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A Non-parametric Skill Representation with Soft Null Space Projectors

for Fast Generalization

João Silvério1 and Yanlong Huang2

Abstract— Over the last two decades, the robotics community
witnessed the emergence of various motion representations that
have been used extensively, particularly in behavorial cloning,
to compactly encode and generalize skills. Among these, proba-
bilistic approaches have earned a relevant place, owing to their
encoding of variations, correlations and adaptability to new
task conditions. Modulating such primitives, however, is often
cumbersome due to the need for parameter re-optimization
which frequently entails computationally costly operations. In
this paper we derive a non-parametric movement primitive
formulation that contains a null space projector. We show that
such formulation allows for fast and efficient motion generation
and adaptation with computational complexity O(n2) without
involving matrix inversions, whose complexity is O(n3). This is
achieved by using the null space to track secondary targets,
with a precision determined by the training dataset. Using
a 2D example associated with time input we show that our
non-parametric solution compares favourably with a state-
of-the-art parametric approach. For demonstrated skills with
high-dimensional inputs we show that it permits on-the-fly
adaptation as well.

I. INTRODUCTION

Generalization is a fundamental challenge in machine

learning, which in robot skill learning translates into mod-

ifying a behavior when new conditions arise. Since their

inception with dynamic movement primitives (DMP) [1],

skill representations in robotics have targeted generalization.

In DMPs this is done by design, by representing motion

dynamics with a second-order linear system that ensures con-

vergence to a pre-specified, alterable end-goal. Alternative

approaches using mixture models and hidden Markov models

[2] are also endowed with strong generalization capabili-

ties particularly under the framework of task-parameterized

movement models [3], [4]. Despite their popularity, these

approaches lack analytical solutions to the adaptation prob-

lem, especially when via-points are not located at the start

or end of the movement. In these situations, re-optimization

of model parameters is required which can be prohibitively

costly, e.g., reinforcement learning was used to optimize

the parameters of DMP [5] and GMM [6]. In [7] DMPs

were combined in sequence to address the via-point issue,

demanding several DMPs for a single skill, as opposed to

traditional solutions requiring only one DMP.

A second line of approaches leverages probability theory

to provide increased adaptation capabilities. Paraschos et al.

introduced probabilistic movement primitives (ProMP) [8].
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ProMP assumes that demonstrations of a task are approxi-

mated by a parametric trajectory amounting to a weighted

sum of basis functions and uses Gaussian conditioning to

compute optimal weights to pass through new, desired via-

points. ProMP has been extended to handle obstacle avoid-

ance [9], [10], where in [9] a signed distance between a robot

arm and an obstacle was used similarly to CHOMP [11], and

in [10] a random exploration and update scheme, initialized

by ProMP weight distributions, was provided similarly to

STOMP [12]. In [13] constrained ProMP was studied by

formulating external constraints into a nonlinear optimization

problem. In [14], we introduced a non-parametric, kernel-

ized movement primitives (KMP) formulation which uses

kernel functions to mitigate the need to carefully define

basis functions, a well-known issue in ProMP and related

techniques relying on fixed basis functions. This is the case

especially if the trajectory is not driven by time but by

a multi-dimensional input, such as the position or posture

of a human in the robot workspace, where the number of

required basis functions grows quickly with the number of

input variables [15]. We argue that formulations that allow to

seamlessly encode dependencies on human motions, and not

only time, have an important role to play in the near future

as human-robot interaction gains traction [16]–[19].

Despite providing an elegant solution to adapt a (po-

tentially multi-dimensional-input) trajectory to pass through

regions that were not previously shown to the robot, the

computational cost of dealing with such adaptations by KMP

is non-negligible. This is because it relies on a kernel matrix

that, depending on factors like the task and the features

being encoded (e.g. robot end-effector poses, joint angles,

velocities), may be costly to invert. It should be noted

that this is an intrinsic limitation of many non-parametric

methods, including Gaussian processes [20].

In this paper we address the fast adaptation problem by de-

riving a variant of KMP that contains a null space projector.

We start from the original problem formulation, described

in Section II, and modify the optimization objective such

that a null space projector appears naturally (Section III-

A). Null space projectors play an important role in robot

control [21]–[25] and we re-use some of those core ideas

here in a different domain. Subsequently we show that the

projector can be kernelized too, providing an elegant and

computationally efficient solution to probabilistic trajectory

adaptation (Section III-B), including in problems with multi-

dimensional inputs. We also discuss some of its properties

(Section IV), particularly the fact that idempotence of the

projector is not guaranteed and depends on the training



data (thus we refer to it as a soft null space projector).

