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Abstract

The analysis of subjective probabilities, that are fractional or share variables by definition, is becoming
increasingly widespread in both economics and the social sciences in general. To avoid nonsensical
predictions, empirical predictions for such variables must respect the fact that they are necessarily
bounded on the 0 − 1 (or, 0 − 100, for percentage-type responses) interval. In addition, where the
response variable of interest corresponds to a self-report on a fixed scale, individuals are often drawn
to particular focal-point responses, resulting in distinct spikes in the empirical distribution. In this
paper, we suggest a simple model that accounts for all of the nuances of such data, including its
fractional and bounded nature as well as arbitrary inflation at such focal-points (which may appear
at any point in the interval and are highly likely at the endpoints). We estimate our model using data
drawn from the Italian Survey of Income and Wealth relating to an individual’s subjective marginal
propensity to consume (MPC).
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1. Introduction and Background

Subjective probability questions are now widespread in many large secondary data sources; see,

for example, the Health and Retirement Survey (HRS) and the CentER data, amongst many others.1

Subjective probabilistic questions have been shown to contain valuable information about a wide range

of domains, including individual health outcomes and survival probabilities, financial expectations and

expectations about firm performance, and have been discussed from a range of disciplines, including,

health, economics and political science, see for example Hurd (2009) and Altig et al. (2022) amongst

many others. However, there remain significant challenges in modeling responses to these types of

questions, given the problems around focal point responses, rounding and the fractional nature of

the underlying distribution. This paper contributes to the growing literature related to modeling

subjective probabilities, as well as making a more general contribution by proposing a new, intuitive

econometric model, that captures the key artefacts of this type of data. We then apply this to an

economic application, which explores an individual’s subjective marginal propensity to consume. How

individuals respond to subjective probability questions, and the likelihood of focal point or rounded

responses, is dependent on the characteristics of the respondent. When answering a survey question,

Schwarz and Oyserman (2001) identify five distinct steps in the response process and argue that

increasing the difficulty of one or more of these steps can increase the probability of focal point

answers or non-response.2 Moreover, Manski and Molinari (2010) suggest that a rounded response

may capture partial knowledge or represents an attempt to simplify a response. Generally, responses to

subjective probability questions are grouped at multiples of 5 or 10 (depending on the question), with

a large number of responses at the extremes of the distribution (0% and 100%) in addition to 50%. As

argued by Hurd (2009), 50% could capture uncertain responses, rather than individuals responding a

true 50%. Individuals who fail to understand the question (or the concept of probability) may tend

to choose the middle of the scale resulting in a disproportionate number of responses at this point

(de Bruin et al., 2000). Several studies, predominantly analysing the HRS data, emphasize the large

number of focal answers and show that the likelihood of such answers is correlated with education and

cognitive measures (Hurd et al., 1998).

As a result of these artefacts of the data, the modeling of subjective probability questions has

received increasing attention from the econometrics literature. For example, Heiss et al. (2022) exploit

a panel finite mixture model that allows for rounding in the responses and unobserved heterogeneity

1The HRS asks respondents to give subjective probabilities about the likelihood of living to age 75 and to age 85,
leaving a bequest of up to $10,000 and $100,000, receiving an inheritance, working after the ages of 62, 65 and 70 and
having a health problem in the next 10 years. Likewise, the CentER data contains subjective probabilities, for example,
relating to income expectations and the likelihood of job loss.

2The steps they identify are namely: interpreting the question; recalling behaviour; inferring an answer; mapping
the answer onto the response format; and editing.
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in stock market expectations, whilst Giustinelli et al. (2022) focus on tail and center rounding in

individual subjective probability questions relating to a range of outcomes contained in the HRS

data, as outlined previously. Further, Kleinjans and Soest (2014) explore subjective probabilities in

the HRS allowing for non-response and focal point responses and de Bresser and van Soest (2013)

develop a panel data model to explore expectations captured on a percentage scale that incorporates

non-response, rounding and focal answers. This model is then applied to a representative sample of

Dutch employees and exploits data relating to expectations of the retirement income replacement rate.

These studies have attempted to capture the various characteristics of the data, including rounding

and focal points, in different ways. Ignoring the inherent properties of such response variables is likely

to produce mis-leading results and poor model fit.

We contribute to the existing literature by suggesting a simple approach that accounts for all

of the observed nuances of this type of data, including its fractional and bounded nature and also

for arbitrary inflation at such focal points (which may appear at any point in the interval, but are

particularly likely to encompass the endpoints).3 We also show how our cross-sectional approach can

be easily adapted to a panel data setting and outline the wide range of potential quantities of interest

that can be calculated ex post, as well as relevant model selection and testing techniques.

The econometric model is illustrated with an application to individual unit survey responses on

individuals’ marginal propensity to consume, which have been previously analysed in the macroeco-

nomic and public policy literature (Jappelli and Pistaferri, 2014, 2020). Using a wide range of model

selection metrics, our newly developed approach out-performs all of the ‘competing’ models considered,

and the summary predicted measures and distributions of our new approach very closely mimic those

of the observed sample, in contrast to the other methods considered. Given the rise in the availability

of, as well as the interest in, such response variables, we believe that this model will be of widespread

use across the social sciences.

The remainder of the paper is structured as follows. Section 2 outlines the newly developed model

and model selection criteria, whilst Section 3 outlines various estimates of interest. Section 4 presents

the empirical application and finally Section 5 concludes.

2. Methods

2.1. Rounding and Focal Points

A starting point for our approach is Greene et al. (2015), who consider self-reports of self-assessed

health (SAH). An initial investigation revealed that the distribution of these responses on a 5-point

likert-scale appeared to be inflated in the good and very good outcomes, especially in relation to more

3Arbitrary inflation refers to the fact that any outcome in the distribution could be inflated.
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objective measures of population health. The approach taken to model SAH, following most of the

literature on such ‘inflation’ models, was a latent class/partial observability one, whereby individuals

are ‘first’ partitioned into two unobserved classes, which are termed ‘accurate’ and ‘inaccurate’ respon-

dents. The reason for such an approach, is that the former would be free to choose any outcome on

the choice scale, whereas the latter would be drawn, for whatever reason, to any of the hypothesised

inflated outcomes.

Following this general approach, let type denote an unobserved binary variable indicating the split

between the two regimes, type = I, A (inaccurate and accurate, respectively), where type is related to

the latent variable type∗ via the usual mapping: type = A for type∗ > 0 and type = I for type∗ ≤ 0.

As usual, the propensity equation is given by

type∗ = x′β + ε, (1)

where x is a kx vector of covariates, β a vector of unknown coefficients, and ε a (standard-normally

distributed) error term.4

For the inflation component of the model, this will involve the joint probability of type = I and

the particular inflated outcome. Our focus here is primarily on fractional, or share, models such as

subjective probabilities. As such variables inherently embody cardinality, any inflation points lying

on this scale, in our example, these are predominantly 0, 0.5 and 1, similarly inherit this trait (75%

is 25pp greater than 50%); or alternatively could be treated simply as an ordered variable. In light of

this, an ordered discrete model would appear to be appropriate here (or a binary model, if there were

only two hypothesised inflation outcomes). Two obvious examples here would be an ordered probit

(OP ) model, with estimated cut-points, or an interval regression with (IR) fixed cut-points (Greene

and Hensher, 2010). For ease of exposition, and to facilitate the notation, we will for now assume just

three inflation points at ỹ = 0, 0.5, 1, although the extension to more is straightforward. Here, the

usual OP/IR approach would be driven by an underlying stochastic latent variable, ỹ∗, of the form

ỹ∗ = z′γ + u, (2)

with z being a kz vector of explanatory variables (with no constant) with unknown weights γ, and u

4Note that following the related literature (see Section 2.5), if present in the data, the type variable can be expanded
to include a ‘don’t know/unanswered’ outcome, to lessen the chances of any endogenous estimation sample selection.
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a (standard normal) error term, with the usual mapping of

ỹ =





0 if ỹ∗ ≤ µ0,

0.5 if µ0 < ỹ∗ ≤ µ1,

1 if µ1 ≤ ỹ∗,

(3)

where µ are the usual cut-points, either freely estimated (OP ) or fixed (0.25, 0.75; IR).5 However, the

flexibility that the former affords would appear to make it preferable as boundaries are free to move

around to improve overall model fit.

Note that under the usual assumptions of normality, we have

P (type = A|x) = Φ(x′β), (4)

and

Pr(ỹ|z) =





Pr (ỹ = 0 |z, r = 1) = Φ (µ0 − z′γ) = P (li)

Pr (ỹ = 0.5 |z, r = 1) = Φ (µ1 − z′γ)− Φ (µ0 − z′γ) = P (mi)

Pr (ỹ = 1 |z, r = 1) = Φ (z′γ − µ1) = P (ui),

(5)

where Φ denotes the standard normal cumulative distribution function. Note that we use the terms

li,mi, ui to denote the lower-, mid- and upper-inflation points, respectively. Note that whilst prob-

abilities throughout are conditioned on covariates, for example see equations (4) and (5), for ease of

exposition we subsequently omit the conditioning.

