

III-C). BtB involves storing the two vectors to be computed

interleaved, with the non-zero elements of the vectors at the

corresponding positions always adjacent (e.g., the highlighted

cells in Fig 5). We refer to the latter version as FB+BtB.

Figure 10 compares FB and BtB on FT 2000+ and Xeon

platforms. While both approaches can contribute to perfor-

mance improvement, the benefit of BtB is more evident on

afshell10
audikw_1cage14 cant

Flan_1565
G3_circuit

Hook_1498inline_1 ldoor
ML_Geer

nlpkkt120 pwtk Serena
shipsec1

average0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

FT2000+
ThunderX2
KP920
Intel Xeon

Fig. 7. Speedups of FBMPK over the baseline MPK with power k=5 on four different platforms.

3 4 5 6 7 8 91.0
1.2
1.4
1.6
1.8
2.0

Sp
ee

du
p

af_shell10
FT 2000+
ThunderX2
KP 920
Intel Xeon

3 4 5 6 7 8 9
1.5

2.0

2.5

3.0 audikw_1

3 4 5 6 7 8 90.8
1.0
1.2
1.4
1.6 cage14

3 4 5 6 7 8 9

1.0

1.5

2.0 cant

3 4 5 6 7 8 9
1.0
1.2
1.4
1.6
1.8

Sp
ee

du
p

Flan-1565

3 4 5 6 7 8 91.0

1.2

1.4

1.6 G3_circuit

3 4 5 6 7 8 91.0
1.2
1.4
1.6
1.8
2.0 Hook_1498

3 4 5 6 7 8 9
1.6
1.8
2.0
2.2
2.4

inline_1

3 4 5 6 7 8 91.2
1.4
1.6
1.8
2.0 ldoor

3 4 5 6 7 8 9
power k

1.2
1.4
1.6
1.8
2.0

Sp
ee

du
p

ML_Geer

3 4 5 6 7 8 9
power k

1.0
1.2
1.4
1.6
1.8
2.0 nlpkkt120

3 4 5 6 7 8 9
power k

1.0

1.5

2.0
pwtk

3 4 5 6 7 8 9
power k

1.0

1.5

2.0
Serena

3 4 5 6 7 8 9
power k

1.00
1.25
1.50
1.75
2.00 shipsec1

Fig. 8. Performance with different MPK k (power) values on our evaluation platforms.

afs
he

ll1
0

au
dik

w_1
ca

ge
14 ca
nt

Fla
n_

15
65

G3_
cir

cu
it

Hoo
k_1

49
8

inl
ine

_1
ldo

or
ML_G

ee
r

nlp
kk

t12
0

pw
tk

Se
ren

a
sh

ips
ec

1

50%
60%
70%
80%
90%

100% Memory Access Comparison
k=3
k=6
k=9

Fig. 9. DRAM read/write volume ratio between MKL and our approach under
different MPK k settings on Xeon.

FT 2000+. Specifically, BtB provides additional performance

improvement on 13 input matrices on FT 2000+, with an

average speedup of 1.50x, compared to a speedup of 1.41x

with the FB method alone. Moreover, the performance benefit

of BtB is transferable to the remaining two ARM platforms,

yielding a 10% additional speedup. In contrast, BtB vector

optimization offers only modest improvement on the Intel

platform.

E. Impacts of Matrix Reordering

Recall that we employ the ABMC algorithm to reorder the

sparse matrix to expose parallelism (Section III-D). While

reordering is useful for parallelizing SSpMV, it may affect

the performance of a single SpMV invocation due to the

restructured sparse matrix. To understand the impact of ABMC

TABLE III
SPEEDUP NORMALIZATION TO THE NATIVE SPMV IMPLEMENTATION

WHEN APPLYING ABMC

ID Input Slowdown ID Input Slowdown

1 afshell10 1.01 2 audikw 1 1.80
3 cage14 1.00 4 cant 0.97
5 Flan 1565 1.00 6 G3 circuit 1.08
7 Hook 1498 1.01 8 inline 1 1.44
9 ldoor 1.06 10 ML Geer 0.98
11 nlpkkt120 0.98 12 pwtk 1.02
13 Serena 1.04 14 shipsec1 1.04

on a single SpMV invocation, we measure slowdown by

normalizing the time used when performing baseline SpMV

on the original matrix and the one on the ABMC-transformed

matrix.