While on the surface this might appear to be a limitation, it

allows for covariance-weighted exploration trivially. Finally

we compare our approach to two baselines in 2D and 3D

examples (Sections V–VI).

II. KERNELIZED MOVEMENT PRIMITIVES

In the KMP framework we are interested in estimating a

model that predicts the value of an output variable ξ ∈ R
D

given observations of an input s ∈ R
I from a set of M

datapoints {sm, ξm}Mm=1 typically, but not necessarily,

collected from human demonstrations. Examples of s

include time or human hand positions, while ξ is often the

robot end-effector pose and its derivatives [14]. Similarly

to ProMP, KMP assumes a parametric approximation of

a trajectory by a weighted sum of basis functions, i.e.,

ξ(s) =

[
φ(s) ... 0

...
. . .

...
0 ... φ(s)

]⊤

w = Φ(s)⊤w, where w ∈ R
BD

are weights and φ ∈ R
B is a vector of basis functions whose

values depend on s. Moreover, w ∼ N (µw,Σw). ProMP

finds µw,Σw using maximum likelihood estimation (MLE)

with samples of w obtained from demonstrations. KMP

departs from ProMP by further assuming that a reference

trajectory distribution {µn,Σn}
N
n=1 is available to model

P (ξ|sn), where sn=1,...,N are N given inputs. It then

finds µw,Σw by minimizing the objective J(µw,Σw) =
∑N

n=1DKL

(

N
(
Φ(sn)

⊤µw,Φ(sn)
⊤
ΣwΦ(sn)

)
||N (µn,Σn)

)

.

In this paper we focus on finding the optimal values of µ∗
w,

which is done by solving the regularized weighted least

squares problem (see [14] for the detailed derivation):

µ∗
w=argmin

µw

N∑

n=1

(

Φ(sn)
⊤
µw−µn

)⊤

Σ
−1
n

(

Φ(sn)
⊤
µw−µn

)

+ λµ⊤
wµw, (1)

where λ > 0 is a scalar. Differentiating the objective in (1)

and equating to zero results in

µ∗
w = Φ

(
Φ

⊤
Φ+ λΣ

)−1

︸ ︷︷ ︸

(Φ⊤)†

µ, (2)

where we have

Φ = [Φ (s1) . . .Φ (sN )] , µ =
[
µ⊤

1 . . .µ⊤
N

]⊤
,

Σ = blockdiag (Σ1, . . . ,ΣN ) . (3)

The underscored term in Eq. (2)
(
Φ

⊤
)†

can be interpreted as

a regularized right pseudo-inverse of Φ⊤ with regularization

term λΣ.

For a test input s∗, the expectation of ξ(s∗) under

the assumption of a parametric trajectory is given by

E [ξ(s∗)] = Φ(s∗)⊤µ∗
w. By replacing (2) and applying the

kernel trick [15], we obtain

E [ξ(s∗)]=Φ(s∗)⊤µ∗
w = Φ(s∗)⊤Φ

(
Φ

⊤
Φ+ λΣ

)−1
µ

(4)

= k∗ (K + λΣ)
−1

µ, (5)

where k∗ = [k(s∗, s1), . . . ,k(s
∗, sN )],

K =

[
k(s1,s1) ... k(s1,sN )

...
. . .

...
k(sN ,s1) ... k(sN ,sN )

]

, k(si, sj) = k(si, sj)I

and k(si, sj) = φ(si)
⊤φ(sj) is a kernel function

from hereon assumed to be the squared-exponential

k(si, sj) = exp(− 1
l2
||si − sj ||

2).
From (1), (5) it follows that if, for a certain µn, the

covariance Σn is small, the expectation at sn will be close to

µn. This provides a principled way for trajectory modulation.

Indeed, if, for a new input s̄, one wants to ensure that the

expected trajectory passes through a desired µ̄ it suffices to

manually add the pair {µ̄, Σ̄} to the reference distribution

provided that Σ̄ is small enough. While this solves the

adaptation problem trivially, it comes at the cost of having to

invert the term K+λΣ every time a new point is added. This

hinders the applicability of KMP in scenarios that require a

fast evaluation of variations of the demonstrated trajectories.

