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Adaptive approximation of dynamics gradients

via interpolation to speed up trajectory optimisation

David Russell, Rafael Papallas and Mehmet Dogar

Abstract— Trajectory optimisation methods for robotic motion
planning often require the use of first order derivatives of the
dynamics of the system with respect to the states and controls
of the system. Particularly when multi-contact dynamics are
present, these derivatives are often numerically approximated by
a method such as finite-differencing. Finite-differencing whilst
using an expensive physics simulator is usually the bottleneck in
these trajectory optimisation algorithms. Since these dynamics
derivatives do not change substantially over certain time inter-
vals, we propose that trajectory optimisers can compute the dy-
namics derivatives less often and then interpolate approximations
to the derivatives in between calculated derivatives, gaining a sig-
nificant speed up for overall optimisation time with no observable
degradation in the generated behaviour. We investigate different
methods of interpolating approximations as well as propose an
adaptive method to detect when to compute the derivatives with
finite-differencing. We find a speed-up of planning times on
average by 60% in a contact-based manipulation task.

I. INTRODUCTION

In this work, we propose and compare methods to speed

up trajectory optimisation for robot motion generation. For

example, in Fig. 1-(a), a robot uses a trajectory optimisation

method (particularly the iterative linear quadratic regulator,

iLQR [1], [2]), to push an object (green cylinder) to a goal

location (green circle). The time it takes to optimise such a

trajectory is also shown on the top-right. We propose different

methods of interpolating the system dynamics gradients to

perform the same iLQR optimisation but computationally

cheaper. Fig. 1-(b) shows the motion generated using our

method, which is similar to (a), while the optimisation takes

significantly less time. While we use iLQR in this work, our

proposed method can work with any trajectory optimisation

algorithm that utilises dynamics gradients.

Trajectory optimisation methods have been developed and

used extensively recently [3]–[9]. iLQR is one such widely

used algorithm [10]–[14] which has also been applied to

problems that involve contact [12], [15], thanks to smooth

contact models such as those implemented in MuJoCo [16]

and Drake [17]. These optimisation techniques use gradient

information on the system’s dynamics and a cost function to

calculate the optimal trajectory.

While effective, trajectory optimisation methods can be

computationally expensive, and therefore the optimisation
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Optimisation time - 13.588 s

(a) Object pushing trajectory generated by the baseline-iLQR method

Optimisation time - 8.576 s

(b) Trajectory generated by the adaptive interpolated-iLQR method
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(c) Adaptive linear interpolation of a dynamics derivative

Fig. 1: (a) and (b) show two finalised trajectories, using the

baseline-iLQR and our adaptive interpolated-iLQR. The times

on the bottom-left show how long the optimisations took. (c)

shows the values of the derivatives of a particular state variable

with respect to another during optimisation. Orange points

are computed using finite-differencing at every time-step. Our

method performs fewer finite-differencing operations (blue

points) and then interpolates between the blue points.

time can be prohibitively long, particularly for problems in-

volving robots with high degrees of freedom (DoF) and when

the robot makes contact with objects or the environment. For

example, Kitaev et al. [15] apply iLQR to the problem of ma-

nipulation in clutter, where the robot pushes through multiple

objects on a shelf. They report optimisation times on the order

of tens of seconds and sometimes over a minute, depending on

the level of clutter. Mordatch et al. [18] address contact-based

in-hand manipulation problem using an optimisation approach,

and report 2-6 minutes of optimisation time. Speeding up



optimisation is therefore important in such settings, not only

because this is a problem for planning, but also because

contact-based manipulation in the real world often requires

re-running the optimiser during execution (e.g. using model-

predictive-control [19], [20] or online re-planning [21], [22]).

