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Abstract
Bikeability, the extent to which a route network enables cycling for everyday travel, is a frequently
cited theme for increasing and diversifying cycling uptake and therefore one that attracts much
research attention. Indexes designed to quantify bikeability typically generate a single bikeability
value for a single locality. Important to transport planners making and evaluating infrastructure
decisions, however, is how well-connected by bike are pairs of localities. For this, it is necessary to
estimate the bikeability of plausible routes connecting different parts of a city. We approximate
routes for all origin-destination trips cycled in the London Cycle Hire Scheme for 2018 and estimate
the bikeability of each route, linking to the newly released London Cycle Infrastructure Database.
We then divide the area of inner London covered by the bikeshare scheme into ‘villages’ and profile
how bikeability varies for trips connecting those villages – we call this connected bikeability. Our
bikeability scores vary geographically with certain localities in London better connected by bike than
others. A key finding is that higher levels of connected bikeability are conferred to origin-destination
village pairs of strategic importance, aligning with the stated ambition of recent cycling infra-
structure interventions. The geography of connected bikeability maps to the commuting needs of
London’s workers and we find some evidence that connected bikeability has a positive association
with observed cycling activity, especially so when studying patterns of cycling to job-rich villages.
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Introduction

Bikeability, broadly defined as how conducive cities and towns are to cycling, is an active area of
transportation planning and cycling research. Its importance as a determinant of cycling uptake is
evidenced in both stated preference studies based on survey data (Winters et al., 2013) and revealed
preference studies analysing route and mode choice behaviours from observational data (Grigore
et al., 2019). Bikeability is typically calculated from a combination of factors related to the provision
of bikeable roads and paths (cycle facilities): their extent, coverage and ‘pleasantness’; safety,
potential for conflict with other road users; and coherence, whether bikeable facilities are navigable
and connect with places to which cyclists wish to travel. Taking these factors into account, there are
numerous examples of multivariate indexes describing bikeability generated from data on road
network infrastructure (Winters et al., 2013), road traffic and crashes (Grigore et al., 2019) and on
the background physical and social environment (Porter et al., 2020). Bikeability indexes are then
often expressed as a mapping layer – either a raster surface where bikeability is considered to vary
continuously over space or aggregated over some relevant neighbourhood unit.

A difficulty when expressing bikeability in this way, with scores summarised over single areas, is
that the results say little about connectivity: in some situations, a place may be rated as highly
bikeable, whilst the overall route to that important destination is not. Even if indexes contain
variables describing cohesion and quality of infrastructure, as the evidence advocates (Buehler and
Dill 2016), interventions to improve a single location may be misplaced when considering the routes
that people take. Transport planners evaluating bikeability, and therefore making decisions about the
configuration of infrastructure, are likely interested in learning which routes, which parts of a city,
are better connected with one another in terms of bikeability, and whether this matters to the city’s
social and economic needs.

In this study, we focus on the bikeability of routes directly. We take all origin-destination trip
pairs cycled via the London Cycle Hire Scheme (LCHS) in 2018 and collect plausible routes for
each using the CycleStreets (CycleStreets 2022) routing engine. Route data are then linked with
London’s newly released, and exhaustive, Cycle Infrastructure Database (Tait et al., 2022). Through
this approach, detailed information on the nature of routes is collected – their directness, difficulty in
terms of junctions and turns, extent of dedicated cycle infrastructure along the route, classes of road
encountered and navigability. To analyse connected bikeability, we divide the area of central
London covered by the London bikeshare scheme into 66 ‘villages’ and associate bikeshare trip
origins and destinations, and therefore routed trips, with these villages to form a dataset capturing
the bikeability of over 4000 routed origin-destination (OD) locality pairs. We then interrogate this
complex pattern of connected bikeability by modelling how bikeability varies with observed cycling
and visually using OD maps (Wood et al., 2010). The usefulness of this approach is demonstrated
through an application exploring how connected bikeability matches the commuting patterns of
London residents.