We propose to alleviate this issue by formulating trajectory

modulation as acting on the null space of the movement

primitive.

III. A NULL SPACE FORMULATION OF KMP

A. KMP with null space as the solution to a least squares

problem

We take inspiration from the robotics literature on null

space projectors [22]–[24] and extend the original problem

(1) with an additional cost term to keep the solution close

to a desired one denoted by ŵ, i.e.,

µ∗
w = argmin

µw

(
Φ

⊤µw − µ
)⊤

Σ
−1

(
Φ

⊤µw − µ
)
+ αµ⊤

wµw

+β (µw − ŵ)
⊤
(µw − ŵ)

︸ ︷︷ ︸

J(µw)

.

(6)

The solution can be obtained similarly to (1) by solving
∂J(µw)
∂µw

= 0, leading to

µ∗
w=

(
ΦΣ

−1
Φ

⊤+(α+ β) I
)−1(

ΦΣ
−1µ+ βŵ

)
. (7)

By assuming λ = α+ β, (7) is re-written as

µ∗
w = Φ

(
Φ

⊤
Φ+λΣ

)−1
µ+β

(
ΦΣ

−1
Φ

⊤+λI
)−1

ŵ. (8)

Moreover, by using the Woodbury identity1 the inverse in

the second term of (8) takes the form

(
ΦΣ

−1
Φ

⊤+λI
)−1

=
1

λ

[

I −Φ
(
Φ

⊤
Φ+λΣ

)−1
Φ

⊤
]

(9)

which plugged back into (8) results in

µ∗
w=Φ

(
Φ

⊤
Φ+λΣ

)−1

︸ ︷︷ ︸

(Φ⊤)†

µ+
β

λ




I−Φ

(
Φ

⊤
Φ+λΣ

)−1

︸ ︷︷ ︸

(Φ⊤)†

Φ
⊤




ŵ.

(10)

Equation (10) corresponds to a typical least squares solution

with null space where for a linear system Y = XA we

1
(

A+CBC⊤
)−1

= A−1+A−1C
(

B−1 +C⊤A−1C
)−1

C⊤A−1



have as solution Ŷ = X̂A∗ = X̂
(
X†Y +Nv

)
where v

satisfies a secondary goal and N = I −X†X .

For the remainder of the discussion we will assume, with-

out loss of generality, β
λ
= 1. For reference, this assumption

is common in robot control when damped least squares and

null space projectors are combined, see [23], [24].

B. Kernelizing the null space solution

As for the original solution of KMP, the optimal solution

µ∗
w is applied to a new test point to predict the expectation

of the output as

(11)

E [ξ(s∗)] = Φ(s∗)⊤µ∗
w

= Φ(s∗)⊤Φ
(
Φ

⊤
Φ+ λΣ

)−1
µ+

[

Φ(s∗)⊤

−Φ(s∗)⊤Φ
(
Φ

⊤
Φ+ λΣ

)−1
Φ

⊤
]

ŵ.

Using the kernel trick we can write

(12)
E [ξ(s∗)] = k∗ (K + λΣ)

−1
µ

+
[

Φ(s∗)⊤ − k∗ (K + λΣ)
−1

Φ
⊤
]

ŵ.

For the sake of the derivation, we convert the null

space desired weights ŵ into a desired set of points

in trajectory space. From the assumption of a para-

metric trajectory ξ(s) = Φ(s)⊤w we define an arbi-

trary number P of desired secondary target points as

ξ̂1 = Φ(sp=1)
⊤ŵ, . . . , ξ̂P = Φ(sp=P )

⊤ŵ or, in matrix

form,

ξ̂ = Φ̂
⊤ŵ. (13)

Next we approximate the optimal values of ŵ given the

desired secondary target points ξ̂ using the right pseudo-

inverse of Φ̂⊤, i.e.

ŵ = Φ̂

(

Φ̂
⊤
Φ̂

)−1

ξ̂. (14)

Plugging (14) back in (12) yields

(15)

E[ξ(s∗)] = k∗ (K + λΣ)
−1

µ+
[

Φ(s∗)⊤

− k∗ (K + λΣ)
−1

Φ
⊤
]

Φ̂

(

Φ̂
⊤
Φ̂

)−1

ξ̂

= k∗
Ψµ+

[

k̂∗ − k∗
ΨK̂

]

(K)
−1

ξ̂.

with k̂∗ = Φ(s∗)⊤Φ̂, K̂ = Φ
⊤
Φ̂, K = Φ̂

⊤
Φ̂ and Ψ =

(K + λΣ)
−1

.

