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Abstract 

The relationship between railway track-bed stresses and speed is essential when performing 

railway track and foundation design. Current approaches to describe this relationship are typically 

empirical and multiply the static track response by a dynamic amplification factor to account for 

(dynamic) speed effects. This paper develops an alternative method for dynamic amplification factor 

generation instead of numerical simulation. A vehicle–track dynamics model is presented, capable of 

simulating the dynamic effects induced in subgrade in the presence of random track irregularities. To 

perform a stochastic analysis, first samples of irregularity are generated based upon a mean vertical 

track profile power spectral density. A range of train speeds and track-spectrum cumulative 

probabilities are computed using the numerical model before analyzing the resultant surface stresses. 

The resulting dynamic amplification factors follow a Gumbel distribution, with their means and 

standard deviations increasing nonlinearly with increased speed and track-spectrum cumulative 

probability. Data normalization is performed before showing the development of a bespoke dynamic 

amplification function for the site under analysis. Based on speed, track-spectrum cumulative 

probability, and p-values, the proposed model yields dynamic amplification predictions within 5% of 

the simulated values. 

Keywords: Railway slab track; track-bed stress; vehicle–track coupled dynamics; track irregularity; 

stochastic analysis, Dynamic amplification factor 
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1. Introduction 

It is important to consider vehicle−track interaction when designing track structures, particularly 

for trains traveling at high speeds. Concrete slab tracks are widely used on high-speed rail (HSR) lines 

because of their advantages over ballasted tracks in terms of reduced maintenance requirements and 

the possibility of more extended possession periods [1,2]. HSR lines must be longitudinally uniform 

and consistent, and the track-bed must be dynamically stable. Track substructures (roadbeds) are 

constructed with geotechnical materials that have varying properties. Their stability can be influenced 

by loading [3] and environmental factors [4,5], so these are critical to consider when performing track 

foundation design. Current design methods for railway earth structures commonly approximate 

dynamic loads by multiplying the static load by a dynamic amplification factor (DAF) greater than 1.0 

[6]. Therefore, an important aspect of track foundation design is applying accurate DAFs. The DAF is 

also used for the design of other geostructures, such as retaining wall [7] and piled embankment [8,9]. 

In addition to DAFs, dynamic wheel load factors have received considerable attention among 

industry and academia for a long time [10]. Dynamic wheel loads have been predicted using a variety 

of methods, and a substantial number of these methods were empirically developed based on field data 

from their respective modes of rail transportation [11]. These predictive methods consider several 

factors, such as track loading, health, and rolling stock design. Historically, most research has focused 

on evaluating dynamic impact loads for heavy-axle-loading freight trains, in part due to the widespread 

deployment of wheel impact load detectors on heavy-axle-loading freight railroad corridors in North 

America. For DAFs of track foundations, most predictive methods are empirically developed as a 

function of train speed that accounts for factors such as curves, track conditions, and track type [12,13]. 

Track irregularities are not sufficiently considered and assessed from a probabilistic perspective in 

these DAF methods, which require further investigation. 

Field instrumentation can directly measure the dynamic response of track foundations during train 

passage. According to measurements during the commissioning and testing of the Beijing−Shanghai 

HSR [14], the concrete base displacement increased from 0.05 mm to 0.11 mm as the train speed 

increased from 100 km/h to 400 km/h. Field testing [15–17] on the Suining−Chongqing railway (slab 

track) showed the upper limit of the 95% confidence interval for the surface stresses of foundations 
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increased by approximately 100% when travel speed increased from 5 km/h to 200 km/h. As observed 

in field geotechnical instrumentation, the measured dynamic stress on the foundation surface of the 

Wuhan−Guangzhou HSR increased from 2.03 kPa to 3.21 kPa when the speed increased from 200 

km/h to 350 km/h [18], increasing by 58%. For the Beijing−Shenyang HSR operating at 250−350 km/h, 

the measured stress ranges from 17.4 kPa to 18.8 kPa, with DAFs of 1.2−1.25 [19]. Although in-situ 

testing is useful, it is only a spot measurement, can be challenging to perform to high precision and 

can only be used after track construction. 

Alternatively, large scale laboratory tests can also be used to study the behavior of railway 

infrastructure systems under moving loads. For example, Bian et al. [20] developed a full-scale 

ballastless railway model to investigate track structure response and soil foundations under train 

moving loads. It was found that the DAFs at foundation surface level increased nonlinearly with train 

speed. The DAF for the surface stress of the track foundation was 1.08 when speeds increased from 

300 to 360 km/h. Instead of physical modeling, numerical modelling can also be used [21]. For 

example, an equivalent dynamic model based on the finite element method [19] yielded DAFs of 

1.25−1.35 for speeds ranging from 200 to 350 km/h . The simulation results also showed that as train 

speed increased from 200 to 350 km/h, the displacement amplitude on the roadbed surface increased 

from 0.33 mm to 0.40 mm, and the stress increased from 14.2 kPa to 15.1 kPa [22]. Alternatively, a 

track-ground model [23,24] was used to study DAFs for differing subgrade conditions. It was further 

extended to include non-linear soil stiffness and damping behavior [25]. 

The majority of these aforementioned studies have ignored dynamic effects generated due to 

wheel/rail interaction, assuming the largest contribution to DAFs is due to increases in quasi-static 

excitation with speed. However, depending upon the track geometry quality, which governs train-track 

interaction, this may not always be true. To allow for the analysis of track geometry most rail 

administrations measure it using inspection cars equipped with automatic recording systems. The data 

is statistically analyzed for peaks and standard deviations, which are compared against technical 

specifications [26–28]. 

The numerical simulation of vehicle−track coupled dynamics [29–36] commonly considers the 

system as stochastic with randomness characterized by excitation sources and system configurations. 



