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Abstract

In this paper, we propose a novel efficient multi-task learning formulation for the class of progression problems in which its

state will continuously change over time. To use the shared knowledge information between multiple tasks to improve

performance, existing multi-task learning methods mainly focus on feature selection or optimizing the task relation

structure. The feature selection methods usually fail to explore the complex relationship between tasks and thus have

limited performance. The methods centring on optimizing the relation structure of tasks are not capable of selecting

meaningful features and have a bi-convex objective function which results in high computation complexity of the asso-

ciated optimization algorithm. Unlike these multi-task learning methods, motivated by a simple and direct idea that the

state of a system at the current time point should be related to all previous time points, we first propose a novel relation

structure, termed adaptive global temporal relation structure (AGTS). Then we integrate the widely used sparse group

Lasso, fused Lasso with AGTS to propose a novel convex multi-task learning formulation that not only performs feature

selection but also adaptively captures the global temporal task relatedness. Since the existence of three non-smooth

penalties, the objective function is challenging to solve. We first design an optimization algorithm based on the alternating

direction method of multipliers (ADMM). Considering that the worst-case convergence rate of ADMM is only sub-linear,

we then devise an efficient algorithm based on the accelerated gradient method which has the optimal convergence rate

among first-order methods. We show the proximal operator of several non-smooth penalties can be solved efficiently due to

the special structure of our formulation. Experimental results on four real-world datasets demonstrate that our approach not

only outperforms multiple baseline MTL methods in terms of effectiveness but also has high efficiency.

Keywords Multi-task learning � Progression prediction � Adaptive temporal structure

1 Introduction

As a promising field, multi-task learning (MTL) [6] is a

topic of interest to data mining, machine learning, natural

language processing, and computer vision communities.

Typically, MTL refers to learning multiple related predic-

tion tasks simultaneously, rather than learning each task

independently. Simultaneous learning enables the model to

share common information among related tasks and acts as

an inductive bias to improve generalization performance. It

has led to many successful practical applications, such as

entity recommendation [19], travel time estimation [24],

image captioning [49], human action recognition [25], etc.

One interesting example is harnessing MTL for predicting

the number of infections and identifying key factors in the

social measure for the COVID-19 pandemic. Considering

the prediction of daily COVID-19 infections at a certain

week as a single task, multiple tasks at different time points

are intrinsically related, such that a joint analysis of mul-

tiple time points via multi-task learning is expected to

improve the long-term prediction of the multiple-wave

dynamic of the COVID-19 pandemic.

However, in MTL research, it is challenging to know

how the tasks are related and use concrete ways to capture

the complex correlation among tasks [45]. Previous studies
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achieve these goals by employing effective feature selec-

tion approaches [41] or optimizing the relation structure of

tasks [2, 23]. As for multi-task feature selection approa-

ches, they are limited by a strict assumption that without

considering differences between tasks, the selected features

are shared among all tasks. Recent studies have suggested a

more flexible approach that involves feature selection by

decomposing a coefficient into a shared part and an indi-

vidual part [21] or factorizing a coefficient using a feature-

specific part and a task-specific part [41]. Nevertheless, this

approach has limited ability to share common information

due to the lacking use of complicated task relatedness.

Differing from feature selection ones, the task relation

approaches, mainly consisting of low-rank assumption and

task grouping structure, usually have unavoidable heavy

computational costs. The low-rank approaches assume the

coefficient vectors lie within a low-dimensional latent

space, achieved by imposing a trace constraint [1] or

encouraging sparsity on the singular values of the coeffi-

cient matrix [14]. However, this assumption cannot fully

capture the complicated task correlation and the singular

value decomposition requires heavy computational com-

plexity. Some other task grouping methods decompose the

model matrix into the product of two matrices [2] to cap-

ture task grouping structure but fail to perform feature

selection. This decomposition way also leads to a bi-con-

vex objective formulation that cannot guarantee to achieve

the global minimum and needs to employ alternating

optimization. It makes the associated algorithm has

expensive computational complexity. Therefore, the main

challenge is how to propose a novel multi-task learning

method to not only perform feature selection but also

capture the complex relationships among tasks, on the

premise of ensuring high efficiency.

In this paper, we explore multi-task learning as an

efficient solution for solving a series of progression prob-

lems in which the state will continuously change over time.

A starting point for our method is a direct and clear

assumption that in the progression problem, the state at the

current time point should be related to all previous time

points, which can be considered as a kind of global tem-

poral relatedness. Specifically, refer to Fig. 1, the predic-

tion at each time point is treated as a task, and the

coefficient matrix W ¼ ½w1; � � � ;wt�, wk is related to all

previous tasks wi; i ¼ ½1; � � � ; k � 1�. We propose a novel

Adaptive Global Temporal Structure (AGTS) to model

this idea such that the relatedness matrix among tasks can

be determined adaptively and the global temporal infor-

mation is incorporated into our approach.

To enable the capability to perform feature selection, we

prefer the widely used sparse group Lasso [36] which

conduct simultaneous joint feature selection for all tasks

and the selection of a specific feature set for each task.

However, this penalty does not consider the relation among

tasks. So we combine AGTS with the sparse group Lasso to

propose a novel temporal sparse group Lasso. It not only

performs feature selection, but also utilizes the global

temporal relatedness among tasks. To further improve the

capability of our method, we then combine the fused Lasso

[38] with AGTS to propose a global temporal smoothness

penalty which means the state of the progression problem

will not fluctuate dramatically over time. Recently, the

fused Lasso is extended from single-task learning to multi-

task learning to chase the local temporal smoothness in

[52, 54], which means the difference of the predictions

between successive time points is small. However, this

assumption only considers two adjacent time points,

potentially missing out on helpful task dependencies

beyond the immediate neighbours. In contrast, our global

temporal smoothness penalty considers the adjacent time

point as well as all previous time points.

By integrating the proposed temporal sparse group

Lasso penalty and global temporal smoothness penalty, we

present a novel convex multi-task learning formulation

which takes into account the complex temporal relation

among tasks while selecting important features. It is worth

noting that compared to the bi-convex methods that con-

centrate on the task relation, our method utilizes a relation

matrix to adaptively capture the temporal relatedness

among all tasks, resulting in a convex objective function.

This convexity is the key to designing an efficient opti-

mization algorithm.

The proposed formulation is challenging to solve due to

the utilization of three non-smooth penalties. We design

the optimization algorithm based on the well-developed

alternating direction method of multipliers (ADMM) [5].