Equations (4)-(5) form the basis of our proposed inflation approach. We note that there is a suite

of hurdle and double-hurdle models, developed to address the build-up of ‘zero’ observations, where the

response variable is a continuous variable, but with only a single inflation point; that is, typically with

a non-zero probability mass at zero (Cragg, 1971; Jones, 1989; Smith, 2003). Methods have also been

developed to similarly account for excess zeros in count data variables (Mullahy, 1986; Heilbron, 1989;

Lambert, 1992; Greene, 1994; Pohlmeier and Ulrich, 1995; Mullahy, 1997) and finally, building on these

developments, there has been a recent rise in the development of so-called inflated-OP models (Harris

and Zhao, 2007; Bagozzi and Mukherjee, 2012; Brooks et al., 2012; Brown et al., 2020; Sirchenko,

2020). However, an important gap in this literature lies in the growing instances of fractional, or

share, continuous variables with arbitrary inflation. We suggest an appropriate approach, couched in

the general set-up described above, which will simultaneously account for arbitrary inflation as well

as respecting the 0− 1 (or 0− 100 if expressed as a percentage) nature of the response variable.

5Note that if an IR approach is taken, one can now identify the scale of u; Greene and Hensher (2010).
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2.2. A Poisson-based Approach

The Poisson pseudo-maximum likelihood (PPML) estimator has long been put forward as a robust,

and simple, approach for data characterised by y ≥ 0, with potentially excess zeros (Santos Silva and

Tenreyro, 2006, 2011; Motta, 2019, for example). Thus, the PPML approach appears well-suited for

our purposes, and moreover, the issue of non-integers can be straightforwardly handled by a simple

scaling of the original fractional data. For example, in our application, where fractional responses are

recorded to 2 decimal places, this means that 0 ≤ y × 100 ≤ 100 and where all (y × 100) transformed

variables are integers.

Although the PPML/Poisson estimator is defined for y ≥ 0, we also require y ≤ 1(100). However,

it is easy to consider a top-coded/censored Poisson (TCP ) version (Terza, 1985). The usual Poisson

density is given by

f (y;λ) =
exp (−λ)λy

y!
= f (P ), y = 0, 1, . . . (6)

with

λ = exp
(
w′δ

)
, (7)

where w is a vector of covariates driving the mean of the Poisson process, λ. Note that throughout

we use f (P ) to denote the (standard) Poisson density.

Defining the upper censoring point as ui, where here ui = 100 (for the re-scaled response variable),

then to ensure that the ‘counts’ are appropriately bounded, define an indicator du
i
as

du
i

=





1 if y = ui

0 otherwise,
(8)

then the top-censored Poisson density is

f ∗(y;λ, ui) = {f (P)}(1−du
i
){1− F (ui − 1)}du

i

, (9)

where 1 − F (ui − 1) = 1 −
∑ui

−1
j=0 f (j) = f(P ui

); that is, 1 minus the sum of all preceding count

probabilities (0− 99).

Our conjecture is that such an approach will be of most use for response variables in the [0, 1]

range. Thus, this necessitates evaluation of the Poisson-type probabilities of the form presented in

equation (9). Due to the presence of y! inherent in these, it may be necessary to avoid the likely

resultant numerical overflow issues by consideration of the log of these probabilities, as it is these

which then directly enter the log-likelihood function as,

lnP (y) = −V + ylnV − ln(y!), y = 0, 1, . . . ui − 1 (10)
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where V = exp(w′δ) and ln(y!) is evaluated using Stirling’s formula. Similarly to avoid overflows,

the TCP probability for the top-censored value of ui can be computed using the regularised lower

incomplete gamma function such that

lnP (y = ui) =

∫ V

0

exp−tt(u
i
−1)

Γ(ui)
dt. (11)

We now take the top-censored PPML estimator as a starting point (or the TCP model) and

combine with equations (4)-(5) to allow for the necessary inflation processes. The overall likelihood here

will consist of four separate components: one each for all of the inflated outcomes (y = 0, 50, 100) and

then one for the remaining observed outcomes. Maintaining the assumption that the two unobserved

classes described above, correspond to ‘accurate’ and ‘inaccurate’ respondents, then the latter can

freely choose any observed outcome, conditional on type = A. By defining an indicator, dn
i
(for

‘non-inflated’) such that dn
i
= 1× [y 6= li,mi, ui], then the density for these non-inflated observations,

f (dn
i
), is simply the usual TCP of equation (9) weighted by Pr(type = A), such that

f (dn
i

) = [Φ(x′β)f ∗(P )]. (12)

Next, consider the lower-inflated observations, such that y = li = 0. For these, their density is a

combination of that corresponding to the inflation process generating the li’s with that from the usual

count process generating the same. Define an indicator for these observations as dl
i
= 1 × [y = li],

then f (dl
i
) will be given by

f (dl
i

) = [Φ(x′β)f ∗(P ) + Φ(−x′β)P (li)], (13)

recalling that P (li) is the OP probability of the lower inflation point from equation (5).

Analogously, define dm
i
= 1 × [y = mi] as an indicator for the middle-inflated observations, their

density will be given by

f (dm
i

) = [Φ(x′β)f ∗(P ) + Φ(−x′β)P (mi)], (14)

where P (mi) is from equation (5). Finally, for the top-inflated observations, we have

f (du
i

) = [Φ(x′β)f ∗(P ui

) + Φ(−x′β)P (ui)] (15)

recalling that f (P ui
) is the TCP density for the upper censored observations.

Given these components, and noting that dn
i
+ dl

i
+ dm

i
+ du

i ≡ 1, then the full likelihood for an
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individual is

Li = [fi(d
ni

)× dn
i

] + [fi(d
li)× dl

i

] + [fi(d
mi

)× dm
i

] + [fi(d
ui

)× du
i

], (16)

which can be maximised in the usual fashion to estimate all the parameters of the model. We term

this model the fractional inflated-pseudo Poisson (FIPP ) model.

Note that implicitly independence has been assumed across all of the inherent components of the

FIPP model which may, or may not, be a tenable assumption. We next move on to relaxing this

assumption.

2.3. Extensions to Panel Data

As in our empirical example presented in Section 4, researchers will often have panel data to hand.

The approach outlined above can be straightforwardly extended to allow for such, and thereby allow

for the presence of unobserved individual heterogeneity in each equation. As is usual in the panel data

data literature, we can simply augment equations (1), (2) and (7), respectively, as

type∗it = x′

itβ + αtype
i + εit, (17)

ỹ∗it = z′itγ + αy
i + uit and (18)

λit = exp
(
w′

itδ + αλ
i

)
, (19)

where αj represent the j = 1, 2, 3 unobserved effects for the three respective equations. Due to the

usual incidental parameters problem (Neyman and Scott, 1948) invariably it would appear appropriate

to treat these as random draws from a multivariate distribution, and, as is common, we will assume

normality (Greene, 2018), such that

α ∼ MVN(0,Ω) where (20)

Ω =




σ2
type σtype,y σtype,λ

σ2
y,type σ2

y σy,λ

σλ,type σλ,y σ2
λ


 . (21)

The model implies certain restrictions regarding Ω. Individuals are implicitly split by the type equa-

tion, σy,λ = σλ,y = 0 and, moreover, Ω is symmetric, such that σ2
y,type = σ2

type,y and so on.

This addition is advantageous as it allows one to correlate the appropriate equations, whereas it

is not obvious how to achieve this across all equations in the cross-sectional setting. Note that whilst

all covariates are it indexed, there is no restriction that this needs to be the case, and all could vary

in any/all dimension(s). Note that equation (17) is the most flexible approach in the context of panel
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data: individuals are able to change type over time; the restricted version would only accommodate

heterogeneity across individuals, but not over time, such that types do not change over time.6

On the other hand, such an addition does complicate estimation. We evaluate the (log-)likelihood

equation via simulation techniques using 500 Halton draws. Define vi as a vector of standard normal

random variates, which enter the model generically as ωi = Γvi, such that for a single draw of vi,

ωi =
(
αtype
i , αy

i , α
λ
i

)
; where Γ = chol (Σ) such that Σ = ΓΓ′. Conditioned on vi, the sequence of Ti

outcomes for household i are independent, such that the contribution to the likelihood function for a

group of t observations is defined as the product of the sequence Lit; equation (16). The unconditional

log-likelihood is found by integrating out these innovations such that

logL(θ) =
N∑

i=1

log

∫

ωi

Ti∏

t=1

(Lit | ωi) f(ωi)dωi, (22)

where all parameters of the model are contained in θ. Since vi is a vector of independent standard

normal variables, where φ(.) denotes the standard normal probability density function, the joint density

is similarly the product of standard normals, yielding

logL(θ) =
N∑

i=1

log

∫

vi

Ti∏

t=1

(Lit | ωi)
K∏

k=1

φ(vik)dvik, (23)

where k = 1, 2, . . . ,K indexes the various stochastic unobserved effects in the model. It is possible

to evaluate the expected values in the integrals by simulation. In practice this involves drawing

r = 1, . . . , R variates of vi from the multivariate standard normal population and the simulated log

likelihood function is constructed as follows

logL(θ) =
N∑

i=1

log
1

R

R∑

r=1

Ti∏

t=1

(Lit | ωir) . (24)

Note that any concerns of correlations between these unobserved effects and observed heterogeneity,

can be handled by the usual inclusion of ‘Mundlak’ variables (Mundlak, 1978).