4 

 

Railway system performance in service lifecycle phases changes as operating time increases and 

degrades due to the time-variant parameters. However, advances in the study of stochastic 

vehicle−track dynamics are rarely applied to assess track foundations. 

The goal of this study is to estimate the train-induced surface stresses of slab track foundations 

from the perspective of stochastic modeling. To this end, we present a numerical method based on 

vehicle−track coupled dynamics that incorporates random track irregularities into the prediction of 

DAFs. The stochastic characteristics of dynamic stress on roadbed surfaces are then assessed against 

the train speed and PSD probability level. Finally, a normalized predictive model for DAF is tested 

with different train speeds and PSD probability levels. 

2. Vehicle-track coupled dynamics model 

Figure 1 shows the numerical model used to simulate a moving train on railway slab track, which 

established by Zhai [29,31]. The track and vehicle are modeled as linear systems with nonlinearity 

interaction between rails and wheels. The simulation approach uses separate track and vehicle sub-

models, coupled using the wheel/rail contact forces. Complete details of the model are given in [29]. 

 

Figure 1. Vehicle−track coupled vertical dynamics model 

2.1. Computational model and parameters 

The vehicle model is based on a mass-spring-damper multi-rigid-body system with four axles, 

four wheelsets, two bogie frames, and two layers of suspension. The rigid bodies (car body, wheelsets, 



5 

 

and bogie frames) have two degrees of freedom, including pitch and bounce motions as a function of 

their centre of mass. The vehicle system therefore has 10 degrees of freedom. The vehicle in the 

simulation is reproduced from the electric multiple unit rail cars manufactured by the CRRC Qingdao 

Sifang (M2) as part of the CRH380A train. An additional live load of 85 passengers is considered (i.e., 

8 t), with other dynamic parameters provided in Table 1. 

Table 1. Dynamic vehicle parameters 

Parameters Notation/(unit) Value 

Car body mass + loading Mc/(kg) 34,934+8,000 

Mass moment of the inertia of the car body Jc/(kg⋅m2) 1.711 8×106 

Bogie mass Mt/(kg) 3,300 

Mass moment of the inertia of the bogie Jt/(kg⋅m2) 1,807 

Wheelset mass Mw/(kg) 1,780 

Stiffness coefficient of the primary suspension Kpz/(N⋅m-1) 1.176×105 

Damping coefficient of the primary suspension Cpz/(N⋅ s ⋅m-1) 1.0×104 

Stiffness coefficient of the secondary suspension Ksz/(N⋅m-1) 2.4×105 

Damping coefficient of the secondary suspension Csz/(N⋅ s ⋅m-1) 2.0×104 

Semi-longitudinal distance between bogies (m) Lc/(m) 8.75 

Semi-longitudinal distance between wheelsets in a bogie Lt/(m) 1.25 

Static axle load P0/(kN) 138.9 

Wheel radius R/(m) 0.43 

 

The slab track comprises rails, track slabs, and concrete bases, all modeled as Euler–Bernoulli 

beams. The rail beam is supported by a series of discrete fastener points on the track slabs, and the 

spacing of neighboring points equals the span of two fasteners. The track slabs and concrete base are 

bonded by a functional layer formed by self-compacting concrete (SCC). The concrete base is placed 

on the foundation (also called the roadbed or formation). It is assumed the fastener pad functions as a 

spring-damper element, while the SCC layer and subgrade act as layers of continuously distributed 

spring-dampers. The dimensions and material properties of the track−subgrade system are summarized 
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in Table 2. The track structure length is 306.18 m (54 track slabs), and the simulation operating distance 

is 220 m. 

Table 2. Properties of the slab track system 

Principal component Parameter Notation/(unit) Value 

Rail 

Elastic modulus Er/(N⋅m-2) 2.059×1011 

Area moment of the rail cross-section Ir/(m4) 3.217×10-5 

Mass per unit length mr/(kg⋅m-1) 60.64 

Fastener 

Stiffness Kp/(N⋅m-1) 3.75×107 

Damping Cp/(N⋅ s ⋅m-1) 3.625×104 

Spacing ls/(m) 0.63 

Track slab 

Length Ls/(m) 5.6 

Width Bs/(m) 2.5 

Height Hs/(m) 0.3 

Density ρs/(kg⋅m-3) 2600 

SCC layer 

Stiffness per unit length kf/(N⋅m-2) 1.25×109 

Damping per unit length cf/(N⋅s⋅m-2) 8.3×104 

Concrete base 

Length Lb/(m) 16.99 

Width Bb/(m) 3.1 

Height Hb/(m) 0.3 

Density ρb/(kg⋅m-3) 2500 

Subgrade 

Stiffness per unit length ks/(N⋅m-2) 1.7×108 

Damping per unit length cs/(N⋅s⋅m-2) 1.5×105 

 

Based on the theory of vehicle−track coupling dynamics [29], the equations of motion for a 

vehicle−track interaction system are: 

 [𝐌 𝑉 00 𝐌 𝑇  ] {𝐗̈𝑉𝐗̈𝑇} + [𝐂𝑉 00 𝐂𝑇] {𝐗̇𝑉𝐗̇𝑇} + [𝐊𝑉 00 𝐊𝑇] {𝐗𝑉𝐗𝑇} = {𝐅𝑉𝐅𝑇} (1) 

where the subscripts V and T represent the vehicle and track, respectively; and M, X, C, K, and F 
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denote the submatrices of mass, displacement vectors, damping, stiffness, and load vectors, 

respectively. Using Hertzian non-adhesive elastic contact theory, the wheel/rail contact force is: 

 𝑃𝑗(𝑡) = {[1𝐺 𝛿𝑍𝑗(𝑡)]3/2 , 𝛿𝑍𝑗(𝑡) > 00, 𝛿𝑍𝑗(𝑡) ≤ 0 (2) 

where G is the constant of wheel-rail contact and 𝛿𝑍𝑗(𝑡) denotes the elastic deformation of the jth 

wheel, expressed as: 

 𝛿𝑍𝑗(𝑡) = 𝑍𝑤𝑗(𝑡) − 𝑍𝑟(𝑥w𝑗, 𝑡) − 𝜂0𝑗(𝑡) (3) 

where t denotes the time; 𝑍𝑤𝑗(𝑡) is the vertical displacement of the jth wheel; 𝑍𝑟(𝑥w𝑗 , 𝑡) is the 

vertical displacement of the rail; and 𝜂0𝑗(𝑡) is the vertical geometric irregularity between the surface 

of the jth wheel and the rail. 