Although ADMM is widely used in multi-task learning

literature [22], the worst-case convergence rate of ADMM

is only Oð1=
ffiffiffi

k
p

Þ for k iterations and the actual speed of the

implementation may rely on the choice of the penalty

parameter q [43]. We then devise an efficient optimization

algorithm based on the accelerated gradient method

(AGM) [32] which has the optimal convergence rate for the

class of first-order methods. The key step in using AGM is

the computation of the proximal operator associated with

the composite of non-smooth penalties, which is usually

the most time-consuming block in the optimization algo-

rithm. However, since the task relation matrix of AGTS is

invertible, we can efficiently compute the proximal oper-

ator of our model depending on the decomposition property

of the combination of fused Lasso and sparse group Lasso

proved in [52].

The main contribution of this paper is concluded as

follows:
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• We propose a main assumption that for the class of

progression problems as a sequence of time points, the

state at the current time point is related to all previous

time points. Based on it, we propose a novel adaptive

global temporal structure, which adaptively captures the

complex relatedness among multiple time points.

• One novel multi-task learning approach incorporating

both effective feature selection or optimised task

relation structure is formulated, with benefits to balance

the trade-off of efficiency and effectiveness towards

general MTL applications.

• A new ADMM-based algorithm is designed to solve our

proposed MTL formulation. For tackling the worst-case

convergence rate of ADMM, we exploit the special

decomposition property of our formulation to propose

the AGM-based algorithm with improved efficiency.

• Comprehensive experimental results on four real-world

datasets demonstrate our approach not only outperforms

multiple baseline MTL methods in terms of effective-

ness, but also has high efficiency.

Organization: In Sect. 2, we discuss the related work. In

Sect. 3, we present the proposed method of efficient multi-

task learning with adaptive temporal structure. Our two

optimization algorithms are detailed in Sect. 4. In Sect. 5,

we report the empirical results, and we conclude this paper

in Sect. 6.

2 Related work

In this section, we briefly discuss the related MTL works

on feature selection, task relation structure, and temporal

multi-task learning.

2.1 Feature selection methods

The feature selection approach is usually applied to select a

subset of features for related tasks. It can be conducted by

many kinds of sparsity-introducing penalties, e.g, Lasso,

group Lasso l1;2-norm, l1;1-norm [26], sparse group Lasso

[36] or other penalties with singularity property like Log-

Exp-Sum penalty [11].

To further improve the model performance, some

methods decompose the model coefficient matrix W ¼
Pþ U [12, 21]. Then various penalties are applied on the

different parts to select features, e.g, [12] uses group Lasso

to penalize P to select the features at group level while

Fig. 1 Illustration of MTL for

progression problem. Assume

we have a total of t time points,

and each time point of a

sequence of time points

concerns a prediction task.

Different task has

corresponding different samples

Xi; i 2 f1; � � � ; tg, but with same

feature set. Every time point is

temporally related to its all

previous time points, i.e., every

task is related to all its previous

tasks
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identifying the outlier tasks by penalizing the L2� norm of

every column of U.

2.2 Task relation methods

The low-rank and task-grouping approaches both focus on

complex task relation. Specially, the low-rank approach

assumes the coefficient vectors lie in a low-dimensional

latent space by imposing a trace constraint [1] or penalizing

the singular value of the coefficient matrix [14, 30] with

heavy complexity. But these methods might be too strict in

practice since many task relation structures do not have

low-rank property [31]. Compared to the low-rank method,

some task grouping methods decompose the coefficient

matrix W ¼ PU [23], leading to a bi-convex objective

function which is challenging to achieve the global mini-

mum and design an efficient optimization algorithm. [22]

attempts to combine feature selection ability with task

grouping structure, however, still has a bi-convex objective

function and heavy computational complexity.

2.3 Temporal multi-task learning

Some works use multi-task learning methods to predict

Alzheimer’s disease progression [51, 52]. The key chal-

lenge is how to capture the temporal relation among tasks.

[51] propose a temporal group Lasso formulation TGL

which penalizes deviations between two adjacent tasks to

chase temporal smoothness relation at the task level. [52]

propose a fused sparse group Lasso formulation cFSGL in

which a fusion penalty is used to penalize the difference of

the feature weight at two successive time points to chase

temporal smoothness at the feature level. However, both

TGL and cFSGL only chase the local temporal smoothness,

since they only consider the relation between neighbouring

time points.

We conclude that our proposed approach has several

main advantages:

• Compared to the feature selection methods, our

approach not only conducts simultaneous joint feature

selection for all tasks and selection of a specific feature

set for each task, but also adaptively captures the

intrinsic temporal task relation.

• Compared to the task relation methods with bi-convex

objective function, our convex formulation can achieve

the global minimum easily. The convexity of our

formulation also enables us to solve the proximal

operator of several penalties efficiently, which is the

key step in designing an efficient AGM-based opti-

mization algorithm.

• Compared to temporal multi-task learning, which only

considers the local temporal relation, our approach

chases the global temporal relation in an adaptive way.

3 Methods

Consider we have a multi-task learning problem with t

tasks, where each task i 2 f1; � � � ; tg is associated with a

set of samples ðXi; yiÞ;Xi 2 Rni�p; yi 2 Rni . We denote X ¼
½X1; � � � ;Xt�; Y ¼ ½y1; � � � ; yt� and W ¼ ½w1; � � � ;wt� 2 Rp�t

represents the coefficient matrix over all tasks. Referring to

Fig. 1, the k-th task corresponds to the prediction on k-th

time point. To learn the t tasks simultaneously, the fol-

lowing regularized empirical risk is minimized:

min
W

LðWÞ þXðWÞ;

where LðWÞ denotes the loss function and XðWÞ is the

regularization term that encodes the prior knowledge.

3.1 Adaptive global temporal structure

In our model, total t tasks correspond to t time points. We

assume the k-th time point is related to all previous time

points, meaning the k-th task wk is related to all previous

tasks wi; i ¼ ½1; � � � ; k � 1�. We use matrix multiplication to

model this idea, enabling our model to share information

among correlated tasks. Before showing details of our

method, we first give a new definition termed ‘‘temporal

task’’, denoted as x.

Definition 1 The i-th temporal task xi satisfies

x1 ¼ w1

x2 ¼ ax1 þ ð1� aÞw2

� � �
xt ¼ axt�1 þ ð1� aÞwt:

8

>

>

>

>

>

<

>

>

>

>

>

:

In the above Definition 1, the parameter a 2 ½0; 0:5�
represents the relational degree between the current i-th

time point and all previous time points. The upper bound of

a we set 1
2
, means the state at the current time point is more

important than previous states, which corresponds with

reality to a certain extent. Actually, the value of a depends

on the result of cross-validation, i.e., we can adaptively

capture the global temporal relation among multiple time

points (tasks).