2.4. Model Selection and Testing Issues

The suggested approach does not (obviously) nest alternative approaches in the traditional sense

of parameter restrictions. Moreover, this is similarly true across different choices of the hypothesised

inflation-points. An obvious tool here appears to be information criteria (IC). In particular, the

6We do not entertain such a restricted model in our empirical application, as there is a relatively long time between
waves, such that it would appear overly restrictive to not allow individuals to change ‘types’ over such a long period. We
also note that if individuals do not change types over time, the restricted approach is likely to better identify the types.
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Bayesian Information Criterion (BIC/SC) (Schwarz, 1978), appears appropriate given that it has

been shown to be the preferred criterion across a wide range of scenarios (see, for example, Gannon

et al., 2014) and can also be shown to be consistent in the sense that Pr
(
M true

)
→ 1 as N → ∞, where

M true is the true model. In addition to IC metric(s), the V uong test for non-nested models can also

be used (Vuong, 1989). Due to the potential large differences in model sizes across different potential

competitor models, we suggest using the ‘BIC’ correction factor in this, as proposed in Vuong (1989).

The standard V uong test (for example, Greene, 2018) for comparing two competing models j = 1, 2

is based on mi the individual differences in the two log-likelihoods, such that

mi = ln

(
f1 (yi|x̃i)
f2 (yi|x̃i)

)
, (25)

where fj are the respective likelihoods from the two j = 1, 2 competing models; the V oung test is

then

V =

√
nm̄

sm
, (26)

where n is the sample size and m̄ and sm are the sample average and standard deviation of mi,

respectively. The test has a limiting standard normal distribution, with values of |V | < 1.96 being

indeterminate, whereas large positive (negative) values favour model 1 (2). As noted, we propose the

BIC corrected version of this test (Vuong, 1989), which is simply

mc
i = mi + (k2 − k1)

ln (n)

2n
, (27)

where kj refers to the number of estimated parameters in model j. With a number of competing

models, as opposed to a strict pairwise comparison, we follow the suggestion of Durand et al. (2022)

in that an appropriate model selection metric amongst these is that model with the most favoured

number of pairwise selections.

2.5. Comparison with Previous Literature

As noted above, this approach most closely follows that of Greene et al. (2015); however, it is also

related to other streams of literature that are concerned with both misclassification of the dependent

variable (see, for example, Hausman et al., 1998), partial observability (for example, Poirier, 1980)

and so-called ‘inflation’ models (for example, Harris and Zhao, 2007). Similarly, Farrell et al. (2011)

consider the impact of cigarette pack-sizes leading to observed spikes at these counts, on the daily

number of the cigarettes consumed by smokers.

Another closely related paper is Kleinjans and Soest (2014), who also consider the modeling of

subjective probabilities. Their approach, which builds on the so-called ‘rounding’ methods of Heitjan

and Rubin (1990), involves a combination of three equations, specifically probabilistic models of: a)

10



true, but unobserved, responses (the actual statistical model here is not stated, although it appears

to be of an interval regression form); b) an ordered probit model for rounding processes in multiples

of 1, 5, 10, 25 and 50 (as only integer values are considered, all responses have to be rounded to

at least a multiple of 1); and c) a multinomial-type approach for the choice between rounding, item

non-response (INR) and ‘complete uncertainty’, or ‘focal answers’ (which they define as 50%). Based

on their underlying assumptions, the final model they estimate is a very highly specified one, with

essentially separate models/specifications for all observed choice outcomes. In turn, this paper is

closely related to Hudomiet et al. (2011), but additionally incorporating focal answers and item non-

response (or ‘don’t knows’).

Compared to the approach of Kleinjans and Soest (2014), the MPC data used in our application

(see Section 4 below) has no INR. However, our approach can easily be adapted to such by augmenting

the ‘first stage’ binary Probit equation for accurate/inaccurate (rounded) response - equation (4) -

to additionally include an outcome relating to INR, and the appropriate statistical model, following

Kleinjans and Soest (2014), would be of the multinomial logit (MNL) form. By specifying an OP

model for the inflated outcome variables, with flexible boundary points, our suggested approach also

explicitly allows for rounding between these several ‘focal point’ observations. Moreover, this approach

does not constrain equal Euclidean distance between such neighbouring points.

Note that we do not consider an augmented approach for ‘complete uncertainty’ as in Kleinjans

and Soest (2014), (although, again our ‘first-stage’ equation could easily be augmented to account for

such), as it seems asymmetrical to treat this single outcome differentially, as it appears rather arbitrary

to pick the 50% observation as this single ‘focal point’. In our set-up, as opposed to Kleinjans and

Soest (2014), the approach can explicitly, probabilistically, identify the stylised individuals who tend

to favour the inflated outcomes - which, dependent upon the particular application, could be extremely

valuable for policy making. Finally, the current set-up is much simpler than that of Kleinjans and

Soest (2014); for example in the latter, ‘true’ responses require explicit specification of every single

observed outcome yi ∈ (0, 100), whereas in the former, all that is required is the generic Poisson form

of equation (6), a simple function of yi. The simplicity of the current approach here, is evident in

a comparison of equation (16), with the likelihood of Kleinjans and Soest (2014), as given by their

equation (8).

3. Ex Post Quantities of Interest

Post estimation, several quantities of interest are available. Note that for the panel variants, these

can either be computed at E(α) = 0, or the same draws used as in estimation.7

7The latter would appear to be preferable and is indeed, the approach followed below.
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3.1. Probabilities

To account for the arbitrary (in the sense of any outcome can be such) item inflation, all models

encompass the respondent type equation; equation (4). Post estimation, with β̂ in hand, these can be

straightforwardly computed as either Φ(x̄i
′β̂) or Φ(x′iβ̂), and standard errors obtained by the usual

Delta method. Depending on the application at hand, these could be extremely policy relevant, as

they give an aggregate estimate of the scale of such reporting effects in the data.

The unconditional empirical distribution of a fractional variable of interest with multiple, and

potentially arbitrary, inflation is likely to be very non-standard (for example, as is evidenced by

our empirical example below). Therefore, an appropriate visual metric by which to determine the

performance of such inflated approaches would appear to be a comparison of actual versus estimated

densities. In light of this, we suggest a comparison of the sample proportions of the observed outcomes,

compared to the FIPP probabilities for j = 0, . . . J of the form:

P IPP
ij = fi(d

ni

) + fi(d
li) + fi(d

mi

) + fi(d
ui

), (28)

averaged over individuals.

Again, with all relevant parameter estimates in-hand, it is also possible to compute all probabilistic

elements of the likelihood function of equation (16). For example, we can evaluate the TCP in isolation:

that is, ‘purged’ of inflation/reporting effects; or the marginal inflation probabilities corresponding to

the OP probabilities evaluated in isolation; or the joint probabilities of these along with the accurate

reporting probabilities.

Following the more traditional latent class literature (see, for example, Greene, 2018), we can also

consider posterior probabilities, which here essentially answer the question: given all of the observed

data, what is the probability that any particular observation lies in a particular respondent-type class.

For example, the posterior probability of an accurate respondent (type = A) will be

P (typei = A|xi, wi, yi) =
f (yi|type = A,wi)P (typei = A|xi)

f (yi) = Li
. (29)

Definitionally, the posterior probability of an inaccurate respondent (type = I) will be 1−P (typei = A|xi, wi, yi),

and will be the sum of the individual posteriors for each of the inflated outcomes.
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3.2. Expected Values

Several expected values (EV s) can be considered, and can be based on the underlying EV s of the

parent model. Thus, here these will be (for the top-censored Poisson model):

EV (TCP ) = ui −
ui

−1∑

j=0

f(j)(ui − j). (30)

We consider two forms of EV s: purged and overall (or probability-weighted). The former simply

essentially evaluates the above expressions based on the estimated parameters from the full model. In

essence, these can be regarded as ÊV s purged of any reporting effects.

Overall EV s, on the other hand, take into account all of the reporting effects. Generically, these

will be given by

EV (overall) = P (A)EV (purged) + P (I)P (li)li + P (I)P (mi)mi + P (I)P (ui)ui. (31)

However, several candidates are available for both P (A) (or P (I)) and P (li,mi, ui). These could

correspond to either prior or posterior probabilities and/or predicted 0/1 outcomes, based on the

maximum probability rule.

