
This is a repository copy of Faster and Scalable MPI Applications Launching.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/197061/

Version: Accepted Version

Article:

Dai, Y, Dong, Y, Xie, M et al. (5 more authors) (2022) Faster and Scalable MPI Applications
Launching. IEEE Transactions on Parallel and Distributed Systems. ISSN 1045-9219

https://doi.org/10.1109/tpds.2022.3218077

© 2022, IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Faster and Scalable MPI Applications Launching

Yiqin Dai, Yong Dong, Min Xie, Kai Lu, Ruibo Wang, Juan Chen, Mingtian Shao, and Zheng Wang

Abstract—Distributed parallel MPI applications are the dominant workload in many high-performance computing systems. While

optimizing MPI application execution is a well-studied field, little work has considered optimizing the initial MPI application launching

phase, which incurs extensive cross-machine communications and synchronization. The overhead of MPI application launching can be

expensive, accounting for over 200 million processor core hours and 15% of the user core time annually on the production Tianhe-2A

supercomputer, which will increase as the number of parallel machines used grows. Therefore, it is critical to optimize the MPI

application launching process. This paper presents a novel approach to optimizing the MPI application launch. Our approach adopts a

location-aware address generation rule to eliminate the need for address exchange and a topology-aware global communication

scheme to optimize cross-machine synchronization. We then design a new application launch procedure to support the proposed

optimizations to further reduce the pressure of the shared I/O system. Our techniques have been deployed to production in the

Tianhe-2A supercomputer and the Next Generation Tianhe Supercomputer. Experimental results show that our approach scales well

and outperforms alternative schemes, reducing the MPI application launching time by over 29% with 320K MPI processes.

Index Terms—Message Passing Interface (MPI), High Performance Computing (HPC), MPI Application Optimizaiton.

✦

1 INTRODUCTION

Parallel applications are the dominant workload in high-
performance computing (HPC) systems. Many of these
parallel programs run across multiple compute nodes and
processors and use the Message Passing Interface (MPI) for
distributed communications and work distribution [1]–[3].
Effective management of MPI applications is thus vital for
improving system utilization and application performance
for HPC systems.

There is an extensive body of work in optimizing MPI
applications [4]–[7]. The vast majority of the prior work
focuses on the program execution stage, where MPI workers
have been distributed and initialized to run on assigned
computing machines and the required libraries, data, and
hardware resources had been prepared. However, the over-
head of the MPI launching process, which involves a range
of sub-tasks like allocating the required computing re-
sources, distributing the MPI jobs or workers to the assigned
compute nodes, instantiating the process on each node,
preparing the input files, and the initialization required
the MPI runtime, has been largely ignored in prior work.
While such overhead may seem to be trivial for a single-
user program, the aggregated time spent on this process
can quickly grow to many core hours on a large-scale
HPC cluster with many MPI jobs running. For example,
our study of the workload traces on the highly ranked
Tianhe-2A supercomputer [8] suggests that MPI application
launching accounts for over 200 million core hours annually,
or over 15% of the total core-hours spent by users, and we
expect this number to grow as the scale and size of MPI
applications continue to increase on future generation HPC
systems.

• Y. Dai, Y. Dong, M. Xie, K. Lu, R. Wang, J. Chen, and M. Shao are with
the College of Computer, National University of Defense Technology,
China.
E-mail: {daiyq, yongdong, xiemin, kailu, ruibo, juanchen,
shaomt}@nudt.edu.cn

• Z. Wang is with the School of Computing, University of Leeds.
E-mail: z.wang5@leeds.ac.uk

Therefore, there is a critical need to optimize MPI launch
to reduce the application delay and improve system utiliza-
tion. The benefit of accelerating the launching of the MPI
application is more pronounced during the application de-
velopment stage and the debugging phase when deployed
a new hardware system configuration. Both scenarios re-
quire frequently running MPI applications to test the design
choice. Furthermore, speeding up the launching process
is also useful for fault tolerance by reducing the delay in
restarting a failed job.

The MPI launch process consisting a sequence of sub-
tasks (termed as the application launch sequence in this paper),
including loading the executable binary and its supporting
libraries, setting up the internal library state, discovering
local network interfaces to configure the communication
channel, and preparing resources for communicating with
other processes. As part of the process, distributed MPI
workers need to agree on the network addresses used for
communications and make sure all workers have initialized
their state. Such synchronization steps are implemented by
first performing a global exchange operation, which is then
followed by a global barrier to synchronize the worker states
for moving to the computation stage. The overhead of the
synchronization steps depends on the participating number
of compute nodes and MPI workers and can account for
4.2% to 42.3% of the launching time.

This paper presents a new approach for optimizing MPI
application launch. Our approach is designed to reduce
the overhead of coordinating the communication addresses
and the global barrier operation during the MPI applica-
tion launch phase. To determine the endpoint addresses of
remote peers, we utilize the global scheduling information
provided by the resource manager (RM), which provides
the compute node an MPI work is placed, and the network
hardware information. With our new address generation
strategy, the application launch sequence is fully decou-
pled from the global address exchange, which, in turn,
improves the efficiency and scalability of the application

2

launch. Our barrier optimization scheme uses the topology
information of the interconnection network to accelerate the
barrier among all application processes. Building upon our
optimizations, we then propose a new launch sequence. Our
approach permits each MPI process to initialize its own
communication channel and assemble the communication
addresses of remote peers locally. By doing so, we can
greatly reduce the overhead of a global barrier operation.

We implemented our approach by modifying the system
software stack and deploying it to the Tianhe-2A super-
computer system [8] and the Next Generation Tianhe Su-
percomputer. We compare our approach against alternative
methods [9]–[11]. Our extensive evaluation shows that our
technique gives the fastest application launch time, reducing
the MPI launching overhead by 30% for an MPI program
with 320K processes running on 20K nodes when compared
to prior launch techniques.

This paper makes the following contributions:

• It presents a new optimization technique to reduce
the MPI application launching overhead (Sections 3.1
and 3.2);

• It develops a new launch sequence to accelerate the
MPI launch process (Section 3.3);

• Extensive experiments conducted on production su-
percomputer systems show that the proposed tech-
nique can greatly speed up the launch phase of large-
scale MPI applications (Section 5).

A preliminary version of this article entitled “The Fast
and Scalable MPI Application Launch of the Tianhe HPC
system” by Yiqin Dai, Yong Dong, Min Xie, Kai Lu, Ruibo
Wang, Mingtian Shao, Juan Chen [12] appeared in the 36th
IEEE International Parallel & Distributed Processing Sym-
posium (IPDPS), 2022. This extended version makes several
additional contributions to the conference paper: (1) we port
our approach to a new HPC system with 320K processes
to show the portability and scalability of the techniques
(Section 5.3); (2) we greatly extend our evaluation by show-
ing the impact of file caching (Section 5.1), the experimen-
tal results of Open MPI (Section 5.3), and the extra time
and space overhead of the proposed method (Section 5.4).
We demonstrate the optimization results of the proposed
method on actual workloads in a production environment
(Section 5.5). In addition, we study the total runtime and
results of the benchmark programs to evaluate the potential
impact of the proposed optimized launch technique on
MPI applications in terms of correctness and performance
(Section 5.6); (3) we present a new, more compact launch
sequence design (Section 3.3), leading to better performance
than the approach proposed in [12]; (4) we provide a set
of new generation rule for the virtual port (VP NUM) (Sec-
tion 3.1.1) to accommodate different node usage patterns
(exclusive or shared); (5) and we extend the background
and motivation sections (Section 2) to describe our system
software stack.

2 BACKGROUND AND MOTIVATION

2.1 TH-Express interconnection

Our techniques have been deployed to production in the
Tianhe-2A supercomputer. This system uses TH-Express,

PCI Interface

Address

transition

RDMA

engine

Descriptor

queue

Network port

Memory

protection

End-to-end

comm

Offload

mechanism

To host

To network

Fig. 1. Overview of the TH-Express network interface chip (NIC) (repro-
duced from from [13]).

Operating System

Message Passing Interface

Interconnection Network Infrastructure

Parallel File

System Resource

Manager

Common

Communication

Interface

Process Manager

Interface

Parallel Applications

Computing Devices Storage Devices

Application

Layer

System

Software Stack

Hardware

Layer

Fig. 2. A typical HPC infrastructure for supporting MPI applications.

an in-house interconnection network for cross-node com-
munication. However, our techniques can be easily ported
to other high-performance interconnection networks like
InfiniBand [14] and Tofu interconnect [15], [16] too.

The TH-Express network builds upon two specialized
chips, a Network Interface Chip (NIC) and a Network
Router Chip (NRC). The latter adopts a high-level rout-
ing structure, allowing the construction of a variety of
interconnection topologies with mixed optoelectronics. The
NIC provides interconnection communication services for
various systems and applications within a compute node
and uses the NRC to realize data transmission with each
compute node of the whole HPC system.

As shown in Fig. 1, TH-Express NIC connects a compute
node through a PCIe interface and communicates with
the interconnect fabric through the network port. The TH-
Express NIC provides several state-of-art mechanisms to
implement protected user-level communications - the most
important of which is the virtual port (VP) mechanism. With
this mechanism, when a process is initialized, it must exclu-
sively bind a VP on a NIC to perform inter-process commu-
nication. Therefore, a user process can be uniquely identified
by the combination of NIC and VP. VP is essentially a
combination of a small set of memory-mapped registers and
a bunch of in-memory data structures organized as several
queues. All data structures can be mapped to userspace to
be accessed concurrently with protection.

3

64 128 256 512 1K 2K 4K 8K 16K 32K
Number of processes (PPN=16)

0

1

2

3

4

5
Ti

m
e

Ta
ke

n(
s)

PMI exchange
Other

Fig. 3. Breakdown of time spent in MPI Init.