Now according to (1), we formulate this kind of relation

via the following matrix multiplication:
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WRðaÞ ¼ WA1ðaÞA2ðaÞ � � �At�1ðaÞ; ð1Þ

where the matrix RðaÞ, representing the correlation among

tasks, is a function of the hyperparameter a; AiðaÞ 2 Rt�t is

an identity matrix, and the value of AiðaÞm;n is replaced by

a if m ¼ i; n ¼ iþ 1, the value of AiðaÞm;n is replaced by

ð1� aÞ if m ¼ n ¼ iþ 1. The following adaptive global

temporal structure (AGTS) (2) is the expanding form of

(1).

WRðaÞ ¼ W

1 a � � � 0

0 1� a � � � 0

.

.

.
.
.
.

.
.

.
.
.
.

0 0 � � � 1

2

6

6

6

6

4

3

7

7

7

7

5

� � �

1 0 � � � 0

.

.

.
.
.
.

.
.

.
.
.
.

0 0 � � � a

0 0 � � � 1� a

2

6

6

6

6

4

3

7

7

7

7

5

:

ð2Þ

It is worth noting that RðaÞ is an upper triangular and full

rank matrix, meaning the invertibility of RðaÞ. This

property demonstrates the difference between our AGTS

and existing low-rank approaches, including the methods

with trace norm [1, 14, 30] and task grouping with latent

basis task methods [2, 23, 42]. We emphasize this property

is significant for designing the efficient AGM-based opti-

mization algorithm, shown in Sect. 4, associated with our

proposed novel formulation. Lemma 1 gives a deeper

understanding of the AGTS mechanism, related to the

concepts of convex hull [4] and non-decreasing order.

Lemma 1 For any i 2 f1; � � � ; tg, ri ¼
½r1i ; � � � ; rii ; 0; � � � ; 0�

T 2 Rt is i-th column of satisfies
Xi

k¼1
rki ¼ 1; ð3Þ

0 6 r1i 6 r2i � � � 6 rii : ð4Þ

Proof Denote R ¼ RðaÞ, ei 2 Rt is an identity vector

whose i-th entry is 1. According to (1), for any

i 2 f2; � � � ; tg, we have

r1 ¼ e1;

ri ¼ ari�1 þ ð1� aÞei:

(

ð5Þ

It is clear that
P1

k¼1 r
k
1 ¼ 0 )

Pi�1
k¼1 r

k
i�1 ¼ 0 )

Pi
k¼1 r

k
i ¼ 1, that

results in (3). Since a 2 ½0; 0:5�, for r2,

0 6 r12 ¼ a 6 r22 ¼ ð1� aÞ. By mathematical induction,

we assume rm�1 satisfies (4), rm ¼ arm�1 þ ð1� aÞem, so
Pm�1

k¼1 rkm ¼ a 6 rmm ¼ ð1� aÞ, we have (4). It completes

the proof. h

Lemma 1 tells the two characteristics of AGTS (2):

• xk is a convex hull [4], a kind of special linear

combination, of fx1; � � � ;xkg. It means we consider all

the time points from time point 1 to k, that is the reason

why we call it the global temporal structure.

• The non-decreasing order of the entry of r means the

farther the distance, the less the impact. Specifically, the

farther away the time point is from the current time

point, the less influence it has on the current time point,

which is in line with general practical problems.

3.2 Temporal sparse group lasso

We want our approach to have the ability to conduct fea-

ture selection such that the selected important features are

usually meaningful in many scenarios like bioinformatics,

medicine, chemistry, etc. The Lasso penalty [37] is one of

the most commonly used penalties since it introduces

sparsity into the model. Group Lasso penalty [44] is an

extension of Lasso, considering the natural grouping of

features. The combination of Lasso and group Lasso

penalties is also known as the sparse group Lasso penalty

[36], which allows simultaneous joint feature selection for

all tasks and the selection of a specific set of features for

each task. However, the sparse group Lasso treats every

task equally without considering the complex correlation of

tasks. We combine our AGTS with sparse group Lasso to

propose a temporal sparse group Lasso which considers the

global temporal relatedness among tasks and conducts

feature selection in the meantime. After denoting RðaÞ ¼
R to lighten notation, the proposed temporal sparse group

Lasso penalty can be mathematically denoted as

kWRk1 þ kWRk1;2:

where kWRk1 is the Lasso penalty of ðWRÞ, the group

Lasso penalty kWRk1;2 is given by
Pp

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pt
j¼1ðWRÞ

2
i;j

q

.

3.3 Global temporal smoothness

Existing MTL methods based on temporal smoothness

[10, 35, 40, 47, 50, 54] have achieved great success, in

which every time point corresponds to a prediction task.

Based on the regression model, they assume the difference

of the predictions between successive time points is small.

However, the possible limitation is this assumption only

focuses on the adjacent time points without considering the

complex correlation among multiple time points, i.e., only

chases the local temporal smoothness assumption. We

combine this assumption with our AGTS to propose two

novel penalties, mathematically denoted as
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kWRHk2F and kðWRHÞTk1;

where the matrix H 2 Rt�ðt�1Þ is a sparse matrix in which

Hi;i ¼ 1 and Hi;iþ1 ¼ �1. Since AGTS takes into account

all previous time points of the current time point, rather

than only the successive time point, we call this the global

temporal smoothness assumption.

The difference between the two penalties is the first

kWRHk2F , termed global Laplacian-based smoothness

penalty, focuses on the smoothness of the prediction

models across different time points, while the second

kðWRHÞTk1, named global fused Lasso based smoothness

penalty, enforces the selected features across different time

points are smooth. Thus the latter penalty better captures

the global temporal smoothness of selected features, which

is closer to the real-world progression mechanism. Another

reason is although the use of the Laplacian-based

smoothness penalty can avoid the computational difficulty,

we show in Sect. 4 that the novel framework with the

global fused Lasso based smoothness penalty also can be

solved efficiently.

3.4 Adaptive temporal multi-task learning

We combine the temporal sparse group Lasso with the

global fused Lasso based smoothness penalty to propose a

novel multi-task formulation, termed adaptive temporal

multi-task learning (ATMTL), and mathematically denoted

as

min
W

LðWÞ þ k1kWRk1 þ k2kWRk1;2 þ k3kðWRHÞTk1;

ð6Þ

where LðWÞ is the empirical loss function, which becomes

a squared loss
Pt

i¼1 kXwi � yik22 for regression problem

and a logistic loss
Pt

i¼1

Pni
j¼1 logð1þ expð�ynj X

j
iwiÞÞ for

binary classification problem; R ¼ RðaÞ, and k1, k2, k3; a

are fine-tuned parameters. It is clear that RðaÞ can adap-

tively capture the global temporal relatedness among tasks.