Table III shows the result on FT 2000+, where a ratio great

than 1 means a performance improvement on a single SpMV

invocation. For most of the matrices, we observe little impact

or event performance improvement. On three matrices, there

is a less than 3% slowdown, which can be amortized by the

benefit of parallelization.

F. Preprocessing Overhead

Central to our idea is partitioning sparse matrix A into three

submatrices: an upper triangular matrix U , a lower triangular

matrix L, and a diagonal matrix D. In this work, L and U

are stored in the CSR format, and D is stored in a array d

afs
he
ll1
0

au
dik
w_
1

ca
ge
14 ca
nt

Fla
n_
15
65

G3
_ci
rcu

it
Ho
ok
_1
49
8

inl
ine
_1

ldo
or

ML
_G
ee
r

nlp
kk
t12

0
pw
tk

Se
ren

a
sh
ips
ec
1

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

baseline
FB
BtB+FB

(a) FT 2000+

afs
he
ll1
0

au
dik
w_
1

ca
ge
14 ca
nt

Fla
n_
15
65

G3
_ci
rcu

it
Ho
ok
_1
49
8

inl
ine
_1

ldo
or

ML
_G
ee
r

nlp
kk
t12

0
pw
tk

Se
ren

a
sh
ips
ec
1

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

baseline
FB
BtB+FB

(b) Intel Xeon

Fig. 10. The impact of forward-backward (FB) MPK and back-to-back (BtB) vector optimizaiton on FT 2000+ (a) and Xeon (b) when power k = 5.

TABLE IV
STORAGE OVERHEAD

Format col ind row ptr values d

CSR nnz n+ 1 nnz 0

L+U+d (nnz − n) 2 ∗ (n+ 1) (nnz − n) n

afs
he

ll1
0

au
dik

w_
1

ca
ge

14 ca
nt

Fla
n_

15
65

G3
_c

irc
uit

Ho
ok

_1
49

8
inl

ine
_1

ldo
or

ML
_G

ee
r

nlp
kk

t1
20

pw
tk

Se
re

na
sh

ips
ec

1

20

40

60

No
. o

f S
pM

Vs

Fig. 11. The time required to reorder the matrix with ABMC, which is
normalized to number of single thread SpMV invocations. Note that matrix
preprocessing is a one-off cost, which can often be performed offline without
impacting the runtime performance.

of length n which is the dimension of matrix A. Table IV

compares our storage format with the CSR format, assuming

the total number of non-zero elements of A is nnz, and it

shows that the memory storage costs of these two formats are

nearly the same.

We stress that the matrix partition can be performed offline.

When using parallelization, our approach incurs extra overhead

for using the ABMC to reorder the matrix elements. To

quantify the overhead of matrix reordering, we measure the

overhead by applying ABMC to each of our test matrices.

In Fig 11, we normalize the preprocessing overhead to the

execution time of single thread SpMV invocation. On average,

the overhead of the ABMC algorithm is equivalent to 36

SpMV invocations. While this overhead seems to be signifi-

cant, this reordering process can be performed offline without

affecting the runtime. In many scientific workloads, like HPCG

[34], a similar blocking algorithm is used to reorder the

matrix elements to expose parallelism for other computation

kernels. Furthermore, an MPK-like kernel is often invoked

many times. As such, this one-off preprocessing overhead is

usually negligible at runtime.

4 8 16 24 32 48 64
Number of threads

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

af_shell10
audikw_1
cage14
cant
Flan_1565
G3_circuit
Hook_1498
inline_1

ldoor
ML_Geer
nlpkkt120
pwtk
Serena
shipsec1
baseline

(a)

48 16 24 32 48 64

5
10
15
20 cant

baseline

48 16 24 32 48 64

5
10
15
20 G3_circuit

baseline

48 16 24 32 48 64
Threads

5
10
15
20 inline_1

baseline

(b)

Fig. 12. Scalability of our approach on FT 2000+ when k = 5. The
speedup is normalized to the single-threaded execution of the baseline MPK
implementation. Our approach exhibits good scalability.

G. Scalability Analysis

Fig 12(a) shows the scalability of our approach on FT 2000+

as we increase the number of parallel threads with k = 5 for

the MPK kernel. The speedup is normalized to the single-

threaded execution of the baseline MPK implementation. Our

approach exhibits good scalability, where the average speedup

is improved from 2.08x with 4 threads to 18.05x with 64
threads. We note that we also observe similar scalability on

our other evaluation platforms.

