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Abstract

The genetic architecture of traits under selection has important consequences for the response to selection and potentially for popula-
tion viability. Early QTLmapping studies in wild populations have reported loci with large effect on trait variation. However, these results
are contradicted by more recent genome-wide association analyses, which strongly support the idea that most quantitative traits have a
polygenic basis. This study aims to re-evaluate the genetic architecture of a key morphological trait, birth weight, in a wild population of
red deer (Cervus elaphus), using genomic approaches. A previous study using 93 microsatellite and allozyme markers and linkage map-
ping on a kindred of 364 deer detected a pronouncedQTL on chromosome 21 explaining 29%of the variance in birth weight, suggesting
that this trait is partly controlled by genes with large effects. Here, we used data for more than 2,300 calves genotyped at >39,000 SNP
markers and two approaches to characterise the genetic architecture of birth weight. First, we performed a genome-wide association
(GWA) analysis, using a genomic relatedness matrix to account for population structure. We found no SNPs significantly associated
with birth weight. Second, we used genomic prediction to estimate the proportion of variance explained by each SNP and chromosome.
This analysis confirmed that most genetic variance in birth weight was explained by loci with very small effect sizes. Third, we found that
the proportion of variance explained by each chromosomewas slightly positively correlated with its size. These three findings highlight a
highly polygenic architecture for birth weight, which contradicts the previous QTL study. These results are probably explained by the
differences in how associations aremodelled betweenQTLmapping andGWA.Our study suggests thatmodels of polygenic adaptation
are the most appropriate to study the evolutionary trajectory of this trait.

Keywords: genome-wide association study, genomic prediction, GenPred, genomic relatedness, heritability, maternal effects, Cervus
elaphus

Introduction

Many quantitative traits appear to be subject to selection and yet

show substantial levels of genetic variation in nature (Mousseau

and Roff 1987; Kingsolver et al. 2001). Understanding how evolu-

tionary forces act on genetic variation remains one of the most

fundamental goals in evolutionary biology (Johnson and Barton

2005; Mitchell-Olds et al. 2007; Kruuk et al. 2008). To address this

question, we need to understand the nature of quantitative trait

variation, i.e. the number and identity of genes underlying trait

variation, their physical location in the genome, and their interac-

tions with each other. This detailed knowledge of genomic archi-

tecture can also help us to determine how a trait will respond to

new selection pressures. For instance, a trait with an oligogenic

architecture (i.e. affected by relatively few large effect loci) can

evolve faster than a trait with a polygenic architecture (affected

by many genes of small effect), but its genetic variation can also

be quickly eroded with potential adverse effect on population

viability in the long-term (Kardos and Luikart 2021). Yet, to date,

there are still few descriptions of the genomic architecture of

quantitative fitness-related traits in wild populations (for excep-

tions see Bérénos et al. 2015; Santure et al. 2015; Duntsch et al.

2020).

Since the development ofmolecularmarkers, quantitative gen-

etic studies have sought to identify the individual loci responsible

for trait variation (quantitative trait loci, QTL). Until recently, the

main procedure for mapping genes was through “linkage map-

ping”, which conducted linkage analyses between markers and

QTLs, usually performed using microsatellite markers and large

half-sibling families, which limited its application in wild popula-

tions (Slate et al. 2010; but for an exception see e.g. Slate et al. 2002).

With the genomic revolution, and reduced cost of sequencing and

genotyping, genome-wide association studies (GWAS), which de-

tect statistical associations between SNP markers and QTL that

are sufficiently closely linked, have become increasingly
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accessible. This approach is more flexible than linkage mapping,

but it requires much higher marker densities and sample sizes,

which ultimately allow us to map QTLs with greater precision

(Jensen et al. 2014; Gienapp et al. 2017). Most importantly, the de-

velopment of GWAS in wild populations means that, in principle,

we can now uncover the genomic basis of the large standing vari-

ation measured within natural populations. Nonetheless, this

task remains challenging because a large proportion of phenotyp-

ic variation in nature is usually caused by non-genetic factors (e.g.

due to environmental fluctuation; Kruuk 2004; Kruuk and

Hadfield 2007), which needs to be accounted for in association

analyses.