2.2 System software stack

Fig. 2 depicts the typical HPC hardware and software stack
for MPI. Our work lies in the software stack by utilizing
the underlying hardware interconnection networks. It is
a standard practice to use a communication library that
implements a generic interface to hide the hardware com-
plexity. Examples of such libraries include Unified Com-
munication X (UCX) [17], OpenFabrics Interfaces (OFI) [18]
and Common Communication Interface (CCI) [19]. Our
implementation builds upon the UCX interface that was
supported by TH-Express [20] which establishes the map-
ping from the UCX data structure to the resource of the
TH-Express interconnection and implements a high-speed
data transfer protocol. Furthermore, our evaluation system
uses the Slurm [21] resource manager (RM) for job distribu-
tions and hardware resources allocation. The RM uses the
process management interface (PMI) that is supported by
mainstream MPI frameworks like MPICH [22] and Open
MPI [23] to exchange information required by distributed
MPI workers.

2.3 Problem Scope

The classical MPI application launch process (or sequence)
consists of several steps. The user first submits a job, and
then the RM schedules the job and allocates resources for
the job. Next, the RM sends the job information to an RM
daemon running on each allocated compute node, where
the RM daemon then retrieves the file system and instanti-
ates the processes on each node. Finally, each MPI process
invokes the standard MPI Init method to complete its ini-
tialization before performing computation. Our work solely
focuses on the last three steps, i.e., after the job is scheduled
to run on the allocated resources until the completion of
MPI Init.

As part of the MPI Init process, each MPI worker must
discover the local interconnection resources and generate
its endpoint address for interactions with remote peers.
Then, an MPI library uses the standard interface provided
by PMI to exchange the network endpoint addresses for
inter-process communication - a process known as PMI
exchange. Fig. 3 shows the breakdown of the time taken
during MPI Init when launching an MPI microbenchmark
using a different number of compute nodes in Tianhe-2A.

The number of processes running on each compute node
(PPN) is 16, one for each processor core. With the increase
of node scale, the time consumed by barrier-based PMI
exchange gradually grows and is expected to dominate the
total MPI Init time in larger applications. As a result, the
barrier-based PMI exchange can become a bottleneck in the
MPI launch process for MPI applications with hundreds or
thousands of nodes. Our work aims to reduce the overhead
of PMI exchanges during the MPI launch process.

3 OUR APPROACH

This section presents the details of our MPI application
launch approach. We first develop a location-aware address
generation strategy (Section 3.1) to eliminate the need for
end-point exchanges. Our technique employs a topology-
aware global barrier optimization to reduce the overhead of
global barriers (Section 3.2). With these two optimizations
in place, we then introduce a new MPI launch sequence that
supports the above optimizations for PMI exchange (Section
3.3) and relieves the library retrieval storm problem. Our
prototype implementation has been deployed to the Tianhe-
2A supercomputing system by utilizing the TH-Express
interconnection network.

3.1 Location-Aware Address Generation Rule

The underlying reason for the MPI process to exchange
network endpoint addresses during application launch is
that the address generated by each process does not follow
a consistent rule and is somewhat random. To create the
endpoint address, each MPI process must locally find and
select the available resources to establish a communication
channel based on the current resource utilization. As a
result, the remote peers cannot acquire the communication
address of an MPI process until it has been generated.

Our approach avoids this problem by introducing a
location-aware address generation rule to eliminate the ran-
domness of address generation. In this way, each process
can obtain the address of its remote peers according to
the pre-defined endpoint address protocol without incur-
ring cross-node communications. We describe our approach
based on UCX (Section 2.2), but our methodology can be
applied to other network communication interfaces too.

Fig. 4 shows the basic communication entity of the TH-
Express-based UCX. Here, a communication entity contains
the endpoint address of a particular MPI process, and the
communication entities within the same MPI application
constitute a complete communication domain of the appli-
cation. We note that the total length of the communication
entity and the length of each field are fixed.

Community entity. Each communication entity is 38-byte
long. The first 30 bytes of a communication entity contain
various information required for inter-process communi-
cation except for the endpoint address. The last 8 bytes
of a communication entity are the network endpoint ad-
dress over the high-performance interconnection network.
Specifically, the Header is the flag of the UCX version.
The Model-Info (Model Information) and Dev-Info (Device
Information) indicate the information of communication
modules and devices, respectively. The Length is the length

4

UUID

8B

Dev-Info

19B

NIC_ID

4B

VP_NUM

4B

Header

1B

Model-Info

1B

Length

1B
NIC

Proc
VP

Node Z

Communication Entity (38 bytes)

NIC

Node X

... Proc ...Proc
VP

Proc ...

VP VP

NIC

Proc
VP

Node Y

Proc ...

VP

Fig. 4. The communication entity based on TH-Express interconnection.

NIC_ID

4B

Global Rank (GR)

uint32_t (GR)

NODE_ID

Global Scheduling

Information

Network

Hardware

Information

Local Rank

or

UUID

8B

VP_NUM

4B

(b)

(a)

(e)

(c)

(d)

Fig. 5. The location-aware address generation rule.

of the endpoint address. These fields are the same for all
communication entities within a communication domain of
the same Tianhe HPC system, so they do not require new
generation rules. However, the 8-bytes UUID, the identifier
of the communicating entity, and the 8-bytes endpoint ad-
dress must be unique within the communication domain,
which requires a new address generation rule.

Endpoint address. We use an 8-byte endpoint address con-
sisting of a 4-bytes NIC identifier (NIC ID) and a 4-bytes
virtual port number (VP NUM). The NIC ID can be used
to locate a remote NIC, while the VP NUM can be used
to find the virtual memory space of the remote process
on the specified NIC (see also Section 2.1). Fig. 5 presents
the proposed generation rule of the key fields, including
UUID, NIC ID, and VP NUM in the communication entity.
We note that each process has a global unique identifier
named Global Rank (GR) within an application. The GR
is assigned to each process by the RM when it is placed
on a determined node and is passed to the MPI library via
environment variables, which is a common implementation
of current HPC systems. Therefore, GR is available for both
the RM and the MPI library. As we will see later, GR plays a
crucial role in our proposed address generation rule because
it is unique within the communication domain and can be
linked to the process location information in the RM.

3.1.1 Endpoint address generation

Fig. 5 presents our proposed generation rule of the key fields
of the endpoint address in the communication entity. These
include UUID, NIC ID, and VP NUM. We describe these
key fields as follows.

0

1

2

3

4

5

6

7

node132

node133

246

247

GR NODE_ID NIC_ID

Fig. 6. The generation rule of NIC ID which is used to locate a remote
network interface chip (NIC).

UUID. We convert the GR of each process into a 32-bit
integer and directly use it as a UUID, that is UUID =
uint32 t(GR).

NIC ID. We map the global rank of a process to the NIC ID
of the node where the process resides. We do so by first
using the global scheduling information to find the location
information of each process, i.e., on which compute node
each process is located. This step completes the mapping
from the GR to the NODE ID (see Fig. 5 (a)). We then
use the network hardware information to get the NIC ID
corresponding to each compute node. This step completes
the mapping from NODE ID to NIC ID (see Fig. 5 (b)).
Fig. 6 illustrates the NIC ID mapping process for a job
with a total process count of 8 and a PPN of 4. The global
scheduling information is stored in the RM, and the network
hardware information can be read into the RM from a
pre-prepared file when the RM is started. Specifically, on

5

0

1

2

3

4

5

6

7

GR VP_NUM

11

12

13

14

20

21

22

23

0

1

2

3

4

5

6

7

GR VP_NUM

0

1

2

3

0

1

2

3

10

11

12

13

10

11

12

13

Local

Rank

or

(a) (b)

node132

node133

node132

node133

Fig. 7. The generation rule of VP NUM.

the Tianhe HPC system, we store the network hardware
information on each compute node as a file that contains
mappings from the NODE ID to the NIC ID. RM reads all
the network hardware information from this file to build
a hash table to store it at startup. When launching the
MPI application, RM can use the NODE ID as an index
to look up its corresponding NIC ID in the hash table.
Since global scheduling information and network hardware
information are available to RM but not to the MPI library,
it is logical for RM to take on the task of mapping from GR
to NIC ID before instantiating processes and passing the
mapping results to the MPI library through PMI wireup.
This process is detailed in Section 3.3. At this time, the RM
stores a key-value pair in the PMI key-value store for each
process, where the key is the GR of the process and the value
is the NIC ID of the process. The PMI wireup used to store
key-value pairs is specifically the PMI2 Put function or the
PMIx Put function. When the mapping results are available,
each process can locally obtain the NIC ID corresponding to
any remote processes from the PMI key-value store through
PMI wireup. At this time, the local process uses the GR of
the remote process as a key to look up the corresponding
key-value pair in the PMI key-value store and obtains the
NIC ID of the remote process through the key-value pair.
The PMI wireup used at this time is the PMI2 Get function
or the PMIx Get function.

VP NUM. We design two types of generation rules for
VP NUM, described as follows.

When multiple user applications share a compute node,
processes from different user programs can use the compu-
tational resources of the node at the same time. In this case,
we consider VP as an exclusive resource to be scheduled by
the RM (see Fig. 5 (c)). Since the number of VP on a single
node is usually larger than the number of cores in an HPC
environment, we can use a simple strategy to schedule an
available virtual port for each MPI process. For example,
the virtual ports can be scheduled in a round-robin manner
by excluding the reserved ports. In this way, the RM can
organize the scheduling results into several mappings from
GR to VP NUM and passes them to each process. This
process is illustrated in Fig. 7 (a), which visualizes the VP
scheduling of an MPI application with a total process count
of 8 and a PPN of 4 on a shared mode node. In this example,
the same MPI application will most likely occupy a different
port range on each compute node.

When a compute node is used exclusive by a single
user program, we can adopt a more aggressive mapping
scheme by first converting GR to Local Rank (LR), where the

identification of processes belonging to the same application
inside the compute node (see Fig. 5 (d)). We then use LR plus
the number of reserved virtual ports to get VP NUM (see
Fig. 5 (e)). This mapping is computed by the RM before the
process is instantiated and passed to the process via PMI
wireup. As shown in Fig. 7 (b), this mapping scheme allows
processes from the same application to use the same virtual
port range on each node, which facilitates debugging for
large-scale applications.