One reason why trajectory optimisation can take a long

time is the evaluation of the gradients of the system dynamics

and/or the cost function, with respect to the state variables and

controls. If analytical expressions of gradients are available,

they can be directly used. However, for multi-DoF robot sys-

tems, coming up with analytical expressions can be difficult

or impossible, especially when dynamic (i.e. non-quasi-static)

contact is made with (possibly multiple) objects, since in such

cases the system dynamics itself is formulated as a separate

optimisation/complementarity problem [23], [24].

When the analytic gradients are not available, a common

method [15], [18] is to estimate the gradients numerically

using finite-differencing [25], which involves making small

changes to states of the system and evaluating the effect this

has on the system dynamics. Using finite-differencing for

trajectory optimisation requires performing such an evaluation

a large number of times at every time-step along the trajectory.

For robotic manipulation, evaluating the system dynamics

usually corresponds to integrating a physics engine, which

is a computationally expensive operation [26]. Therefore

decreasing the number of finite-differencing operations during

trajectory optimisation has the potential to significantly reduce

the optimisation time. Here, we investigate such an approach.

Our key insight is that gradient/derivative values over a

trajectory generally show regularity making them amenable to

interpolation. For example, in Fig. 1-(c), we show the value

of an individual derivative computed via finite-differencing

at every time-step (orange dots) over a trajectory. Instead

of computing every derivative, we can simply compute a

selection of them and interpolate approximations in between.

While we use finite-differencing in this work, the in-

terpolation approach we propose can also be used when

alternative methods of calculating system dynamics gradients

are used, such as differentiable simulation [17], [27], [28].

For example, [14] use a differentiable physics simulator to

plan contact-based manipulation tasks. Their optimisation

takes a prohibitively long time which they claim is due to

the automatic differentiation scheme. Therefore, automatic

differentiation can also benefit from our method.

We propose and compare different methods to perform

such an interpolation. We investigate two questions. The

first question is about how to determine, during optimisation,

the key time-steps at which to perform finite-differencing.

We propose two methods: (i) Using fixed-size intervals and

interpolating within the intervals. This method does help

reduce the optimisation time while enabling the optimisation

to converge. However, we notice that, depending on the task,

the system dynamics, and the variables in question, the sizes

of the intervals in which the values show regularity change.

Therefore, we also propose and evaluate a second method; (ii)

Adaptively determining the intervals. For example, in Fig. 1-

(c) the blue points show the key time-steps (where this method

performs finite-differencing). As can be seen, the distance

between the blue points get smaller in areas of the plot

where there is high-curvature and is therefore more difficult

to interpolate. Whereas in areas where the values show more

regularity, the intervals between the blue points get larger,

and therefore we need fewer finite-differencing operations.

We propose a method to identify such key time-steps.

The second question is about how to perform the inter-

polation within the intervals, given the computed values at

the key time-steps. We compare three different methods: (i)

linear interpolation, (ii) quadratic interpolation, and (iii) neural

network interpolation. Particularly, Cheng et al. [10] also used

a neural network to estimate the first order dynamics gradients

during iLQR. They trained the network to predict the gradient

based on the state vector as input. Differently, we take an in-

terpolation approach, and therefore we also provide the neural

network the two gradient matrices to interpolate in-between.

We integrate the dynamics interpolation methods described

above with iLQR optimisation, and compare it with a baseline

iLQR implementation which performs the finite-differencing

at every time-step. We investigate whether we can achieve

similar performance in terms of cost minimisation, while

reducing the optimisation time. We perform this comparison

for a variety of tasks: (i) a pendulum control problem, (ii)

reaching a desired configuration of a 7-DOF robotic arm

whilst minimizing torque controls and joint velocities, and

(iii) pushing an object using a 7-DOF robotic arm to a desired

location (Fig. 1). In all tasks, we observe that it is possible

to achieve cost minimisation equivalent to the baseline iLQR,

while significantly reducing the optimisation time. We provide

our source code1 as well as the data associated with this paper.