Until recently, genetic mapping and GWAS have been mainly

performed in humans andmodel organisms. Their results strong-

ly support the idea that most quantitative traits have a polygenic

basis (Sella and Barton 2019). In humans, for instance, GWAShave

discovered thousands of variants associated with complex traits

and diseases (e.g. Goddard and Hayes 2009; Visscher et al. 2012;

Yengo et al. 2018), each having a small effect on the trait’s value

and explaining a very small fraction of the trait heritability.

Long-term individual-based studies of wild vertebrates have

greatly enhanced our understanding of the genetic basis of

fitness-related traits in nature (Kruuk et al. 2008; Slate et al. 2010;

Charmantier et al. 2014). Using these data sets, some geneticmap-

ping studies have reportedmajor effect loci, with QTLs explaining

more than 20% of the heritability of quantitative traits (e.g. Slate

et al. 2002; Poissant et al. 2012). However, these results could be

an artefact due to the relatively small sample sizes available in

non-model organisms (Slate 2013). Indeed, a well-known statistic-

al bias is the inflation of QTL effect sizeswhen analysingmoderate

sample sizes (the Beavis effect; Beavis 1994). Replication of studies

with larger data sets is therefore essential to validate the QTLs

found in this literature.

The red deer population of the Isle of Rum, Scotland, has been

intensively studied since 1972. Previous quantitative genetic stud-

ies have estimated the heritability of a variety of traits, as well as

their association with fitness (Kruuk et al. 1999). Birth weight is a

particularly interesting trait for evolutionary studies, as it is posi-

tively associated with juvenile survival and male reproductive

success (Kruuk et al. 1999; Gauzere et al. 2022) and shows amoder-

ate heritability, with h2
= 0.30 (0.23; 0.41) (Gauzere et al. 2020). We

estimated that maternal effects, i.e. the influence of mother’s

phenotype on the phenotype of her offspring (over and above

the direct effect of genes inherited from her), largely contributed

to this heritability value, these effects being mainly genetic in ori-

gin (Gauzere et al. 2020). Maternal genetic effects indeed explained

half of this heritability value, the other half being due to the direct

genetic effects. In a previous study, Slate et al. (2002) performed a

QTL scan for birth weight using phenotypic, genotypic (90 micro-

satellites and 3 allozymes), pedigree and linkage map data in a

kindred of 364 deer. The authors detected three potential QTL in-

cluding a pronounced QTL on chromosome 21 explaining 29% of

the genetic variance for birth weight. Here, we re-evaluate the

genetic architecture of birth weight using a GWA approach, pro-

viding a more precise understanding of how genetic variation is

distributed throughout the genome. The main drawback of this

approach is that it did not allow us to decompose the direct and

maternal genetic effects on birth weight, meaning that part of

the genetic variance explored here is also due to maternal genetic

effects.

In this study, we used data for more than 2,300 individuals and

39,000 SNPs evenly distributed across the genome to estimate the

heritability of birth weight based on genomic relatedness. Next,

we used GWA to search for genomic regions associated with birth

weight. The model included a genomic relatedness matrix (GRM)

to account for potential confounding effects of population struc-

ture (Price et al. 2006). Finally, we used the genomic prediction

model BayesR (Moser et al. 2015) to analyse the distribution of

SNP effect sizes and the proportion of variance explained by the

SNPs on each chromosome. Our approach followed a similar re-

cent study on the Soay sheep on St Kilda, which showed high ac-

curacy to predict genomic estimated breeding values (GEBVs;

Ashraf et al. 2021). Although genomic prediction analyses are usu-

ally used to estimate GEBVs, they can also be used to describe the

genomic architecture of quantitative traits, such as the SNP-based

heritability, the proportion of variance explained by large effect

loci or by individual chromosomes. Here, we applied this ap-

proach for the first time in the wild red deer population.

Material and methods
Study population and SNP data set
The red deer living in the population in the North Block of the Isle

of Rum, Scotland (57° 03′N, 06° 21′ W), have been intensivelymon-

itored since 1972. The calving period generally extends over 6

weeks, from mid-May to late June. Most calves born within the

12 km2 study area are caught soon after birth (often within

24 h), weighed, tagged, and sampled for DNA (via an ear punch).