The temporal sparse group Lasso k1kWRk1 þ k2kWRk1;2
is used to perform feature selection at both group level and

within group level. The global temporal smoothing penalty

kðWRHÞTk1 enforces the state of the system does not

fluctuate drastically over time.

4 Optimization algorithm

In this section, we give the details of the two associated

optimization algorithms, the ADMM-based algorithm, and

the AGM-based algorithm.

4.1 The ADMM-based algorithm

In recent years, the alternating direction method of multi-

pliers (ADMM) [5] has attracted much attention, since it is

easy to parallelize distributed convex problems. In ADMM,

the global optimal solution is determined by coordinating

the solutions of local subproblems.

The original Eq. (6) is equivalent to the following

constrained problem:

min
W;A;B

LðWÞ þ k1kAk1 þ k2kAk1;2 þ k3kBk1;

s.t. WR ¼ A;WRH ¼ B;
ð7Þ

where A, B are auxiliary variables. Note that we use only

one auxiliary matrix A to relax both the Lasso penalty and

group Lasso penalty to reduce the computational com-

plexity. The augmented Lagrangian function of (7) is

LqðW ;A;B;C;DÞ ¼ 1

2
kXW � Yk2F

þ k1kAk1 þ k2kAk1;2 þ k3kBk1
þ TrðCTðWR� AÞÞ þ q

2
kWRR� Ak2F

þ TrðDTðWRH � BÞÞ þ q

2
kWRH � Bk2F:

ð8Þ

4.1.1 Update W

For the regression problem with a squared loss, we use

inexact ADMM [17, 29], which is shown to have the same

convergence rate as exact updates [5], to improve effi-

ciency. From the augmented Lagrangian in (8), the update

of W is carried out by setting the gradient of W to 0, we

have
Xt

i¼1
XT
i ðXiwi � yiÞ þ qWE þ qWF

¼ qGþ qK � L� J þ XTY ;
ð9Þ

where E ¼ RRT ;N ¼ RH;F ¼ NNT ;G ¼ ART ;K ¼
BNT ; L ¼ CRT ; J ¼ DNT . Clearly, we find that the col-

umns ofW are coupled, which makes the directed update of

W is difficult. Now we show the update of W can be con-

ducted in an efficient way using a suitable linearization

method. To be specific, for ðK þ 1Þ-th iteration, we have

Viw
kþ1
i ¼ qki ; i 2 f1; � � � ; tg: ð10Þ

Vi ¼ XT
i Xi þ qð1þMiiÞIp�p: ð11Þ

qki ¼ XT
i yi � lki þ qgki � jki þ qkki

� q
Xt

j¼1;j 6¼i
wk
jMji:

ð12Þ

where M ¼ E þ F. It is clear that Vi; i 2 f1; � � � ; tg is

symmetric positive definite, which Cholesky factorization

is applicable for, resulting in efficient updating of W.
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For binary classification problems with a logistic loss, it

is solved by using L-BFGS [34], where the gradient is

rwi
¼� 1

ni

Xni

j¼1

expð�y
j
iðX

j
iwiÞÞ

1þ expð�yijðX
j
iwiÞÞ

y
j
iðX

j
iÞT

þ li þ yi þ qðWR� AÞsi þ qðWN � BÞui
where S ¼ RT , U ¼ NT .

4.1.2 Update auxiliary variables

We need to update the two auxiliary variables A and B at k-

th iteration. And the corresponding minimization problems

are

Akþ1 ¼ argmin
A

1

2
kA� Wkþ1

Rþ Ck

q

� �

k2F

þ 1

q
ðk1kAk1 þ k2kAk1;2Þ;

ð13Þ

Bkþ1 ¼ argmin
B

1

2
kB� Wkþ1

RH þ Dk

q

� �

k2F þ k3

q
kBk1:

ð14Þ

According to [43], (13) has an analytical solution with

decoupling each row of matrix A. We introduce the fol-

lowing two lemmas to solve (13) and efficiently.

Lemma 2 [28] For any k > 0,

pðvÞ ¼ argmin
w

1

2
kw� vk22 þ kkwk2

¼ maxfkvk2 � k; 0g v

kvk2
:

Lemma 3 [43, 53] For any k1; k2,

pLassoðvÞ ¼ argmin
w

1

2
kw� vk22 þ k1kwk1:

pGLassoðvÞ ¼ argmin
w

1

2
kw� vk22 þ k2kwk2:

pðvÞ ¼ argmin
w

1

2
kw� vk22 þ k1kwk1 þ k2kwk2:

Then the following holds:

pðvÞ ¼ pGLassoðpLassoðvÞÞ:

Note that, as for solving (14), we decouple each column

of B, since we chase the global temporal correlation among

multiple time points.

4.1.3 Update dual variables

Following standard ADMM dual update [5], the update for

dual variable for our setting is as follows:

Ckþ1 ¼ Ck þ qðWkþ1
R� Akþ1Þ; ð15Þ

Dkþ1 ¼ Dk þ qðWkþ1
RH � Bkþ1Þ: ð16Þ

4.1.4 The stopping criteria

We need to compute the primal and dual residual, which

can be considered as the stopping criteria. For the problem

(8), the primal residual and dual residual are

Pkþ1 ¼ kWkþ1
R� Akþ1kF þ kWkþ1

RH � Bkþ1kF;
Skþ1 ¼ kqðAkþ1 � AkÞ þ qðBkþ1 � BkÞHTkF:

The stopping criterion is both Pkþ1 and Skþ1 are relatively

small.

Algorithm 1 summarizes the whole procedure.
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4.1.5 Convergence rate

Although ADMM is widely used in the MTL community,

the convergence rate of ADMM is only Oð1=kÞ for k

iterations [16] and the worst-case convergence rate is

Oð1=
ffiffiffi

k
p

Þ which is quite slow [43]. More than that, the

actual speed of the implementation of ADMM may rely on

the choice of the penalty parameter q. It is challenging to

design an ADMM-based algorithm with high efficiency. So

we additionally devise an efficient algorithm based on

AGM and the special structure of our formulation.