In summary, the location-aware address generation rule
makes use of process location information (specifically,
global scheduling information) that is reachable by the RM.
It requires the RM to prepare the mapping information
needed for address generation and store it in an agreed-
upon way before the processes are instantiated. Then after
instantiation, each process first generates its communication
entity according to the address generation rule and then
uses the mapping results to assemble the communication
entities of each remote process locally. The above technique
eliminates the need for inter-process address exchange,
thus improving the efficiency and scalability of the launch
process. Implementing the address generation method re-
quires the support of the interconnection network and the
system software stack. Although the hardware information,
topological structure, and address format differ across dif-
ferent high-performance interconnection networks, the idea
of using the global scheduling information to generate the
endpoint addresses of the remote processes locally is general
on various platforms. For example, for Infiniband or RoCE
networks with UCX [24], the fields of the communication
entity have the same meaning, and only the final endpoint
address is network specific. Therefore, for HPC systems
using the same system software stack (including UCX, RM,
and MPI library), the need for global address exchange can
be eliminated by designing location-aware address genera-
tion rules based on specific network characteristics. There-
fore, it is worth looking forward to implementing a non-
exchange application launch sequence based on different
high-performance interconnection networks.

3.2 Topology-Aware Global Barrier Operation

In the traditional MPI application launch sequence, the
PMI exchange is followed by a global barrier operation
to confirm that all processes are ready for communication.
Regardless of the address generation rules, the global barrier
operation still makes sense.

Recently, the PMIx community proposed that increasing
the processing of unexpected requests (i.e., communication
requests received before the complete initialization of the
communication channel) is a feasible means to help the
launch sequence get free from the global barrier opera-
tion [25]. However, the commonly used approaches to han-
dling unexpected requests are based on timed reconnection,
which leads to performance degradation in the early stages
of the application’s operation. In addition, adding handling
of unexpected requests requires modifications to the high-
performance interconnect network, which deviates from our
original intent of achieving optimization of MPI launch by
modifying the system software stack only. Based on these

6

... ...

Root Node Compute Node

Srun Slurmd Application process

Slurm RPC PMI Communication

Fig. 8. The schematic diagram of a k-nomial tree.

Inter-group Interconnection

1Slave Nodes 3 4 5 6 7Proxy Nodes 0 2

0

3

2

1

7

6

5

4

Intra-group

Interconnection

Group X

0

3

2

1

7

6

5

4

Intra-group

Interconnection

Group Y

Fig. 9. The TH-Express interconnection topology.

considerations, we choose to keep the barrier operation and
strive to improve its efficiency.

3.2.1 Traditional out-of-band global barrier

The global barrier operation is still a preamble of commu-
nication over the interconnection network, so it is usually
executed across the out-of-band management Ethernet. In
the Tianhe HPC system, Slurm (Simple Linux Utility for
Resource Management) [26], an open-source, fault-tolerant,
and highly scalable RM for large and small Linux clusters,
is the actual bearer of the barrier operation. Slurm uses a
slurmctld daemon running on the control node to manage,
schedule, and allocate resources, and a slurmd daemon
running on each compute node to start and clear processes,
redirect I/O, and so on. When a job is scheduled, slurmctld

TABLE 1
Time consumed by intra-group communication

Initiator Recipient #Forwarding Time
Group X-0 Group X-3 1 0.032ms
Group X-0 Group X-5 2 0.036ms

TABLE 2
Time consumed by inter-group communication

Initiator Recipient #Forwarding Time
Group X-0 Group Y-0 0 0.047ms
Group X-0 Group Y-3 1 0.049ms
Group X-0 Group Y-5 2 0.053ms
Group X-3 Group Y-5 3 0.057ms
Group X-5 Group Y-5 4 0.061ms

builds a k-nomial tree between slurmds to support the
launch of the parallel application. Fig. 8 shows a k-nomial
tree based on Slurm RPC (Remote Process Call) and PMI
wireup.

As noted in Section 2.3, in the traditional application
launch sequence with the PMI library, the barrier opera-
tion is integrated into the barrier-based Fence operation. In
the Tianhe HPC systems and other supercomputers using
Slurm, the barrier-based Fence operation is done based on
Slurm’s k-nomial tree.

Specifically, the barrier-based Fence operation consists
of two steps, including allgather and broadcast. First, the
processes of each compute node send local data to the local
slurmd daemon through PMI wireup, and the information
collected by each slurmd is sent to the root node from the
bottom to the top layer by layer to complete the allgather
operation. The root node then broadcasts the aggregated
data to all slurmds, which finally reaches each process. The
allgather and broadcast operations are performed based on
Slurm’s k-nomial tree. As the scale of the MPI application
increases, the inter-node communication contained in the
k-nomial tree also increases substantially. In addition, this
hierarchical communication scheme in Slurm is used for
other steps of application launch, such as file caching (see
Section 3.3).

Based on the general consideration of the RM, the out-
of-band global barrier operation done by the uncustomized
RM cannot take the topology of the interconnected net-
work into account. As a result, the structure of the tradi-
tional k-nomial tree used in Slurm is completely separated
from the topology of the interconnected network, leading
to inefficient communication. Herein, we are committed
to proposing a topology-aware tree that can rationalize
the communication between nodes based on the network
topology information and improve global communication
efficiency.

3.2.2 The topology of interconnection networks

TH-Express uses the network topology based on a hybrid
optoelectronic interconnection. Fig. 9 illustrates a classical
TH-Express topology. Each node group consists of eight
compute nodes. Nodes in the same node group perform
intra-group communication. Only two of the eight nodes in
each node group are used as proxy nodes to participate in
inter-group communication. A proxy node is a node that is
directly connected to a communication link between groups.

7

Root Node

Proxy Node

Slave Node

Deleted

Proxy Node

New

Slave Nodes

Added

Proxy Node

Preprocess

Construct

Orphan Node

a b cPreprocess

Nodelist:

d

Fig. 10. The construction process of a TA-tree.

The non-proxy nodes in each group are called slave nodes.
Data from another group to the slave nodes of this group
must be forwarded through the NIC of one of the proxy
nodes of this group. Nodes in a node group usually have
a tighter physical structure with each other, e.g., located
on the same physical board. Therefore, inter-group com-
munication tends to be more time-consuming compared to
intra-group communication. We evaluate the average time
consumed by sending ICMP ping packets between differ-
ent combinations of nodes on the Next Generation Tianhe
Supercomputer. As shown in Table 1 and Table 2, the time
consumption by inter-group communication is larger than
that of intra-group communication. In addition, an increase
in the number of intra-group forwards causes an increase in
communication time.

We design a topology-aware tree structure (TA-tree) to
minimize the number of inter-group communications and
the total length of intra-group forwarding length. The pri-
ority of reducing inter-group communication is higher than
reducing the number of intra-group forwarding. Therefore,
we build a topology-aware tree that can first reduce the
number of inter-group communications and then reduce the
total length of intra-group forwarding paths.

Although the above analysis is based on the Tianhe HPC
systems, the interconnection network topology with inter-
group and intra-group communications co-exist is adopted
by many HPC systems. In the TofuD interconnection net-
work [16], the hypercube topological structure composed of
12 compute nodes is called a tofu unit. The nodes in the
same unit perform intra-unit interconnection, while inter-
unit interconnection is performed between tofu units. In
Sunway Taihulight [27], every 256 compute nodes consti-
tutes a supernode. The communication within the supern-
ode and the communication between supernodes form a
multi-level Sunway network. In the interconnect design of
Summit [28], there are 18 compute nodes in a calculation
frame. The nodes in the same frame are connected to a
separate TOR switch. Then the TOR switch on each calcu-
lation frame is then connected to the core switch. Based on
the above facts, we believe that the above idea of reducing

Fig. 11. The tree construction stage of a TA-tree with 4 layers and a tree
width of 9.

the number of inter-group communications and intra-group
forwarding has some generality. In this case, the TA-tree can
be tuned to accommodate different interconnection network
topologies, for example, by setting each local root node as
some network facilities, such as switches.

3.2.3 Constructing topology-aware tree

Our TA-tree is constructed based on two principles. The first
is to collect nodes in the same group as much as possible to
form a local tree structure. The second is that the root node
of each local tree structure is preferably the proxy node of
that group, and the parent node of each local root node is
preferably the proxy node of another group.

For each node, if its parent node belongs to another
group, there must be an inter-group communication be-
tween the parent node and that node. In comparison, if the
parent node is a node in the same group, only intra-group
communication exists. Thus, our first principle reduces the
number of inter-group communications. If we now consider
the local tree structure as a whole. The shortest path between
the two groups is the path between the proxy nodes of the
two groups. At this time, the communication between the
two groups only includes one inter-group communication
without any intra-group forwarding, which reduces the
number of intra-group forwarding to the greatest extent.

There are two stages in constructing a TA-tree, including
the pre-processing stage and the tree construction stage.
Fig. 10 visually shows the workflow of the two stages.
To reduce the complexity, we do not blindly pursue the
optimal solution when constructing a TA-tree, but find a
better solution within the acceptable complexity range.

Pre-processing stage. After getting the original node list,
we put the nodes that belong to the same node group in
the network topology into the same node set. We classify
nodes into three categories within each node set: proxy

8

nodes, slave nodes, and orphan nodes. Here, the orphan
nodes refer to those slave nodes that do not have any proxy
nodes of the same group appearing in the node list. Then,
we analyze each obtained node set. For a set that already
has two proxy nodes, we reserve a proxy node and modify
the other proxy node as a slave node (see Fig. 10 (a)). For
a set with more than four orphan nodes, we select a proxy
node from the same node group and add it to the node
list while modifying all orphan nodes in the same group
to slave nodes (see Fig. 10 (b)). The newly added proxy
node is not in the original node list. In other words, the
newly added proxy node is not the node where the MPI
application process is located. Therefore, the newly added
proxy node can only perform the data forwarding function
after adding to the TA-tree but cannot process the data
locally. Specifically, we set the forwarding-only flag on the
node newly added to the node list to indicate that the node
only forwards the data and does not perform any processing
on the data. For the set with less than four orphan nodes and
the set with only one proxy node, we do not perform any
operations (see Fig. 10 (c) and (d)).