2.2. Simulation of random track irregularities 

2.2.1. Probabilistic characteristics of PSD 

Power spectral density (PSD) characterizes the frequency content of a signal, and is commonly 

used to interpret track geometry data. The purpose of spectral-density estimation (SDE) in statistical 

signal processing is to estimate the spectrum of a random signal based on a sequence of time samples. 

For a discrete digital signal 𝑥[𝑛], of non-zero duration 𝑥(𝑡), the discrete-time Fourier transform 

(DTFT) can be used to estimate PSD’s 𝑆̂[𝑘], for signals such as measured track irregularities: 

 𝑆̂[𝑘] = 1𝑁2 𝑋[𝑘]𝑋∗[𝑘] = 1𝑁 |𝑋[𝑘]|2 (4) 

where 𝑋[𝑘] is the DTFT of 𝑥[𝑛], 𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗[2𝜋/𝑁]𝑘𝑛𝑁−1𝑛=0 , and 𝑁 is the length of 𝑥[𝑛]. 
The variance of this estimate can be computed by observing that the finite Fourier transform 𝑋[𝑘] 

is composed of a series of components at various frequencies 𝑓 = 𝑘/𝑁, 𝑘 = 1,2,3, ⋯. Note that 𝑋[𝑘] 
is a complex number, with its real and imaginary parts, 𝑋𝑅[𝑘] and 𝑋𝐼[𝑘] respectively, which are 

uncorrelated random variables with equal variances and zero means. The Fourier transformation is a 

linear operation, meaning 𝑋𝐼[𝑘] and 𝑋𝑅[𝑘] become Gaussian random variables if 𝑥(𝑡) is Gaussian. 

Thus, the quantity: 

 |𝑋[𝑘]|2 = 𝑋𝑅2[𝑘] + 𝑋𝐼2[𝑘] (5) 

equals the sum of the squares of two independent Gaussian variables. Consequently, each frequency 
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component of the estimate 𝑆[𝑘/𝑁] will have a sampling distribution per the chi-squared distribution: 

 
𝑆̂[𝑘/𝑁]𝑆[𝑓=𝑘/𝑁] = 𝜒222 , 𝑘 = 1,2,3, ⋯ (6) 

where 𝜒22 is the chi-square variable with two DOFs. Due to the similarity of the PSD functions for 

track irregularities, one may set the PSD line as a function of track-spectrum cumulative probability 𝜆 and spatial frequency 𝜔 = 𝑓/𝑣: 

 𝑆(𝜔, 𝜆) = 𝐹−1(𝜆|𝜒22)2 𝑆̅(𝜔) (7) 

where 𝐹−1(𝜆|𝜒22) is the inverse distribution function (quantile function) for 𝜒22 and 𝑆̅(𝜔) is the 

mathematical expectation of 𝑆(𝜔) at spatial frequency 𝜔. Note that the cumulative probability for 

mean of chi-square variable with two DOFs (𝜒22) is 0.632, indicating that 𝜆 = 0.632 for 𝑆̅(𝜔). 

2.2.2. PSD of HSR track irregularities 

Track irregularities generate wheel/rail forces and induce the propagation of stress waves, which 

cause structural deterioration, including differential settlement [37]. The four most common types of 

track irregularities are: vertical profile, alignment, cross-level, and gauge. Vertical profile most 

significantly influences the dynamic response of the subgrade [6]. 

Power functions can be used to fit the PSD of China's HSR ballastless track irregularities [38], 

and then the mean PSD of the track irregularities can be obtained by: 

 𝑆̅(𝜔) = 𝐴𝜔𝛼 (8) 

where 𝐴 and 𝛼 are the regression coefficients, which correspond to the intercept and slope of the 

segmented line of the PSD curve in the log-log coordinate system, as shown in Figure 2. For the vertical 

profile, 𝐴, 𝛼, and segmentation points are provided in Table 3. 

Table 3. Mean PSD parameters of the China HSR slab-track vertical profile. 

Segment number 𝐴 𝛼 segmented point (1/m) 

(1) 1.0544×10-5 3.3891 — 

(2) 3.5588×10-3 1.9271 0.0187 

(3) 1.9784×10-2 1.3643 0.0474 

(4) 3.9488×10-4 3.4516 0.1533 
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Figure 2. Mean PSD of the track vertical profiles 

The inverse Fourier transform method (IFTM) [39] is used to determine the time-domain track 

random irregularities with the same amplitude-frequency characteristics 𝑆(𝜔). Figure 3 shows the 

application of the IFTM to the mean PSD of a slab track vertical profile, whose wavelength range is 

2−200 m. 
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Figure 3. Random vertical irregularity excitation samples generated by IFTM 

2.3. Model validation 

Field monitoring programs were undertaken on the Beijing–Shanghai HSR (Line 1), 

Beijing−Tianjin intercity rail (Line 2), and Wuhan–Guangzhou HSR (Line 3) to measure the dynamic 

responses (vibration and stress) of their earth structures (track foundation). Two train sets, CRH-2 and 
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CRH-3 (China Railway High-speed), were used as test trains. 