DNA is also routinely extracted from post-mortem tissues and

cast antlers.

All sampled individuals within the study area have been geno-

typed at an attempted 51,248 SNP markers (Huisman et al. 2016)

on the Illumina Cervine BeadChip using an Illumina iScan instu-

ment (Illumina Inc., SanDiego,CA,USA). SNPgenotypeswereclus-

tered using the Illumina GenomeStudio software and quality

controlwas carriedoutusing PLINKv1.9with the following thresh-

olds: SNP genotyping success >0.99, minor allele frequency >0.01

and individual genotyping success >0.99 (following Johnston

et al. 2017). A linkage map specific to the Rum population is avail-

able, with 38,083 SNPs assigned to linkage groups corresponding

to the 33 deer autosomes and X chromosome (Johnston et al.

2017). Estimated SNP positions are based on this linkage map. In

total, n=3,067 individuals were genotyped at 39,587 SNPs.

Model of birth weight and GRM-based heritability
Weanalysed theweight (kg) of calves caughtwithin 7 days of birth

and born before August 1 (following Gauzere et al. 2020) and mod-

elled it as a Gaussian trait. The model of birth weight accounted

for the effect of calf sex, age at capture (hours), effects related to

maternal condition, namely maternal age (years) and maternal

reproductive status (as categorized in five levels), and the effect

of birth location (categorized into six regions; see Gauzere et al.

2020). We also considered two random effects to account for the

phenotypic variance in birthweight explained by variance in addi-

tive genetic effects (σ2A) and variance due to cohort effects (σ2C).

Models of genetic architecture, especially genomic prediction

models, do not easily accommodate different sources of genetic

effects (e.g. maternal genetic effects). For this reason, we did not

fit amaternal effect for birthweight here or in the followingmeth-

ods (more details can be found in the Supplementary Information

SI). In amodel omittingmaternal effects, thematernal effect vari-

ance will mainly be confounded with additive genetic variance

leading to inflated h2 estimates (Kruuk and Hadfield 2007). We

know that maternal effect variance in birth weight is mainly

due to genetic effects (Gauzere et al. 2020); maternal genetic ef-

fects explain 35% of the total phenotypic variance in birth weight
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and maternal environmental effects only explain 8% of the

phenotypic variance. For this reason, we believe our models will

not be biased by uncontrolled environmental effects.

We estimated the heritability of birth weight using an animal

model and genomic information derived from a genome-wide re-

latedness matrix (GRM), namely a GRM-based heritability (h2
GRM).

The GRM was estimated using the –make-grm function in GCTA

v1.90.2 (Yang et al. 2011). This GRM was adjusted to account for

imperfect linkage disequilibrium (LD) between markers using

the –grm-adj 0 function. The estimated GRM was used to specify

the covariance structure of the additive genetic effects in the birth

weight model. The animal model was fitted using the R-package

ASReml-R v3 (Gilmour et al. 2006).

Genome-wide association study
A GWAS was performed to test for association between trait and

SNP genotypes using the R-package RepeatABEL v1.1 (Rönnegård

et al. 2016). First, we used the “prefitModel” function to fit themod-

el of birth weight, with the fixed and random effects listed above,

but without the SNP effects. We then used the “rGLS” function to

test the effect of each SNP genotype on birth weight, accounting

for the variance components previously estimated and the list of

fixed effects. This model also accounted for population structure

by fitting the GRM as a random effect. P-values for each SNP were

computed using Wald statistics, distributed as χ2 with 1 degree of

freedom.We divided these statistics by the genomic inflation fac-

tor λ to account for potential inflation due to population structure

not captured by the GRM, where λ is defined as the median ob-

served χ2statistic divided by the median χ2 statistic as expected

from a null distribution (Devlin and Roeder 1999). A previous

study by Johnston et al. (2018) on this dataset established the

genome-wide significance threshold at a P-value of 1.42× 10−6

after correcting for multiple testing and accounting for noninde-

pendence due to linkage disequilibrium between SNP markers.