A final form of EV we consider, is to explicitly combine the joint quasi-continuous EV s of the

underlying Poisson form, with the discrete ones from the inflation processes along with the afore-

mentioned posterior probabilities. Explicitly, we estimate posterior probabilities for all of the inflated

outcomes, and of overall ‘accurate’ reporting. Using the usual 0.5 cut-off rule (based on these poste-

rior probabilities), individuals predicted to be ‘accurate’ reporters, were assigned their TCP − EV s,

whereas the ‘inaccurate’ reporters were assigned the EV corresponding to the maximum probability

of the inflated outcomes.

3.3. Partial Effects

Once the probabilistic and EV quantities have been defined, it is straightforward to evaluate partial

effects of all, or a subsection, of these, by differentiating these with respect to covariates of interest.

Firstly, define β̃, γ̃ and δ̃ as the zero-inflated counterparts to β, γ and δ, respectively, to ensure equal
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parameter vector length, the analytical partial effects of EV (overall), equation (31) are

∂EV (y|x, z,w)

∂(x, z,w)
= Φ(x′β)



ui

−1∑

j=0

f(j)(j − ui)(j − λ)


 δ̃ (32)

+


ui −

ui
−1∑

j=0

f(j)(ui − j)


φ(x′β)β̃

+ φ(x′β)(−β̃)




ui∑

inf=0

P (OPj)j




+ Φ(x′β)




ui∑

j=0

[
φ(µj−1 − z′γ)− φ(µj − z′γ)

]
j


 γ̃, (33)

where P (OPj) are the OP probabilities for inflation points j = (0, 50, 100), but where generalisations

of different sets of such are obvious. Analytical derivatives for components of the generic EV (overall)

are obtained by evaluation of the relevant parts of equation (33). These analytical derivatives are also

used for the Delta method in the computation of the standard errors of these quantities.

4. Empirical Application: Self-Reported Marginal Propensity to Consume

4.1. Background

Here we illustrate the above methods with an application based on data relating to the marginal

propensity to consume (MPC) of Italian households. The MPC is defined as the proportion of ad-

ditional household disposable income allocated to spending/consumption. The MPC is an important

concept in economics, particularly macroeconomics, as it is used to calculate potential multiplier ef-

fects of fiscal injections. Recent literature has sought to explore the “response heterogeneity” of the

MPC; that is, whether the consumption of different households responds differently to the same stim-

ulus. Gelman (2021) outlines two broad views in which consumption heterogeneity arises; one relates

to circumstances (e.g., current financial position) and the other relates to household characteristics

(e.g., behavioural traits and preferences). A recent focus of this literature has been to explore how

the MPC changes across the income and wealth distributions, see, for example, Kaplan and Violante

(2014), Carroll et al. (2017) and Fisher et al. (2020) amongst many others. Generally, these studies

find that those in the lower parts of the income and wealth distributions display a higher MPC.

To elicit an individual’s MPC, we follow Jappelli and Pistaferri (2014) and Jappelli and Pistaferri

(2020), who analyse self-reported consumption propensities of Italian households, whereby the survey

asks households hypothetical questions relating to the percentage they would spend or save from a

cash windfall (for example from a lottery). More recently, there has been a growing body of work that
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elicits quantitative spending responses from similar survey questions, see, for example, Graziani et al.

(2016), Christelis et al. (2019) and Ameriks et al. (2020).8

4.2. The Data

We draw on longitudinal data from the Italian Survey of Income and Wealth (SHIW), which is a

representative sample of approximately 8,000 Italian households. The SHIW contains comprehensive

data relating to Italian households’ assets and income, in addition to a broad range of demographic and

socio-economic characteristics. This data has been extensively used in the area of household finance,

see for example, Jappelli and Pistaferri (2014), Paiella and Pistaferri (2017) and Guiso et al. (1992)

amongst many others. In our analysis, we focus on the 2010 and 2016 waves of the survey and on the

household head, that is, the person most knowledgeable about the family’s finances.9

Importantly for our application, the 2010 and 2016 waves of the SHIW contain a question which

captures the household’s subjective MPC; that is, it asks the household head, or the person most

knowledgeable about the family’s finances, how much they would consume out of an unexpected transi-

tory income change. Specifically, the survey asks: “Imagine you unexpectedly receive a reimbursement

equal to the amount your household earns in a month. How much of it would you save and how much

would you spend? Please give the percentage you would save and the percentage you would spend.”

Figure 1 presents the distribution of responses for the 2010 (7,950 observations) and 2016 (7,415 ob-

servation) waves, separately, whilst Table 1 presents the associated summary statistics. From both

Figure 1 and Table 1, it is clear that the distribution of the MPC is remarkably constant across the

two years: for example, the average MPC in 2010 (2016) is 47.6% (46.7%), whilst it is 47.2% in the

pooled sample. A key characteristic of these distributions is the mass of responses at 0%, 50% and

100%, which together account for 64.9% of responses, in addition to smaller inflation points at mul-

tiples of ten. This characteristic of the MPC distribution is in line with other subjective probability

type questions, for example captured in the HRS, and informs the methodological approach taken.

In our empirical specifications, we control for a broad range of head of household and household

characteristics based on Jappelli and Pistaferri (2014). Specifically, we control for a range of demo-

graphic variables including age dummy variables, gender, marital status, education, family size, in

addition to city size and residence in the South of the country. We also control for household income

and wealth via quintile dummy variables, in addition to indicators for holding positive debt and for

being unemployed. Summary statistics for the estimation sample are presented in Table 1.

8An alternative method of recovering the MPC is to calculate the changes in income and consumption between pairs
of periods over time, allowing the estimation of the Euler equation for how consumption changes with respect to changes
in income, see, for example, inter alia Oh and Reis (2012) and Baker (2018).

9In our analysis, we analyse the two waves both pooled and as panel, and determine the preferred model using a
range of model specification tests.
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Figure 1: Distribution of sample proportions by year

In order to identify the model, we include a range of exclusion restrictions in the accurate reporting

equation. Specifically, we include five variables which reflect aspects relating to the interviewer’s

perceptions about the interviewee’s understanding about the interview process and their financial

position (relating to both financial assets and income). We also include the duration of the interview

and the individual’s level of financial literacy, as captured by an index, which is the sum of correct

answers to three questions relating to inflation, interest rates and risk. The summary statistics relating

to these five variables are presented in Table 1.

4.3. Results

Initially, we discuss the performance of the FIPP model relative to a range of alternatives, consid-

ering a range of predicted probabilities and more formal tests of model fit. We then go on to explore

the effects of the covariates on the overall MPC, in addition to a range of distinct partial effects

estimated within our FIPP model. Finally for reference, we compare our results to a standard Tobit

specification, the common approach in the literature when exploring subjective MPC, to highlight

the value of our newly developed modeling approach.

Table 2 presents the summary of the expected values and the model information criteria for a

range of models, namely, censored Tobit and censored Poisson models, in addition to our FIPP

model with three spikes at 0, 50 and 100 (named the primary) and the full FIPP model with 11

spikes (corresponding to zero and multiples of ten) for both pooled cross-section and panel variants.10

It is clear from the BIC statistics that the full model is clearly preferred compared to the alternative

10For reference, we also present the coefficients relating to the primary specification with three inflation points in
Table 8.
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models, in both the cross-section and panel specifications, and that the panel variant of the full model

is preferred to the cross-section model. With regard to the average predicted values, all the models

give a good approximation of the sample average, however the implied standard deviations of the

distributions are superior in the FIPP models. For example, considering the predicted distributions

of the Tobitmodel and the FIPP model, both give an expected value close to the sample average (with

predicted values of 46.7 compared to 47.2 for the sample). However, the implied standard deviation of

the predicted values is significantly different. The Tobit model gives a standard deviation of 11.1 for

the prediction whilst the FIPP model better captures the full range of the sample, giving a standard

deviation of 34.9, compared to the sample standard deviation of 35.2. Overall, this highlights that

despite the Tobit model being able to capture the expected value of the distribution relatively well, it

is inferior in terms of capturing the distribution of the responses. Furthermore, Table 3 presents the

pairwise V uong tests for goodness of fit for our full FIPP model against nested alternatives. The test

statistics reveal once again that the full panel FIPP model is the preferred specification amongst the

competing alternatives.

Table 4 presents the summary probabilities of the inflated points for the pooled and panel variants

of the model. For brevity, we only consider the panel variant. Focusing on the “Overall” column for

the panel model presented in Table 4, demonstrates that our approach is able to capture the overall

inflation points observed in the underlying data. For example, considering the inflation points at 0,

50 and 100, the predicted (observed) probabilities are 0.230 (0.230), 0.253 (0.254) and 0.167 (0.166),

respectively. This close prediction is also observed for the other inflation points. Moreover, Table 4

reveals the predicted probabilities of the distinct parts of the model, that is, the marginal inflation

probabilities corresponding to the OP probabilities evaluated in isolation and the joint probabilities

of these augmented with the accurate reporting probabilities.