Finally, for a single desired secondary target and a

squared-exponential kernel we have K = I and (15)

becomes2

E[ξ(s∗)] = k∗
Ψµ+

[

k̂∗ − k∗
ΨK̂

]

ξ̂. (16)

Notice that (16) corresponds to (5) with the additional null

space term
[

k̂∗ − k∗
ΨK̂

]

ξ̂. Equation (16) thus modulates

2To contrast our solution with the ‘classical’ KMP [14], throughout the
rest of the paper we refer to (16) as the null space KMP (NS-KMP). In

addition, we refer to ξ̂ as the null space reference.

Fig. 1: Effect of the null space projector in modulating the original trajectory.
Top-left: reference distribution with mean shown as a dashed curve and
covariance as ellipses. Top-right and bottom: Modulation examples at three
different points. A null space reference with the same magnitude across all
plots is applied in the direction of the yellow arrow at the blue point. The
non-modulated KMP trajectory (dashed) changes its shape (red) depending
on the covariance at the point where the reference is applied. The green point
is the via-point one would need to define to achieve the same modulation
using classical KMP adaptation (see Section IV-C).

the expectation (5) in a computationally efficient manner. We

leverage this property by modifying ξ̂ such that variations of

the original trajectory are achieved, similarly to what is done

in robot null space exploration [26]–[28]. However, unlike

the null spaces found in robot control which are often strict

(see [24] for an overview) the KMP null space possesses a

set of properties derived from its probabilistic foundations

that dictate how ξ̂ modulates (5).

IV. PROPERTIES OF THE KERNELIZED NULL SPACE

PROJECTOR

A. Idempotence and ‘soft’ null space

A general property of null space projectors is

idempotence, i.e. for a null space projector N we

have NN = N [25]. The projector derived in Section III-A

is not guaranteed to have this property since, generally,(

I −
(
Φ

⊤
)†

Φ
⊤
)(

I −
(
Φ

⊤
)†

Φ
⊤
)

̸=
(

I −
(
Φ

⊤
)†

Φ
⊤
)

.

It should be noted, however, that as λΣ → 0 idempotence

is fulfilled, which can be verified trivially. In practice, this

means that the larger Σ, the more the null space reference

is allowed to deform the original trajectory. For this reason

we refer to it as a soft null space projector. In robotics, this

is known to happen when computing null space projectors

using the regularized pseudo-inverse of the Jacobian matrix.

Indeed, in those cases, the null space tasks are known to

affect the precision of the main one [24].



Fig. 2: Equivalence between null space modulation and via-point adaptation.

A null space reference ξ̂ applied at input ŝ modulates the original KMP
(dashed), computed from (5), generating the red line, computed from (16).
In the dashed line, ŝ resulted in the blue point. In the red line ŝ resulted
in the green point. By treating the latter as a via-point (see Section II),
classical KMP via-point adaptation (green circled line) produces the same
result.

B. Covariance-weighted null space modulation

Unlike the robot control case, where regularization typi-

cally appears as a diagonal matrix, Σn are full covariance

matrices. As a consequence, a null space reference generally

does not affect all dimensions of the trajectory equally. The

covariance at a given point influences both the magnitude

and the directions along which a null space reference can

modulate the trajectory. Figure 1 illustrates this property.

The top-left image shows a trajectory distribution in 2D

computed from examples of drawing a letter ‘A’ [29]. That

distribution was used as a reference trajectory distribution in

a KMP. Notice how the covariance changes throughout the

trajectory. In the top-right and bottom images, we show the

effect of applying a null space reference (yellow arrow), with

the same magnitude, at different points along the trajectory.

The dashed line is computed from (5) and the solid, red

one from (16). The covariance in the null space projector

constrains the modulated trajectory to deform less (more)

along the directions where the variance is lower (higher).

Additionally the modulation is applied along the axes of

Σn. This provides a principled way to use the variations in

the original dataset to design optimal exploration strategies.

Moreover, unlike typical exploration strategies that require

the re-computation of model parameters or computationally

costly operations to include new points in the trajectory, here

adding new points is done inexpensively with (16). Indeed,

the parameter Ψ, that contains a potentially large matrix

inverse operation, is computed only once from the reference

trajectory distribution.