4.2 The efficient AGM-based algorithm

Due to the optimal convergence rate for the class of first-

order methods, i.e., Oð1=k2Þ for k iterations, the acceler-

ated gradient method (AGM) [32] has been extensively

utilized to solve multi-task learning problems of the fol-

lowing form:

min
W

FðWÞ ¼ f ðWÞ þ gðWÞ; ð17Þ

where f(W) is convex and smooth, g(W) is convex but

nonsmooth. The AGM is based on two sequences, the

approximation point fWig and the search point fSig. Si is
the affine combination of Wi�1 and Wi, denoted as

Siþ1 ¼ Wi þ aiðWi �Wi�1Þ;

where ai is the combination coefficient. Following the

strategy in [3], we set ai ¼ ðti�1�1Þ
ti

, t0 ¼ 1 and ti ¼ 1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4t2i�1 þ 1
p

Þ for i > 1.

The approximate solution Wi is computed as

Wi ¼ pðSi � 1
L
f 0ðSiÞÞ, where the notation pðVÞ is the

proximal operator of V, 1
L
is the stepsize, which is important

for the global convergence of the accelerated gradient-

based algorithms. The stepsize 1/L can be estimated with

many sophisticated line-search schemes [4] in general.

Specifically, the value of L is updated until satisfying

f ðWiÞ 6 f ðSiÞ þ hrf ðSiÞ;Wi � Sii þ
L

2
kWi � Sik2F: ð18Þ

However, this updating procedure may incur overhead

costs in the computation, especially in the case where the

dimension of dataset is very large, i.e., several million [3].

4.2.1 Estimation of the Lipschitz constant

To avoid the expensive computational cost of estimating

the Lipschitz Constant for f(W), in the case of regression

problem, we can directly compute its best value (the

smallest Lipschitz constant) as summarized in the follow-

ing lemma.

Lemma 4 Given

X ¼ ½X1; � � � ;Xt�;Xi 2 Rni�p; Y ¼ ½y1; � � � ; yt�, yi 2 Rni . The

best Lipschitz constant Lf of the function f(W) is no larger

than r2X , where rX ¼ maxfrXi
g; i 2 f1; � � � ; tg, rXi

is the

largest singular value of Xi.

Proof This proof is similar to [8], which however only

considers the scenario all tasks have the same samples. We

extend it to tasks with different samples. h

Algorithm 2 summarizes the whole procedure.

4.2.2 Compute the proximal operator

For designing an efficient AGM-based algorithm, the most

pivotal step is computing the proximal operator of three

non-smooth penalties in (6). We show that based on the

special structure of our formulation, it can be done in an

efficient way. Note that RðaÞ is a full rank matrix that is
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invertible, we denote WR ¼ Q, S ¼ R�1, so we transfer

(6) to the following form:

min
W

LðQ;SÞ þ k1kQk1 þ k2kQk1;2 þ k3kðQHÞTk1:

ð19Þ

Since the matrix S depends on cross-validation, (19) is

convex, which guarantees us to achieve the global mini-

mum easily.

The proximal operator of three penalties in (19) is

pðVÞ ¼ argmin
Q

1

2
kQ� Vk2F þ k1kQk1 þ k2kQk1;2 þ k3kFQTk1;

ð20Þ

where F ¼ HT . It is clear that each row of Q is decoupled

in (20). Thus for obtaining q, the row vector of Q, we need

to solve

pðvÞ ¼ argmin
q

1

2
kq� vk22 þ k1kqk1 þ k2kqk2 þ k3kFqk1;

ð21Þ

where v is the row vector of V. The solution process of (21)

has the certain decomposition property according to [52],

so (21) can be solved efficiently. The specific procedure is

shown as follows:

pFLðvÞ ¼ argmin
q

1

2
kq� vk22 þ k1kqk1 þ k3kFqk1;

pGLðvÞ ¼ argmin
q

1

2
kq� vk22 þ k2kqk2;

ð22Þ

) pðvÞ ¼ pGLðpFLðvÞÞ: ð23Þ

The proximal operator of fused Lasso () can be effectively

solved using [27] and (2223) has an analytical solution

according to [28], so we can solve (21) with high

efficiency.

5 Experiment

In this section, we first introduce four real-world dataset

used in this paper. The difference of the performance of our

ADMM-based and AGM-based algorithms on regression

and classification problems is shown in Sect. 5.2.We

choose the better AGM-based algorithm to compete with

several MTL methods that consider the task relation in

terms of efficiency. For evaluating the effectiveness, we

conduct comprehensive experiments comparing several

recently proposed MTL approaches on different datasets.

The implementation code of the method is on Matlab and

can be found at https://github.com/menghui-zhou/ATMTL.

The processor is Intel i5 6500, CPU 2.5GHz.

To be specific, we compare the efficiency for the

regression problem of the ADMM-based algorithm and the

AGM-based algorithm on the ADAS dataset, and for the

classification problem on the Employee dataset. We also

compare the efficiency between our ATMTL and several

baseline methods on the MMSE dataset. After this, we

evaluate the effectiveness of our proposed temporal sparse

group Lasso on the Parkinson dataset, and our proposed

global temporal smoothness on the MMSE dataset. Finally,

we demonstrate the effectiveness of our ATMTL on the

COVID-19 dataset for regression problems and the

Employee dataset for the binary classification problem,

compared with several baseline methods.

5.1 Dataset

In this subsection, we briefly introduce the information of

the dataset used in this paper.

• Parkinson dataset [39]: This dataset is composed of a

range of biomedical voice measurements from 42

people with early-stage Parkinson’s disease recruited

to a six-month trial of a telemonitoring device for

remote symptom progression monitoring. The record-

ings were automatically captured in the patient’s

homes. The goal is to predict the Unified Parkinson’s

Disease Rating Scale (UPDRS) score for each patient

according to their 16 biomedical features. Every thirty

days as a period, we calculate the average UPDRS score

for each period. Finally, we choose the first four months

as the four time points corresponding to four regression

tasks.

• Alzheimer’s disease (AD) dataset [20]: In order to

better understand the disease, NIH in 2003 founded the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

to facilitate the scientific evaluation of positron emis-

sion tomography (PET), magnetic resonance imaging

(MRI), and other biomarkers. This big dataset is used to

predict the cognitive scores, including the AD Assess-

ment Scale-Cognitive Subscale (ADAS-Cog, ADAS)

and the Mini-Mental State Exam (MMSE), of AD

patients at consecutive time points (6-month or 1-year

intervals). In this study, we have 314 MRI features and

6 time points, from baseline time point (M00) to M48,

meaning 48 months away from baseline time points.

Every time point stands for a regression task.