Table 4 provides the data measured during train passage and alternative simulation results 

calculated using a Green's function approach [22]. The reported simulation model follows the technical 

specifications of CRH-2 at an operating speed of 300 km/h. And its track irregularities generated by 

the China ballastless track average spectrum (λ=0.632). The model results of wheel/rail contact force, 

rail displacement, and road surface stress are similar to the simulated data at speeds of 300 km/h; the 

calculated surface displacement, velocity, and acceleration by the proposed approach fall within the 

observed values in Rail Lines 1 to 3. The consistency between measured, simulated, and modeled 

values shows the accuracy of dynamics modeling. 

Table 4. Comparison between measured and simulated values of ballastless track dynamic response 

Scenarios Line 1 [14] Line 2 [40] Line 3 [40] Simulation [22] This study 

Speed range (km/h) 74−424 45−389 150−360 300 300 

Wheel/rail force (kN) \ \ \ 84.6 85.15 

Rail displacement (mm) \ \ \ 1.3 1.34 

Surface stress of foundation 

(kPa) 
\ \ 0.9−19.3 14.6 14.03 

Displacement at foundation 

surface (mm) 
0.0−0.3 0.01−0.41 0.9−19.3 0.42 0.36 

Velocity at foundation surface 

(mm/s) 
0.2−30.9 0.17−4.64 0.7−11.2 \ 10.35 

Surface acceleration of 

foundation (m2/s) 
0.0−6.6 0.01−6.02 0.11−3.70 4.3 3.51 

3. Probabilistic characteristics of dynamic stress on foundation surface 

To incorporate track irregularities into an alternative method for dynamic amplification factor, the 

vertically coupled dynamics model (Figure 1) was used to obtain the dynamic stress response of the 

roadbed induced by a moving train load in the presence of track irregularities at average level (λ = 

0.632). The value of 𝜆 is prescribed as 0.632 for 𝑆̅(𝜔) because the cumulative probability for mean 

of chi-square variable with two DOFs (i.e., 𝜒22) is 0.632. 

3.1. Longitudinal distribution pattern 

Figure 4a-c presents example time histories of fastener force, stress in the SCC layer and on the 

roadbed surface, where positive values denote compression. Similarly, Figure 4d-f presents the 
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corresponding Fourier transforms at operating speeds of 5 km/h, 250 km/h, and 400 km/h. The origin 

of the coordinate is set as the position where the first axle of the vehicle was located. 
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Figure 4. Typical dynamic response of track structure and subgrade: (a) fastener force; (b) SCC stress; (c) subgrade 

stress; (d) spectrum of fastener force; (e) spectrum of SCC stress; (f) spectrum of subgrade stress. 

As shown in Figure 4, the dynamic response longitudinal distribution form gradually transformed 

from the double-peak "M" shape, dominated by axle loads at the fastener position, to the single-peak 

"Λ" dominated by bogie loads on the roadbed surface. The influencing length of a bogie on the roadbed 

stress increased from approximately 5.86 m to 9.03 m. Because of geometric and material damping, 

the peak dynamic stress gradually decreased with increasing distance between the structural layers and 

rails. When the vehicle's speed increased, the dynamic effect increased accordingly. For example, the 

dynamic response of each structural layer exhibited higher-frequency content, and the peak dynamic 

stress in the SCC and foundation increased significantly. This effect extended to a lower frequency 

range as the distance between the structural layer and the wheel/rail interface increased. 

The behavior of slab track for HSR can be approximated as a laminated beam. When a uniaxial 

load W acts on the rails, the reaction force on the foundation surface under the slab track is computed 

by [41] 

 𝜎(𝑥) = 𝑊𝜉2𝑏 𝑒−𝜉|𝑥|[cos(𝜉|𝑥|) + sin(𝜉|𝑥|)] (9) 

where b is the width of a concrete base, x is the longitudinal coordinate of the action point, and 𝜉 is a 

constant calculated by Equation (10), which relates to the foundation stiffness k per meter and slab-
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track bending stiffness EI. 

 𝜉 = √ 𝑘4𝐸𝐼4
 (10) 

Figure 5 depicts the longitudinal distribution of the static stress calculated by Equation (9), 

measured dynamic stress for 65 km/h (instrumentation with earth pressure cells), and simulated 

dynamic stress for 150 km/h on the roadbed surface along with double-axle loads. These two speeds 

are considered for representing quasi-static and dynamic scenarios. The loading and unloading process 

of train load stress corresponds to the passage of a bogie with two axles [6]. When the train was 

traveling at a low speed (65 km/h), the static stress obtained from Equation (9) is consistent with the 

measured subgrade-borne stress. This is due to the almost negligible dynamic amplification. When the 

vehicle speed increased to 150 km/h, the average dynamic stress increased. The variation of dynamic 

stresses at the same relative location is primarily caused by different irregularity in different locations, 

and follows a normal distribution. 
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Figure 5. Distribution of subgrade stress along the relative operation distance 

3.2. Extreme value probability characteristics 

The amplification effect of subgrade-borne vibrations due to running trains is often characterized 

by a dynamic amplification factor (DAF), defined as the ratio of the dynamic stress amplitude 𝜎𝑑 to 

the static stress amplitude 𝜎0 on the roadbed surface. It is given by: 

 𝜙 = 𝜎𝑑𝜎0 ≈ 𝜎𝑑𝜎5 (11) 
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where 𝜙 denotes the DAF, 𝜎5 denotes dynamic stress amplitude at 5 km/h. 