C. Equivalence to classical KMP adaptation

An important final property of NS-KMP is that null

space modulation is equivalent to classical KMP modulation

[14] given the appropriate via-point. For the sake of the

explanation let us consider an input ŝ where a null space

reference ξ̂ was applied, resulting in an observation ξ(ŝ) ̸= ξ̂

after the null space projector. We have concluded empirically

that by treating the pair {ŝ, ξ(ŝ)} as a via-point in the

classical KMP framework [14], and adding it to the reference

trajectory distribution with a low covariance, generates the

same trajectory as the null-space-generated one. Figure 2

illustrates this property. This result suggests that NS-KMP is,

indeed, a computationally-efficient tool for via-point-based

motion adaptation.

V. EXPERIMENT I

We first report results on the re-planning of a 2D trajectory,

learned from demonstrations, after an obstacle appears. We

tackle this problem using null space exploration (NS-KMP)

or by adding via-points (KMP, ProMP) to the demonstrated

trajectory distribution. We compare the time performance of

KMP, NS-KMP and ProMP.

A. Setup

We use the handwritten letter dataset available in [29], par-

ticularly the dataset for letter ‘A’, to generate a trajectory dis-

tribution from demonstrations. It contains 10 demonstrations

with time t and 2D position (x1, x2), which we use to train

a mixture model with 8 components and retrieve a reference

trajectory distribution {µn,Σn}
100
n=1 using Gaussian mixture

regression. Moreover s = t and ξ = [x1 x2]
⊤

. In both KMP

and NS-KMP implementations we use hyperparameters λ =
0.1, l = 0.125 while for ProMP we use 20 basis functions.

The implementation was done in Python 3.8 running on an

8-core 11-Gen Intel Core i7-11850H @ 2.50GHz processor.

We use the learned models to simulate a robot planning a

trajectory within a finite-horizon. At time t, the robot uses

KMP, NS-KMP or ProMP to compute a trajectory for the

horizon {t, . . . , T}. We use T = 1 with 10ms increments

between time steps. At a randomly chosen time instant in

the horizon, an obstacle (a circle with radius 0.5) with

position uniformly sampled from {µn}
N
n=1 appears (only

once) along the planned path. The robot then tests alternative

paths looking for one that does not collide with the obstacle.

In NS-KMP, this is done by sampling values of input ŝ and

null space reference ξ̂ and computing the corresponding new

trajectory using (16). The sampling interval for the input

is [t, . . . ,min(t + 0.2, T − t)] and [−1000, 1000] for the

two dimensions of ξ̂ (we discuss this range of values in

Section VII). In KMP and ProMP, finding alternative paths

is done by sampling via-points in the neighborhood of the

obstacle and inputs in the same range as for NS-KMP. To

efficiently perform the exploration, including sampling null

space references and via-points we used TPE [30], particu-

larly the implementation available in the Optuna package

[31]. We define a simple objective function to minimize

f(Xpred) = ccollision(Xpred) + ccont(Xpred) where Xpred

is the sequence of 2D points in the planned trajectory and

ccollision and ccont are collision and continuity terms that

receive values of 1000 if a collision happens in Xpred or the

norm between any two consecutive points in Xpred exceeds

the radius of the obstacle and 0 otherwise. The optimizer

returns the first solution with zero cost.

B. Results using one via-point

Figure 3a shows example trajectories obtained from NS-

KMP. We observe that the obstacle is avoided correctly in



(a) Modulations with one via-point.

(b) Modulations with two via-points.

Fig. 3: Examples of trajectories obtained using NS-KMP for different
numbers of via-points. The blue point show the robot position when the
obstacle (green circle) appears while the black point depicts the via-point(s)
discovered by NS-KMP, which result in an adapted trajectory (red). The
dashed line is the nominal trajectory encoded in the KMP.

different segments of the trajectory. Table I summarizes the

time required by KMP, NS-KMP and ProMP to predict a

trajectory from one null space reference or via-point (first

row) and to find a solution to avoid the obstacle (second row).

Each entry corresponds to the mean and standard deviation of

40 points. In the case of NS-KMP one prediction corresponds

to computing k̂∗, K̂ and (16). For KMP it is the time

of computing new matrices K, k∗ and (5), including the

inversion. For ProMP it is the time to evaluate the basis

functions at the new input, recompute the weight distribution

and use it to compute a new trajectory (see [8]). Note that

in this experiment we did not allow obstacles to appear at

points where the trajectory intersects with itself (see these

cases in Fig. 3b) since they require two via-points. The

prediction times show that the parametric model ProMP was

the fastest, closely followed by our non-parametric NS-KMP.