Background

There is a large set of literature that uses observational, network and GIS datasets to estimate
bikeability. The aim is to identify parts of a geographic area, usually a city, that are more or less
conducive to cycling, and therefore that might be prioritised by transport planners for new in-
frastructure and other interventions. When generating bikeability scores, candidate indicators are

2 EPB: Urban Analytics and City Science 0(0)



typically organised thematically. Four high-level components that relate to bikeability are: Comfort,
Safety, Attractiveness and Coherence.

Comfort

Is often representedwith variables that describe the presence and quality of dedicated cycle infrastructure
(Winters et al., 2013; Arellana et al., 2020; Porter et al., 2020), topography (Grigore et al., 2019;Winters
et al., 2013) and other factors such as presence of challenging intersections or road features (Alexander
et al., 2018; Gholamialam and Matisziw 2019; Krenn et al., 2015; Manum et al., 2017).

Attractiveness

May encompass infrastructure variables associated with comfort, as well as variables identifying the
presence of greenspace, water or street furniture (Krenn et al., 2015; Grigore et al., 2019).

Safety

Introduces variables that describe the likelihood of conflict with other road users: background traffic
and infrastructure such as ‘segregated’ bike lanes (Grigore et al., 2019; Lin and Wei 2018).

Coherence

Is represented by the nature and volume of intersections or connecting roads (Nielsen et al., 2013);
the presence of signposting or wayfinding infrastructure; and by the extent to which notable
destinations can be accessed via the bikeable road network (Lowry et al., 2012; Grigore et al., 2019).
Where routes are collected, their directness is approximated by comparing route trajectory and
straight-line distances (Desjardins et al., 2021).

Once an appropriate set of variables is selected, bikeability scores are usually expressed as
additive indexes. These indexes are often communicated and distributed as a mapping layer, al-
lowing analysis of the extent to which bikeability varies over a city and labelling parts of a city that
are comparatively more or less favourable for cycling.

Representing bikeability in this way, where discrete sections of a city have single bikeability scores,
enables straightforward interpretation of results. However, transport planners intuitively wish to know
which parts of a city are better connectedwith one another from routes that can be cycled. This aspect has
been addressed in a subset of the bikeability literature. Alexander et al. (2018) and Saghapour et al.
(2017) use spatial interaction models, rather than estimated route trajectories, to quantify bikeability
between locations. OD bikeability scores are then aggregated over destinations (Alexander et al., 2018)
or origins (Saghapour et al., 2017) to arrive at single bikeability scores. Separately, Abad and Van der
Meer (2018) generate bike network analysis scores that describe network connectivity. Instead of
providing results aggregated over some administrative area, Abad and Van der Meer (2018) classify
connectivity at route segment level to identify weak links that affect route viability. Whilst our work can
be located within these approaches, a point of departure is that we move away from single, stationary
scores to express bikeability at any location as multiple connected location pairs, maintaining this
multiplicity even in presentation and analysis.

Data and methods

Whilst connected bikeability is conceptually straightforward, careful thinking is required around
data collection and analysis. Decisions must be made about a representative set of OD pairs that
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might be cycled in a city; realistic routes need to be generated for these OD pairs; and from this,
valid estimates of the bikeability of entire routes. OD pairs must also be spatially aggregated in ways
that support meaningful analysis, enabling practitioners to make inferences about how well-
connected by bike are locality pairs relevant to a city’s occupants. Our approach is to use the
London Cycle Hire Scheme (LCHS) for generating representative OD pairs, the CycleStreets
(CycleStreets 2022) routing engine to approximate routes, bikeshare ‘villages’ as a spatial unit of
analysis for aggregating bikeability and OD maps (Wood et al., 2010) to characterise geographic
variation in connected bikeability. In this section, we make transparent the analytic decisions
required to construct our index. Replication materials are also available via the paper’s accom-
panying code repository.