Tree construction stage. We organize the nodes in the same
node set into a local tree structure as much as possible.
However, for node sets with only orphan nodes, we do
not organize them into a local tree structure because a local
tree structure formed by a small number of nodes can sig-
nificantly reduce the concurrency of message transmission,
resulting in a decrease in communication efficiency. Accord-
ing to the two principles described in the second paragraph
of Section 3.2.3, we use the following construction rules.
R1: Firstly, each proxy node must be the root node of the
local tree structure. The parent node of each proxy node
can only be another proxy node or the global root node,
and choosing the global root node as the parent node has a
higher priority. R2: Secondly, any slave node must be a leaf
node, and its parent node must be the specified proxy node
within the group. R3: Thirdly, the parent node of an orphan
node can be the global root node, a proxy node, or another
orphan node, in descending order of priority. Among these,
the first and the second rule meets the requirements of our
second and first principles, respectively, while the third rule
is created to deal with some exceptional cases.

When constructing the TA-tree, we first determine the
location of each local root node, i.e., the specified proxy node
within each node set, according to R1. Then the slave nodes
of each proxy node are added to the tree as the child nodes
according to R2. Finally, orphan nodes fill the tree structure
according to R3. Fig. 11 shows the tree construction stage of
a TA-tree with more layers and a treewidth of 9. In the above
construction process, the number of child nodes of each
node cannot exceed the treewidth. Therefore, the treewidth
needs to be set larger than the number of nodes in each
node group which ensures that a proxy node has enough
tree width to connect another proxy or orphan node after
connecting all the slave nodes in the group.

3.3 Optimized MPI Application Launch sequence

Fig. 12 compares the traditional launch sequence with our
proposed optimized launch sequence. There are four steps

in total in the launch sequence, and we first briefly describe
the traditional launch sequence.

Stage 1. A user submits a job script describing the required
resources to the workload manager (WLM). The WLM
allocates resources to the job according to the resource
availability, relative priorities, and scheduling algorithm.

Stage 2. WLM broadcasts the job-related information (such
as the job script and global scheduling information) to the
RM daemons of allocated nodes.

Stage 3. The RM daemon on each node retrieves the exe-
cutable binary and dependencies in the file system (FS) and
instantiates it on the compute node. When multiple local
RM daemons simultaneously retrieve the executable binary
and the libraries from a shared file system (typically used in
an HPC environment), these simultaneous I/O accesses can
put enormous pressure on the file and the I/O forwarding
layer, leading to a problem known as the library retrieval
storm [25].

Stage 4. Each process discovers the local resources and
generates an endpoint address for inter-process communi-
cation. Then, all processes in the application implement a
global information exchange followed by a global barrier
operation. The exchange body includes at least the global
rank and endpoint address. The global barrier confirms that
all processes have completed the above work and are ready
to communicate. Finally, each process creates an address
table to store the address of remote peers obtained by global
exchange. This stage is completed by the MPI Init function
in MPI.

Our current implementation of the optimized launch
technique on the Tianhe HPC system1 supports two main-
stream parallel programming models, including MPICH,
Open MPI. It does not require PMI exchange and uses
the TA-tree to optimize global communications. Compared
with the optimized launch sequence proposed in [12], our
new optimized launch sequence directly uses the initialized
PMI key-value store instead of shared memory. This choice
eliminates the additional operations of creating, setting, and
reclaiming shared memory, thus reducing the launch time.
In the launch sequence, PMI is a generic term for both PMI-2
and PMIx. We have now implemented the optimized launch
sequence on PMI-2 and PMIx.

Stage 1. Same as the traditional launch sequence.

Stage 2. WLM retrieves executables and dependencies from
the FS and caches the required files locally. At the same time,
WLM constructs a TA-tree containing all the compute nodes
assigned to the job. Finally, WLM broadcasts the required
files and job-related information to the RM daemons of al-
located nodes through the TA-tree. The Tianhe HPC system
takes a more direct approach by caching the required files
directly to the local memory of each compute node. Within
this stage, the added file caching process occurs at the
same time as the WLM broadcasts job-related information
to the compute nodes, the latter being a mandatory step
in any launch sequence. Thus, the additional file caching
process can be seen as enabling the WLM to broadcast more

1. Specifically, in the Tianhe HPC system, WLM and the RM daemon
are implemented as the slurmctld and the slurmd daemon using the
Slurm cluster management system.

9

PMI

Server

Node X
NIC

RM
Proc

PMI

Client

Job ScriptUser

Cache

SpawnFS
File Caching

Retrieve

libraries

Operations

through

TA-tree

Construct a

TA-tree

Cache

File

Caching

Barrier through

TA-tree

Stage 1 Stage 2 Stage 3 Stage 4

Mapping

results

PMI

Server

Node Y NIC

RM
Proc

PMI

Client

Cache

Spawn

PMI

Server

Node X NIC

WLM

RM
Proc

PMI

Client

Job ScriptUser

Spawn

FS

Setup

communication

channel

Global exchange

and

global barrier

PMI

Server

Node Y NIC

RM
Proc

PMI

Client

Spawn
Setup

communication

channel

WLM

Mapping

results

Create
Address

Table

Create
Address

Table

Create
Address

Table

Create
Address

Table

Setup

communication

channel

Setup

communication

channel

Fig. 12. The MPI application launch sequence. The above figure shows the traditional launch sequence, while the below figure shows the optimized
launch sequence.

relevant information to the compute nodes and replacing
the traditional tree structure used with the TA-tree com-
pared to the traditional launch sequence. Due to the rational
arrangement of the process and the superior performance of
the TA-tree, the file caching time can be significantly hidden.

Stage 3. The RM daemon on each compute node uses the
global scheduling information and network hardware infor-
mation to map the global rank to NIC ID and VP NUM.
Next, each RM daemon stores the mapping result in the
PMI key-value store with the global rank as the key and the
NIC ID or VP NUM as the value through the PMI wireup.
With this accomplished, each RM daemon instantiates the
application processes.

Stage 4. At this stage, each MPI process establishes a con-
nection to the PMI server and gets mapping results prepared
by RM. Then the process creates its own communication
channel on the interconnection network. Then, an out-of-
band barrier is executed through TA-tree to ensure that all
processes are ready to communicate. Finally, each process
uses the mapping results to assemble the addresses of the
remote peers locally according to the proposed address
generation rule. The addresses of all processes are stored

TABLE 3
System software stack used in evaluation

System Software
File System Lustre v2.14.0
Resource Manager Slurm v20.11.7
Process Management Interface PMI-2 / PMIx v3.2.3
Parallel Programming Model MPICH v3.4.2 / Open MPI v4.1.1
Common Communication Interface UCX v1.11.0

in the process address table. This stage is completed by the
MPI Init function in MPI.

Furthermore, compared with the traditional launch se-
quence, our optimized launch sequence is designed to speed
up the Stage 4. It introduces additional time and space
overhead in Stages 2 and Stage 3, which we will evaluate in
the next section. Thereafter, we refer the launch time to the
time between Stages 2 and Stage 4. That is, from the time
when the job is being allocated computing resources to the
end of MPI init function.

4 EVALUTAION SETUP

4.1 Hardware Platforms

We evaluate our approach on two HPC systems. The first
is the Tianhe-2A supercomputer, ranked in the seventh

10

TABLE 4
PMI and MPI library settings used in each figure.

Figure PMI MPI Library
Fig. 13 PMIx v3.2.3 Open MPI v4.1.1
Fig. 15 PMIx v3.2.3 Open MPI v4.1.1
Fig. 16 PMIx v3.2.3 MPICH v3.4.2
Fig. 17 PMI-2 MPICH v3.4.2
Fig. 18 PMI-2 MPICH v3.4.2
Fig. 19 PMI-2 MPICH v3.4.2
Table 5 PMI-2 MPICH v3.4.2
Table 7 PMI-2 MPICH v3.4.2

place on the TOP500 list as of November 2021. The second
platform is The Next Generation Tianhe Supercomputer.
Tianhe-2A has 16K compute nodes, with a total of 4,981,760
cores and 2,277 TB of memory. Each computing node on
Tianhe-2A has 64GB of RAM with a 12-core 2.2 GHz Intel
Xeon processor and a Matrix-2000 accelerator. The Next
Generation Tianhe Supercomputer has more than 20K com-
puting nodes. Each computing node on the Next Gener-
ation Tianhe Supercomputer has a heterogeneous many-
core MT processor. Both HPC systems are equipped with
the in-house designed interconnection network TH-Express.
This proprietary interconnection network interface chip is
designed to provide high-speed network interconnection.
A single network port uses a four-lane high-speed serial
transmission link, providing a link rate up to 25 Gbps. It
provides a one-port one-way bandwidth of 100 Gbps, and
the external one-way bandwidth of a single compute node
is 400 Gbps in total. The CPU and the network interface chip
are connected through the PCIe Gen3 16x interface.

4.2 System Software Stack

Table 4 illustrates the system software stack used in the
evaluation, where the resource manager Slurm, the parallel
programming model MPICH and Open MPI, and the com-
mon communication interface UCX are revised to support
our optimized launch sequence. Our changes are described
as follows.

Slurm. We update Slurm to read the network hardware
information from a configuration file at startup. It uses
TA-tree instead of the traditional tree structure in the MPI
application launch sequence. It retrieves files from the file
system in advance and caches them to compute nodes via
TA-tree. It then generates mappings from Global Rank to
NIC ID and VP NUM at each compute node and store the
mapping results in the shared memory and store the pointer
of shared memory in PMI key-value store.

MPICH and Open MPI. We update the MPI runtime to
obtain the pointer of shared memory through PMI wireup
and b) uses the mapping results in the shared memory to
assemble the communication address of the remote peers
instead of using the Put-Fence-Get sequence to exchange
the communication address of the remote peers.