Moreover, we observed comparable times between NS-KMP

and ProMP to find a good trajectory (second row, 1 via-point

(s)), with KMP (first column) taking two orders of magnitude

longer.

C. Results for collision avoidance with two via-points

Finally we investigated modulation by more than one via-

point. For this we focused on the cases where the obstacle

appears at places where the trajectory intersects with itself

(Fig. 3b). Given the high computational cost of KMP shown

in V-B we compare NS-KMP and ProMP only. Figure 3b

shows that NS-KMP is capable of avoiding obstacles by

modulating the planned trajectory with two via-points. As

seen in Table I, last row, NS-KMP and ProMP achieved

times within the same order of magnitude, with a slight

disadvantage to ProMP.

TABLE I: Time to find solutions in 2D trajectory modulation.

KMP NS-KMP (ours) ProMP

Prediction (ms) 67.4± 4.6 1.12± 0.33 0.24± 0.02

1 via-point (s) 1.62± 1.14 0.05± 0.04 0.02± 0.04

2 via-point (s) - 1.70± 1.40 5.63± 6.20

VI. EXPERIMENT II

In a second experiment we investigate the ability of

NS-KMP to modulate trajectories generated from multi-

dimensional inputs. We consider a handover task where the

end-effector position of one robot is computed from the one

of another robot and adapted after an obstacle appears.

A. Setup

In order to train a NS-KMP we used the dataset collected

from handover demonstrations in [32], with 5 demonstrations

in the form of human hand and robot end-effector positions

xH and xR. The NS-KMP thus uses s = xH and ξ = xR.

In order to simulate the human-robot handover task, the data

was rescaled to fit the robot workspaces in the pybullet setup

depicted in Fig. 4. As illustrated in Fig. 4, the left robot

plays the role that the human played in the demonstrations

by picking up an object (yellow box) and handing it over to

the robot on the right. The latter starts with a planned motion

(black line) computed using as input the trajectory planned

by the left robot (unavailable in a real scenario with a human,

only shown for illustration). In each trial the motion is

interrupted by a cube-shaped obstacle with an axial diagonal

of 10cm that appears randomly (both in time and location)

once along the black line. All the NS-KMP parameters were

the same as in V. The optimization framework was also the

same, however ξ̂ was sampled from the range [−2000, 2000]
and the inputs (i.e. the left robot end-effector position) were

sampled uniformly from the ones in the reference trajectory

distribution. As in [14], we do not use ProMP as baseline

here due to the difficulty in parameterizing basis functions

for multi-dimensional inputs. Instead, we consider the opti-

mization of Gaussian components in GMM as a baseline [6].

Specifically, we optimize the mean of one randomly chosen

Gaussian until the collision cost is zero. We do not evaluate

classical KMP in this section as the arguments that caused it

to underperform in V-B are still valid (see also the analysis

of computational complexity in Section VII-B).

B. Results

In 20 trials, the average time to compute a solution with

NS-KMP after the obstacle appears was 0.16s±0.13. Fig. 4,

top-right and bottom, shows original and adapted trajectories.

The GMM baseline yielded 0.616s± 0.571.

VII. DISCUSSION

A. Analysis of experimental results

The results in Section V revealed that our solution, despite

not outperforming ProMP (≈ 5× faster at predicting), com-

putes trajectories given a new desired point at the millisec-

ond level (Table I, first row) with a non-optimized Python



Fig. 4: Top-left: Start of the handover task. Top-right and bottom: Reproduc-
tions in simulation. The right robot motion is governed by the position of
the left robot end-effector. For illustration, the black line shows the nominal
trajectory of the right arm based on the planned motion of the left arm. An
obstacle (green) appears during motion. Using NS-KMP the right arm re-
plans its motion resulting in the trajectory in orange.

implementation. We believe this to be a noteworthy result for

a non-parametric approach. Moreover, ProMP and NS-KMP

performed at a similar level in finding a 1-via-point solution.