 

 

Figure 6. Spatiotemporal distribution of DAF (λ = 0.632, v = 400 km/h): (a) perspective view; (b) plane view 

DAFs fluctuate along a certain line due to the presence of random wheel-rail irregularities. To 

quantify the randomness, dynamic simulations were performed considering a vehicle traveling at 400 

km/h on a slab track with track irregularities following an average level (λ = 0.632). Figure 6 shows 

the simulated DAFs, calculated by Equation (11). The dataset was established by taking 634 DAF 

samples over the roadbed surface under 317 fasteners. It should be noted that the fasteners contained 

two dynamic stress peaks and hence generated two DAF samples. The histogram and empirical 

cumulative distribution of DAFs are shown in Figure 7. It shows a positively skewed distribution 

pattern, with a statistical skewness of 0.667, mean of 1.263, and standard deviation of 0.138. 
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Figure 7. Empirical probability distribution of DAFs 

The amplitude of dynamic stresses on roadbed surfaces obeys a normal distribution, as Figure 5 

shown. Extreme values generated from a normal random variable follow the Gumbel distribution (also 

known as the extreme value Type I distribution). This means the maximum values of independent and 

identically distributed random variables of the initial normal distribution converge to the Gumbel 

distribution [42]. A time history of subgrade dynamic stress is a sampling of subgrade dynamic 

responses at different loading positions, and the peaks occur at random locations. The DAF associated 

with peak stress naturally obeys the Gumbel distribution. Equation (12) shows its cumulative 

distribution function (CDF) F(ϕ), which is a double exponential function. 

 𝐹(𝜙; 𝜇, 𝛽) = exp [− exp (− 𝜙−𝜇𝛽 )] (12) 

where μ and β are the location and scale parameters for Gumbel distribution, respectively. μ reflects 

the overall level of ϕ. β is the scale parameter, which is a measure of the dispersion of ϕ  and 

characterizes the variability of ϕ along the route. 

Fitting the empirical cumulative distribution function (ECDF) in Figure 7 with the Gumbel CDF 

using the nonlinear least square fitting method yields the position parameter μ = 1.1988 and scale 

parameter β = 0.1183. The estimated PDF (probability density function) and CDF curves are also 

shown in Figure 7, and are well matched. Ref. [43] indicates the peak dynamic stresses on the 
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foundation surface should obey a normal distribution. The Kolmogorov–Smirnov (K−S) test was used 

to examine the distribution. The K−S test indicator DN for the normal distribution, shown in Table 5, 

is greater than the critical value DN, 0.95, while DN for the Gumbel distribution is less than the critical 

value DN, 0.95. ϕ does not obey the normal distribution; instead, the Gumbel distribution was confirmed 

at a significance level of 0.05. 

Table 5. Kolmogorov–Smirnov test for the DAFs 

Distribution type K-S statistic𝐷𝑁 𝐷𝑁,0.95 Decision at level (0.05) 

Normal distribution 0.061 0.054 Reject 

Gumbel distribution 0.032 0.054 Can't reject 

For four operating permutations: v = 350 km/h (maximum speed in commercial operation) and 

400 km/h (maximum design speed in operation), and λ = 0.632 and 0.99, the data are fitted using 

normal and Gumbel distributions. The goodness of fit is shown in Table 6. Compared with the normal 

distribution, the Gumbel distribution has a significantly lower residual sum of squares, and better 

describes the empirical distribution of DAFs. 

Table 6. Comparison of the goodness of fit for normal and Gumbel distributions 

v (km/h) λ Mean S.D. 𝜇 𝛽 SSE R2 RMSE 

Distributio

n 

350 0.632 1.227 0.1261 / / 0.6230 0.9882 0.0314 

Normal 

400 0.632 1.249 0.1342 / / 0.3062 0.9942 0.0220 

350 0.99 1.509 0.2697 / / 0.6411 0.9878 0.0319 

400 0.99 1.547 0.2851 / / 0.2581 0.9951 0.0202 

350 0.632 / / 1.179 0.1076 0.0798 0.9985 0.0112 

Gumbel 

400 0.632 / / 1.198 0.1185 0.1040 0.9980 0.0128 

350 0.99 / / 1.407 0.2306 0.0808 0.9985 0.0113 

400 0.99 / / 1.438 0.2526 0.1056 0.9980 0.0129 

 

4. Predictive models of surface stress 

4.1. Track-spectrum cumulative probability 
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To characterize the extent of track irregularity, track-spectrum cumulative probability λ is 

employed. Static inspection of track irregularity is primarily done using the mid-chord offset (MCO) 

method [44] or multipoint chord reference (MCR) method [45]. In contrast, dynamic collection of the 

data using track inspection cars usually employs band-pass filtering. Determine the management value 

for each sample of irregularities with the help of bisection method, as shown in Table 7. For regular 

maintenance, temporary repair, and when a speed limit of 200 km/h is imposed, λ approximately equals 

0.95, 0.9999, and 0.999996, respectively. λ corresponds to the track unevenness management values 

ranging from 0.50 to 0.99. 

Table 7. Cumulative probabilities of uneven management values 

Method Management level Value (mm) 𝜆 

MCO method (10 m) Works acceptance 2 0.556 3 

MCO method (10 m) Regular maintenance 4 0.957 2 

MCO method (10 m) Temporary repair 7 0.999 9 

MCO method (10 m) Speed limit, 200 km/h 8 ~ 1.000 

MCR method (5 m/30 m) / 2 0.575 8 

MCR method (150 m/300 m) / 10 0.906 5 

Band-pass filtering method (1.5−42 m) Ⅰ 3 0.957 1 

Band-pass filtering method (1.5−42 m) Ⅱ 5 0.999 8 

Band-pass filtering method (1.5−120 m) Ⅰ 5 0.985 4 

Band-pass filtering method (1.5−120 m) Ⅱ 7 0.999 7 

4.2. Probability distribution and normalized expressions 

The track construction type and line speed can influence the dynamic effects of train operation. 

Japan [12], Germany [13], and China [6] have proposed estimation equations for the equivalent DAF 

of stresses. In addition to train speed, track smoothness influences the dynamic response of a 

vehicle−track−subgrade coupled system. As the rail-surface smoothness deteriorates, the forces 

induced due to train/track dynamic interaction increase and the DAF rises. 