UCX. We revised UCX to generate the communication ad-
dress of the local process according to the new address
generation rule.

4.3 Experimental Roadmap

Our evaluation is divided into six parts. First, we evaluate
the effect of file caching on mitigating library retrieval

storms (Section 5.1). Next, we evaluate the data transfer
performance of the TA-tree (Section 5.2). Then, we evaluate
the acceleration effect of the optimized launch sequence on
MPI Init (Section 5.3). We then show the additional cost of
the optimized launch sequence compared to the traditional
launch sequence (Section 5.4). Again, we compare the total
time consumed by launching the benchmark program and
the real HPC workload using the traditional and optimized
launch sequences (Section 5.5). Finally, we study the total
runtime and results of the benchmark programs to evaluate
the potential impact of the proposed optimized launch
technique on MPI applications in terms of correctness and
performance (Section 5.6).

It is worth mentioning that the file caching process is
integrated into the system software stack in the optimized
launch sequence shown in Fig. 12. Still, it is also possible to
manually copy the required files to compute nodes before
the application starts. Since there are various implementa-
tions of file caching and it is closely related to the underlying
network implementation of the HPC system, we do not
consider the acceleration effect from file caching as the main
optimization in this paper. Therefore, in the following Sec-
tion 5.3 and Section 5.5, the baseline approach refers to the
launch sequence with the file caching technique added to
the traditional launch sequence. Therefore, the optimization
effects in Section 5.3 and Section 5.5 are brought about by the
location-aware address generation rule and topology-aware
global barrier operation, independent of the file caching.

To evaluate the optimization effect of the optimized
launch sequence, we compare the following five launch
techniques on the Tianhe-2A in the evaluation.

Baseline. The baseline method represents the traditional
application launch method using the PMI library.

Shm. Shm method represents the method of using shared
memory to reduce the data retrieved from PMI during PMI
exchange, which is proposed in [9].

Ring. Ring method refers to the method of using the ring
exchange operation proposed in [10] to replace the Fence
operation.

Allgather. Allgather method is a new API that combines
three separate operations of Put, Fence, and Get as a single
collective call, which is proposed in [11].

LATA. LATA method refers to the use of the optimized
launch techniques and its corresponding optimized launch
sequence proposed in this paper. LATA is taken from the
initials of the words Location-Aware and Topology-Aware.

5 EXPERIMENTAL RESULTS

5.1 Optimization Effect of File Caching

Caching files needed by the MPI application to the compute
nodes can avoid large retrievals from the file system in
a short time. Fig. 13 compares the launch time of MPI
Hello World program of different sizes with and without
file caching on the Tianhe-2A. Note that in this figure, the
use and non-use of file caching are based on the traditional
launch sequence, which means that the figure only com-
pares the optimization effect brought by file caching. The
launch time is defined as the time from when the resource
manager starts scheduling this MPI application until all

11

0 200 400
Global Rank

0.15

0.20

0.25

0.30
La

un
ch

 T
im

e
(s
)

0 500 1000
Global Rank

0.4

0.6

0.8

1.0

La
un

ch
 T
im

e
(s
)

Baseline w/o file caching Baseline with file caching

0 1000 2000
Global Rank

1.0

1.5

2.0

2.5

La
un

ch
 T
im

e
(s
)

0 2000 4000
Global Rank

1.5

2.0

2.5

3.0

3.5

4.0

La
un

ch
 T
im

e
(s
)

0 2500 5000 7500
Global Rank

2

3

4

5

6

La
un

ch
 T
im

e
(s
)

Fig. 13. MPI application launch time for different sizes with and without file caching on the Tianhe-2A. From left to right the total number of processes
for MPI applications is 512, 1024, 2048, 4096, 8192, where PPN=16.

128 256 512 1K 2K 4K 8K 16K 32K
Number of Nodes

0

2

4

6

8

10

12

14

16

Ti
m

e
Co

ns
um

pt
io

n
(s

)

(a)

Star
SM-based
Tra-tree
TA-tree

128 256 512 1K 2K 4K 8K 16K 32K
Number of Nodes

0

10

20

30

40

50

60

70

Ti
m

e
Co

ns
um

pt
io

n
(s

)

(b)

Star
SM-based
Tra-tree
TA-tree

Fig. 14. Time consumed to transfer 16MB (figure a) and 400MB (figure
b) of data on the Next Generation Tianhe Supercomputer using different
data transfer methods.

processes exit the MPI Init function. Referring to Fig. 12,
the launch time is the time from the start of Stage 2 to the
end of Stage 4. In Fig. 13, as the application size increases,
the launch time without file caching increases significantly,
while using file caching can significantly reduce the in-
crease. This result fully illustrates library retrieval storms’
impact on launch time.

5.2 TA-tree Performance

We evaluate the performance of the TA-tree in Stage 2 (see
Section 3.3) on the Next Generation Tianhe Supercomputer.
We compare four data transfer methods:

Star. This method refers to the use of a star structure to
transfer data directly from one location to multiple nodes.
Some tools based on ssh connections can be equated to the
Star method, such as the clustershell tool [29].

SM-based. This method caches the first request to shared
memory or a burst buffer and serves all subsequent requests
from the cache (e.g., SPINDLE [30]).

Tra-tree. This strategy transfers data using the traditional
tree structure. A good case in point is the sbcast command
of Slurm.

TA-tree. This scheme transfers data using our proposed
topology-aware tree structure.

Fig. 14 shows the time consumption of transferring files
with a total size of 16MB and 400MB using different transfer
methods. As shown in Fig. 14, using the TA-tree consumes
the least time for different node sizes, which fully demon-
strates that the TA-tree has a good optimization effect with

better scalability. These features of the TA-tree are significant
for speeding up the launch of parallel applications.

5.3 Time Consumed by MPI Init Function

The optimized launch sequence mainly speeds up Stage 4
(see Section 3.3), the MPI Init function. Fig. 15 shows the
time consumed by Open MPI’s MPI Init when launching
the MPI Hello World program of different sizes on the
Tianhe-2A. As the total number of processes in the program
increases, LATA accelerates MPI Init more significantly.
When starting a program with a total number of 8K pro-
cesses, LATA can reduce the Open MPI’s MPI Init time by
54.6%. A similar trend can be seen in Fig. 16, which shows
the time consumed by MPICH’s MPI Init when launching
the MPI Hello World program of different sizes on the
Tianhe-2A. When starting a program with a total number
of 8K processes, LATA can reduce the MPICH’s MPI Init
time by 28.8%.

Fig. 17 shows the time consumed by MPI Init when
launching the MPI Hello World program with five different
launch techniques. The Shm, Ring, and Allgather reduce
the time consumed by MPI Init to some extent compared
to the Baseline method with file caching, but the most
significant improvement comes from our LATA method.
When launching an application with 32K processes, our
LATA method can reduce the time consumption by 22.9%
compared to the Baseline method with file caching.

To evaluate the scalability of our LATA method, we con-
duct experiments on larger clusters and collect experimental
data that is generally lacking in previous related work. We
use 10K and 20K nodes in the Next Generation Tianhe su-
percomputer to evaluate the time consumed by the MPI Init
function of the MPI Hello World program while the PPN
grows from 1 to 16. As the scale of the parallel applica-
tion increases, the optimization effect of our LATA method
becomes more pronounced. When launching a parallel ap-
plication with 160K processes on 10K nodes, the LATA
method reduces the MPI Init time by 26.6% compared to
the Baseline method with file caching. When launching an
application with 320K processes on 20K nodes, the reduction
is 29.7%. Another interesting fact is that launching the same
application on more nodes (i.e., reducing PPN) increases
the MPI Init time, regardless of the launch technique used.
This is because the global address exchange and the global
barrier operation contain a number of communications that
are positively correlated with the number of nodes.

12

0 200 400
Global Rank

0.00

0.05

0.10

0.15

0.20
M

PI
_In

it
Ti

m
e

(s
)

Baseline with file caching LATA

0 500 1000
Global Rank

0.05

0.10

0.15

0.20

0.25

0.30

M
PI

_In
it

Ti
m

e
(s

)

0 1000 2000
Global Rank

0.0

0.2

0.4

0.6

0.8

M
PI

_In
it

Ti
m

e
(s

)

0 2000 4000
Global Rank

0.6

0.8

1.0

1.2

1.4

M
PI

_In
it

Ti
m

e
(s

)

0 2500 5000 7500
Global Rank

1.00

1.25

1.50

1.75

2.00

2.25

M
PI

_In
it

Ti
m

e
(s

)

Fig. 15. Time Consumed by Open MPI’s MPI Init when launching Hello World program of different sizes on the Tianhe-2A. From left to right the
total number of processes for MPI applications is 512, 1024, 2048, 4096, 8192, where PPN=16.

0 200 400
Global Rank

0.175

0.200

0.225

0.250

0.275

0.300

M
PI

_In
it

Ti
m

e
(s

)

Baseline with file caching LATA

0 500 1000
Global Rank

1.150

1.175

1.200

1.225

1.250

1.275

1.300

M
PI

_In
it

Ti
m

e
(s

)

0 1000 2000
Global Rank

1.1

1.2

1.3

1.4

1.5

M
PI

_In
it

Ti
m

e
(s

)

0 2000 4000
Global Rank

1.0

1.2

1.4

1.6

M
PI

_In
it

Ti
m

e
(s

)

0 2500 5000 7500
Global Rank

1.6

1.8

2.0

2.2

2.4

2.6

M
PI

_In
it

Ti
m

e
(s

)

Fig. 16. Time Consumed by MPICH’s MPI Init when launching Hello World program of different sizes on the Tianhe-2A. From left to right the total
number of processes for MPI applications is 512, 1024, 2048, 4096, 8192, where PPN=16.

64 128 256 512 1K 2K 4K 8K 16K 32K
Number of Processes (PPN=16)

0

1

2

3

4

5

M
PI

_In
it

Ti
m

e
(s

)

Baseline with file caching
Shm
Ring
Allgather
LATA

Fig. 17. Time consumed by MPI Init with different launch techniques on
the Tianhe-2A.