In Sec. II we provide a brief overview of the iLQR algo-

rithm and finite-differencing; in Sec. III we discuss the differ-

ent interpolation methods and how they are integrated with

iLQR. Finally, we present and discuss our results in Sec. IV.

II. BACKGROUND

Consider a discrete-time dynamics problem where the next

system state is a function of the previous state and control:

x(t+ 1) = f(x(t), u(t)) (1)

where our state vector is typically the joints of the robot

arm as well as their velocities and the control vector is the

torques applied to the joints. In the object-pushing task, the

state vector also includes the object’s pose and velocity.

We have some cost function l(x(t), u(t)) and the total

running cost from the start of the trajectory to the end is:

J0(x(0),U) = lf (x(T )) +
T−1∑

t=0

l(x(t), u(t)) (2)

where lf is a terminal cost function, T is the horizon length

and U is a sequence of control vectors over the trajectory.

The value function at any time-step is the optimal cost to go

from that time-step and state.

V(x(t), t) = min
U

[Jt(x(t),U)] (3)

1github.com/DMackRus/Dynamic_Interpolation_iLQR/tree/ICRA_2023



The overall minimisation problem that we are trying to

solve is, given an initial state x(0), find the optimal controls

that minimise the total running cost of the trajectory.

U∗ = min
U

[J0(x(0),U)] (4)

A. Iterative Linear Quadratic Regulator

The iLQR algorithm [1], [2] solves the optimisation prob-

lem from Eq. 4 by calculating the first order dynamics fx and

fu, as well as the first and second order cost derivatives lx,

lu, lxx and luu over a trajectory, and calculating an optimal

closed-loop control policy that minimises the total cost of

the trajectory. The high-level overview of this algorithm is

in Alg. 1.

The algorithm uses these derivatives to perform a back-

wards pass in which it recursively computes feedback terms

k and K from the end of the trajectory to the beginning.

After this, a forwards pass is carried out using the feedback

terms to calculate a new set of controls which will lower

the cost of the trajectory. Finally, the algorithm checks for

convergence and either repeats this optimisation process or

returns the optimised trajectory. iLQR details are in [1], [2].

B. Computing dynamics gradients with finite-differencing

The first order dynamics derivatives fx, fu are matrices

with size relative to the size of the state and control vector. A

state vector of size m× 1 and a control vector of q × 1 will

result in matrices fx, fu of size m×m and m×q respectively.

We will use square brackets to refer to an individual element

within these matrices; so fx[i, j] will represent an element

at the ith row and jth column. fx[:, j] will refer to an entire

column of this matrix at the jth position.

Computation of the fx, fu matrices works column by col-

umn with finite-differencing. Given a specific state and control

vector x(t), u(t), a small perturbation ϵ is added/subtracted to

an individual element of the state vector and it is observed how

this affects the overall state, giving one column of gradient

values. The process of calculating an fx matrix can be seen

in Alg. 2 and is similar for the fu matrix but the control

vectors are perturbed instead. We will refer to this process

as performing one dynamics gradient evaluation.

Algorithm 1 iLQR

Require: Prediction horizon T
Maximum number of iLQR iterations imax

Starting state x(0) and initialised control sequence U

1: for iteration = 1, 2, . . . imax do

2: Step 1: (Get Derivatives)

3: for t = 0, 1, . . . T do

4: Calculate fx(t) fu(t) lx(t) lxx(t) lu(t) luu(t)

5: Step 2: (Backwards Pass)

6: Calculate k and K using derivatives

7: Step 3: (Forwards Pass)

8: Update U using k and K
9: Step 4: (Convergence Check)

return U

Algorithm 2 FD_DynamicsGradientEval()

Require: State vector x(t); Control vector u(t)
1: for i = 0, 1, . . . , (m− 1) do

2: xinc(t) = x(t) + ϵ
3: xdec(t) = x(t)− ϵ

4: f∗

x(t)[:, i] =
f(xinc(t),u(t))−f(xdec(t),u(t))