• Covid-19 dataset [9, 15]: This COVID-19 dataset we

have processed consists of two datasets. The first

dataset is the real-time number of COVID-19 patients in

different regions of the world [9].The second is the

quantitative data of specific COVID-19 policies of each

country processed by [15].We combine these two

datasets to predict the number of COVID-19 cases for
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four future weeks. Each week is viewed as a time point

as well as a regression task. Finally, we have the data of

50 countries, including China, the UK, the USA,

Canada, and so on. There are 10 features, including

population and density of population.

• Employee attrition dataset1 The employee attrition

dataset provided by IBM Waston Analytics is also used

to evaluate the performance of our approach for binary

classification problem. We study the problem of

whether the employees are still working in the company

in the k-th year since they joined the company. We

consider this problem within ten years corresponding to

10 time points. Every time point is considered as a

binary classification task. There are 20 features in this

dataset, including years at the company: How many

years has the employee stayed at the company before

leaving? years with current manager: how many years

has the employee stayed in the current role, and so on.

Table 1 shows the details of our used dataset. Since the

samples of the AD dataset are different, we put the detailed

information of the AD dataset in Table 2.

5.2 Efficiency

In this subsection, we first compare the performance of our

ADMM-based and AGM-based algorithms in detail and

then show the experimental results of the comparison with

several baseline MTL methods that take into account the

task relation.

5.2.1 Comparison of our algorithms

For comparing the efficiency of our two optimization

algorithms, we set the maximum iteration number 20000,

stopping criteria from 101 to 10�7.We terminate the algo-

rithm when the change of function value at two consecutive

iterations is less than the stopping criteria. We compare the

efficiency of our ADMM-based and AGM-based algo-

rithms on the ADAS dataset. Refer to Fig. 2, clearly, the

convergence rate of the AGM-based algorithm is much

higher than the ADMM-based algorithm, this is consistent

with the theoretical analysis. Both optimization algorithms

have similar CPU times in the case of low accuracy, i.e.,

the stopping criteria 2 ½101; � � � ; 10�3�, which may be

related to the utilization of the inexact ADMM to improve

the speed. However, in the case of high precision, the

AGM-based algorithm is obviously much faster, which

shows the efficiency of applying the decomposition prop-

erty of the composite penalty in 6. We also find that the

actual convergence speed of the ADMM-based algorithm is

related to the choice of q. For example, the ADMM-based

algorithm with q ¼ 2:5, which is neither maximum (5) nor

minimum (1), almost has the slowest convergence result.

This property presents a challenge to design an algorithm

based on ADMM for practical problems since we need to

put some effort for selecting a q with a proper value.

Then we study the classification problem on the

Employee dataset by setting the maximum iteration num-

ber 1000. From another different point of view as the above

part, we study the situation of the loss function value. Refer

to Fig 3, the function value generated by the ADMM-based

algorithm seems to be stuck at some random value and can

not converge any more. The three specific ADMM-based

algorithms with different q converge to same value

roughly, but with different convergence rates. Clearly, the

AGM-based algorithm convergences better with a lower

function value. More than that, as shown in Table 3, with

the same number of iterations, the AGM-based algorithm

has much less CPU time than the ADMM-based algo-

rithms. To be specific, when we set the maximum iteration

number 10, the AGM-based algorithm is 0:208=0:083 �
2:5 times faster than the ADMM-based algorithm. And

when the maximum iteration number is 100, the AGM-

based algorithm is 26:5=6:92 � 3:8 times faster than the

ADMM-based algorithm.

We conclude the AGM-based algorithm is more effi-

cient than the ADMM-algorithm for our approach, no

matter in regression dataset or classification dataset. Note
1 https://www.ibm.com/communities/analytics/watson-analytics-

blog.

Table 1 Details of the dataset. The value of ‘Type’ column, R means

regression problem, and C means classification problem

Name Type Feature number Task number

ADAS R 314 6

MMSE R 314 6

Parkinson R 18 4

Covid-19 R 10 4

Employee C 20 10

Table 2 The detailed information of sample numbers at different time

points of AD dataset

Dataset M00 M06 M12 M24 M36 M48

MMSE 1092 1078 1027 883 579 494

ADAS 1074 1064 1014 867 556 483

There are total 6 time points. In this table, the sample size indicates

the number of patients that has baseline MRI features and corre-

sponding target cognitive scores (MMSE or ADAS) at future time

points
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that in the following part, we choose the AGM-based

algorithm to solve the ATMTL formulation 6.

5.2.2 Compare with baseline methods

To study the efficiency of our proposed ATMTL, we

compete with the existing methods which consider the task

relation structure, including task grouping methods: LTGO

[23], VSTG [22]; the trace norm (low rank) methods:
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Fig. 3 Comparison of the convergence situation of the ADMM-based

algorithm and the AGM-based algorithm on Employee dataset. The

maximum iteration number is 1000. When the number of iterations is

up to 1000, we terminate the program

Table 3 Comparison of CPU time (s) of algorithms with different

maximum iteration number on Employee dataset

Iteration number q ¼ 0:01 q ¼ 0:1 q ¼ 1 AGM

10 0.213 0.225 0.208 0.083

100 19.9 16.4 12.7 0.721

1000 94.0 26.5 84.7 6.92

Bold number indicates the best performance, i.e., the lowest nMSE
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Fig. 4 Comparison of the efficiency in terms of CPU time (s) on

MMSE dataset. The stopping criterion is from 100 to 10�4. When the

change of the function value on two consecutive iterations is less than

stopping criterion, we terminate the program
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Fig. 2 Comparison of the efficiency of the ADMM-based algorithm and the AGM-based algorithm on ADAS dataset. The stopping criterion is

from 101 to 10�7. If the difference of the function value of two consecutive iterations is less than the stopping criterion, we terminate the program

123

Neural Computing and Applications



RMTL [7], MNorm [8] and the temporal method cFSGL

[52]. We emphasize that we do not consider the models

whose proximal operator has an analytical solution like

TGL [51], which usually does not have good enough per-

formance shown in Sect. 5.3. It is worth noting that these

aforementioned methods do not have the same objective

function and the concrete theoretical complexity is hard to

compute. For example, LTGO and VSTG are both bicon-

vex, which sets the challenge for a clear computational

complexity. In order to compare the efficiency of each

method as fairly as possible, we repeat the experiment 10

times with randomly selected parameters on a large-scale

MMSE dataset and the average value is reported. We

denote the AGM-based algorithm for solving our formu-

lation as ATMLT and without using Lemma 4 as ATMTL-

no.