Generating routes

The LCHS is one of the world’s largest and frequently used bikeshare schemes (Fishman 2016) with
10 million journeys made each year. It consists of c.800 docking stations located throughout central
and inner London. Targeted expansions into residential areas of London have been designed
alongside improvements in London’s cycle infrastructure in order to incentivise bike use for making
everyday trips (Beecham 2015). Detailed data on the LCHS has been released by Transport for
London (TfL) since the scheme’s launch in 2010. This consists of real-time docking station oc-
cupancy data on the number of bikes and spaces available at each docking station, along with
timestamped OD trip data. In order to generate a ‘reference set’ of candidate OD trips, we selected
all trip pairs made via the scheme in 2018. This time period overlaps with the survey date for the
infrastructure dataset used in our bikeability index, the London Cycling Infrastructure Database
(CID) (TfL 2022b).

Indicative routes for each cycled trip were generated via the CycleStreets (CycleStreets 2022)
routing engine. CycleStreets aims to suggest practical routes taking into account the road and cycle
infrastructure, route complexity or ‘legibility’ and physical characteristics such as hills and inclines.
CycleStreets provides a web Application Programming Interface (API) to its routing engine. Spatial
coordinates representing an OD pair are passed to the API and data on each route returned as json.
Routing requests can be parameterised according to three classes of preference: fastest route,
balanced (a mix between travel time and route quietness) and quietest route. We harvested routing
data for all 671,576 unique OD pairs cycled in the London bikeshare scheme in 2018 by making
batch requests to the API and using the fastest route setting. A map of the top 10,000 estimated
routes cycled in LCHS in 2018 is in Figure 1.

The LCHS was carefully designed in light of London’s social and economic geography, so
the collected OD pairs and routes are likely to describe locations in London frequently con-
nected via cycling (Beecham 2015). However, the scheme is constrained to central London and,
due to the nature of its bikes (heavy, with limited gears) does not extend far north or south where
hilliness is likely to be make cycling less viable. Bikeshare OD pairs will, therefore, not map
directly to regular cycle trips in London. Another source of uncertainty is that routes ap-
proximated by CycleStreets may not be representative of actual route trajectories. To explore
this, we collected open TfL manual counter data (TfL 2022b) measuring observed counts of
LCHS bikes on key infrastructure, London’s bridges, at 15-minute intervals on specified dates.
These frequencies were compared with those that would be expected given our CycleStreets-
routed LCHS trip counts. We observed a very strong association between the two datasets (r.
0.77), suggesting overlap between actual routes and those suggested by CycleStreets at least at
the point locations surveyed by TfL counters. Further detail of this analysis is presented in the
accompanying code repository.
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Generating bikeability ‘heuristics’

The CycleStreets routes provide candidate trajectories connecting sets of locations in London
prominent for cycling. To approximate the bikeability of routes, heuristics were abstracted de-
scribing how amenable to cycling each route is. Variables were derived from the data returned by
CycleStreets directly, and by linking spatial geometries representing routes with the recently re-
leased CID, a formal survey of London’s physical cycling infrastructure conducted in 2018 (Tait
et al., 2022). These variables are listed in Table 1 and organised according to the four components of
bikeability.

To represent Comfort, we followed existing approaches in identifying the presence of chal-
lenging road features (Gholamialam and Matisziw 2019; Krenn et al., 2015) such as right turns and
junctions. Different from the existing literature, we quantified difficulty at the route level. That is, we
consider the number of right turns and junctions encountered over entire routes. Summaries of the
number of junctions were generated by matching CycleStreets route trajectories with the Ordnance
Survey Open Roads data and right turns by inferring bearings from these trajectories. A third
variable describes a more fluid aspect of Comfort. London contains many streets associated with
slower moving traffic and therefore that are inherently more comfortable for cycling. It is difficult to
capture this sort of context; there is no complete dataset on observed road speeds, for example.
Instead we linked routed trips to OSM data and recorded at the route level the relative presence of
different classes of road speed limit.