Fig 12(b) provides a zoom-in analysis on three selected

matrices with interesting behavior. As we have seen in the

previous discussion, cant is the only matrix that our ap-

proach does not always outperform the baseline. Our approach

outperforms the baseline when using less than 48 threads.

Once again, this small matrix does not benefit from our

optimization when using a large number of parallel threads

where each thread works on a small portion of the data.

This is because the overhead of multi-threading outweighs the

improvement in computation. Our approach outperforms the

baseline implementation on G3 circuit, although the scalabil-

ity on this matrix is less strong than other matrices. Like cant,

G3 circuit is also a small matrix that does not benefit from a

high number of parallel threads. Finally, our approach gives the

best scalability on inline 1. Although this is not the largest

matrix, it benefits from ABMC reordering, which improves

the cache utilization in a multi-threaded environment. Note

that our approach also gives the fastest speedup on this matrix

in matrix reordering (Section V-E).

Overall, our approach demonstrates good scalability and

outperforms the baseline implementation on the majority of

the evaluation scenarios.

VI. RELATED WORK

There is an extensive body of work on optimizing SpMV.

These include efforts on designing new storage formats for

various processor architectures, including CPUs [4], [39] and

GPUs [10], [40]–[42]. In this paper, we demonstrate the effec-

tiveness of our approach on the commonly used CSR format.

However, our optimization is equally applicable to many other

sparse storage formats. Other approaches look at how to

optimize a single SpMV kernel through vectorization [5], [9],

[11] and parallelization [43]–[45]. Many of these techniques

are orthogonal to our approach by improving a single SpMV

kernel.

Our work specifically targets optimizing a sequence of

SpMV invocations (SSpMV). This is an area largely overlook

by prior work, which mainly focuses on optimizing a single,

isolated SpMV kernel invocation. There are some domain-

specific methods attempting to optimize the communications

among parallel processes when computing formulas like Akx

on distributed and shared memory platforms. These include

the Krylov iterative methods [46], [47], and s-step Krylov

methods [48]. These approaches typically use a block strategy

developed for stencil computation [46] to partition the data

for parallelization. Unlike these strategies, our work exploits

the opportunities across SpMV invocations to optimize for

memory and computation, but we also use a similar block

partitioning strategy for parallelization.

LB-MPK, presented in a recent technical report [15], is

most closely related to our approach (but we were unable to

build their code on our platforms to provide a direct compar-

ison). LB-MPK uses the recursive algebraic coloring engine

(RACE) [37] to parallelize MPK. However, our approach is

fundamentally different from LB-MPK in several ways. Firstly,

we propose to split the sparse matrix into submatrices, while

LB-MPK still uses the classical CSR format to store the entire

matrix. Secondly, LB-MPK performance drops significantly

with a larger k (≈ 6−8). This is because LB-MPK requires the

multiple computation outcomes across SpMV invocations to

be kept in the cache to gain good performance. However, doing

so becomes increasingly more difficult as the number of SpMV

invocations grows. By contrast, our approach only requires

keeping the results of two consecutive SpMV invocations and

can scale well to a large number of SpMV invocations. Thirdly,

LB-MPK requires significantly higher preprocessing overhead

than our approach. Finally, [14] reports the performance of

SSpMV vector addition, A(Ax + x) + x, on the Fugaku’s

A64FX processor using a standard SSpMV implementation.

However, it does not provide memory optimization like our

work.

VII. DISCUSSIONS

Naturally, there is room for improvement and further work.

We discuss a few points here.

Compiler-based approach. One of our ongoing works is to

use compiler-based techniques to translate the standard SpMV

kernel and its inputs to use our optimizing library. It would be

interesting to see if the compiler-based code translation can

adapt to a wide range of kernels other than MPK to reduce

developer involvement.

Sparse matrix storage formats. Our implementation splits

matrix A to submatrices L and U , which are then stored in

the CSR format. While this strategy already gives significant

improvement, we are aware that CSR may prevent vectoriza-

tion. Our future work will exploit other storage formats like

ELLPACK [49] and Sliced ELL [5], and investigate if a better

storage format can be designed for SSpMV.

Distributed and NUMA optimization. This work focuses

on performance optimization on shared-memory multi-cores.