1 2 4 8 16
PPN (10K nodes)

10

15

20

25

M
PI
_In

it
Ti
m
e
(s
)

(a)

Baseline with file caching LATA

1 2 4 8 16
PPN (20K nodes)

10

15

20

25

30

35

M
PI
_In

it
Ti
m
e
(s
)

(b)

Fig. 18. Time consumed by MPI Init on the Next Generation Tianhe
Supercomputer.

TABLE 5
Additional overhead

Proc Additional time overhead Additional PMI key-value store
64 0.165s 1KB

256 0.169s 4KB
1,024 0.175s 16KB
4,096 0.182s 64KB

16,384 0.194s 256KB
65,536 0.205s 1MB

262,144 0.224s 4MB
163,840 0.218s 2.56MB
327,680 0.230s 5.12MB

TABLE 6
Workload used in the evaluation

Name Category # Proc PPN
CG NPB benchmark 8,192 16
EP NPB benchmark 8,192 16
FT NPB benchmark 4,096 16
MG NPB benchmark 4,096 16

GROMACS [31]
GROningen MAchine for
Chemical Simulation

2048 16

QUEST [32]
QUantum mechanics Enabled
Simulation Toolset

2,048 4

Kmeans [33] Clustering Algorithm 1,024 4
CSEM [34] Community Earth System Model 1,024 16

WRF [35]
The Weather Research
and Forecasting model

1,024 16

5.4 Additional Overhead

To implement the optimized launch sequence, the RM in the
Stage2 and Stage 3 (see Fig. 12) adds additional workflows
and put more key-value pairs into the PMI key-value store
on each node. Table 5 shows this additional overhead for
launching MPI applications of different sizes. The increase
in additional time overhead with application size is small.
When launching an MPI application with the optimized

13

TABLE 7
Total runtime of NPB benchmark programs on the Next Generation Tianhe Supercomputer

Program Scale #Proc PPN
Launch

Technique
Total

Runtime (s)
Verification Program Scale #Proc PPN

Launch
Technique

Total
Runtime (s)

Verification

CG
B 4096 8

Baseline 7.13 Successful

IS
B 1024 8

Baseline 1.87 Successful
LATA 6.03 Successful LATA 1.86 Successful

D 4096 8
Baseline 64.23 Successful

D 1024 8
Baseline 8.45 Successful

LATA 62.83 Successful LATA 8.76 Successful

EP
B 4096 8

Baseline 3.26 Successful

BT
B 1024 8

Baseline 4.22 Successful
LATA 3.15 Successful LATA 4.05 Successful

D 4096 8
Baseline 4.06 Successful

D 1024 8
Baseline 103.16 Successful

LATA 3.96 Successful LATA 103.88 Successful

FT
B 4096 8

Baseline 3.66 Successful

SP
B 1024 8

Baseline 6.62 Successful
LATA 3.49 Successful LATA 6.39 Successful

D 4096 8
Baseline 23.49 Successful

D 1024 8
Baseline 186.48 Successful

LATA 22.36 Successful LATA 187.27 Successful

MG
B 4096 8

Baseline 3.25 Successful

LU
B 1024 8

Baseline 3.87 Successful
LATA 3.16 Successful LATA 3.91 Successful

D 4096 8
Baseline 7.46 Successful

D 1024 8
Baseline 76.26 Successful

LATA 7.14 Successful LATA 76.60 Successful

CG EP FT MG GROMACS QUEST Kmeans CESM WRF
Application

0.0

0.5

1.0

1.5

2.0

2.5

La
un

ch
 T

im
e

(s
)

Baseline with file caching
Shm
Ring
Allgather
LATA

Fig. 19. Launch time with different launch techniques on the Tianhe-2A.

launch sequence, the additional time overhead of the RM
is only 0.16-0.23s. Compared to the reduction of MPI Init
time by the optimized launch sequence (see Fig. 17), the
additional time overhead is perfectly acceptable at larger
application sizes. Therefore, we recommend using the op-
timized launch sequence for large-scale applications with
more than 1K processes while still using the traditional
launch sequence for smaller applications. The last two rows
in Table 5 correspond to the largest-scale experimental
scenarios in Fig. 18 (a) and (b), respectively. Specifically,
when an application with 160K processes is started on 10K
nodes, the additional time overhead brought by using the
optimized launch sequence is 0.78% of the traditional launch
sequence’s launch time. When launching an application
with 320K processes on 20K nodes, this ratio is only 0.48%.
On the other hand, the size of shared memory on each node
appears to increase linearly with the size of the system.
When launching an application with 256K processes, only
4MB of additional PMI key-value store is required on each
node.

5.5 Application Launch Time

To evaluate the advantages of the optimized launch se-
quence over traditional launch sequences in real production
environments, we run the workloads in Table 6 to evaluate
the launch time. At this time, the launch time includes
the time from Stage 2 to Stage 4, so the additional time
overhead of the RM in Stage 2 and Stage 3 is also taken

into account. We make sure that the same application runs
on the same set of nodes during the experiment to avoid
the performance gap of compute nodes from affecting the
experimental result. Fig. 19 shows the experimental results
on the Tianhe-2A. Compared with the other four launch
techniques, our LATA method can minimize the launch time
of each application.

5.6 Total Runtime

To evaluate the potential impact of LATA on MPI applica-
tions in terms of correctness and performance, we launched
NPB benchmark programs of different sizes using both
LATA and Baseline methods. The programs’ total runtime
and running results are shown in Table 7. The total runtime
refers to the time from the program submission to RM to
the completion of the program running when the resources
are sufficient. The running result is the verification result
(SUCCESSFUL or FAILED) output by the NPB benchmark
programs.

As can be seen from Table 7, all NPB benchmark pro-
grams run correctly, suggesting that launching the MPI
application with LATA does not affect the correctness of the
programs. When the total number of processes of the MPI
application is 4K, using LATA to start the program reduces
the total runtime of the program compared to the Baseline
method. However, when the total number of processes in
the MPI application is only 1K, this advantage does not
exist. Moreover, looking at all the experimental results, we
find that the advantage of LATA is more pronounced when
the size of the MPI application is larger. This is because
the objects of our optimization, i.e., global address exchange
and global barrier operation, only become bottlenecks when
the number of processes is high. Therefore, our optimization
is mainly intended for launching large-scale applications
(at least more than 4K processes). In practice, we also
recommend using LATA launching technology only when
launching large-scale applications.

6 RELATED WORK

In 2018, the PMIx community proposed an application
launch sequence without collective address exchange and

14

the global barrier operation [25]. However, the PMIx com-
munity is still working with network vendors to field the
support of the new launch sequence, which requires mod-
ifications to the fabric manager and NIC libraries, as well
as potential hardware changes for optimized performance.
Since the above work is incomplete, the latest MPI versions,
such as MPICH v4.0.1, still retain the barrier-based PMI
exchange. In 2020, the PMIx community implemented an
alternative wireup method known as Direct Modex [36],
through which data can be retrieved from a remote host
without the need for barrier-based information exchange.
However, the Direct Modex reduces the efficiency of each
retrieve, so it remains best suited for sparsely connected
applications. Holmes et al. [37] proposed the MPI Session in
2016, and the MPI Forum added the MPI Session extensions
to MPI-4.0 [38] in 2021. The session model describes an alter-
native approach to MPI initialization, which can instantiate
MPI resources for specific communication needs. The MPI
Session can address limitations, including MPI cannot be
initialized from different application components without
prior knowledge or coordination, MPI cannot be initialized
more than once, and MPI cannot be reinitialized after the
MPI Finalize function has been called. However, the MPI
Sessions approach has some overhead (20%) compared to
that used for MPI initialization with Open MPI release [39].

There have been significant efforts to improve the per-
formance and scalability of launching parallel applications.
Yu et al. [40] explored a method of using InfiniBand to
reduce the startup costs of MPI jobs. Chakraborty et al.
[10] proposed three extensions to the PMI specification: a
ring exchange collective, a broadcast hint to Put operation,
and an enhanced Get operation to reduce communication
over the out-of-band PMI channel. [11] designed and im-
plemented an Allgather API to reduce the data process-
ing overheads by cutting down the amount of data being
transferred in existing PMI designs. Polyakov et al. [41]
made specific improvements in the UCX endpoint address
format, the layout of PMIx metadata, and the use of Little-
Endian Base 128 encoding, which decreased the volume of
inter-node data exchanged by up to 8.6x. The main idea of
these approaches is to reduce the launch costs by reducing
the amount of data globally exchanged out-of-band. In
contrast, our method eliminates the need for global address
exchange, which minimizes the information that needs to
be exchanged. Turilli et al. [42] describe the performance
of running multitasking applications on the Summit [28].
Although this research evaluates the overhead of resource
management and task scheduling in the application launch,
it lacks the application launch overhead (i.e., the overhead
of the MPI Init function) embedded in the MPI library.

Related research also focuses on using shared memory
to improve the efficiency of application launches. [43] used
a shared memory-based channel to reduce the memory
consumption when launching applications. [9] presented
the use of shared memory to reduce the total amount of
information retrieved from PMI and reduce the dependence
on PMI by employing the HPC fabric to transfer the bulk
of address data. These researches were devoted to solving
the memory bottleneck in PMI communication. In fact, PMI
communication, including the Put, Get, and Fence opera-
tions, mainly occurs during global information exchange.

Our launch technique significantly reduces PMI commu-
nication by avoiding global exchanges and fundamentally
alleviates the memory bottleneck caused by a large amount
of PMI communication.