According to Fig. 4, we notice the two task grouping

methods LTGO and VSTG do not have much efficiency

may be due to the bi-convex objective function, especially

the l1;1 and k-support norms in VSTG which are both with

additional computational effort. RMTL and MNorm, using

trace norm with the complexity maxðtp2; t2pÞ for comput-

ing the proximal operator, where t is the total number of

tasks and p is the feature dimensionality. The third-order

complexity needs additional computational effort and

actually makes RMTL and MNorm not able to be scalable

to large-size problems. ATMTL, ATMTL-no, and cFSGL

have almost roughly the same efficiency since they are all

based on the decomposition property [52]. Note that

ATMTL is faster than ATMTL-no, demonstrating the

effectiveness of our proposed Lemma 4, in which we

directly compute the largest Lipschitz constant to avoid the

computation of line search for choosing a proper step-size.

We summarize that our ATMTL solved by the AGM-based

algorithm has basically the highest efficiency among these

methods.

5.3 Effectiveness

5.3.1 Experimental setting

For evaluating the effectiveness of our approach, in this

subsection, we terminate all the algorithms when the rel-

ative change of the two consecutive objective function

values is less than 10�4. The reported experimental results

are averaged over 10 random repetitions of the dataset. We

separate the dataset with different ratios, and without

special mention, the ratio is 0.8, which means we split the

dataset into a training set and a test set of the ratio 8 : 2.

We use the following normalized mean squared error

(nMSE) [46, 54, 55] to evaluate the regression algorithms

on the test set.

nMSEðY; ŶÞ ¼
Pt

i¼1 kyi � ŷik22=r2ðyiÞ
Pt

i¼1 ni
:

For binary classification algorithms, the accuracy (ACC) is

applied. All parameters are tuned via 5-fold cross-

validation.

5.3.2 Temporal sparse group lasso

In order to show the effectiveness of our temporal sparse

group Lasso (tsgL), we compare the several methods used

for feature selection on Parkinson dataset. For a more

comprehensive experimental analysis, we consider a dif-

ferent scenario with different task numbers. Competing

methods include Lasso [37], group Lasso (gLasso) [44],

L1;1-norm (hLasso) [48], group Bridge (gBridge) [18],

sparse group Lasso (sgLasso) [36] and Log-exp-sum (LES)

Table 4 The range of the hyper parameter of the involved feature

selection methods

Method Parameter range

Lasso k 2 ½10�3; � � � ; 104�
gLasso k 2 ½10�3; � � � ; 104�
hLasso k 2 ½10�3; � � � ; 104�
gBridge k 2 ½10�3; � � � ; 104�;

c 2 ½0:1; 0:25; 0:5; 0:7; 0:8; 0:9�
sgLasso k1; k2 2 ½10�3; � � � ; 104�
LES k 2 ½10�3; � � � ; 104�;

a 2 ½0:1; 1; 2; e; 5; 10�
tsgLasso H k1; k2 2 ½10�3; � � � ; 104�

a 2 ½0:01; 0:02; 0:05; 0:1; � � � ; 0:5�

Table 5 Comparison on Parkinson dataset of feature selection methods in terms of the mean value of nMSE (mean) and standard deviation (std)

Task No Lasso gLasso hLasso gBridge spLasso LES tsgLasso H

2 0.933 ± 0.053 0.927 ± 0.083 1.131 ± 0.240 0.926 ± 0.049 0.918 ± 0.067 0.935 ± 0.043 0.909 ± 0.052

3 1.023 ± 0.200 0.965 ± 0.202 1.265 ± 0.383 0.955 ± 0.137 0.952 ± 0.197 0.988 ± 0.154 0.948 ± 0.201

4 1.007 ± 0.057 0.958 ± 0.068 1.244 ± 0.202 0.967 ± 0.082 0.948 ± 0.069 0.972 ± 0.103 0.948 ± 0.057

Bold number indicates the best performance, i.e., the lowest nMSE

The symbol H means our approach
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[11]. Table 4 shows the details of the involved methods

with the range of the hyperparameters.

According to Table 5, most of the methods like gLasso,

spLasso, gBridge, LES that introduce both intra-group

sparsity and inter-group sparsity have better performance

than Lasso, since the latter does not consider the natural

grouping of features.Note that hLasso perform badly, no

matter how many task we have. Especially when the task

number is 3, the nMSE achieves the highest value 1.265,

corresponding to the poorest performance. It means

Parkinson’s feature set does not have a clear hierarchical

form. Our tsgLasso has the smallest nMSE

(0.909, 0948, 0.948 with the task number is 2, 3, 4), i.e.,

the best performance, in all cases, which means the intro-

duction of our AGTS is effective. We also notice that

tsgLasso’s improvement, compared to sgLasso, continues

to decrease as the number of tasks increases. The possible

reason is the state of Parkinson’s patients is relatively

stable, so our AGTS does not have extremely high

improvement. Another possible reason is the influence of

the trade-off of task relation created by our AGTS is get-

ting weaker as the number of task goes up. We can solve

this problem by setting different parameters. For example,

the parameter ai is set to represent the related degree

between ðiþ 1Þ-th task and all previous tasks. However,

this method results in many hyperparameters for tuning

which requires heavy computational cost and is not prac-

tical in the real world.

5.3.3 Global temporal smoothness

To evaluate our proposed global temporal smoothness

assumption, we compare the performance of four penalties

that focus on temporal smoothness assumption, including

Laplacian-based penalty (Lbased) [51], fused Lasso based

penalty (FLbased ) [52], our global Laplacian-based tem-

poral smoothness penalty (GLbased), and global fused

Lasso based temporal smoothness penalty (GFLbased), on

MMSE dataset. Table 6 shows the details of the involved

methods with the range of the hyperparameters.

As the experimental results shown in Table 7, we study

the setting with different tasks number from 2 to 6, we

notice both two penalties based on global temporal relation

among multiple time points achieve clear improvement,

demonstrating the effectiveness of the introduction of

global temporal information. Especially when the number

of tasks is 2, the nMSE arrives at the lowest value 0.678.

Clearly, the Laplacian based smoothness methods Lbased

and GLbased perform poorer than the fused Lasso based

smoothness methods FLbased and GFLbased. It shows the

effectiveness of the row decouple of model coefficient

matrix W. It is worth noting that the same phenomenon as

Table 5, the larger the task number is, the less improve-

ment our novel global temporal smoothness penalties have.