2ϵ

Algorithm 3 Interpolated-iLQR: Alg. 1 with Step 1 (lines

2-4) implemented as below

1: FD_timeSteps ← GenerateFDTimesteps()

2: for i = 0, 1, . . . len(FD_timeSteps) do

3: f∗

x(FD_timeSteps[i]) = FD_DynamicsGradientEval()

4: f̃x = Interpolate(f∗

x )

To perform one dynamics gradient evaluation, 2m + 2q
evaluations of f are required. The function f is the process of

integrating the system dynamics with time. When performing

optimisation with a physics simulator such as MuJoCo [16],

integrating the system dynamics with time (referred to as

stepping the simulator) is computationally expensive.

C. Baseline-iLQR

The baseline method of iLQR referred to in the rest of this

paper will be where in Step 1 (lines 2-4) of Alg. 1 all of the

matrices fx and fu along the entire trajectory are computed

by finite-differencing as shown in Alg. 2. We will refer to

these types of gradient matrices as the true matrices and

they will be denoted with an asterisk symbol (f∗

x(t)[i, j]).
Therefore, each Baseline-iLQR iteration, for a trajectory of

length T , requires 2mT + 2qT steps of the simulator.

III. METHOD

Our method involves performing these expensive finite-

differencing computations only at certain time-steps along

the trajectory (which we will call finite-difference time-

steps or FD_timeSteps for short) and then interpolating

approximations to the dynamics gradient at time-steps in

between. These approximations will be denoted as f̃x(t)[i, j].
The number of time-steps between two FD_timeSteps will

be referred to as the interval.

Alg. 3 shows the high-level overview of our method. In line

1 we generate the list of FD_timeSteps, then in lines 2 and 3,

we iterate over these time-steps and numerically calculate the

dynamics gradients. Finally, in line 4, we use an interpolation

algorithm to calculate approximations for the remaining time-

steps where finite-differencing was not performed. In this

section, any algorithm that performs an operation on a matrix

uses element-wise operation. We only discuss fx matrices,

but the method is identical for the fu matrices.

In the next sections, we propose multiple different ways to

implement Alg. 3, using different methods for the Interpolate()

and GenerateFDTimesteps() function. Particularly, we investi-

gate two different ways to implement GenerateFDTimesteps():



fixed-interval methods (described in detail in Sec. III-A) and

adaptive-interval methods (described in Sec. III-B).

A. Fixed-Interval Methods

The fixed-interval methods work by equally spacing out

the dynamics gradient evaluations along the trajectory, i.e.

the FD_timeSteps are simply chosen with a fixed interval

between them. Therefore, for an interval size of n, this method

implements the GenerateFDTimesteps() function in Alg. 3 as:

[0, n, 2n, . . . , T ]← GenerateFDTimesteps()

and, therefore, at each iteration of iLQR, we would only cal-

culate (using finite-differencing as in Alg. 2) the f∗

x matrices:

f∗

x(0), f
∗

x(n), f
∗

x(2n), . . . , f
∗

x(T ).
Using these values at the FD_timeSteps, we then compare

three different methods to interpolate f̃x(t) at other time-steps,

i.e. three different ways to implement Interpolate() in Alg. 3.

Linear Interpolation - We interpolate a line between two

computed derivatives. This can be seen in Alg. 4.

Algorithm 4 Interpolate() - Linear

Require: Finite-differencing time-steps, FD_timeSteps

1: for i = 0, 1, . . . , len(FD_timeSteps)−1 do

2: startGradient = f∗

x(FD_timeSteps[i])
3: endGradient = f∗

x(FD_timeSteps[i+ 1])
4: distance = FD_timeSteps[i+ 1] - FD_timeSteps[i]
5: difference = endGradient - startGradient

6: for j = 1, 2 . . . , distance−1 do

7: f̃x(FD_timeSteps[i]+ j) = f∗

x(FD_timeSteps[i])+
( j

distance
∗ difference)

return f̃x

Quadratic Interpolation - We fit a quadratic curve be-

tween three derivatives and interpolate along it (Alg. 5).