In total, we analysed n=2,317 calves.

Estimation of SNP effect sizes and chromosome
partitioning
The BayesR method implemented in the BayesR v0.95 software

package (Moser et al. 2015) was used to infer the phenotypic vari-

ation explained by SNPs in different effect size groups and their

contribution per chromosome. This method also estimated the

SNP-based heritability (h2
SNP). The SNP-based heritability differs

from the GRM-based heritability as it estimates the proportion

of variance accounted for by linear regression of a set of geno-

typed SNPs on the trait value (de los Campos et al. 2015). BayesR

models SNP effects as a number of distributions of different effect

sizes, including one of zero effect. Here, we ran the model with

four distributions of effect size of 0, 0.0001, 0.001, and 0.01 (as a

proportion of the phenotypic variance). BayesR does not allow

for the inclusion of any fixed or random effects. Consequently,

we first fitted themodel of birthweight with lme4 (not considering

any additive genetic effects) and we used the residuals of this

model as phenotypes in Bayes R (following Ashraf et al. 2021; see

Supplementary Information Part 1 for more information).

We first ran the model using a training population containing

95% of phenotyped and genotyped individuals (randomly se-

lected). We then predicted genomic estimated breeding values

(GEBVs) in the remaining 5%. We repeated this operation with a

randomized 95% subset 10 times. The accuracy of the model

was estimated as the Pearson correlation between the GEBVs

and the observed phenotypic values, divided by the square root

of the trait’s heritability (estimated using an animal model with

aGRM; h2
GRM) (Ashraf et al. 2021). Finally, we used all the phenotyp-

ic and genomic information available to characterise the genomic

architecture of birth weight using the estimated distribution of ef-

fect sizes. We estimated the proportion of variance explained by

each chromosome using the allele frequencies and effect sizes

of the mapped SNPs. We tested for the association between

chromosome size and variance explained using a linear model.

For polygenic traits, we expect the proportion of genetic variance

explained by each chromosome to be directly related to its size

(i.e. the number of genes it contains). The MCMC chains were

run for a total of 120,000 iterations with a burnin of 20,000 and a

thinning interval of 100, to sample 1,000 posterior samples for

each parameter and individual.

Estimation of effective population size and power
calculation
The accuracy of association-based methods critically depends on

the existence of linkage disequilibrium (LD) between causal loci

and geneticmarkers. The effective population size (Ne) directly af-

fects the pattern of LD across the genome. For this reason, genom-

ic prediction shows low accuracy in wild populations with large

effective population sizes (Ne) in comparison to domesticated spe-

cies (Gienapp et al. 2019). Peters et al. (2022) have recently de-

scribed the genome-wide LD pattern in the study population,

and showed a relatively slow decay of LD across the genome.

However, no study had yet used genomic data to estimate histor-

ical Ne in the red deer population. Here, we used the SNeP model

developed by Barbato et al. (2015) to estimateNe from LD informa-

tion. This software considers squared Pearson’s product-moment

correlation coefficient between pairs of loci to define LD.We fitted

SNeP with default parameters.

We also performed a power analysis to evaluate the capacity of

our GWA study to detect biologically meaningful QTLs (i.e. ex-

plaining ≥5% of genetic variance in birth weight). We conducted

this analysis using an analytical method developed by Wang

and Xu (2019), which uses as input the kinship matrix (GRM),

the ratio of the additive genetic variance to the residual variance

(estimated by the GWA model), and the sample size (n=2,317).

This calculation gives the power to detect association when the

causative variant is typed. The power at the marker locus thus

also depends on the coefficient of LD between the marker and

causative variant (Pritchard and Przeworski 2001). Therefore, we

adjusted the sample size to the effective sample size (n’) account-

ing for the linkage disequilibrium between neighbouring markers

(r2= 0.2; Peters et al. 2022), so that n’=463.4.