Safety was chiefly captured by variables describing the degree of separation from other vehicles.
For this, we used the CID, as it reliably delineates between different classes of segregation (see
Figure S1). Also under the Safety component is a variable describing the extent to which junctions

Figure 1. Top 10,000 routes cycled in LCHS in 2018, derived using CycleStreets.
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encountered on a route are supported by safety-related infrastructure – advanced stop lines and
traffic signals.

For Attractiveness, we quantified the extent to which routes take in physically attractive settings
by identifying proximity to greenspace and water. Again, this is expressed at the route level – the
share of the route that passes through parks or waterside. Clearly, not all parks or water in London
are ‘attractive’ and not all attractive parts of the city are close to a park or river. A second variable to
express attractiveness is the volume of cycle parking facilities encountered on routes, again using
CID data. The rationale is that cycle parking facilities tend to be situated at locations of interest or
significance in London – along routes known to be prominent for cycling, conferring some ad-
ditional information around the bikeability of those locations. A third variable relating to attrac-
tiveness is distance. The relative impact of distance on bikeability varies with cycling context and
user type. In urban contexts, cycling is often a feeder mode, with particular categories of distance
preferred over others (Martens 2004); we therefore also evaluated relative attractiveness of routes
using route-level distance. Based on evidence from Martens (2004), the distance penalty was
applied in a non-linear way: trips between 2 � 6 km were deemed optimal with a distance decay
progressively disadvantaging trips outside of this range.

Coherence was inferred using a variable corresponding to the directness of routes – comparing
straight-line distance with routed distance. A second variable captures navigability – the presence of
navigation-related signage along a route – and for this we extract from the CID signage identifying
key destinations and their associated distances, the London Cycle Network, London Cycle Su-
perhighway and Quietways (GLA 2015).

Cleaning variables capturing bikeability ‘heuristics’

If each variable is to usefully discriminate OD pair trip context, heavy skew and uneven variation in
variables is to be avoided. An initial problem was with shorter trips, which were associated with
highly changeable bikeability scores. Manually inspecting these very short trips, it was clear that
they were implausible or inappropriate for cycling. Analysis by TfL identifies a minimum straight-
line distance of potentially cyclable trips as c.500m (TfL 2010). Given the high variability of values

Table 1. Variables used to represent bikeability. CS CycleStreets, OS Ordnance Survey open roads, CID
London Cycle Infrastructure Database and OSM Open Street Map.

Component Source Weight Description

Comfort CS/OS 0.33 Volume of right turns on route
Comfort CS/OS 0.33 Volume of junctions on route
Comfort OSM 0.33 Road traffic speed
Safety CID 0.24 Share of route on off-road bike tracks
Safety CID 0.24 Share of route on fully segregated bike lanes
Safety CID 0.18 Share of route on part-segregated/stepped bike lanes
Safety CID 0.10 Share of route on advisory/mandatory bike lanes
Safety CID 0.24 Share of junctions with safety-supported infrastructure on route
Attractiveness CID 0.33 Share of route in park or along water
Attractiveness CID 0.33 Volume of cycle parking facilities on route
Attractiveness OSM 0.33 Route distance coefficient
Coherence CS 0.5 Straight-line distance versus routed distance
Coherence CID 0.5 Volume of navigation-related signage on route

6 EPB: Urban Analytics and City Science 0(0)



for the short routed trips, we used this threshold for excluding all trips whose straight-line distances
were < 500 m.