Algorithm 5 Interpolate() - Quadratic

Require: Finite-differencing time-steps, FD_timeSteps

1: for i = 0, 1, . . . , len(FD_timeSteps)−2 do

2: startGradient = f∗

x(FD_timeSteps[i])
3: midGradient = f∗

x(FD_timeSteps[i+ 1])
4: endGradient = f∗

x(FD_timeSteps[i+ 2])
5: distance = FD_timeSteps[i+ 1]−FD_timeSteps[i]
6: a, b, c = fitQuadratic(startGradient, midGradient, end-

Gradient)

7: for j = 1, 2 . . . , distance−1 do

8: f̃x(FD_timeSteps[i] + j) = aj2 + bj + c
return f̃x

Neural Network Interpolation - NN-Interpolation uses

a trained neural network to output desired dynamic gradient

matrices. We trained a separate neural network for each task

as the number of inputs and outputs were dependant on the

size of the fx matrices.

The inputs to the neural network were the two cal-

culated matrices that are being interpolated in-between

(f∗

x(FD_timeSteps[i]), f∗

x(FD_timeSteps[i+1])), the current

state vector x(t) and a scale parameter s ∈ {0, 1} which rep-

resents how far along the interval (between FD_timeSteps[i]

and FD_timeSteps[i+1]) the interpolation time, t, is. The

algorithm for using NN-Interpolation is in Alg. 6.

We created training data by generating 1000 example

trajectories with an optimisation horizon of 12 seconds for

each task where all of the f∗

x matrices were computed via

finite-differencing. During training, we systematically picked

gradient matrices at equal intervals and then changed the

scale and state vector parameters to coincide with a gradient

matrix that was in between the two gradient matrices that

were being interpolated. An example training data row can

be seen in the table below.

Inputs Outputs

f∗

x
(0) f∗

x
(20) x(10) 0.5 f∗

x
(10)

Algorithm 6 Interpolate() - NN

Require: Finite-differencing time-steps, FD_timeSteps

1: for i = 0, 1, . . . , len(FD_timeSteps) −1 do

2: startGradient = f∗

x(FD_timeSteps[i])
3: endGradient = f∗

x(FD_timeSteps[i+ 1])
4: distance = FD_timeSteps[i+ 1]−FD_timeSteps[i]
5: for j = 1, 2 . . . , distance−1 do

6: f̃x(FD_timeSteps[i] + j) = queryNet-

work(startGradient, endGradient, x(FD_timeSteps[i] + j),
j

distance
)

return f̃x

B. Adaptive-Interval Methods

Here, we describe an alternative method to implement

the GenerateFDTimesteps() function. The adaptive-interval

method computes “key points” where the gradients change

significantly to reduce the number of dynamic gradient evalu-

ations over long periods where the dynamics are fairly linear.

We illustrate the difference between the fixed-interval

method (Sec. III-A) and the adaptive-interval method, in

Fig. 2. The green dots show the finite-differencing time-steps

as suggested by the fixed-interval method for a particular

interval size n. The blue dots illustrate the adaptive method

which accurately models the underlying curve with minimal

keypoints. We illustrate here that an adaptive approach to in-

terpolation can model the underlying true dynamics function

more accurately and with fewer points.

We propose that by analysing the dynamics of the system

over a trajectory, we can compute where to place keypoints,

such that we can space them out further in periods of linearity

and keep them closer together when the derivatives are

changing rapidly. We achieve this by analysing the jerk (the

third time derivative) of all the DoFs in the system over

a trajectory and monitor when the jerk exceeds a certain

threshold. While there may be other (and possibly better)

methods to determine these keypoints, we found that the jerk-

based analysis performed well.