In the simulations, the train running speed (v) was taken as 5 (quasi-static), 50, 100, 150, 200, 

250, 300, 350, 400, 450, and 500 km/h; λ for the track irregularity spectrum was prescribed as 0.00, 

0.10, 0.25, 0.50, 0.60, 0.632, 0.70, 0.75, 0.80, 0.90, 0.95, and 0.99, yielding a total of 132 simulation 

scenarios. The simulated surface stress of the roadbed under v = 5 km/h (quasi-static) were taken as 

the reference value. Then, Equation (11) was used to calculate the DAFs. The empirical distribution of 
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DAF under each simulation scenario was fitted using Equation (12), yielding the Gumbel distribution's 

location parameter μ and scale parameter β, with R2 values greater than 0.95. That indicated the 

Gumbel distribution could be used with reasonable accuracy. The distributions of μ and β in the binary 

variable space comprising train speed v and cumulative probability λ are illustrated in Figs. 8 and 9. 

 

 

Figure 8. Contours of location parameter 𝜇: (a) general view; (b) top view 
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Figure 9. Contours of scale parameter 𝛽: (a) general view; (b) top view 

The dynamic response was almost insignificant when the train speed was low or the rail was had 

minimal irregularities. The (v, λ) space could be divided into two portions, quasi-static and dynamic 

zones, by taking Equation (13) for μ = 1.01 or Equation (14) for β = 0.01 as the boundaries. As speed 

increased and track irregularity deteriorated, the position parameter μ and scale parameter β gradually 

increased. Also, DAF increased, while its dispersion was also more significant. 

 47.95𝑒−𝑣/27.23 − 𝜆 = 0 (13) 
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 26.36𝑒−𝑣/29.76 − 𝜆 + 0.025 = 0 (14) 

4.2.1. Influence of vehicle speed 

Considering identical track irregularities, a higher speed produces more pronounced variations in 

wheel/rail interaction and a greater DAF. Figure 10a shows the location parameter μ against the speed 

v, which shows the curves with different λ values had a similar pattern. The location parameters 

converge to 1.0 when v is close to 0 km/h. In Figure 10b, the scale parameter 𝛽 follows the same 

trend and converges to 0 as v approaches 0 km/h. Be noted that speeds > 500 km/h may induce the 

critical velocity effect [21,46–48], challenging for the presented spring-dashpot type track model to 

simulate. Researchers are encouraged to examine the critical velocity effect before employing the 

proposed method for the dynamic stress amplification factors at very high operating speeds. 
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Figure 10. Probability distribution parameter comparisons for vehicle speed: (a) location parameter; (b) scale 

parameter 

The probability properties of the DAFs concerning train speed were normalized using two 

parameters: the location-speed index Iμv and the scale-speed index Iβv. The two indices relate to the 

location parameter and scale parameter, respectively, which are expressed as: 

 𝐼𝜇𝑣 = 𝜇(𝑣,𝜆)−𝜇(0,𝜆)𝜇(400,𝜆)−𝜇(0,𝜆) = 𝜇(𝑣,𝜆)−1𝜇(400,𝜆)−1 (15) 

 𝐼𝛽𝑣 = 𝛽(𝑣,𝜆)−𝛽(0,𝜆)𝛽(400,𝜆)−𝛽(0,𝜆) = 𝛽(𝑣,𝜆)𝛽(400,𝜆) (16) 
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where 𝜇(0, 𝜆), 𝜇(400, 𝜆), 𝛽(0, 𝜆), and 𝛽(400, 𝜆) are the location parameters and scale parameters 

at v = 0 and 400 km/h, in which v = 0 indicates no dynamic effect. Thus, DAF = 1.0 is obtained at v = 

0 km/h regardless of 𝜆, indicating that 𝜇(0, 𝜆) = 1 and 𝛽(0, 𝜆) = 0. 
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Figure 11. Normalization of probability distribution parameters with respect to vehicle speed: (a) location 

parameter; (b) scale parameter 

Figure 11 plots the location-speed and scale-speed indices against speed. All data points were 

distributed around a trend line within a narrow band for both location and scale-speed indices. The 

trend lines are defined by Equations (17) and (18). Note that when v was less than 100 km/h, the 

dynamic effect was small enough to be ignored, so it can be assumed: 𝐼𝜇𝑣 ≈ 0. 

 𝐼𝜇𝑣 = { 0 𝑣 ∈ (0,100]km/h0.0041𝑣 − 0.41 𝑣 ∈ (100,300]km/h0.002𝑣 + 0.22 𝑣 ∈ (300,500]km/h (17) 

 𝐼𝛽𝑣 = { 0.0003𝑣 𝑣 ∈ (0,100]km/h0.0035𝑣 − 0.32 𝑣 ∈ (100,350]km/h0.0021𝑣 + 0.17 𝑣 ∈ (350,500]km/h (18) 

The dynamic effect of trains on the HSR slab track foundation under consideration can be 

described using threshold speeds. For example, when v < 100 km/h, the subgrade-borne dynamic effect 

is not significant and the static axle load of a train is dominant. However, when v exceeded 100 km/h, 

the DAFs grow nonlinearly. 

At low speeds, the vibration energy at the wheel/rail interface was low and damped as it 

propagated into the track structure. Approximately the same dynamic stress was experienced on the 

roadbed surface as static stress at low operating speeds. With increasing speed, the energy input to the 
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coupling system increased, the vibration of the track structure intensified, the dynamic effect gradually 

became more significant, and the surface stress of the foundation increased accordingly. 

4.2.2. Influence of track irregularity 

Track irregularity, acting as system excitation, is another important factor that affects the dynamic 

response of a vehicle−track coupling system. Figure 12 displays a family of curves and their 

normalizations for probability parameters of DAF versus λ at different speeds. Regardless of the speed, 

both the location parameter μ and the scale parameter β show increased nonlinearly with λ. 
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Figure 12. Normalization of probability distribution parameters with respect to PSD cumulative probability: (a) 

location parameter; (b) central tendency irregularity index: (c) scale parameter; (d) dispersion-irregularity index.  