Visually, Figures 2 and 3 show the estimated densities of the panel variants of the primary and

full models, respectively. This highlights the close match between the sample distribution and the

predicted distribution for the FIPP model. Overall, this highlights the superior ability of the FIPP

model of being able to capture the unique features of the data, compared to the standard approaches

adopted in the literature.

4.3.1. Independent Variables

Prior to exploring the partial effects, we observe that the random effects included in the model,

and the covariance between them, are statistically significant at conventional levels, as presented

in Table 7, further advocating our panel approach. We now turn our attention to the influence of

the individual covariates in the FIPP model. We initially consider the overall partial effects, and

subsequently explore the effects of the covariates in the distinct parts of the model, namely, the OP
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inflation model, the Poisson model and the accurate (non-focal point) reporting model.11 The overall

partial effects presented in Table 5 reveal, in line with Jappelli and Pistaferri (2014, 2020), that a

range of demographic and socio-economic characteristics influence the self-reported MPC. Relative

to being aged 60 years or above, younger individuals report a higherMPC. More educated individuals,

as captured by the years of education, and family size are positively associated with the self-reported

MPC. For example, an additional year of education is associated with a 0.2 percentage point increase

in the MPC, whilst an additional family member in the household is associated with a 1.8 percentage

point higher MPC. The residence of the individual, in terms of the location of the household and also

the size of the city, are statistically significant determinants of the self reported MPC. Residents in

the South of Italy report a higher MPC, whilst those who live in smaller towns report a lower MPC,

highlighting the importance of the geographical variation in the MPC across Italy. Interestingly,

there is significant heterogeneity of the MPC across the wealth and income distributions, in line

with Jappelli and Pistaferri (2014, 2020). Those in the lowest quintile of the income and wealth

distributions report significantly higher MPCs. For example, for income and wealth, compared to

being in the top quintile, those in the lowest quintiles report a higher MPC of 7.0 and 11.4 percentage

points, respectively.

A significant advantage of our modeling approach is that it allows us to explore the partial effects

in each of the estimated equations, that is the accurate reporting equation, the fractional Poisson

equation and the OP inflation equation. The partial effects relating to the accurate reporting equation

are presented in Table 5. Intuitively, this captures an individual’s propensity to not report a multiple

of ten, i.e. the specified inflation points, and reveals those types of individual who are more likely to

provide non-focal point responses. Considering the statistically significant results reveals that those

who have a larger family are more likely to provide non-focal point answers, whilst those lower in the

income distribution are also more likely to report non-focal answers. Those who are unemployed are

also more likely to report in this manner whereas homeowners are more likely to report a focal MPC

response - that is, an inflation point. Our exclusion restrictions also appear to be appropriate, with

three out of the five variables having a statistically significant impact on the individual’s reporting

behaviour. Interviewee understanding is positively related to non-focal reporting; whilst financial

understanding and the duration of the interview are positively associated with reporting a focal answer.

For example, a one point increase in the financial understanding score, measured on a 10 point scale,

is associated with a 0.9 percentage point lower likelihood of reporting a non-focal point response.

Further, a 1% increase in the duration of the interview is associated with a 3.4 percentage point

11Throughout the discussion of the results we use the term focal response to capture inaccurate responses, that is
multiples of 10, and non-focal responses to capture accurate responses as outlined in Section 2.

18



increase in the probability of reporting a focal answer.12

In terms of the size of these effects, the partial effects are presented in Table 5. Comparing the

overall effect to the partial effect in the fractional model, the level of financial assets has a larger

impact in the fractional model. For example, compared to being in the 5th quintile of the asset

distribution those in the 1st quintile report a higher MPC of 20 percentage points in the fractional

model compared to 11 for the overall effect. In general, the results indicate that financial assets have

twice the impact for a non-focal reporter compared to the overall effect. Being resident in the South

of Italy is associated with a 8 point higher MPC, compared to other regions.

Table 6 presents the partial effects of the OP inflation equation, and these are interpreted in the

usual way.13 Compared to being in the 5th quintile of the asset distribution, being in the 1st quintile

is negatively associated with reporting 0 (5.9 percentage points lower), whilst it is associated with an

increased likelihood of reporting an MPC of 90 and 100 by 1.3 and 1.1 percentage points, respectively.

Compared to being in a large city, being resident in a city with a population of 20,00 people or less,

is positively associated with reporting an MPC of 0, that is, 14.7 percentage points more likely to

report 0, and inversely related to reporting the highest MPCs, for example, 3.1 and 2.6 percentage

points lower for 90 and 100, respectively.

Overall the discussion above highlights the flexibility of the FIPP model and the wide array of

parameter estimates available in the model, which may be of particular interest depending on the

application of the model. The discussion above demonstrates that different independent variables

have differential impacts across the distinct parts of the model.

4.4. The Tobit Model

For comparison with the existing literature, we briefly consider the results relating to a random

effects Tobit model. The results presented are in line with Jappelli and Pistaferri (2014, 2020) and so

are only briefly discussed. In this setting, a range of demographic and socio-economic characteristics

influence the self-reported MPC and generally these results are consistent with the overall partial

effects captured in the FIPP model. For example, those higher in the income and wealth distributions

report a lower MPC. For example, being in the 1st quintile of the wealth distribution relative to the

5th quintile is associated with a 12 percentage points higher MPC. A small number of covariates

have a differential impact in terms of statistical significance compared to the FIPP model, including

for example, marriage and financial literacy. In addition, the magnitudes of the overall partial effects

12We have repeated the analysis including only the subset of statistically significant identifying variables and obtain
similar results.

13Additional partial effects relating to the joint inflation probabilities, that is the marginal OP probabilities augmented
with the accurate reporting predictions, are easily recovered from the model. However, for brevity, we omit these partial
effects.
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appear quite different - potentially over - or under- estimating the economic importance of some

variables, for example, the effect of unemployment, on self-reported MPC. As outlined above, the

key limitation of the Tobit model relates to the model not capturing the underlying distribution of

the individual responses.

In summary, considering the predicted probabilities, the random effects Tobit model reveals that

the means are very close to the sample mean and those of the FIPP model. This suggests that

despite explicitly accounting for inflated responses, which clearly have an important role in the model

in terms of capturing the underlying distribution, failing to account for these elements does not induce

a large bias on the estimated means. This finding echos the results of Kleinjans and Soest (2014), who

explore a range of subjective probability responses in the HRS. Focusing on the specific covariates, we

find that signs and significance levels are very similar between the random effects Tobit model and

the overall partial effects in the FIPP model, but some of the sizes of the effects are different across

the two models. Overall, the Tobit model fails to capture the more nuanced effects of the independent

variables in the distinct parts of the FIPP model.

5. Conclusion

This paper has developed a new method for modeling subjective probability questions, which are

characterised by being bounded between 0-100 and display rounding and focal answers. Responses

to such questions have been increasingly used to elicit information from individuals and are found to

be predictive of a range of behaviours, including health outcomes and survival probabilities, financial

expectations and expectations about firm performance. We have developed a fractional inflated-pseudo

Poisson (FIPP ) model, which accounts for both the inflation of specific values and the fractional

nature of the responses.

The FIPP model characterises two types of individuals; accurate reporters who report a refined

point probability response, and inaccurate reporters who report focal answers, in our application

multiples of ten. This approach allows us to recover a range of interesting and economically relevant

partial effects and predicted values. Overall, this is a flexible approach that can be applied in the

modeling of any subjective or self reported response data captured on the unit interval, but is ideally

suited to modeling subjective probabilities.

We explore individual level data on the subjectiveMPC using our model and compare our approach

with a RE Tobit model, which is commonly used in the existing literature, and a censored Poisson

model. The RE Tobit and censored Poisson models, which fail to account for rounded reporting

behavior, give similar partial effects at the average, in terms of the signs and significance levels to our

newly developed model. In contrast, the predicted distribution of the FIPP model better captures the

sample distribution, in addition to revealing a more nuanced picture of the influence of the independent
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variables in each part of the proposed model. Overall, our results are in line with Kleinjans and Soest

(2014), that is, standard models that fail to account for inflation and rounded responses, such as

the RE Tobit model, are suitable for researchers who wish to explore the effects of covariates at the

average, but this however may not be suitable for those researchers who wish to better capture the

unique artefacts of the underlying sample.
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Figure 2: Estimated densities and sample proportions: Primary model (3 inflation points)
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Figure 3: Estimated densities and sample proportions: Full model (11 inflation points)
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Table 1: Summary Statistics

Variable Description Mean [Min., Max.]
(s.d.)

Dependent Variable

MPC Imagine you unexpectedly receive a reimbursement equal to the 47.22 [0,100]
amount your household earns in a month. How much of it would (35.22)
you save and how much would you spend? Please give the
percentage you would save and the percentage you would spend.
Measured on 0-100 scale.

Independent Variables

Age Omitted category: Aged 61 and above.