Since our approach does not introduce extra synchronization

and communication overhead, a distributed implmentation can

directly benefit from the improved performance of a single

CPU. Our current implementation does not model the NUMA

impact. Therefore, NUMA-aware work distribution techniques

[50] are complementary to our solution.

Other parallelization strategies. Since the computation

pattern of FBMPK is similar to symmetric Gauss-Seidel

(SYMGS) [34], it may benefit from similar parallelization

strategies designed for SYMGS, such as the level scheduling

strategies [51], besides of the multi-coloring strategy used in

this work.

Heterogeneous devices. This work focuses on homogeneous

multi-core CPUs because they remain the most widely used

computing devices in HPC. Our future work will look into

extending our techniques to the GPU space. Given the expen-

sive memory access overhead on GPUs, memory optimiza-

tion would become even more important. It would also be

interesting to see if our techniques can be integrated with

optimization designed for GPU-based SpMV kernels [41] and

storage formats [10].

VIII. CONCLUSION

We have presented a new way to optimize multiple invo-

cations of sparse matrix-vector multiplication (SpMV). This

computation pattern can be widely found in scientific work-

loads but is largely ignored in prior work for SpMV optimiza-

tion. Our approach reduces the memory access latency of the

workload by exploiting the data locality of the sparse matrix

and dense vector involved in the computation. To this end,

we first partition the sparse matrix into submatrices, around

which we then design a new processing pipeline across SpMV

invocations. Our approach also employs the algebraic block

multi-color ordering (ABMC) algorithm to preprocess the

sparse matrix to expose parallelism. We apply our techniques

to the matrix-power-vector kernel (MPK), Ax, · · · , Akx, and

evaluate it on three ARM and one Intel systems. Experimental

results show that our approach consistently improves over

the baseline implementation, significantly outperforming the

heavily-optimized SpMV implementation from the Intel MKL

library, delivering a speedup of up to 2.32x.

ACKNOWLEDGEMENT

This work was supported in part by the National Key R&D

Program of China under grant agreement 2021YFB0300101,

the National Science Foundation of China (NSFC) under grant

agreements 61902411, 62032023, 12002382, 11275269, and

42104078, the Excellent Youth Foundation of Hunan Province

under grant agreement 2021JJ10050, and a UK Royal Society

International Collaboration grant. Yichen Zhang and Shengguo

Li contributed equally to this work, and Dezun Dong and

Tiejun Li are the corresponding authors.

For the purpose of open access, the author has applied a

Creative Commons Attribution (CC BY) licence to any Author

Accepted Manuscript version arising from this submission.

The data and code associated with this paper are openly

available at https://github.com/Fliange/FBMPK.

REFERENCES

[1] A. D. K. Kaushik, B. D. E. Keyes, and B. F. S. D, “Toward realistic
performance bounds for implicit CFD codes,” in Proceedings of Parallel

CFD’99. Elsevier, 1999, pp. 233–240.
[2] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-performance graph

algorithms from parallel sparse matrices,” in In PARA’06: Proceedings

of the 8th international conference on Applied parallel computing, 2007,
pp. 260–269.

[3] E. jin Im, E. jin Im, K. Yelick, and K. Yelick, “Optimization of sparse
matrix kernels for data mining,” in First SIAM Conf. on Data Mining,
2000.

[4] S. Williams, L. Oliker, R. Vudec, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging multi-
core platforms,” in ACM/IEEE SC’07, New York, 2007, pp. 38:1–38:12.

[5] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-
vector multiplication on modern processors with wide SIMD units,”
SIAM Journal on Scientific Computing, vol. 36, no. 5, pp. C401–C423,
2014.

[6] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of
automatically tuned sparse matrix kernels,” in Institute of Physics

Publishing, 2005.
[7] E.-J. Im, Optimizing the performance of sparse matrix-vector multipli-

cation. University of California, Berkeley, 2000.
[8] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix computations

via data compression,” in Proceedings of the 20th annual international

conference on Supercomputing, 2006, pp. 307–316.
[9] L. Chen, P. Jiang, and G. Agrawal, “Exploiting recent SIMD architec-

tural advances for irregular applications,” in IEEE/ACM CGO. IEEE,
2016, pp. 47–58.

[10] W. Liu and B. Vinter, “CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in 29th ACM ICS’15.
New York: ACM, 2015, pp. 339–350.

[11] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang, “CVR:
Efficient vectorization of SPMV on x86 processors,” in IEEE CGO,
2018.