A more fundamental problem was in how bikeability indicators varied with trip distance. Taking
the count-based variables as an example, the longer the route the more opportunity there is for right
turns and junctions (Table 1) to accumulate – and so counts needed to be expressed as ‘rates’ relative
to route distance. After performing various checks (visual and computational) on these distance-
adjusted rates, however, we still observed a systematic bias in favour of longer trips; a pattern that
was replicated across variables: the area-based variables quantifying route-level segregation
(Table 1 – Safety), road class (Table 1 – Comfort) and provision of bike facilities and greenery
(Table 1 – Attractiveness). This makes sense when remembering the intuition built into routing
engines such as CycleStreets. Junctions, turns and non-dedicated cycling infrastructure all impose
costs, which are difficult to avoid at the start and end of trips. As trip length increases, however, there
is greater opportunity to avoid turns, junctions (route difficulty) and redirect to dedicated infra-
structure. The attendant bias is problematic as we wish to compare and evaluate connected bi-
keability at a city-wide scale. For each of the input variables, distance-adjusted expectations were
derived by modelling associations between each variable and trip distance. Input variables were then
expressed as residuals from this modelling. For the route difficulty factor, our input variables
therefore identify whether there are greater or fewer right turns and junctions on a route than would
be expected net of the global association observed between junctions/turn frequency and distance.

Generating the additive index

Once appropriate cleaning operations were performed, we followed the convention in geographic
literature on indexes (Cockings et al., 2015) and applied a Box-Cox transformation with range scale
(0–1) normalisation to each variable. Variables and components were then combined additively and
each component given an equal overall weight. Making decisions around how to weight individual
variables within components is challenging. Certain components of bikeability have more variables
attached to them than others. By default, we decided that each unique variable should contribute
equally to a component. For the Safety component, four of the five variables collected represent a
single concept – degree of segregation. We made the decision that the segregation variables should
contribute the largest share (76%) of the overall component, with infrastructure offering the highest
degree of segregation (fully segregated and off-road lanes) contributing the greatest weight. This can
be justified by the fact that segregation maps directly to perceived safety and has been demonstrated
to reduce cycle injury risk (TfL 2018). A second component used to represent Safety, the extent to
which junctions on the route are accompanied with safety-related infrastructure, is also of im-
portance as the majority of observed bike crashes in London occur at junctions (Aldred et al., 2018).
Clearly there is arbitrariness to attaching numerical weights to bikeability variables and a useful
extension might be to selectively parameterise weights depending on cyclist type (e.g. Arellana
et al., 2020).

Spatial unit of analysis

The starting point for our analysis was routes generated from 671,576 OD pairs cycled within the
spatial bounds of LCHS. Identifying geographic patterns in such a detailed dataset is clearly
challenging and it is useful, therefore, to aggregate trips in a meaningful way. In Wood et al. (2020),
LCHS docking stations are aggregated to bikeshare villages – labelled neighbourhoods which,
assuming some familiarity with central London, are reasonably coherent and discriminating. We
borrowed the villages detailed in Wood et al. (2020) for our analysis to generate a dataset of village
boundaries by constructing Voronoi regions around village centroids, with some manual adjustment
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to ensure the spatial extents of villages do not spill across the river Thames and to accommodate
docking stations on the edge of the scheme. Each docking station was then assigned to the village it
is contained within and our OD bikeability scores summarised at the bikeshare-village-level. The
resulting dataset contains 4326 (662) OD village–village pairs.

Aggregating to bikeshare villages inevitably causes Modifiable Areal Unit (MAUP)-related
zoning effects: docking stations towards the edge of a village Voronoi that might be allocated to
a neighbouring village. Inspired by Fisher (1991), we adjust for the uncertainty introduced by
these zoning effects by probabilistically reallocating edge docking stations to neighbouring
villages based on distances to neighbouring boundaries. There is a stochastic element to this re-
allocation, and so we calculated aggregated connected bikeability scores on each re-allocation
to create an ensemble of scores for each OD village pair. Adjusted bikeability scores were then
derived by taking the ensemble average for each OD pair. We additionally explored uncertainty
due to zoning effects in aggregated bikeability via hypothetical outcome plots (Hullman et al.,
2015), an approach also suggested by Fisher (1991). These animations are presented in the
paper’s code repository.