Much work focuses on how to optimize MPI applications
using topology-aware techniques. Vardas et al. [44] use
topology-aware techniques to allocate optimal resources to
MPI applications to reduce communication costs. Tsujita et
al. [45] exploit MPI’s rank reordering mechanism to achieve
runtime topology awareness for collective communication,
especially MPI Allgather to reduce communication latency.
Ma et al. [46] proposed the kernel-assisted topology-aware
collective framework HierKNEM to coordinate the collabo-
ration among multilayer collective algorithms. This scheme
maximizes the overlap of intra- and inter-node commu-
nication in collective operations. Rashti et al. [47] used
graph embedding and node/network architecture discovery
modules to match the communication topology of an appli-
cation to the physical topology of a multicore multilayer
network cluster to improve communication performance.
These works focused on using topology-aware techniques
to optimize MPI applications’ communication performance,
particularly to reduce MPI collective operations’ communi-
cation latency. However, communication at MPI launch is
typically borne by resource management systems and has
not received sufficient attention.

Some efforts to improve the performance of global com-
munications during application launch deserve attention.
Claudel et al. [48] proposed a pipelining mechanism to
overlap communication. Gupta et al. [49] proposed an smp-
aware multi-level startup scheme with batching of remote
shells. Goehner et al. [50] proposed a framework called
LIBI, which supports different tree configuration. [41] pre-
sented a modification of the Bruck concatenation algorithm
that optimizes the tree-based implementations currently
used in RMs for PMIx exchange. The above studies effec-
tively improved the performance of out-of-band commu-
nications. However, none of them made use of the topo-
logical information of the HPC system. Furthermore, these
related works lack experimental evaluation on large-scale
clusters. Specifically, these works are evaluated on hundreds
of nodes, and the optimization effect is only milliseconds.

7 CONCLUSION

We have presented an approach to accelerate MPI appli-
cation launch in a distributed HPC environment. Our ap-
proach adopts a new communication address generation
strategy and a topology-aware global barrier operation. By
doing so, we can reduce the frequency of cross-machine
communications and the associated overhead during the
MPI application launch. We evaluate our approach by ap-
plying it to two HPC systems. Experimental results show
that our techniques significantly reduce the launch time of
large-scale MPI applications, giving up to 29% boost in the
MPI launch time.

REFERENCES

[1] K. Raffenetti, A. Amer, L. Oden, C. Archer, W. Bland, H. Fujita,
Y. Guo, T. Janjusic, D. Durnov, M. Blocksome, M. Si, S. Seo,
A. Langer, G. Zheng, M. Takagi, P. K. Coffman, J. Jose,

15

S. Sur, A. Sannikov, S. Oblomov, M. Chuvelev, M. Hatanaka,
X. Zhao, P. F. Fischer, T. Rathnayake, M. Otten, M. Min, and
P. Balaji, “Why is MPI so slow?: analyzing the fundamental
limits in implementing MPI-3.1,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2017, Denver, CO, USA, November 12 - 17, 2017,
B. Mohr and P. Raghavan, Eds. ACM, 2017, pp. 62:1–62:12.
[Online]. Available: https://doi.org/10.1145/3126908.3126963

[2] C. Wang, P. Balaji, and M. Snir, “Pilgrim: scalable and (near)
lossless MPI tracing,” in SC ’21: The International Conference for
High Performance Computing, Networking, Storage and Analysis, St.
Louis, Missouri, USA, November 14 - 19, 2021, B. R. de Supinski,
M. W. Hall, and T. Gamblin, Eds. ACM, 2021, pp. 52:1–52:14.
[Online]. Available: https://doi.org/10.1145/3458817.3476151

[3] I. Laguna, R. J. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum,
and N. Sultana, “A large-scale study of MPI usage in open-source
HPC applications,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC 2019, Denver, Colorado, USA, November 17-19, 2019, M. Taufer,
P. Balaji, and A. J. Peña, Eds. ACM, 2019, pp. 31:1–31:14.
[Online]. Available: https://doi.org/10.1145/3295500.3356176

[4] Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed,
H. Subramoni, and D. K. Panda, “Designing high-performance
MPI libraries with on-the-fly compression for modern GPU

clusters*,” in 35th IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2021, Portland, OR, USA, May
17-21, 2021. IEEE, 2021, pp. 444–453. [Online]. Available:
https://doi.org/10.1109/IPDPS49936.2021.00053

[5] S. Hunold, A. Bhatele, G. Bosilca, and P. Knees, “Predicting
MPI collective communication performance using machine
learning,” in IEEE International Conference on Cluster Computing,
CLUSTER 2020, Kobe, Japan, September 14-17, 2020. IEEE,
2020, pp. 259–269. [Online]. Available: https://doi.org/10.1109/
CLUSTER49012.2020.00036

[6] K. Ouyang, M. Si, A. Hori, Z. Chen, and P. Balaji, “CAB-MPI:
exploring interprocess work-stealing towards balanced MPI
communication,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
SC 2020, Virtual Event / Atlanta, Georgia, USA, November
9-19, 2020, C. Cuicchi, I. Qualters, and W. T. Kramer,
Eds. IEEE/ACM, 2020, p. 36. [Online]. Available: https:
//doi.org/10.1109/SC41405.2020.00040

[7] F. Zahn and H. Fröning, “On network locality in mpi-based
HPC applications,” in ICPP 2020: 49th International Conference on
Parallel Processing, Edmonton, AB, Canada, August 17-20, 2020, J. N.
Amaral, L. K. John, and X. Shen, Eds. ACM, 2020, pp. 57:1–57:10.
[Online]. Available: https://doi.org/10.1145/3404397.3404436

[8] Tianhe-2A, 2021. [Online]. Available: https://www.top500.org/
system/177999/

[9] K. Raffenetti, N. Bayyapu, D. Durnov, M. Takagi, and P. Balaji,
“Locality-aware pmi usage for efficient mpi startup,” in 2018
IEEE 4th International Conference on Computer and Communications
(ICCC). IEEE, 2018, pp. 624–628.

[10] S. Chakraborty, H. Subramoni, J. L. Perkins, A. Moody,
M. D. Arnold, and D. K. Panda, “PMI extensions for scalable
MPI startup,” in 21st European MPI Users’ Group Meeting,
EuroMPI/ASIA ’14, Kyoto, Japan - September 09 - 12, 2014, J. J.
Dongarra, Y. Ishikawa, and A. Hori, Eds. ACM, 2014, p. 21.
[Online]. Available: https://doi.org/10.1145/2642769.2642780

[11] S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. L.
Perkins, and D. K. Panda, “Non-blocking PMI extensions for
fast MPI startup,” in 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2015, Shenzhen,
China, May 4-7, 2015. IEEE Computer Society, 2015, pp. 131–140.
[Online]. Available: https://doi.org/10.1109/CCGrid.2015.151

[12] Y. Dai, Y. Dong, M. Xie, K. Lu, R. Wang, M. Shao, and J. Chen,
“The fast and scalable mpi application launch of the tianhe hpc
system,” in 36th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2022) 2022. IEEE Computer Society, 2022.

[13] Z. Pang, M. Xie, J. Zhang, Y. Zheng, G. Wang, D. Dong,
and G. Suo, “The TH express high performance interconnect
networks,” Frontiers Comput. Sci., vol. 8, no. 3, pp. 357–366, 2014.
[Online]. Available: https://doi.org/10.1007/s11704-014-3500-9

[14] Infiniband, 2021. [Online]. Available: https://www.infinibandta.
org/

[15] Y. Ajima, T. Inoue, S. Hiramoto, S. Ando, M. Maeda, T. Yoshikawa,
K. Hosoe, and T. Shimizu, “The tofu interconnect 2,” in

22nd IEEE Annual Symposium on High-Performance Interconnects,
HOTI 2014, Mountain View, CA, USA, August 26-28, 2014.
IEEE Computer Society, 2014, pp. 57–62. [Online]. Available:
https://doi.org/10.1109/HOTI.2014.21

[16] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai,
T. Shimizu, S. Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida,
and T. Inoue, “The tofu interconnect D,” in IEEE International
Conference on Cluster Computing, CLUSTER 2018, Belfast, UK,
September 10-13, 2018. IEEE Computer Society, 2018, pp. 646–
654. [Online]. Available: https://doi.org/10.1109/CLUSTER.2018.
00090

[17] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. R.
Hernandez, Y. Itigin, M. Dubman, G. Shainer, R. L. Graham,
L. Liss, Y. Shahar, S. Potluri, D. Rossetti, D. Becker, D. Poole,
C. Lamb, S. Kumar, C. B. Stunkel, G. Bosilca, and A. Bouteiller,
“UCX: an open source framework for HPC network apis and
beyond,” in 23rd IEEE Annual Symposium on High-Performance
Interconnects, HOTI 2015, Santa Clara, CA, USA, August 26-28, 2015.
IEEE Computer Society, 2015, pp. 40–43. [Online]. Available:
https://doi.org/10.1109/HOTI.2015.13

[18] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H. Pritchard,
and J. M. Squyres, “A brief introduction to the openfabrics
interfaces - A new network API for maximizing high performance
application efficiency,” in 23rd IEEE Annual Symposium on
High-Performance Interconnects, HOTI 2015, Santa Clara, CA, USA,
August 26-28, 2015. IEEE Computer Society, 2015, pp. 34–39.
[Online]. Available: https://doi.org/10.1109/HOTI.2015.19

[19] S. Atchley, D. Dillow, G. M. Shipman, P. Geoffray, J. M. Squyres,
G. Bosilca, and R. G. Minnich, “The common communication
interface (CCI),” in IEEE 19th Annual Symposium on High
Performance Interconnects, HOTI 2011, Santa Clara, CA, USA,
August 24-26, 2011. IEEE Computer Society, 2011, pp. 51–60.
[Online]. Available: https://doi.org/10.1109/HOTI.2011.17

[20] M. Xie, E. Zhou, Y. Dong, and W. Zhang, “Implementation and
evaluation of ucx communication interface on th-express intercon-
nection,” in Journal of Computer Applications, 2019, pp. 113–118.

[21] A. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in JSSPP, 2003.

[22] MPICH, 2022. [Online]. Available: https://www.mpich.org/
[23] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,

J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall,
“Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, September 2004, pp. 97–104.

[24] N. Papadopoulou, L. Oden, and P. Balaji, “A performance study
of ucx over infiniband,” in 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017,
pp. 345–354.