[12] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D.
Kalamkar, M. M. A. Patwary, V. Pirogov, P. Dubey, X. Liu, C. Ros-
ales et al., “Optimizations in a high-performance conjugate gradient
benchmark for IA-based multi-and many-core processors,” IJHPCA, pp.
11–27, 2016.

[13] Q. Zhu, H. Luo, C. Yang, M. Ding, W. Yin, and X. Yuan, “Enabling
and scaling the HPCG benchmark on the newest generation Sunway
supercomputer with 42 million heterogeneous cores,” in SC’21, 2021,
pp. 1–13.

[14] J. Gurhem, M. Vandromme, M. Tsuji, S. G. Petiton, and M. Sato,
“Sequences of Sparse Matrix-Vector Multiplication on Fugaku’s A64FX
processors,” in CLUSTER. IEEE, 2021, pp. 751–758.

[15] C. Alappat, G. Hager, O. Schenk, and G. Wellein, “Level-based blocking
for sparse matrices: Sparse matrix-power-vector multiplication,” arXiv

preprint arXiv:2205.01598, 2022.

[16] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and e. H. Van der Vost, Tem-

plates for the Solution of Algebraic Eigenvalue Problems: A Practical

Guide. Philadelphia: SIAM, 2000.

[17] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. The
Johns Hopkins University Press, Baltimore, MD, 1996.

[18] R. Li, Y. Xi, L. Erlandson, and Y. Saad, “The eigenvalues slicing library
(EVSL): Algorithms, implementation, and software,” SIAM Journal on

Scientific Computing, vol. 41, no. 4, pp. C393–C415, 2019.

[19] J. Winkelmann, P. Springer, and E. D. Napoli, “Chase: Chebyshev
accelerated subspace iteration eigensolver for sequences of Hermitian
eigenvalue problems,” ACM Transactions on Mathematical Software

(TOMS), pp. 1–34, 2019.

[20] Y. Saad, Iterative methods for sparse linear systems. Boston, MA:
PWS publishing Company, 1996.

[21] D. S. Watkins, The matrix eigenvalue problem: GR and Krylov subspace

methods. SIAM, 2007.

[22] E. Chow, A. J. Cleary, and R. D. Falgout, “Design of the hypre
preconditioner library,” Object Oriented Methods for Inter-operable

Scientific and Engineering Computing, pp. 106–116, 1999.

[23] T. Iwashita, H. Nakashima, and Y. Takahashi, “Algebraic block multi-
color ordering method for parallel multi-threaded sparse triangular solver
in ICCG method,” in 26th IPDPS. IEEE, 2012, pp. 474–483.

[24] Phytium, “FT-2000+/64,” 2019. [Online]. Available: https://en.wikichip.
org/wiki/phytium/feiteng/ft-2000\%2B-64

[25] Huawei, “Kunpeng 920,” 2019. [Online]. Available:
https://www.hisilicon.com/cn/products/Kunpeng/Huawei-Kunpeng/
Huawei-Kunpeng-920

[26] F. Mantovani, M. Garcia-Gasulla, J. Gracia, E. Stafford, F. Banchelli,
M. Josep-Fabrego, J. Criado-Ledesma, and M. Nachtmann, “Perfor-
mance and energy consumption of HPC workloads on a cluster based
on ARM ThunderX2 CPU,” Future generation computer systems, vol.
112, pp. 800–818, 2020.

[27] Intel, “Intel oneAPI Math Kernel Library,” 2022. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/develop/documentation/
get-started-with-mkl-for-dpcpp/top.html

[28] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multipli-
cation on GPUs using the CSR storage format,” in SC’14. IEEE, 2014,
pp. 769–780.

[29] A. George, J. W. Liu et al., Computer solution of large sparse positive

definite systems. Prentice-Hall Englewood Cliffs, NJ, 1981, vol. 134.

[30] J. Park, M. Smelyanskiy, N. Sundaram, and P. Dubey, “Sparsifying
synchronization for high-performance shared-memory sparse triangular
solver,” in International Supercomputing Conference. Springer, 2014,
pp. 124–140.

[31] M. Naumov, “Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the gpu,” NVIDIA Corp., Westford,

MA, USA, Tech. Rep. NVR-2011, vol. 1, 2011.

[32] T. Iwashita, H. Nakashima, and Y. Takahashi, “Algebraic block multi-
color ordering method for parallel multi-threaded sparse triangular solver
in ICCG method,” in 26th IPDPS, 2012, pp. 474–483.