Analysis

Connected bikeability and observed cycling

When analysing their bikeability index, Alexander et al. (2018) explore how closely bikeability
maps to actual cycling activity. This is technically achievable as we have a precise record of
observed cycling in London – bikeshare trip counts. There are, nevertheless, several difficulties with
doing so. First, the amount of cycling between OD locations in the LCHS is heavily conflated with
demand – where work and other activities are concentrated in London. Second, heavy competition
for bikes and docking stations leads to service pressure, making certain parts of the scheme more
viable than others. Third, related to demand, LCHS trip patterns are dominated by two distinct
functions that are difficult to adjust for: a leisure-type function characterised by trips coinciding with
London’s parks and tourist attractions and a commuter-type function where so-called last-mile trips
connect major rail terminals and workplace centres (Beecham 2015). Finally, bikeshare schemes
incentivise short trips, both in their physical design and pricing regimes; journeys connecting more
remote OD village pairs therefore become quite impractical. For our model to make sense, it is
necessary to account for at least some of this confounding context.

Taking peak-time trips that occur during the morning commute (weekdays 0600 � 1000), we
model how trip counts between village OD pairs (yod) vary with the estimated bikeability of those
OD pairs (β1xod). To adjust for demand (β2xod), we create a synthetic dataset of commuting derived
from 2011 Census travel-to-work data approximated over village OD pairs. Service pressure (β3xod)
is estimated using bikeshare docking station trip occupancy data, released at 10-minute observation
periods (c.f. Yang et al., 2022). The impracticality of cycling between remote village pairs is
straightforwardly represented, using average distance (β4xod) of routed trips between village OD
pairs. Adjusting for LCHS’s idiosyncratic usage-functions is more challenging. As the model
attempts to explain commuting behaviour during the morning peak, the strong leisure function is
necessarily dampened, but the last-mile pattern related to transport hubs persists. To capture this, we
add a fixed effect term (β5xod) which varies depending on whether the trip occurs between villages
that contain hub stations. Finally, the pattern of trip frequencies will also vary systematically on the
destination village (workplace) – each workplace will have its own distinctive geography of
commuting.We therefore add a group-level intercept term (ud) on destination villages that allows for
this between-destination heterogeneity. A fuller description of the modelling is in the paper’s code
repository.
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yod ¼ β0d þ β1xod þ β2xod þ β3xod þ β4xod þ β5xod þ εod
β0d ¼ β0 þ ud group� level intercept on destination village
yod estimated morning peak � time bikeshare trip count between village oð Þ and dð Þ:
β1xod estimated bikeability between village oð Þ and dð Þ:
β2xod estimated demand commutingð Þ between village oð Þ and dð Þ:
β3xod estimated peak� time pressure between village oð Þ and dð Þ:
β4xod average distance of estimated routes between village oð Þ and dð Þ:
β5xod fixed effect on village oð Þ and dð Þ with hub stations:

Regression coefficients from the model are presented in Figure 2. The model explains a rea-
sonably large share of variation in OD village trip frequencies (marginal R2 85%; conditional R2

78%), with patterns in coefficients that align with expectation: routed distance and service pressure
are associated with reduced trip counts, whereas Census commuting (estimate of demand), the
presence of hub stations and our connected bikeability index are associated with increased trip
counts. The effect size for the bikeability measure is nevertheless comparatively small. Updating the
model to allow the slope of the bikeability variable to also vary on destination demonstrates that the
effect of bikeability on observed trips is subject to variation; larger positive coefficient effects
generally attach to bikeshare villages that are prominent ‘destinations’ for commuting and other
activities (Figure 2).

Spatial variation in connected bikeability

Visual analysis allows a more detailed interrogation of how patterns in connected bikeability relate
to London’s geography – in this case, the bikeability of 4326 OD village–village pairs. Analysing
this full set of bikeability scores within geographic context is challenging; when using de facto flow
visualisations, problems of clutter and salience bias hinder meaningful analysis. Origin-Destination
maps are one alternative (Wood et al., 2010). They are OD matrices in which cells are given a two-
level geographic arrangement using a map-within-map layout. An explanation appears in Figure 3.
The large grid squares are bikeshare villages with an approximate geographic arrangement; each
represents a trip destination in our application. Embedded in every larger cell is a map of bikeshare
origins. The origin maps are then shaded according to a quantity of interest – bikeability scores in
this case. This means that each village–village OD pair is roughly equally visually salient, allowing
detailed patterns in connected bikeability to be analysed concurrently. Alongside the OD map in

Figure 2. Outputs from modelling work validating bikeability against observed LCHS cycling.
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Figure 3 is a context map displaying key dedicated cycling infrastructure in London, released by
(TfL 2022a).