Results
Analysis of power to detect QTL
We estimated that there is relatively good power to detect bio-

logically meaningful QTLs (power=0.72 for h2
locus=0.05, and

power≥ 0.99 for h2
locus≥0.10). Therefore, if birth weight has an oli-

gogenic basis (as suggested by the previous QTL mapping study;

Slate et al. 2002), we would be able to detect it. Based on genome-

wide LD information,we estimated a relatively low effective popu-

lation size of Ne=175, which suggested that genomic prediction

models are relevant to investigate and predict the genetic evolu-

tion of complex traits in the study populations.

GRM-heritability and GWAS
The variance partitioning approach using an animal model and a

GRM showed that birth weight had a significant and moderate

heritability with h2
GRM=0.38 (0.32; 0.44) (point estimate and 95%

J. Gauzere et al. | 3
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confidence intervals). This GRM-based heritability is very similar

to a pedigree-based one with a model also omitting maternal ef-

fects (h2
PED=0.45; see Supplementary Information, Part 1).

The GWAS revealed a flat association landscape with no SNP

significantly associated with birth weight (Fig. 1). The Q-Q plot

showed that the P-values from the model were distributed as

expected under a null model, and no obvious outliers were de-

tected (Fig. 2). The genomic control inflation parameter was mod-

erate, with λ= 1.34, and was used to adjust our test statistics to

properly account for population structure. The top 10 SNPs with

the lowest P-values are listed in Supplementary Table 1.

Genomic prediction accuracy, distribution, and
quantification of SNP effect sizes
The genomic prediction model had a high accuracy to predict the

genomic estimated breeding values (GEBVs) in the red deer popu-

lation. This is an important finding, as models such as BayesR

have not yet been tested and validated on many wild animal

data sets (see e.g. Gienapp et al. 2019; Ashraf et al. 2021). The

mean model accuracy was 0.71, with a minimum of 0.44 and a

maximumof 0.88 (Fig. 3). The estimated heritability using the gen-

omic predictionmodelwas h2
SNP=0.38 (0.26; 0.49) (95% credible in-

tervals), very similar to theGRM- and pedigree-basedheritabilities

estimates above.

We found a positive correlation between the chromosome size

and the proportion of additive genetic variance explained by each

chromosome (Fig. 3). Chromosome 9 explained most variation,

but this was nevertheless a very low percentage of the total genet-

ic variation (<12.5%). Most SNPs had no effect on birth weight and

only 5,805 SNPs were predicted to have a non-zero effect on birth

weight. The largest proportion of genetic variance is explained by

loci with very small effect sizes (Table 1 and Supplementary

Table 2). Altogether, results from the genomic prediction model

are suggestive of a highly polygenic architecture. Nonetheless,

one should be cautious when interpreting these estimates, espe-

cially regarding the number of SNPs with small effect sizes and

proportion of variance explained by these SNPs, which are esti-

mated with a very large uncertainty (Table 1). As also noted by

Fig. 1. Manhattan plot for the association between birth weight and SNPs. Top dashed line: significance threshold equivalent to α= 0.05. Points are
coloured by chromosomes (blue: odd numbers; red: even numbers). We only show results for the SNPs with known map positions. Previous potential
QTLs found by Slate et al. (2002) were on chromosomes 12, 14 and 21 but not mapped with sufficiently good precision to be represented here.

Fig. 2. Quantile-quantile (Q-Q) plot of GWAS P-values for birth weight
(shown in the Manhattan plot). This is a graphical representation of the
deviation of the observed P-values from the null hypothesis. We found no
P-values larger than expected under the null hypothesis (there are not
points above the 1:1 diagonal).
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Ashraf et al. (2021), the relatively small sample sizes used in stud-

ies in natural populations probably make it difficult to distinguish

between zero effect and small effect loci.

Discussion

Two decades of genetic mapping in wild populations have pro-

vided contrasting results about the genetic architecture of fitness-

related traits (Slate et al. 2010; Jensen et al. 2014). Some of the earl-

ier works, which showed apparently large effect loci using QTL

mapping techniques, need to be revaluated using high-density

genome-wide markers. In this study, we used two different gen-

omic approaches to describe the genetic architecture of birth

weight in a natural population of red deer, a trait known to be un-

der strong positive selection (Kruuk et al. 1999; Gauzere et al. 2022).