[33] T. Iwashita and M. Shimasaki, “Algebraic multicolor ordering for
parallelized ICCG solver in finite-element analyses,” IEEE transactions

on magnetics, vol. 38, no. 2, pp. 429–432, 2002.

[34] J. Dongarra and M. A. Heroux, “Toward a new metric for ranking high
performance computing systems,” Sandia, Tech. Rep. SAND2013-4744,
2013.

[35] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen,
“Colpack: Software for graph coloring and related problems in scientific
computing,” ACM Transactions on Mathematical Software (TOMS),
vol. 40, no. 1, pp. 1–31, 2013.

[36] C. Gómez, F. Mantovani, E. Focht, and M. Casas, “Efficiently running
SPMV on long vector architectures,” in Proceedings of the 26th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, 2021, pp. 292–303.

[37] C. Alappat, A. Basermann, A. R. Bishop, H. Fehske, G. Hager,
O. Schenk, J. Thies, and G. Wellein, “A recursive algebraic coloring
technique for hardware-efficient symmetric sparse matrix-vector multi-
plication,” ACM Transactions on Parallel Computing (TOPC), vol. 7,
no. 3, pp. 1–37, 2020.

[38] T. Gruber and et. al., “LIKWID performance tools,” 2019. [Online].
Available: https://github.com/RRZE-HPC/likwid

[39] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on X86-based many-core processors,” in
ICS’13. New York: ACM, 2013, pp. 273–282.

[40] Y. Niu, L. Zhengyang, M. Dong, Z. Jin, W. Liu, and G. Tan, “TileSpMV:
A tiled algorithm for sparse matrix-vector multiplication on GPUs,” in
35th IPDPS. IEEE, 2021, pp. 68–78.

[41] P. Mironowicz, A. Dziekonski, and M. Mrozowski, “A Task-Scheduling
Approach for Efficient Sparse Symmetric Matrix-Vector Multiplication
on a GPU,” SIAM Journal on Scientific Computing, 2015.

[42] W. Liu and B. Vinter, “Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors,” Parallel Computing,
vol. 49, pp. 179–193, 2015.

[43] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector
multiplication,” in SC’16, Salt Lake, 2016.

[44] C. Alappat, J. Laukemann, T. Gruber, G. Hager, G. Wellein, N. Meyer,
and T. Wettig, “Performance Modeling of Streaming Kernels and Sparse
Matrix-Vector Multiplication on A64FX,” in IEEE/ACM PMBS. IEEE,

2020, pp. 1–7.
[45] N. Namashivayam, S. Mehta, and P.-C. Yew, “Variable-sized blocks for

locality-aware SpMV,” in IEEE/ACM CGO. IEEE, 2021.
[46] J. Demmel, M. F. Hoemmen, M. Mohiyuddin, K. A. Yelick, J. Demmel,

M. Hoemmen, M. Mohiyuddin, and K. Yelick, “Avoiding commu-
nication in computing krylov subspaces,” UC, Berkeley, Tech. Rep.
UCB/EECS-2007-123, 2007.

[47] E. Carson, “Communication-avoiding krylov subspace methods in theory
and practice,” UC, Berkeley, Tech. Rep. UCB/EECS-2015-179, 2015.

[48] E. Carson, T. Gergelits, and I. Yamazaki, “Mixed precision s-step
lanczos and conjugate gradient algorithms,” Numer. Linear Algebra

Appl., vol. 23, pp. 656–673, 2016.
[49] D. R. Kincaid, J. R. Respess, D. M. Young, and R. R. Grimes, “Algo-

rithm 586: Itpack 2c: A fortran package for solving large sparse linear
systems by adaptive accelerated iterative methods,” ACM Transactions

on Mathematical Software (TOMS), pp. 302–322, 1982.
[50] X. Yu, H. Ma, Z. Qu, J. Fang, and W. Liu, “Numa-aware optimiza-

tion of sparse matrix-vector multiplication on armv8-based many-core
architectures,” in IFIP NPC. Springer, 2020, pp. 231–242.

[51] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D.
Kalamkar, X. Liu, M. M. A. Patwary, Y. Lu, and P. Dubey, “Efficient
shared-memory implementation of high-performance conjugate gradient
benchmark and its application to unstructured matrices,” in SC’14:.
IEEE, 2014, pp. 945–955.