Age 18-30 = 1 if head of household is aged 18-30, 0 otherwise. 0.03 [0,1]
Age 31-45 = 1 if head of household is aged 31-45, 0 otherwise. 0.17 [0,1]
Age 46-60 = 1 if head of household is aged 46-60, 0 otherwise. 0.30 [0,1]
Male = 1 if male, 0 if female. 0.54 [0,1]
Married = 1 if married, 0 otherwise. 0.58 [0,1]
Years of Education Years of education. 9.63 [0,20]

(4.52)
Family Size Number of individuals in the household. 2.36 [0,12]

(1.24)
Resident in South = 1 if residence is located in the South of the country, 0 otherwise. 0.33 [0,1]
City of Residence Size Omitted category: City population above 500,000.

City Size: < 20, 000 = 1 if located in a city with population less that 20,00.0 0.25 [0,1]
City Size: 20, 000− 40, 000 = 1 if located in a city with population between 20,000 and 40,000. 0.18 [0,1]
City Size: 40, 000− 500, 000 = 1 if located in a city with population between 40,000 and 500,000. 0.48 [0,1]
Financial Assets Omitted category: 5th quintile of the financial asset distribution.

Financial Asset Quintile: I = 1 if in 1st quintile of the asset distribution, 0 otherwise. 0.20 [0,1]
Financial Asset Quintile: II = 1 if in 2nd quintile of the asset distribution, 0 otherwise. 0.22 [0,1]
Financial Asset Quintile: III = 1 if in 3rd quintile of the asset distribution, 0 otherwise. 0.19 [0,1]
Financial Asset Quintile: IV = 1 if in 4th quintile of the asset distribution, 0 otherwise. 0.20 [0,1]
Household Income Omitted category: 5th quintile of the income distribution.

Income Quintile: I = 1 if in 1st quintile of the income distribution, 0 otherwise. 0.26 [0,1]
Income Quintile: II = 1 if in 2nd quintile of the income distribution, 0 otherwise. 0.22 [0,1]
Income Quintile: III = 1 if in 3rd quintile of the income distribution, 0 otherwise. 0.20 [0,1]
Income Quintile: IV = 1 if in 4th quintile of the income distribution, 0 otherwise. 0.17 [0,1]
Positive Debt =1 if has outstanding financial liabilities, 0 otherwise. 0.22 [0,1]
Unemployed = 1 if head of household is unemployed, 0 otherwise. 0.04 [0,1]
Homeowner = 1 if home is owned by the household, 0 otherwise. 0.71 [0,1]
2016 = 1 if observations is in 2016, 0 if 2010 observation. 0.48 [0,1]
Exclusion Restrictions

Interviewee Understanding Based on How do you rate the respondent’s level of 8.11 [1,10]
understanding of the questions. Measured on a 10-point scale. (1.62)

Financial Literacy Index of financial literacy. It is the sum of correct answer to 3 1.53 [0,3]
questions relating to interest rates, inflation and risk. (1.01)

Financial Understanding Based on: How do you rate the reliability of the 7.86 [0,10]
information on forms of saving and financial investment (1.72)
provided by the respondent? Measured on a 10-point scale.

Income Understanding Based on: How do you rate the reliability of the 8.01 [0,10]
information on income provided by the respondent? Measured (1.68)
on a 10-point scale.

Ln(Interview Duration) Natural logarithm of interview duration. 3.87 [2.08,5.52]
(0.41)

Observations 15,365
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Table 2: Summary Expected Values, EV (s), and BICs

FIPP (Full) FIPP (Primary)
Sample Tobit Poisson Overall Purged Joint Overall Purged Joint

Pooled

EV 47.22 46.73 47.41 47.21 67.08 47.22 47.21 50.83 47.22
sd/se (35.22) (2.35)[11.13] (0.28)[12.75] (0.27)[36.17] (1.54) (0.04) (0.27)[36.16] (0.35) (0.12)
BIC 112, 278 564, 589 75, 691 150, 963

Panel

EV 47.22 46.71 42.07 46.72 76.27 47.04 46.71 52.16 41.30
sd/se (35.22) (2.35)[11.13] (0.31)[41.11] (0.27)[34.95] (1.18) (0.23) (0.27)[34.95] (1.06) (0.65)
BIC 112, 271 176, 259 68,152 92, 144

Notes: Preferred model in bold; sd/se standard deviation/standard error of prediction in parentheses (.); Implied sd of predicted
distribution in brackets [.].
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Table 3: Pairwise V uong tests

Alternative Model
Poisson FIPP (primary) Total

Null Model Pooled
FIPP (full) 115.8 56.3 2
FIPP (primary) 91.9 - 1

Panel
FIPP (full) 51.8 54.9 2
FIPP (primary) 40.7 - 1

Notes: large positive (negative) values of V favour null (alternative) model.

Table 4: Summary probabilities

Outcome Sample Overall s.e. Joint s.e. Marg. s.e.

Pooled
0 0.230 0.230 (0.003) 0.230 (0.003) 0.238 (0.003)
10 0.021 0.021 (0.001) 0.021 (0.001) 0.022 (0.001)
20 0.056 0.056 (0.002) 0.056 (0.002) 0.058 (0.002)
30 0.048 0.048 (0.002) 0.048 (0.002) 0.050 (0.002)
40 0.043 0.043 (0.002) 0.043 (0.002) 0.045 (0.002)
50 0.254 0.254 (0.004) 0.253 (0.004) 0.263 (0.004)
60 0.035 0.035 (0.001) 0.034 (0.001) 0.035 (0.002)
70 0.045 0.045 (0.002) 0.045 (0.002) 0.046 (0.002)
80 0.041 0.041 (0.002) 0.040 (0.002) 0.042 (0.002)
90 0.033 0.033 (0.001) 0.032 (0.001) 0.033 (0.001)
100 0.166 0.166 (0.003) 0.164 (0.003) 0.169 (0.003)

P (A) 0.035 (0.002)

Panel
0 0.230 0.230 (0.003) 0.230 (0.003) 0.270 (0.005)
10 0.021 0.021 (0.001) 0.021 (0.001) 0.025 (0.001)
20 0.056 0.056 (0.002) 0.056 (0.002) 0.067 (0.002)
30 0.048 0.048 (0.002) 0.048 (0.002) 0.057 (0.002)
40 0.043 0.043 (0.002) 0.043 (0.002) 0.052 (0.002)
50 0.254 0.253 (0.003) 0.253 (0.004) 0.311 (0.005)
60 0.035 0.035 (0.001) 0.034 (0.001) 0.043 (0.002)
70 0.045 0.045 (0.002) 0.045 (0.002) 0.057 (0.002)
80 0.041 0.041 (0.002) 0.040 (0.002) 0.051 (0.002)
90 0.033 0.033 (0.001) 0.033 (0.001) 0.042 (0.002)
100 0.166 0.167 (0.003) 0.019 (0.007) 0.026 (0.008)

P (A) 0.179 (0.007)
Notes: “Overall” correspond to the sample probabilities of the full model, the marginal inflation probabilities

correspond to the OP probabilities evaluated in isolation and the joint probabilities of these augmented with the

accurate reporting probabilities. P (A) reports the proportion of accurate reporters.
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Table 5: Partial Effects

Tobit model FIPP - Overall Inaccurate Reporting FractionalPoison

Age 18-30 4.409∗∗ 4.091∗∗ 0.009 4.496
(1.783) (1.656) (0.019) (3.259)

Age 31-45 3.347∗∗∗ 3.777∗∗∗ 0.001 4.018∗∗

(0.946) (0.876) (0.011) (1.767)
Age 46-60 3.214∗∗∗ 2.869∗∗∗ -0.003 2.556

(0.753) (0.703) (0.009) (1.617)
Male -0.286 -0.504 -0.000 1.330

(0.612) (0.567) (0.007) (1.222)
Married -0.990 -1.265∗∗ -0.002 -3.444∗

(0.767) (0.729) (0.009) (1.986)
Years of Education 0.300∗∗∗ 0.193∗∗ 0.001 0.232

(0.082) (0.075) (0.001) (0.187)
Family Size 1.791∗∗∗ 1.838∗∗∗ 0.013∗∗∗ 0.022

(0.330) (0.308) (0.004) (0.695)
Resident in South 9.607∗∗∗ 10.217∗∗∗ 0.010 8.724∗∗∗

(0.664) (0.621) (0.009) (1.592)
City Size: < 20, 000 -10.876∗∗∗ -11.204∗∗∗ -0.021 -1.219

(1.112) (1.049) (0.015) (2.984)
City Size: 20, 000− 40, 000 -8.915∗∗∗ -9.146∗∗∗ -0.025∗ -2.364

(1.162) (1.103) (0.015) (3.273)
City Size: 40, 000− 500, 000 -6.829∗∗∗ -7.321∗∗∗ -0.007 -0.592

(1.031) (0.974) (0.013) (2.921)
Income Quintile: I 7.318∗∗∗ 7.028∗∗∗ 0.081∗∗∗ 6.083∗∗