Both approaches demonstrate that this trait is heritable and has a

polygenic architecture. Pedigree and GRM-based heritability esti-

mateswere very similar, indicating that the genotyped SNPs are in

sufficiently high linkage to represent the recombination events in

the study population (as also found by Peters et al. 2022).

Additionally, Peters et al. (2022) recently showed that the linkage

disequilibrium among the SNPs present on the red deer SNP

chip ismaintained over a distance of up to 1Mb. Such linkage is es-

sential in mapping studies and suggests that we should be able to

detect major QTLs, although not necessarily locate them with

great precision. These results indicate that pedigree-free ap-

proaches offer a promising prospect formeasuring the heritability

of fitness-related traits in the wild, even when using relatively

small sample sizes (Bérénos et al. 2014; Perrier et al. 2018).

Three different results provide evidence that birth weight has a

highly polygenic genetic architecture: (1) there were no significant

SNP associated with birth weight in the GWAS, (2) in the BayesR

model, most variation was explained by loci with very small effect

sizes and (3) in the same analysis, the variance explained by each

chromosome scaled with chromosome size. These findings are in

line with a number of recent genomic studies usually showing flat

association landscapes (e.g. Hansson et al. 2018; Duntsch et al.

2020; Peters et al. 2022), but contradict a previous study on the gen-

etic architecture of birthweight in the study population, which re-

ported a major effect QTL on chromosome 21 (Slate et al. 2002). A

similar scenario applies in the great reedwarbler system, inwhich

a large effect QTL for wing length found using linkage mapping

was not found using GWAS, albeit with a very small sample size

for GWAS (181 individuals; Hansson et al. 2018). Here, we con-

firmed that, with the sample size and number of markers used

in this study, we have enough power to detect moderate to large

effect size loci affecting birth weight if such major QTLs existed;

we can thus confidently exclude this hypothesis.

Mapping studies using small sample sizes can overestimate the

effect size of significant QTLs and/or identify false positive QTLs

due to the Beavis effect (Slate 2013). The Beavis effect has a bio-

logical explanation: fewer recombination events are represented

in small sample sizes, hence multiple loci that affect a trait can

be misidentified as single QTL with a large effect (Josephs et al.

2017). This bias likely affected the results of the previous QTL

study that used a sample size of about 350 individuals. However,

if the previous results were entirely due to the Beavis effect and

the co-segregation of multiple QTLs, we would have expected to

detect some signal at the chromosome 21. On the contrary, we

found that chromosome 21 is among those that explains the smal-

lest amount of variation in birth weight (1.5%). Consequently,

Fig. 3. Chromosome partitioning from the genomic prediction analysis. The proportion of additive genetic variance explained by each chromosome is
slightly positively correlated with their size. The genomic prediction model has a high accuracy to predict the breeding values for birth weight, with a
mean accuracy of 0.71 (using h2

SNP=0.38). The previous QTLs reported by Slate et al. (2002) were found on chromosomes 21, 12 and 14 (in red), which
respectively explain here 1.5, 5.1 and 4.6% of the genetic variance.

Table 1. Number and effect sizes of SNPs contributing to
phenotypic variation.

Mean estimate Lower CI Upper CI

VA 0.456 0.30 0.66
VE 0.757 0.67 0.85
NSNP 5,805 1,179 9,432
NSNP_0 33,782 30,155 38,408
NSNP_0.0001 5,402 260 9,392
NSNP_0.001 392 117 951
NSNP_0.01 10 0 37
PGV0.0001 0.54 0.03 0.94
PGV0.001 0.39 0.02 0.93
PGV0.01 0.07 0.00 0.26

Results from the genomic prediction model. NSNP provides the number of
non-zero SNPs andNSNP_X the number of SNPs in each effect size groups X. PGV
is the proportion of genetic variance assigned to the three non-zero effect size
distribution (sum equals 1).
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poor resolution does not explain the large effect QTL previously

reported. It is most likely that the result by Slate et al. (2002) was

due to the fact that microsatellite-based and pedigree-based

QTL mapping are more sensitive to spurious associations

(Hansson et al. 2018) and that lower significance thresholds were

used. Moreover, the previous analysis was conducted within one

specific kindred in the red deer population. A spurious association

could therefore have emerged if related individuals in that lineage

shared unique alleles at loci on chromosome 21 and also had high-

er/lower birth weight. Because GWAS and genomic prediction

models are fundamentally different methods from QTL mapping

that look at the statistical association between genotype and

phenotype and do not focus on the co-segregation of markers in

a pedigree, they are less sensitive to this bias. Finally, population

structure and hidden family structure can also cause false posi-

tives in mapping studies (Price et al. 2006; Wood et al. 2014).