Our algorithm to generate “keypoints” where finite-

differencing should occur is shown in Alg. 7. As well as
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Fig. 2: Illustrated example of the derivative value of an

individual element (fx[i, j]) over a full trajectory. Orange is

the true gradient (f∗

x [i, j]), and blue and green are adaptive

and fixed-interval dynamics gradient evaluations respectively.

checking for when the jerk of any DoF exceeds a certain

threshold, we also specify a minimum and maximum interval

size that should be followed. After the finite-differencing time-

steps are determined adaptively, the interpolation is performed

using linear interpolation from Alg. 4.

IV. EXPERIMENTS AND RESULTS

We present two sets of results. First, we tested the four

different interpolation methods on pre-computed trajectories

where all of the fx matrices were calculated via finite-

differencing and we measured the accuracy of these methods

with different interval sizes. We choose the better performing

methods, with which we then conduct our second set of

experiments, where we combine them with iLQR.

We implemented our methods in C++ (available in our

github repo) and used MuJoCo [16] as the physics simulator,

with an internal integration step-size of 0.004 s. Our trajec-

tories had a fixed horizon time of 12 s. We used an Intel

i7-6700 CPU that has 8 cores and 32GB of RAM.

A. Accuracy of interpolation methods

We generated 10 trajectories for the reaching task and tested

different interpolation methods by measuring the accuracy of

the interpolated matrices (f̃x) against the true matrices (f∗

x ).

We tested intervals of (2, 5, 10, 20, 50, 100 and 200) for the

fixed-interval methods. For the adaptive method we tested

different parameters for (minN, maxN, jerkThresh). These

parameters were:{{2, 5, 0.01}, {5, 50, 0.0001}, {20, 50,

0.0001}, {50, 100, 0.01}, {2, 50, 0.0001}, {2, 100, 0.0001},

{10, 50, 0.001}}. The tested neural network had two hidden

Algorithm 7 GenerateFDTimesteps() - Adaptive

Require: minN, maxN, jerkThresh

1: counter = 0
2: for t = 0, 1, . . . , T do

3: counter++
4: if counter > minN then

5: if jerk > jerkThresh then

6: counter = 0
7: FD_timeSteps.append(t)

8: else if counter > maxN then

9: counter = 0
10: FD_timeSteps.append(t)

11: return FD_timeSteps

Fig. 3: Mean absolute error for the reaching task for three

interpolation methods with different parameters.

layers with 4000 neurons using the ReLU activation function.

We used the mean absolute error (MAE) to measure accuracy:

MAE =

T∑

t=0

(

n,n∑

i=0,j=0

abs(f∗

x(t)[i, j]− f̃x(t)[i, j]/n
2)/T )

(5)

Fig. 3 shows the average MAE over the ten sample tra-

jectories for the reaching task. The NN-interpolation errors,

much larger compared to the other methods, over the specified

interval sizes were (0.04, 0.05, 0.05, 0.05, 0.05, 0.05, 0.06),

and are not shown in Fig. 3 since they scale the plot poorly.

In the pendulum control example NN had the highest accu-

racy, but as the number of inputs and outputs increased, the

performance reduced substantially. It is always possible to

increase the number of neurons or hidden layers of a NN and

hope for better performance, but since linear interpolation

performed well and was computationally cheap, we did not

try more expensive NN architectures.

In Fig. 3, the closer to the bottom-left corner a method

can get, the better it is. As can be seen, the three methods

(linear, quadratic and adaptive-linear) all performed similarly

well over different interval sizes, with the adaptive method

performing slightly better. The quadratic method was more

computationally expensive with no added benefit so we

decided to combine the fixed-interval-linear and adaptive-

linear interpolation methods with iLQR.