(1.355) (1.267) (0.016) (3.085)
Income Quintile: II 4.079∗∗∗ 4.242∗∗∗ 0.026∗ 1.631

(1.164) (1.085) (0.014) (2.417)
Income Quintile: III 3.804∗∗∗ 3.578∗∗∗ 0.012 -5.649∗∗

(1.080) (1.011) (0.013) (2.233)
Income Quintile: VI 2.938∗∗∗ 2.352∗∗ 0.007 -5.551∗∗∗

(1.033) (0.969) (0.013) (2.143)
Financial Asset Quintile: I 12.182∗∗∗ 11.369∗∗∗ 0.111∗∗∗ 20.922∗∗∗

(1.131) (1.058) (0.013) (2.501)
Financial Asset Quintile: II 6.727∗∗∗ 6.317∗∗∗ 0.052∗∗∗ 10.617∗∗∗

(1.007) (0.940) (0.012) (1.940)
Financial Asset Quintile: III 4.245∗∗∗ 4.470∗∗∗ 0.031∗∗ 8.159∗∗∗

(1.000) (0.934) (0.012) (1.930)
Financial Asset Quintile: IV 1.924∗∗ 1.477∗ -0.017 3.602∗

(0.943) (0.895) (0.012) (2.039)
Homeowner -1.815∗∗ -1.440 ∗∗ -0.017∗∗ -0.339

(0.708) (0.664) (0.008) (1.750)
Positive Debt -1.414∗ -0.902 0.008 6.314∗∗∗

(0.738) (0.681) (0.009) (1.350)
Unemployed 5.794∗∗∗ 3.880∗∗∗ 0.044∗∗∗ 1.784

(1.439) (1.360) (0.015) (2.603)
Financial Literacy -0.960∗∗∗ 0.278 0.006

(0.333) (0.180) (0.004)
Interviewee Understanding 0.208 0.397∗∗∗ 0.008∗∗∗

(0.264) (0.137) (0.003)
Financial Understanding -0.017 -0.404∗∗∗ -0.009∗∗∗

(0.299) (0.155) (0.003)
Income Understanding -1.534∗∗∗ -0.210 -0.004

(0.300) (0.157) (0.003)
Interview Duration -0.664 -1.583∗∗∗ -0.034∗∗∗

(0.760) (0.417) (0.009)
2016 -0.857 -0.085 -0.002 7.762 ∗∗∗

(0.612) (0.544) (0.007) (1.220)

Observations 15,365 15,365 15,365 15,365

Notes:∗∗∗, ∗∗ and ∗, denote significance at 1, 5 and 10%, respectively. Standard errors presented
in parentheses. Dependent variable is measured on 0-100 scale. Variable definitions and omitted
categories are presented in Table 1.
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Table 6: Partial Effects of Marginal Inflation Probabilities (se’s underneath)

Variable 0 10 20 30 40 50 60 70 80 90 100

Age 18-30 -0.047 -0.002 -0.004 -0.002 -0.001 0.015 0.005 0.008 0.010 0.010 0.008
(0.021) (0.001) (0.002) (0.001) (0.000) (0.007) (0.002) (0.004) (0.004) (0.005) (0.004)

Age 31-45 -0.049 -0.002 -0.004 -0.002 -0.001 0.015 0.005 0.009 0.010 0.010 0.009
(0.011) (0.000) (0.001) (0.001) (0.000) (0.004) (0.001) (0.002) (0.002) (0.002) (0.003)

Age 46-60 -0.040 -0.002 -0.004 -0.002 -0.001 0.013 0.004 0.007 0.008 0.009 0.007
(0.009) (0.000) (0.001) (0.000) (0.000) (0.003) (0.001) (0.002) (0.002) (0.002) (0.003)

Male 0.009 0.000 0.001 0.000 0.000 -0.003 -0.001 -0.002 -0.002 -0.002 -0.002
(0.007) (0.000) (0.001) (0.000) (0.000) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Married 0.012 0.001 0.001 0.001 0.000 -0.004 -0.001 -0.002 -0.002 -0.003 -0.002
(0.009) (0.000) (0.001) (0.000) (0.000) (0.003) (0.001) (0.002) (0.002) (0.002) (0.002)

Years of Education -0.002 -0.000 -0.000 -0.000 -0.000 0.001 0.000 0.000 0.000 0.000 0.000
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Family Size -0.018 -0.001 -0.002 -0.001 -0.000 0.006 0.002 0.003 0.004 0.004 0.003
(0.004) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001)

Resident in South -0.129 -0.005 -0.012 -0.006 -0.003 0.041 0.014 0.023 0.026 0.028 0.023
(0.008) (0.000) (0.001) (0.001) (0.000) (0.003) (0.001) (0.002) (0.002) (0.003) (0.007)

City Size: < 20, 000 0.147 0.006 0.013 0.007 0.003 -0.046 -0.016 -0.026 -0.030 -0.031 -0.026
(0.013) (0.001) (0.001) (0.001) (0.000) (0.005) (0.002) (0.003) (0.003) (0.004) (0.008)

City Size: 20, 000 − 40, 000 0.113 0.005 0.010 0.005 0.002 -0.035 -0.012 -0.020 -0.023 -0.024 -0.020
(0.014) (0.001) (0.001) (0.001) (0.000) (0.005) (0.002) (0.003) (0.003) (0.003) (0.006)

City Size: 40, 000 − 500, 000 0.101 0.004 0.009 0.005 0.002 -0.032 -0.011 -0.018 -0.021 -0.021 -0.018
(0.012) (0.001) (0.001) (0.001) (0.000) (0.004) (0.001) (0.002) (0.003) (0.003) (0.005)

Income Quintile: I -0.038 -0.002 -0.003 -0.002 -0.001 0.012 0.004 0.007 0.008 0.008 0.007
(0.015) (0.001) (0.001) (0.001) (0.000) (0.005) (0.002) (0.003) (0.003) (0.003) (0.003)

Income Quintile: II -0.041 -0.002 -0.004 -0.002 -0.001 0.013 0.005 0.007 0.008 0.009 0.007
(0.013) (0.001) (0.001) (0.001) (0.000) (0.004) (0.001) (0.002) (0.003) (0.003) (0.003)

Income Quintile: III -0.052 -0.002 -0.005 -0.002 -0.001 0.016 0.006 0.009 0.011 0.011 0.009
(0.012) (0.001) (0.001) (0.001) (0.000) (0.004) (0.001) (0.002) (0.003) (0.003) (0.003)

Income Quintile: VI -0.037 -0.002 -0.003 -0.002 -0.001 0.012 0.004 0.007 0.008 0.008 0.007
(0.011) (0.000) (0.001) (0.001) (0.000) (0.004) (0.001) (0.002) (0.002) (0.002) (0.003)

Financial Asset Quintile: I -0.059 -0.003 -0.005 -0.003 -0.001 0.019 0.007 0.011 0.012 0.013 0.011
(0.013) (0.001) (0.001) (0.001) (0.000) (0.004) (0.001) (0.002) (0.003) (0.003) (0.004)

Financial Asset Quintile: II -0.041 -0.002 -0.004 -0.002 -0.001 0.013 0.005 0.007 0.008 0.009 0.007
(0.011) (0.000) (0.001) (0.001) (0.000) (0.004) (0.001) (0.002) (0.002) (0.003) (0.003)

Financial Asset Quintile: III -0.032 -0.001 -0.003 -0.002 -0.001 0.010 0.004 0.006 0.007 0.007 0.006
(0.011) (0.000) (0.001) (0.001) (0.000) (0.004) (0.001) (0.002) (0.002) (0.002) (0.002)

Financial Asset Quintile: IV -0.028 -0.001 -0.002 -0.001 -0.001 0.009 0.003 0.005 0.006 0.006 0.005
(0.010) (0.000) (0.001) (0.000) (0.000) (0.003) (0.001) (0.002) (0.002) (0.002) (0.002)

Homeowner 0.028 0.001 0.002 0.001 0.001 -0.009 -0.003 -0.005 -0.006 -0.006 -0.005
(0.009) (0.000) (0.001) (0.000) (0.000) (0.003) (0.001) (0.002) (0.002) (0.002) (0.002)

Positive Debt -0.024 -0.001 -0.002 -0.001 -0.001 0.008 0.003 0.004 0.005 0.005 0.004
(0.018) (0.001) (0.002) (0.001) (0.000) (0.006) (0.002) (0.003) (0.004) (0.004) (0.003)

Unemployed 0.009 0.000 0.001 0.000 0.000 -0.003 -0.001 -0.002 -0.002 -0.002 -0.002
(0.008) (0.000) (0.001) (0.000) (0.000) (0.003) (0.001) (0.001) (0.002) (0.002) (0.002)

2016 0.011 0.000 0.001 0.001 0.000 -0.004 -0.001 -0.002 -0.002 -0.002 -0.002
(0.007) (0.000) (0.001) (0.000) (0.000) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Notes: partial effects of the OP equation; standard errors presented in parentheses. Stars are omitted due to space constraints. Variable definitions
and omitted categories are presented in table 1.
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Table 7: Inflated Poisson Parameter Estimates (Inaccurate, Fractional and Inflation Equations); Panel Full model