 

The normalizations were performed by introducing the location-irregularity index 𝐼𝜇𝜆 and scale-

irregularity index 𝐼𝛽𝜆, as shown in Equations (19) and (20). For the location-irregularity index 𝐼𝜇𝜆, λ 
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= 0.632 and λ = 0.99 were set as the characteristic points. For the scale-irregularity index 𝐼𝛽𝜆, λ = 0 

and λ = 0.632 were set as the characteristic points. 𝛽(𝑣, 0) = 0 refers to the case without irregularities. 

 𝐼𝜇𝜆 = 𝜇(𝑣,𝜆)−𝜇(𝑣,0.632)𝜇(𝑣,0.99)−𝜇(𝑣,0.632) (19) 

 𝐼𝛽𝜆 = 𝛽(𝑣,𝜆)−𝛽(𝑣,0)𝛽(𝑣,0.632)−𝛽(𝑣,0) = 𝛽(𝑣,𝜆)𝛽(𝑣,0.632) (20) 

In Figure 12, the location-irregularity index 𝐼𝜇𝜆 increased approximately linearly with λ when λ 

was low. When λ > 0.632, 𝐼𝜇𝜆 started to increase more rapidly. A function with linear and exponential 

components was used to fit 𝐼𝜇𝜆, as expressed by Equation (21), with R2 = 0.9916. 

 𝐼𝜇𝜆 = 1.08(𝜆 − 0.632) + 0.003 exp (𝜆−0.6320.07 ) (21) 

The curve of the scale-irregularity index 𝐼𝛽𝜆 versus λ is an inverse S-shaped pattern and is fitted 

with a cubic polynomial, expressed using Equation (22) with R2 = 0.9856. 

 𝐼𝛽𝜆 = 3.91𝜆 − 6.94𝜆2 + 5.09𝜆3 (22) 

4.3. Three-parameter predictive model for DAFs 

Assuming v and λ have independent effects on subgrade dynamic stress, binary functions of v and 

λ are established based on the probability distribution parameters μ and β for the DAFs, which are 

denoted: 𝜇(𝑣, 𝜆) and 𝛽(𝑣, 𝜆). 

The normalized Equations (19) and (21) for the location-speed index 𝐼𝜇𝑣  and location-

irregularity index 𝐼𝜇𝜆, are combined and solved to determine 𝜇(𝑣, 𝜆). Given the characteristic point 

information 𝜇(400,0.99) = 1.4397 and 𝜇(400,0.632) = 1.1994, the location parameter 𝜇 can be 

obtained as: 

 

𝜇(𝑣, 𝜆) = 𝐼𝜇𝑣𝐼𝜇𝜆[𝜇(400,0.99) − 𝜇(400,0.632)]+𝐼𝜇𝑣[𝜇(400,0.632) − 1] + 1= 0.2403𝐼𝜇𝑣𝐼𝜇𝜆 + 0.1994𝐼𝜇𝑣 + 1  (23) 

Similarly, Equations (20) and (22) of the scale-speed index 𝐼𝛽𝑣 and scale-irregularity index 𝐼𝛽𝜆 

are solved together to calculate 𝛽(𝑣, 𝜆). Then, the general expression (24) of the scale parameter 𝛽 

is obtained considering the characteristic points 𝛽(400,0.632) =0.1187. 

 𝛽(𝑣, 𝜆) = 𝐼𝛽𝑣𝐼𝛽𝜆𝛽(400,0.632) = 0.1187𝐼𝛽𝑣𝐼𝛽𝜆 (24) 

With speeds of 0−500 km/h and λ of 0−0.99, the estimated values of μ and β are derived from 

Equations (23) and (24). The differences are less than 6% compared with the simulated values, as 
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shown in Table 8. 

Table 8. Parameter residual of the probability distribution of DAF 

Statistical parameter Minimum residual Maximum residual 𝜇 −0.0111 (−0.80%) 0.0349 (2.54%) 𝛽 −0.0254 (−5.42%) 0.0162 (4.42%) 

The likelihood that the DAF does not exceed ϕ is designated p. The quantile concerning 𝐹(𝜙) =𝑝  is inverted from Equation (12). A description of DAF as a function of speed v, cumulative 

probability λ, and p can be expressed as: 

 𝜙(𝑣, 𝜆, 𝑝) = 𝜇(𝑣, 𝜆) + 𝛽(𝑣, 𝜆) ⋅ ln (− 1ln(𝑝)) (25) 

For the average (𝜆 = 0.632) and critical (𝜆 = 0.99) level of track irregularity, if the speed is 

between 200 km/h and 500 km/h, the quantile values 𝜙(𝑣, 𝜆, 𝑝) for the DAFs are calculated using 

Equation (25). As shown in Table 9, three probabilities were involved: 57.0% (Gumbel mean value), 

75.0% (Q3), and 95%. Compared with the simulated values, the maximum DAF error was 0.05, and 

the maximum relative error was 3.4%, demonstrating a high prediction accuracy. 