B. iLQR performance

To evaluate the performance of our methods when com-

bined with iLQR, we measured the optimisation time for

iLQR to converge to a solution, with a cap of 15 iLQR

iterations. We also measured the cost reduction by comparing

the optimised trajectory’s cost with the initial trajectory’s cost:

Cost reduction = 1−
Final cost

Initial cost
(6)

We ran experiments for the three different tasks specified

in Sec. I. For each task, we generated 50 random scenes with

different starting and desired states. We present the results in

Fig. 4. In Fig. 4, the green triangles show the mean values,
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Fig. 4: The top row shows the optimisation time of the iLQR algorithm and the bottom row shows the cost reduction for

different interpolation methods for the three different tasks. Blue is the baseline-iLQR method, purple are fixed-interval

methods and orange is for the adaptive method. Outliers are not shown.

the line in each box shows the median, and each box shows

the interquartile range. We present baseline-iLQR (blue box),

fixed-interval linear interpolation (purple box) for different

interval sizes, as well as adaptive linear interpolation (orange

box). Adaptive linear interpolation was tested with a minN =
5, maxN = 50, and the jerkThreshold was 0.0001 for

robot arm joints and 0.0005 for the pushed-cylinder.

The mean and standard deviation values are also presented

in Table I. Please see the video on our github repository for

example optimised trajectories for different tasks.

For the pendulum and reaching tasks, there is a noticeable

decrease in optimisation time as the interval size gets larger.

There is only a minor decrease in the quality of the final

solution (i.e. cost reduction) for the pendulum task whereas

the reaching tasks final solutions are fairly consistent. The

adaptive method, while decreasing optimisation time notice-

ably, also performs similarly in terms of cost reduction.

The pushing task gives the most interesting result and is the

most difficult one out of these three. Calculating the dynamics

derivatives for a contact-based task is more expensive than

in a non-contact based task, because MuJoCo solves an

optimisation problem to calculate contact forces between

objects, which becomes more expensive with more bodies.

There is a significant time saving in the overall optimisation

time from an interval of 1 time-step to 20 time-steps by 62.6%,

however the quality of the solution does start to decrease in

the pushing task after an interval of about 10 time-steps. The

adaptive method performs very well however. It generally

converges to an optimised solution in a similar amount of time

as the fixed 20 time-step method, whilst maintaining a cost

reduction similar to the fixed 2 or 5 time-step methods. The

TABLE I: iLQR performance data from Fig 4. Values shown

are mean values with standard deviation in parentheses.

Optimisation time

Interpolation Method Pendulum Reaching Pushing

Baseline 5.89(2.06) 13.83(4.62) 45.74(15.33)
Lin-2 4.36(1.47) 10.59(2.57) 33.34(10.09)
Lin-5 3.58(1.02) 8.82(1.77) 23.32(8.10)

Lin-20 3.07(0.95) 7.60(0.88) 17.09(7.03)
Adaptive 3.67(1.02) 8.12(1.34) 18.18(7.21)

Cost reduction

Interpolation Method Pendulum Reaching Pushing

Baseline 0.94(0.01) 0.17(0.05) 0.72(0.28)
Lin-2 0.95(0.09) 0.17(0.06) 0.73(0.29)
Lin-5 0.96(0.07) 0.18(0.05) 0.69(0.30)

Lin-20 0.95(0.09) 0.17(0.06) 0.62(0.30)
Adaptive 0.96(0.07) 0.17(0.05) 0.70(0.29)

mean interval size of the adaptive method was 15.6 time-steps,

with variance of 304.6, showing that the adaptive method

could exploit periods of the trajectory where the dynamics

were fairly linear by changing the interval size significantly.

V. FUTURE WORK

From this work we have concluded that the method of

determining the key points is more important than the method

of interpolation. In the future, we wish to enhance our

adaptive method of determining key points so that an accurate

approximation of the dynamics gradients can be calculated

with minimal finite-differencing calculations.

We also wish to extend our tasks to also include scenes with

medium levels of clutter where calculating dynamics gradients

for a large number of objects gets prohibitively expensive.
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