Variable Inaccurate eqn Fractional eqn Inflation eqn

Constant -0.7384∗∗∗ (0.192) 3.9654∗∗∗ (0.328) − -
Age 18-30 0.0376 (0.086) 0.2917 (0.211) 0.1566∗∗ (0.070)
Age 31-45 0.0048 (0.048) 0.2606∗∗ (0.115) 0.1606∗∗∗ (0.036)
Age 46-60 -0.0128 (0.040) 0.1658 (0.106) 0.1329∗∗∗ (0.029)
Male -0.0013 (0.031) 0.0863 (0.079) 0.0300 (0.023)
Married -0.0086 (0.040) -0.2235∗ (0.128) 0.0401 (0.029)
Years of Education 0.0036 (0.004) 0.0151 (0.012) 0.0064∗ (0.003)
Family Size 0.0583∗∗∗ (0.017) 0.0015 (0.045) 0.0585∗∗∗ (0.013)
Resident in South 0.0456 (0.040) 0.5659∗∗∗ (0.104) 0.4279∗∗∗ (0.028)
City Size: < 20, 000 -0.0937 (0.063) -0.0791 (0.194) 0.4864∗∗∗ (0.045)
City Size: 20, 000− 40, 000 -0.1112∗ (0.064) -0.1534 (0.213) 0.3727∗∗∗ (0.046)
City Size: 40, 000− 500, 000 -0.0323 (0.056) -0.0384 (0.190) 0.3338∗∗∗ (0.041)
Financial Asset Quintile: I 0.4882∗∗∗ (0.060) 1.3573∗∗∗ (0.170) 0.1968∗∗∗ (0.044)
Financial Asset Quintile: II 0.2270∗∗∗ (0.054) 0.6888∗∗∗ (0.126) 0.1370∗∗∗ (0.037)
Financial Asset Quintile: III 0.1369∗∗ (0.054) 0.5293∗∗∗ (0.126) 0.1061∗∗∗ (0.037)
Financial Asset Quintile: IV -0.0750 (0.054) 0.2336∗ (0.133) 0.0928∗∗∗ (0.034)
Income Quintile: I 0.3558∗∗∗ (0.070) 0.3946∗∗ (0.202) 0.1265∗∗ (0.051)
Income Quintile: II 0.1160∗ (0.062) 0.1058 (0.157) 0.1370∗∗∗ (0.043)
Income Quintile: III 0.0517 (0.059) -0.3665∗∗ (0.145) 0.1729∗∗∗ (0.040)
Income Quintile: IV 0.0312 (0.057) -0.3601∗∗ (0.140) 0.1239∗∗∗ (0.038)
Positive Debt 0.0365 (0.038) 0.4096∗∗∗ (0.088) 0.0925∗∗∗ (0.028)
Unemployed 0.1917∗∗∗ (0.066) 0.1158 (0.168) 0.0798 (0.059)
Homeowner -0.0768∗∗ (0.035) -0.0220 (0.113) 0.0282 (0.027)
2016 -0.0079 (0.032) 0.5035∗∗∗ (0.081) 0.0370∗ (0.022)
Interviewee Understanding 0.0372∗∗∗ (0.013) - - - -
Financial Literacy 0.0260 (0.017) - - - -
Financial Understanding -0.0378∗∗∗ (0.015) - - - -
Income Understanding -0.0196 (0.015) - - - -
Ln(Duration) -0.1480∗∗∗ (0.040) - - - -
µ0 - - - - -0.4809∗∗∗ (0.077)
µ1 - - - - -0.4012∗∗∗ (0.077)
µ2 - - - - -0.1976∗∗∗ (0.076)
µ3 - - - - -0.0336 (0.076)
µ4 - - - - 0.1106 (0.077)
µ5 - - - - 1.0459∗∗∗ (0.081)
µ6 - - - - 1.2171∗∗∗ (0.083)
µ7 - - - - 1.4904∗∗∗ (0.088)
µ8 - - - - 1.8373∗∗∗ (0.103)
µ9 - - - - 2.3408∗∗∗ (0.171)
Random Effects 0.1944∗∗∗ (0.070) 2.7588∗∗∗ (0.230) 0.1059∗∗ (0.044)
CovA,F 0.6363∗∗∗ (0.069)
CovA,I 0.0540∗∗∗ 0.042

Notes:∗∗∗, ∗∗ and ∗, denote significance at 1, 5 and 10%, respectively. CovA,F is covariance between
the random effects of the accurate reporting model and the fractional model and CovA,I is covariance
between the random effects of the accurate reporting model and the inflation model. Variable
definitions and omitted categories are presented in Table 1.
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Table 8: Inflated Poisson Parameter Estimates (Inaccurate, Fractional and Inflation Equations); Panel Primary model

Variable Accurate eqn Fractional eqn Inflation eqn

Constant 0.4052∗∗∗ (0.164) 3.6953∗∗∗ (0.074)
Age 18-30 0.0463 (0.086) 0.2543∗∗∗ (0.069) 0.1258 (0.111)
Age 31-45 0.1730∗∗∗ (0.043) 0.2131∗∗∗ (0.033) 0.0253 (0.057)
Age 46-60 0.0087 (0.034) 0.0310 (0.024) 0.1504∗∗∗ (0.043)
Male −0.0372 (0.027) −0.0242 (0.025) 0.0115 (0.037)
Married 0.0575∗ (0.035) 0.0053 (0.030) −0.1037 (0.046)
Years of Education 0.0038 (0.004) 0.0027 (0.003) 0.0113∗∗∗ (0.005)
Family Size −0.0107 (0.015) 0.0367∗∗∗ (0.012) 0.0747∗∗∗ (0.020)
Resident in the South 0.3168∗∗∗ (0.031) 0.3453∗∗∗ (0.027) 0.2857∗∗∗ (0.043)
City Size: < 20, 000 −0.2943∗∗∗ (0.051) −0.1886∗∗∗ (0.043) −0.4870∗∗∗ (0.073)
City Size: 20, 000− 40, 000 −0.2459∗∗∗ (0.053) −0.1532∗∗∗ (0.045) −0.3923∗∗∗ (0.075)
City Size: 40, 000− 500, 000 −0.2533∗∗∗ (0.048) −0.1623∗∗∗ (0.040) −0.2859∗∗∗ (0.067)
Financial Asset Quintile: I −0.1905∗∗∗ (0.051) 0.0505 (0.033) 0.6934∗∗∗ (0.069)
Financial Asset Quintile: II 0.0556 (0.043) 0.0312 (0.028) 0.4005∗∗∗ (0.060)
Financial Asset Quintile: III 0.0354 (0.042) 0.0296 (0.027) 0.2264∗∗∗ (0.057)
Financial Asset Quintile: IV −0.0650∗ (0.039) −0.0519 (0.026) 0.2218 (0.052)
Income Quintile: I 0.1642∗∗∗ (0.060) 0.1334∗∗∗ (0.046) 0.2040∗∗∗ (0.079)
Income Quintile: II 0.1629 (0.050) 0.0658∗ (0.038) 0.0483 (0.065)
Income Quintile: III 0.1093∗∗∗ (0.046) −0.0453 (0.036) 0.1577∗∗∗ (0.060)
Income Quintile: IV 0.0639 (0.044) −0.0784∗∗∗ (0.032) 0.1657∗∗∗ (0.056)
Positive Debt −0.1361∗∗∗ (0.033) −0.0284 (0.023) −0.0653 (0.042)
Unemployed −0.1507∗∗ (0.068) −0.2900 (0.049) 0.5810 (0.083)
Homeowner −0.0405 (0.032) 0.0228 (0.025) −0.1025∗∗∗ (0.042)
2016 −0.1722 (0.027) −0.0455 (0.014) 0.0675∗∗ (0.033)
Interviewee Understanding −0.0369∗∗∗ (0.011) - - - -
Financial Literacy −0.0016 (0.014) - - - -
Financial Understanding 0.0185 (0.013) - - - -
Income Understanding −0.0572∗∗∗ (0.013) - - - -
Ln(Duration) 0.0512 (0.033) - - - -
µ0 - - - - 0.0505 (0.121)
µ1 - - - - 1.6468∗∗∗ (0.135)
Random Effects 0.1325∗∗∗ (0.037) 0.6063∗∗∗ (0.018) 0.3238∗∗∗ (0.099)
CovA,F 0.1990∗∗∗ (0.037)
CovA,I 0.1465∗∗∗ (0.037)

Notes:∗∗∗, ∗∗ and ∗, denote significance at 1, 5 and 10%, respectively. CovA,F is covariance between
the random effects of the accurate reporting model and the fractional model and CovA,I is covariance
between the random effects of the accurate reporting model and the inflation model. Variable definitions
and omitted categories are presented in Table 1.
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