[25] R. H. Castain, J. Hursey, A. Bouteiller, and D. G. Solt,
“Pmix: Process management for exascale environments,” Parallel
Comput., vol. 79, pp. 9–29, 2018. [Online]. Available: https:
//doi.org/10.1016/j.parco.2018.08.002

[26] schedmd, 2021. [Online]. Available: https://slurm.schedmd.com/
[27] “The sunway taihu light supercomputer:system and applications,”

Science China(Information Sciences), vol. 07, no. v.59, pp. 113–128,
2016.

[28] OLCF, “Summit,” 2022. [Online]. Available: https://www.olcf.
ornl.gov/summit/

[29] S. Thiell, A. Degrémont, H. Doreau, and A. Cedeyn, “Clustershell,
a scalable execution framework for parallel tasks.”

[30] W. Frings, D. H. Ahn, M. P. LeGendre, T. Gamblin, B. R.
de Supinski, and F. Wolf, “Massively parallel loading,” in
International Conference on Supercomputing, ICS’13, Eugene, OR,
USA - June 10 - 14, 2013, A. D. Malony, M. Nemirovsky, and
S. P. Midkiff, Eds. ACM, 2013, pp. 389–398. [Online]. Available:
https://doi.org/10.1145/2464996.2465020

[31] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov,
M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel,
B. Hess, and E. Lindahl, “GROMACS 4.5: a high-throughput
and highly parallel open source molecular simulation toolkit,”
Bioinformatics, vol. 29, no. 7, pp. 845–854, 02 2013. [Online].
Available: https://doi.org/10.1093/bioinformatics/btt055

[32] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and high
performance simulation of quantum computers,” Sci. Rep., vol. 9,
no. 1, p. 10736, Jul. 2019.

16

[33] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans.
Inf. Theory, vol. 28, no. 2, pp. 129–136, 1982. [Online]. Available:
https://doi.org/10.1109/TIT.1982.1056489

[34] G. Danabasoglu, J.-F. Lamarque, J. Bacmeister, D. A. Bailey,
A. K. DuVivier, J. Edwards, L. K. Emmons, J. Fasullo,
R. Garcia, A. Gettelman, C. Hannay, M. M. Holland, W. G.
Large, P. H. Lauritzen, D. M. Lawrence, J. T. M. Lenaerts,
K. Lindsay, W. H. Lipscomb, M. J. Mills, R. Neale, K. W.
Oleson, B. Otto-Bliesner, A. S. Phillips, W. Sacks, S. Tilmes,
L. van Kampenhout, M. Vertenstein, A. Bertini, J. Dennis,
C. Deser, C. Fischer, B. Fox-Kemper, J. E. Kay, D. Kinnison,
P. J. Kushner, V. E. Larson, M. C. Long, S. Mickelson, J. K.
Moore, E. Nienhouse, L. Polvani, P. J. Rasch, and W. G.
Strand, “The community earth system model version 2 (cesm2),”
Journal of Advances in Modeling Earth Systems, vol. 12, no. 2, p.
e2019MS001916, 2020, e2019MS001916 2019MS001916. [Online].
Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.
1029/2019MS001916

[35] NCAR, “Wrf,” 2022. [Online]. Available: https://www.mmm.
ucar.edu/weather-research-and-forecasting-model

[36] pmix-standard v4.0, 2020. [Online]. Available: https://pmix.
github.io/uploads/2020/12/pmix-standard-v4.0.pdf

[37] D. Holmes, K. Mohror, R. Grant, A. Skjellum, M. Schulz, W. Bland,
and J. Squyres, “Mpi sessions: Leveraging runtime infrastructure
to increase scalability of applications at exascale,” 09 2016, pp.
121–129.

[38] “Mpi-4,” 2021. [Online]. Available: https://www.mpi-forum.org/
docs/mpi-4.0/mpi40-report.pdf

[39] N. Hjelm, H. Pritchard, S. K. Gutiérrez, D. J. Holmes, R. Castain,
and A. Skjellum, “Mpi sessions: Evaluation of an implementation
in open mpi,” in 2019 IEEE International Conference on Cluster
Computing (CLUSTER), 2019, pp. 1–11.

[40] W. Yu, J. Wu, and D. K. Panda, “Fast and scalable startup
of MPI programs in infiniband clusters,” in High Performance
Computing - HiPC 2004, 11th International Conference, Bangalore,
India, December 19-22, 2004, Proceedings, ser. Lecture Notes
in Computer Science, L. Bougé and V. K. Prasanna, Eds.,
vol. 3296. Springer, 2004, pp. 440–449. [Online]. Available:
https://doi.org/10.1007/978-3-540-30474-6\ 47

[41] A. Y. Polyakov, B. I. Karasev, J. Hursey, J. Ladd, M. Brinskii,
and E. Shipunova, “A performance analysis and optimization
of pmix-based HPC software stacks,” in Proceedings of the
26th European MPI Users’ Group Meeting, EuroMPI 2019,
Zürich, Switzerland, September 11-13, 2019, T. Hoefler and J. L.
Träff, Eds. ACM, 2019, pp. 9:1–9:10. [Online]. Available:
https://doi.org/10.1145/3343211.3343220

[42] M. Turilli, A. Merzky, T. J. Naughton, W. R. Elwasif, and
S. Jha, “Characterizing the performance of executing many-
tasks on summit,” in IEEE/ACM Third Annual Workshop
on Emerging Parallel and Distributed Runtime Systems and
Middleware, IPDRM@SC 2019, Denver, CO, USA, November
22, 2019. IEEE, 2019, pp. 18–25. [Online]. Available: https:
//doi.org/10.1109/IPDRM49579.2019.00007

[43] S. Chakraborty, H. Subramoni, J. L. Perkins, and D. K.
Panda, “SHMEMPMI - shared memory based PMI for
improved performance and scalability,” in IEEE/ACM 16th
International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2016, Cartagena, Colombia, May 16-19, 2016. IEEE
Computer Society, 2016, pp. 60–69. [Online]. Available: https:
//doi.org/10.1109/CCGrid.2016.99

[44] I. Vardas, M. Ploumidis, and M. Marazakis, “Improving the
performance and resilience of MPI parallel jobs with topology
and fault-aware process placement,” CoRR, vol. abs/2012.14757,
2020. [Online]. Available: https://arxiv.org/abs/2012.14757

[45] Y. Tsujita, A. Hori, T. Kameyama, and Y. Ishikawa, “Topology-
aware data aggregation for high performance collective MPI-IO
on a multi-core cluster system,” in Fourth International Symposium
on Computing and Networking, CANDAR 2016, Hiroshima, Japan,
November 22-25, 2016. IEEE Computer Society, 2016, pp. 37–46.
[Online]. Available: https://doi.org/10.1109/CANDAR.2016.0022

[46] T. Ma, G. Bosilca, A. Bouteiller, and J. J. Dongarra, “Kernel-
assisted and topology-aware MPI collective communications on
multicore/many-core platforms,” J. Parallel Distributed Comput.,
vol. 73, no. 7, pp. 1000–1010, 2013. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2013.01.015

[47] M. J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp,
“Multi-core and network aware MPI topology functions,” in

Recent Advances in the Message Passing Interface - 18th European MPI
Users’ Group Meeting, EuroMPI 2011, Santorini, Greece, September
18-21, 2011. Proceedings, ser. Lecture Notes in Computer Science,
Y. Cotronis, A. Danalis, D. S. Nikolopoulos, and J. J. Dongarra,
Eds., vol. 6960. Springer, 2011, pp. 50–60. [Online]. Available:
https://doi.org/10.1007/978-3-642-24449-0\ 8

[48] B. Claudel, G. Huard, and O. Richard, “Taktuk, adaptive deploy-
ment of remote executions,” 01 2009, pp. 91–100.

[49] A. Gupta, G. Zheng, and L. V. Kalé, “A multi-level scalable startup
for parallel applications,” in Proceedings of the 1st International
Workshop on Runtime and Operating Systems for Supercomputers,
2011, pp. 41–48.

[50] J. Goehner, D. Arnold, D. Ahn, G. Lee, B. Supinski, M. LeGendre,
B. Miller, and M. Schulz, “Libi: A framework for bootstrapping
extreme scale software systems,” Parallel Computing, vol. 39, p.
167–176, 03 2013.

Yong Dong received the PhD degrees from Na-
tional University of Defense Technology in 2012.
He is now a professor in the College of Com-
puter, National University of Defense Technol-
ogy. His research interests include high perfor-
mance computing, parallel storage, MPI, and re-
source management.

Yiqin Dai received the BS degree in National
University of Defense Technology in 2019. He
is currently working toward the PhD degree in
the College of Computer, National University of
Defense Technology. His research interests in-
clude high performance computing and resource
management.

Min Xie received the PhD degrees from National
University of Defense Technology. He is now a
professor in the College of Computer, National
University of Defense Technology. His research
interests include parallel and distributed comput-
ing, high performance communications.

Kai Lu received the BS and PhD degrees from
National University of Defense Technology in
1995 and 1999, respectively. He is now a profes-
sor in the College of Computer, National Univer-
sity of Defense Technology. His research inter-
ests include parallel programming and operating
system and security.

17

Ruibo Wang received the BS and PhD degrees
in computer science from National University of
Defense Technology in 2003 and 2011, respec-
tively. He is now a professor at National Univer-
sity of Defense Technology. His research inter-
ests include high performance computing and
operating system.

Juan Chen received the PhD degree from Na-
tional University of Defense Technology in 2007.
She is now a professor at National University
of Defense Technology. Her research interests
include supercomputer systems and energy-
efficient software optimization method.

Mingtian Shao received the BS and MS degree
in National University of Defense Technology
in 2019 and 2022, respectively. He is currently
working toward the PhD degree in the College of
Computer, National University of Defense Tech-
nology. His research interests include high per-
formance computing and operating system.

Zheng Wang is Professor of Intelligent Software
Technology at School of Computing at the Uni-
versity of Leeds. His research interests include
compiler optimization, parallel programming and
systems security.