GWASuses amixedmodel framework that isflexible enough to al-

low the inclusion of a genomic relatedness matrix to account for

this structure.We also corrected our statistics by the inflation fac-

tor to avoid detecting SNPs erroneously associated with birth

weight.

When analysing natural populations, one of the biggest chal-

lenges is to control for potential environmental covariates that

might affect trait variation. Indeed, such covariates might buffer

the signal of genotype-phenotype association, which might ex-

plain why plant GWAS performed in controlled environmental

conditions are usually able to map larger effect QTLs (Josephs

et al. 2017). Here, we controlled for the major environmental ef-

fects and covariates known to affect birth weight. We also know

that maternal effects are an importance source of phenotypic

variance in birth weight (35% of phenotypic variance explained;

Gauzere et al. 2020). However, the approach used did not allowed

us to decompose the maternal effect variance from direct genetic

variance (see Supplementary Information Part 1 for more details).

This is because almost all the maternal effect variance is due to

maternal genes (Gauzere et al. 2020). Decomposing the genetic

architecture of direct and maternal genetic effects is a daunting

task that requires statistical cross-fostering (Wolf and Cheverud

2012) or modelling the effect of transmitted and non-transmitted

alleles (Kong et al. 2018), methods that have only been applied in

model systems or very large human datasets. Because we found

a polygenic architecture for birth weight, we do not believe that

decomposing these effects will provide more information than

the current analysis. However, one has to keep in mind that part

of the genetic variance explored here is due to maternal genetic

effects.

Our results highlight the potential of genomic prediction mod-

els to study the trait architecture and evolution in this wild popu-

lation. Indeed, we report a high accuracy to predict GEBVs that is

comparable to that found in a similar wild study system, the Soay

sheep of St Kilda (Ashraf et al. 2021), and in plant and animal

breeding (e.g. de los Campos et al. 2013; Bhat et al. 2016). We

know that the accuracy of genomic prediction depends, among

other things, on the effective population size (Ne), which directly

affects LD patterns across the genome (Visscher et al. 2006; Hill

and Weir 2011). Here, we study an island population with a rela-

tively small Ne (Ne=175), which explains this high accuracy in

comparison to other wild populations (e.g. in birds; Gienapp

et al. 2019). Most importantly, our model is flexible enough to cap-

ture different genetic architectures, as it models SNP effects as a

mixture of distributions describing large and small effect sizes.

Nonetheless, further characterization of the architecture of a

polygenic trait such as deer birth weight would require a much

larger data set than the one used here to disentangle small effect

sizes from zero effect.

This study uses one of the largest datasets in awild population,

with∼2,300 individuals phenotyped and genotyped, to explore the

genetic architecture of a fitness-related trait. This knowledge of

the underlying genetic architecture of quantitative traits is most

important to understand the origin of genetic variance and how

it evolves. According to theory, the evolution of birth weight, a

trait with a highly polygenic architecture, will be driven by subtle

changes of allelic frequencies at many QTLs and by covariance

among QTLs (Le Corre and Kremer 2003). This polygenic architec-

ture should counteract the loss of genetic variation due to natural

selection (Sella and Barton 2019). The results found here suggest

that models of polygenic adaptation that explicitly model the

genome-wide covariance between allele frequency changes in

temporal or spatial data are the most appropriate to measure

the genomic imprint of natural selection (see e.g. Buffalo and

Coop 2020).

Data availability

All the genomic and phenotypic data used in this paper have been

deposited on figshare, https://doi.org/10.6084/m9.figshare.21842130.

Supplemental material available at G3 online.
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