Table 9. Comparison of predicted and simulated values of DAFs 

v 𝜆 
p=57.0% p =75.0% p =95.0% 

(km/h) Prediction Simulation Prediction Simulation Prediction Simulation 

200 
0.632 1.11 1.10 1.14 1.13 1.21 1.22 

0.99 1.22 1.24 1.28 1.31 1.44 1.49 

300 
0.632 1.22 1.21 1.27 1.27 1.43 1.41 

0.99 1.44 1.48 1.56 1.60 1.88 1.91 

350 
0.632 1.25 1.24 1.32 1.32 1.51 1.50 

0.99 1.51 1.54 1.66 1.70 2.05 2.10 

400 
0.632 1.27 1.27 1.36 1.35 1.57 1.55 

0.99 1.56 1.59 1.73 1.76 2.16 2.20 

500 
0.632 1.33 1.32 1.43 1.42 1.68 1.66 

0.99 1.67 1.69 1.87 1.89 2.39 2.41 

Ref. [6] presents design values of subgrade DAF as 1.9 and 1.3 for 300 km/h HSR. The 

counterparts are 𝜙 (300,0.99,95%) = 1.87 and 𝜙 (300,0.632,75%) = 1.27 respectively, as shown 

in Table 9. Further, Bian et al. [20] conducted a full-scale model test of a ballastless high speed track 

under simulated train moving loads, and the measured subgrade DAF at 300 km/h was 1.08. This 

model did not account for track irregularity, indicating 𝜆 = 0. While 𝜙(300,0,75%) = 1.08 indicates 
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that Equation (25) for subgrade DAF is consistent. Considering similar irregularity levels and 

probabilities, the design DAFs for 400 km/h can be obtained, which are 𝜙 (400,0.99,95%) = 2.16 

and 𝜙 (400,0.632,75%) = 1.36 respectively. 

4.4. Conditional probability distribution of DAFs 

In practical situations, it is difficult to determine the track irregularity spectrum cumulative 

probability λ, especially in the absence of measured irregularity data. Considering that the track 

irregularity spectrum follows a 𝜒22 distribution, the DAF probability distribution can be derived from 

the law of total probability. 

Assuming the cumulative probability of the track irregularity spectrum is 𝜆 at an operating speed 

of v, Equation (25) produces 𝜙(𝑣, 𝜆, 𝑝) , corresponding to the cumulative probability p ( 𝑝 =𝑃{Φ < 𝜙|Λ = 𝜆, 𝑣}, where Φ denotes the random variable for DAFs, and Λ denotes the random 

variable of 𝜆 ). The probability distribution of DAFs 𝐹Φ(𝜙|𝑣)  can be considered the marginal 

distribution of the joint distribution 𝐹Λ,Φ(𝜆, 𝜙|𝑣) under the law of total probability. It can be derived 

from the conditional probability density function 𝑓Λ|Φ(𝜆|𝜙, 𝑣), expressed as: 

 

𝐹Φ(𝜙|𝑣) = 𝑃{Φ < 𝜙|𝑣} = ∫ ∫ 𝑓Λ,Φ(𝜆, 𝜙|𝑣)𝑑𝜆10 𝑑𝜙𝜙1= ∫ ∫ 𝑓Φ|Λ(𝜙|𝜆, 𝑣)𝑓Λ(𝜆)d𝜙 d𝜆𝜙110= ∫ 𝑃{Φ < 𝜙|Λ = 𝜆, 𝑣}𝑓Λ(𝜆)d𝜆10
 (26) 

In reality, adjacent railroad line sections have similar maintenance and geological conditions. 

They have similar frequency characteristics of track irregularity, meaning that 𝜆 varies slightly, and 

the track irregularity has spatial frequency coherence. To describe the DAF probability distribution for 

the proximity intervals, the conditional probability DAF distribution function for 𝜆 in the range [𝑎, 𝑏] is defined using: 

 𝐹Φ(𝜙|[𝑎, 𝑏], 𝑣) = (∫ 𝑃{Φ𝑏𝑎 < 𝜙|Λ = 𝜆, 𝑣}𝑓Λ(𝜆)𝑑𝜆)∫ 𝑓Λ(𝜆)𝑑𝜆𝑏𝑎  (27) 

Figure 13 shows the cumulative distribution functions (CDFs) of DAFs with total probability and 

conditional probability at 400 km/h. The curve surges sharply at a low level of track irregularity, 

indicating that the DAF is less dispersed. At a high level of track irregularities, the curve increases 

slowly because of the high dispersion of DAFs. 
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Figure 13. The cumulative distribution functions of dynamic amplification factors (DAFs) 

Compared with the CDF at 𝜆 = 0.632, the CDF of total probability grows more slowly, and its 

DAF is smaller when the cumulative probability p is less than 0.83. The DAF is expected to be larger 

for extreme loads if the total probability is considered. For 𝜆 ∈ [0.25,0.50), 𝜆 ∈ [0.25,0.50), and 𝜆 ∈ [0.75,1), the DAFs with 𝑝 = 95% are 1.42, 1.58, and 1.91 for 400 km/h, and the DAFs with 𝑝 = 75% are 1.25, 1.36, and 1.55 for 400 km/h. The conditional probability distributions under 

different intervals of 𝜆 are significantly different and can better characterize the DAFs of different 

conditions.  

5. Concluding remarks 

A vertical vehicle−track coupled dynamics model was employed to examine the dynamic 

response of a railway slab-track foundation under moving train loads, with particular attention to the 

surface stress of the foundation. A three-parameter predictive model is used for determining the design 

values of DAFs to assist in track-foundation assessments. The future investigation would extend the 

proposed model to evaluate the variation of dynamic amplification factor along the depth. The 

following conclusions are drawn: 

a) The DAF of the surface stresses at different longitudinal positions obeys a Gumbel distribution 

with a right-skewed pattern. The Gumbel distribution better characterizes the random features 
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of the DAFs than the normal distribution. 

b) Normalized indices allow for the evolution of location and scale parameters with speed and 

track-spectrum cumulative probability to be captured. A three-parameter predictive model was 

developed for DAFs. For 400 km/h, the design DAFs predicted by the model are 2.16 and 1.36. 

c) The conditional probability distribution of DAFs for a particular line or interval can be 

determined by considering the spatial frequency coherence of track irregularities. This 

information is used to distinguish the standards of various rail lines. For lines whose 𝜆 ∈[0.25,0.50), 𝜆 ∈ [0.25,0.50), and 𝜆 ∈ [0.75,1), the DAFs are 1.42, 1.58, 1.91 under 𝑝 =95%, and 1.25, 1.36, 1.55 under 𝑝 = 75%. 
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