The maps confirm that there is, as expected, a geography to connected bikeability that aligns
closely with London’s key cycle infrastructure. Destinations of strategic importance – bikeshare
villages in the City of London (Bank, St. Paul’s, Barbican), major rail hubs (Waterloo, Southbank)
and to a lesser extent central London (Westminster, Strand/Covent Garden) contain OD pairs with
generally higher connected bikeability (darker blues). OD village pairs that involve travel east-to-
west and west-to-east have high bikeability scores. The routes associated with these OD pairs likely
involve substantive cycle infrastructure, for instance, the segregated east-west ‘Crossrail for Bike’
installed in 2017 and connecting Canary Wharf to west London (GLA 2015). OD pairs local to
central, north west and south west of the scheme, and where infrastructure is less comprehensive,
have lower connected bikeability scores. That the index penalises routes into these areas may be
ecologically valid – bikeshare villages such as Earl’s Court, Olympia and Hammersmith, for
example. For other villages, St John’s Wood for instance, this penalty may be more questionable;
there may be extra features that make central-north London more conducive to cycling than our
index suggests.

A strategic focus of cycling infrastructure investment in London is in connecting key workplace
centres (GLA 2015). This was suggested by our model comparing observed cycling activity with
bikeability and is reflected in the pattern of connected bikeability scores in Figure 3. Higher bi-
keability is recorded for journeys into villages in the City of London (Bank, St Paul’s) from more
residential villages towards the south (Vauxhall/Kenington, Brixton, Wandsworth) and east (Mile
End, Stepney/Shadwell), which are served by Cycle Superhighway 7 and 3, respectively. Another

Figure 3. OD map of connected bikeability index.
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focus of attention has been in supporting journeys over bridges, since they involve negotiating
relatively large, fast-moving roads, often with difficult junctions at either side (TfL 2017). Again,
evidence of this is in the connected bikeability scores: the average bikeability of trips involving
Blackfriars, a bridge supported with fully segregated cycle lanes, is substantially higher than that of
neighbouring London Bridge (0.56 vs 0.46, Cohen’s d. 1.0), which in 2018 had no segregated
infrastructure and was perceived as awkward for cycling (TfL 2017).

Application

Spatial variation in connected bikeability and London’s labour market

Our connected bikeability measure incorporates detailed information on substantial new cycling
infrastructure in London. Since these interventions were designed deliberatively to support London
residents’ everyday travel needs (GLA 2015), it may be instructive to evaluate bikeability given this
stated purpose.

In this section, we explore how well geographic variation in bikeability matches different
categories of commuting need by disaggregating OD commutes according to occupation type.
Essentially we wish to identify bikeshare village OD pairs that are, in relative terms, important for
supporting higher-wage professional occupations from those relatively more important to sup-
porting lower-wage non-professional jobs. We again use OD maps and colour origin villages
according to relative differences in the number of commutes by occupation, but in Figure 4 focus on
a single destination, Strand/Covent Garden. According to 2011 Census data, this bikeshare village
contains an estimated 11,300 jobs accessed by workers resident in bikeshare villages within the
LCHS boundary. We compare frequencies of professional versus non-professional workers
commuting in from neighbouring villages against what would be expected given the relative
number of those jobs available. Contingency tables containing frequencies of bikeshare village–
village commutes by occupation are constructed and signed chi-scores used to express these
differences (c.f. Beecham and Slingsby 2019).