However, ProMP is only ≈ 2.5× faster, against 5× for the

individual prediction, suggesting that ProMP needs to try

more via-points than NS-KMP to find a solution. This could

be related to our choice of sampling via-points for ProMP

around the obstacle, which may not be as efficient as the

covariance-weighted exploration by NS-KMP. The reason for

such choice is that we observed that the trajectories generated

by ProMP often had arbitrary shapes (seriously violating the

structure of the training data) if the search space of the via-

point is not bounded or is large. The same reasoning applies

to the 2-via-point case where NS-KMP took less time to find

successful via-points.

Adaptation of learned multi-dimensional-input skills was

a novelty introduced by KMP [14] and the results in Section

VI show that NS-KMP provides a fast solution to adapting

this type of skills. The GMM baseline was slower and the

resulting trajectories were prone to distortions since only one

Gaussian was being optimized at a time. The presented times

for GMM can thus be seen as a lower bound since optimizing

further parameters would require higher amounts of time.

Despite the successful adaptation with NS-KMP we verified

that, for our choice of hyperparameters, the time to compute a

successful trajectory increases when the object appears closer

to the handover location due to the decrease in variance (the

null space ‘hardens’).

Some additional practical aspects of NS-KMP are worth

discussing. As described in V–VI the magnitude of ξ̂ could

be as high as 1000 or 2000 depending on the problem. Due

to the probabilistic nature of the soft null space projector,

one does not know a priori the required magnitude of ξ̂.

It should thus be treated as a hyperparameter to be tuned

depending on the problem. Additionally, while covariance-

weighted null space exploration seems to alleviate the need

to manually define exploration strategies, in some scenarios

one might need to violate the priors imposed by the data, e.g.

if the object has a much larger size. In other words it may be

desirable to ‘soften’ the null space. This can be achieved by

manually increasing λΣ, particularly in the neighborhood of

the concerned region.

B. Analysis of computational complexity

Classical KMP [14] predicts the expectation of ξ(s∗)
using (5). When a new desired point described by the mean

µ̄ and covariance Σ̄ is needed, the reference trajectory distri-

bution {µn,Σn}
N
n=1 is concatenated with {µ̄,Σ̄}, leading to

an extended reference trajectory with length N + 1. Conse-

quently, KMP needs to recompute the term (K + λΣ)
−1

since the updated Σ includes Σ̄, see (3). Note that the

dimension of K and Σ is D(N + 1) × D(N + 1) and

therefore the computational complexity of classical KMP

is O(D3(N + 1)3). Recall that in (16) we only search in

the null space, where K remains the same and therefore Ψ

can be computed beforehand in an offline fashion. Therefore,

the computation complexity of (16) is O(D3N2), which is

significantly faster than classical KMP.

VIII. CONCLUSION

We presented a formulation of kernelized movement prim-

itives with a soft null space projector (NS-KMP). Such

projector allows a secondary goal to modulate a primary

one, in this case a learned trajectory. This modulation occurs

in proportion to the covariance in the data. We leveraged

the theoretical properties of this projector, as well as its

computational efficiency, in letter-writing and handover tasks

to quickly discover demonstration-guided, collision-free mo-

tions. NS-KMP, as a non-parametric approach, outperformed

classical KMP in terms of computational complexity and

performed competitively against the parametric approach

ProMP. Moreover, we showed that NS-KMP provides fast

adaptation in a fraction of a second in tasks where multi-

dimensional input signals drive the robot behavior – an

important part of human-robot interaction.

In future work we will leverage the scalability of NS-KMP

to solve adaptation problems in higher-dimensional settings,

such as humanoid robot control. We will also investigate

how to integrate more diversified types of multi-dimensional

inputs into the NS-KMP framework such as EMG signals

[33]. Finally, we will investigate similar null space projectors

for Gaussian processes.
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[14] Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell, “Kernelized
movement primitives,” International Journal of Robotics Research,
vol. 38, no. 7, pp. 833–852, 2019.

[15] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Secaucus, NJ, USA: Springer, 2006.

[16] G. Maeda, M. Ewerton, G. Neumann, R. Lioutikov, and J. Peters,
“Phase estimation for fast action recognition and trajectory generation
in human–robot collaboration,” The International Journal of Robotics

Research, vol. 36, no. 13-14, pp. 1579–1594, 2017.

[17] Y. Cui, J. Poon, J. V. Miro, K. Yamazaki, K. Sugimoto, and T. Mat-
subara, “Environment-adaptive interaction primitives through visual
context for human–robot motor skill learning,” Autonomous Robots,
vol. 43, no. 5, pp. 1225–1240, 2019.
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