5.3.4 Performance of ATMTL

For evaluating the performance of our novel ATMTL, we

compare it with several baseline MTL methods whose

details are in Table 8. Refer to Table 9, which shows the

result conducted on COVID-19 dataset, we notice that both

RMTL and MNorm using trace norm do not perform well,

which is probably because using trace norm to introduce

low-rank structure is not suitable for COVID-19 datase-

t.Also note the nMSE of LTGO and VSTG is average,

which may be because there is no obvious task grouping in

COVID-19 dataset. In addition, NC-CMTL and MTFLC

have poor performance, maybe due to the focus on the

noise level of tasks without taking into account the com-

plex relation between tasks.TGL and cFSGL have lower

nMSE than the above methods, the possible reason is they

Table 6 The range of the hyperparameter of the involved temporal

smoothness penalties

Method Parameter range

Lbased k 2 ½10�3; � � � ; 104�
FLbased k 2 ½10�3; � � � ; 104�
GLbased k 2 ½10�3; � � � ; 104�

a 2 ½0:01; 0:05; 0:1; � � � ; 0:5�
GFLbased H k 2 ½10�3; 10�2; � � � ; 104�

a 2 ½0:01; 0:02; 0:05; 0:1; � � � ; 0:5�

Table 7 Comparison on MMSE dataset of temporal smoothness penalties in terms of the mean value of nMSE (mean) and standard deviation

(std). The symbol H means our approach

Task number Lbased FLbased GLbased GFLbased H

2 0.700 ± 0.054 0.686 ± 0.053 0.696 ± 0.051 0.678 ± 0.049

4 0.640 ± 0.038 0.626 ± 0.036 0.638 ± 0.039 0.622 ± 0.033

6 0.601 ± 0.028 0.582 ± 0.029 0.599 ± 0.029 0.583 ± 0.027

Bold number indicates the best performance, i.e., the lowest nMSE
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consider both feature selection and local temporal con-

nections between tasks. cFSGL performs better than TGL,

indicating the influence of intra-group sparsity.Note that

our model basically has the lowest nMSE in the setting of

task numbers equal 2 and 4, which indicates the global

temporal relation has an important effect. Although cFSGL

gets the best nMSE 0.713 when the task number equals 3,

our ATMLT has a very similar result (nMSE = 0.714).

For the binary classification problem, we conduct the

experiment on Employee dataset. Note that for classifica-

tion problem, MTFLC and NC-CMTL are not suitable, so

we discard them. The experimental results shown in

Table 10 have some similarities with the results on

COVID-19 dataset. Actually, we limit the sample number

by setting different ratios. We emphasize under the sce-

narios with different ratios, our ATMTL has the best pre-

diction accuracy in classification problems.

Both the results about the regression problem and clas-

sification problem demonstrate that our proposed ATMTL

not only outperforms multiple baseline MTL models in

terms of effectiveness; but also is basically the most effi-

cient among methods that consider the task relation.

Table 8 Detailed information of several baseline multi-task learning methods, including the hyper parameter range

Model Name Penalty Parameter range

W ¼ Pþ U RMTL [7] k1kPk� þ k2kUk1;2 k1; k2 2 ½10�3; � � � ; 104�
MNorm [8] k1kPk� þ k2kUk1 k1; k2 2 ½10�3; � � � ; 104�

W ¼ PU LTGO [23] k1kPk1 þ k2kUk2F k1; k2 2 ½10�3; � � � ; 104�
k 2 ½1; t=3; t=2; 2t=3; t�

VSTG [22] k1kPk1 þ k2kPk1;1 þ k3
Pt

i¼1ðkuik
sp
k Þ

2 k1; k2; k3 2 ½10�3; � � � ; 104�
Temporal TGL [51] k1kWk2F þ k2kWHk2F þ k3kWk1;2 k1; k2 2 ½10�3; � � � ; 104�

cFSGL [52] k1kWk1 þ k2kFWTk1 þ k3kWk1;2 k1; k2 2 ½10�3; � � � ; 104�
Calibrated MTFLC [13] k1kWk1;2 þ k2kWk2F k1; k2 2 ½10�3; � � � ; 104�

NC-CMTL [33] l
Pp

i¼1 logðriðWÞ þ 1Þ k 2 ½10�3; � � � ; 104�
OursH ATMTL k1kWRk1 þ k2kWRk1;2 þ k3kðWRHÞTk1 k1; k2; k3 2 ½10�3; � � � ; 104�

a 2 ½0:01; 0:02; 0:05; 0:1; � � � ; 0:5�

Table 9 Comparison with several baseline methods on COVID-19 dataset with the setting of different task number. For regression problem,

evaluate the performance of all methods in term of nMSE (mean ± std). The symbol H means our approach

Task Number nMSE RMTL MNorm LTGO VSTG TGL cFSGL MTFLC NC-CMTL ATMTLH

2 mean std 1.183 1.009 1.247 1.034 0.995 0.828 1.228 1.254 0.793

0.254 0.133 0.448 0.395 0.327 0.224 0.199 0.503 0.198

3 mean std 1.159 1.130 0.992 1.008 0.717 0.713 0.858 1.168 0.714

0.439 0.211 0.315 0.354 0.161 0.165 0.175 0.302 0.166

4 mean std 0.960 0.721 0.928 0.951 0.646 0.642 0.681 0.926 0.638

0.099 0.144 0.163 0.159 0.196 0.098 0.192 0.196 0.107

Bold number indicates the best performance, i.e., the lowest nMSE

Table 10 Comparison with several baseline methods on Employee dataset with the setting of different training ratio. For binary classification

problem, evaluate the performance of all methods in term of ACC. The symbol H means our approach

Ratio DMTL rMTFL LTGO VSTG TGL cFSGL ATMTLH

0.1 0.891 0.894 0.884 0.893 0.902 0.905 0.907

0.2 0.873 0.884 0.890 0.879 0.894 0.891 0.896

0.3 0.869 0.885 0.877 0.873 0.883 0.881 0.885

Bold number indicates the best performance, i.e., the lowest nMSE
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6 Conclusion

In this paper, we proposed a novel MTL approach that

simultaneously performs feature selection and adaptively

captures the global temporal task relatedness. Our main

assumption is for the class of progression problem, the state

at the current time point is related to all previous time

points. To be specific, we propose a temporal sparse group

Lasso to allow simultaneous joint feature selection for all

tasks and selection of a specific set of features for each

task. And we present a global temporal smoothness to

capture the complex temporal relatedness among multiple

time points. Two algorithms, based on ADMM and AGM

respectively, are designed. Experimental results on four

real-world datasets demonstrate our approach not only

outperforms existing baseline MTL methods in terms of

effectiveness; but also is basically the most efficient among

several methods which consider the task relation.

There are two interesting directions to improve the

proposed approach in future work. First, considering the

reduction of training time, we try to utilize the non-convex

technique to reduce the number of hyperparameters of our

approach. Second, introducing spatial information into our

approach is expected to achieve higher capability.
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