The maps of commute counts and signed chi-scores demonstrate a geography in the relative
number of commutes into Strand/Covent Garden by occupation, with non-professional workers
overrepresented amongst commutes from villages to the east (Mile End, Whitechapel, Wapping)
and south (Kennington/Vauxhall, Brixton, Stockwell), whilst professional workers are

Figure 4. Selected OD maps where Strand – Covent Garden is the destination. Origin maps are shaded
according to connected bikeability, estimated commute counts and signed chi-scores of relative differences
in professional versus non-professional workers commuting from origin villages.
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overrepresented from certain villages in west London (Putney/Wandsworth, Fulham, Kensington,
Marylebone). Eyeballing the three graphics, there does appear to be some association between OD
bikeability and commute counts, with London’s strategic cycle infrastructure supporting routes
from bikeshare villages containing relatively high numbers of commuters working in non-
professional occupations. This is supported by linear associations between OD bikeability and
OD commute counts for non-professional and professional workers (r.0.16 and r.0.07, respectively).

Discussion

The motivation behind connected bikeabilitywas to ask whether different parts of London are better
connected by bike than others. As with most measures of bikeability, our index can be used to
evaluate infrastructure provision, identify gaps and prioritise locations for planning intervention.
More uniquely, it emphasises the bikeability between places – paired locations – and in relation to
meaningful trips that are made by London’s residents. A key finding is that, consistent with the
stated ambition of recent infrastructure interventions (GLA 2015), higher levels of connected
bikeability are conferred to OD pairs of strategic importance. The geography of connected bi-
keability appears to map to the commuting needs of London’s workers. That our measure of
connected bikeability has a positive association with observed cycling also provides partial evi-
dence of its ecological validity. Several features of our connected bikeability index and framework
for analysis are worthy of discussion, offering both critique and new directions for bikeability
research.

Consistent with the existing bikeability literature, the four components comprising the index –

Comfort, Safety, Attractiveness, Coherence –make heavy use of variables measuring infrastructure
provision. Context additional to this, for instance the more subjective ‘pleasantness’ of the urban
environment, are not so easily captured. This might explain why parts of central and north London
with dense road networks, and therefore which cannot easily accommodate dedicated cycle in-
frastructure, are given lower levels of connected bikeability. If roads in these areas are typically
associated with lower average speeds of motorised traffic or other context that makes them pleasant
for cycling, these lower bikeability scores might be questionable. A future activity may be to explore
other less conventional datasets for capturing subjective context. An obvious additional dataset to
include for estimating Safety is road crash data. Individual-level, geocoded data on cyclist crashes
resulting in injury does exist (Lovelace et al., 2019) and was explored for use in our index. For
meaningful comparison between routes, accompanying exposure datasets – of bikes, pedestrians
and motorised traffic – are nevertheless required (Winters et al., 2013), especially so as bike crashes
are reasonably rare occurrences. Such network-level estimates of exposure are again in short supply.

When generating bikeability indexes, common practice is to make principled decisions around
the inclusion of individual variables and relative weights by invoking existing literature. Where
bikeability is estimated at the route level, we would also argue that detailed analysis of the structure
and distribution of individual variables is necessary. Without careful attention to the geographic
pattern (OD structure) of variables, for example, we might not have identified systematic biases that
were introduced when normalising the count variables by linear route distance. Even when such
biases are understood, there is rarely a non-problematic or canonical solution. When deploying
bikeability indexes to answer specific transport planning problems, it may therefore be instructive to
build flexibility into these sorts of indexes – implementing different component weights, weights
within components and distance penalties depending on the analytical use case.

Finally, the spatial units and framework for analysis demonstrated in our work are useful
contributions. Since the LCHS was designed deliberately alongside significant investments in
London’s cycling infrastructure (GLA 2015), it provides a bounded geographic area for generating a
representative set of routes for cycling. This, coupled with the ‘bikeshare villages’, which partition
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central London into meaningful locales (Soho, Chelsea, Clerkenwell, Southwark, Mile End), allow
connected bikeability to be evaluated in detail and with respect to current infrastructure
interventions.
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