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We describe a variational framework for non-commuting flows, extending the theories 
of Lagrangian multiforms and pluri-Lagrangian systems, which have gained prominence 
in recent years as a variational description of integrable systems in the sense of 
multidimensional consistency. In the context of non-commuting flows, the manifold of 
independent variables, often called multi-time, is a Lie group whose bracket structure 
corresponds to the commutation relations between the vector fields generating the flows. 
Natural examples are provided by superintegrable systems for the case of Lagrangian 
1-form structures, and integrable hierarchies on loop groups in the case of Lagrangian 
2-forms. As particular examples we discuss the Kepler problem, the rational Calogero-
Moser system, and a generalisation of the Ablowitz-Kaup-Newell-Segur system with non-
commuting flows. We view this endeavour as a first step towards a purely variational 
approach to Lie group actions on manifolds.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The variational theory behind integrable systems has recently undergone a major development through the introduction 
of Lagrangian multiform theory [21], which establishes a variational framework for multidimensional consistency, a notion 
which generalises the idea of commuting flows of differential equations, including the analogous property for lattice equa-
tions. Multidimensional consistency is the key integrability phenomenon of the coexistence and compatibility of a multitude 
of dynamical equations on the same dependent variable in terms of several (often an arbitrary number) independent vari-
ables. Thus, multidimensional consistency is a manifestation of well-known integrability aspects, such as the existence of 
hierarchies of nonlinear evolution equations, their infinite sequences of conservation laws, associated linear problems (Lax 
pairs), dressing transforms and Darboux schemes.

A conventional Lagrangian formalism only provides a single (Euler-Lagrange) equation per component of the relevant 
field variables. From the perspective of multi-dimensional consistency, it is more natural to consider a space of independent 
variables of arbitrary dimension, called multi-time. In the multiform formalism (and in the closely related pluri-Lagrangian
formalism), Lagrangians are components of a differential (or difference) d-form in multi-time. The associated Euler-Lagrange 
equations provide a compatible system of simultaneous equations on each component of the fields.
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Since the initial proposal in [21], this new variational approach has been shown to be a quite universal structure behind 
integrable systems, both in the realm of discrete and continuous equations of this class, see e.g. [23,22,46,47,7,35,37]. In 
the continuous case, the full set of variational equations, i.e. the extended set of Euler-Lagrange equations, were worked 
out in [39]. Many salient features have been elaborated in recent years, e.g. the connection with variational symmetries and 
Noether’s theorem [32,43,36], as well as with Lax pairs [35], Hamiltonian structures [38,10,43] and the classical r-matrix 
[11].

So far the Lagrangian multiform approach has proven successful in providing a framework for multi-time integrable 
systems in terms of commuting flows, which is the traditional setting of multidimensionally consistent integrable systems. 
However, the notion of integrability is not necessarily restricted to the case of commuting flows. In fact, the pioneering paper 
[25] strayed beyond the confines of flows generated by Hamiltonians in involution with regard to the Poisson structure, and 
considered non-commuting flows as well, establishing a Liouville type theorem for the case that there is a nontrivial Lie 
algebra structure for the corresponding vector fields.

In [28] non-commuting flows on loop algebras were considered, generating systems integrable through linear integral 
equations associated with Lax representations of N × N matrix hierarchies. Corresponding Lagrangian structures were es-
tablished in [27]. In these extended integrable systems, compatibility relations generate vector fields that are ‘alien’ to the 
original flows in the equations. Hence any variational description would necessarily entail a multiform structure. In the 
present paper we aim at providing a solid underpinning of these ideas, which amount to a description of dynamical sys-
tems where the set of independent variables is a Lie group.1 In contrast, so far Lie groups have mostly appeared in dynamical 
systems either as objects describing the symmetries or as the phase space. What is done in the present paper is to consider 
a multi-time (space of independent variables) that has the structure of a Lie group. More ambitiously, the present set-up 
could be viewed as a first step in general towards a purely variational approach to Lie group actions on manifolds.

The outline of the paper is as follows. In section 2 we provide some background on the Lagrangian structure of Liouville 
integrable systems and sketch the multiform approach. In section 3 we set up the framework for the Lagrangian multiform 
structure for systems where a Lie group is considered as a (non-commuting) multi-time manifold. In section 4 we provide 
the corresponding variational structure for those Lagrange 1-forms and provide some compelling examples: the Kepler 
problem and the rational Calogero-Moser system. These systems have the added feature that they are superintegrable, so a 
full description of the group actions of their symmetries necessarily requires non-commuting flows. In section 5 we consider 
the case of Lagrange 2-forms on loop groups, building on the structures of [27,28] as well as [11], and present, as a new 
example, a non-commutative multi-time version of the AKNS hierarchy. We end with some conclusions in section 6.

2. Background: Lagrangian structure of Liouville integrable systems

A Hamiltonian system on a 2n-dimensional symplectic manifold S is Liouville integrable if the Hamiltonian function 
H1 : S →R is one of n functionally independent functions Hi : S →R (i = 1, . . . , n) such that {Hi, H j} = 0 for all i, j, where 
{·, ·} is the Poisson bracket induced by the symplectic structure ω on S . The flows of the additional Hamiltonian functions 
H2, . . . , Hn are symmetries of the Hamiltonian system (S, H1). The Liouville-Arnold theorem shows that this setup has a 
rich geometric structure (see e.g. [5]). Below we will assume that S is a cotangent bundle, S = T ∗ Q .

It is important to note that the definition of Liouville integrability is symmetric under relabelling of the Hamiltonian 
functions Hi . It makes no difference which Hamiltonian function we consider to be physical (all others being its symmetries). 
For each i we could define a flow

�i :R× S → S : (t, z) �→ �t
i (z) ,

where ∂�t
i (z)

∂t � ω = dHi . But why should we consider these flows as separate objects? We might as well introduce a “flow” 
on the multi-time Rn ,

� : Rn × S → S : (t1, . . . , tn, z) �→ �t1 ◦ . . . ◦ �tn (z) , (2.1)

which captures the combined dynamics of the system and its symmetries (in the sense of the action of the symmetry group 
on phase space).

The advantage of combining the physical time and the “times” of the symmetry flows into multi-time manifests itself 
more clearly in the Lagrangian picture. Assuming the Hamiltonian functions H1, . . . , Hn are non-degenerate2, we could 
introduce Lagrangians L1, . . . , Ln . Then the flows �i :R × T ∗ Q → T ∗ Q , projected down to Q , produce critical curves of the 
action integrals

b∫
a

Li(q, q̇)dt .

1 In this respect what is aimed at here is essentially different from recent work on non-commutative integrable systems, where the dependent variables
are chosen in some associative algebra.

2 In fact they need not all be non-degenerate, but rather non-degenerate as a family. See [38,43].
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In the multi-time formalism we can combine the Lagrangian functions into a 1-form

L[q] = L1[q]dt1 + . . . + Ln[q]dtn ,

where the square brackets denote dependence on a function q : Rn → Q and its derivatives. We call such a function, from 
multi-time to the configuration manifold, a field. The main feature of a 1-form is that it can be integrated along curves. So 
for every curve γ : [0, 1] →Rn we can define an action functional

Aγ : q �→
∫
γ

L[q] .

We can now impose the following variational principle, which provides the setting to recognise integrability from the 
Lagrangian perspective [21,47,38,39].

Definition 2.1. We say that a field q : Rn → Q is critical for L if the corresponding action Aγ is critical for every curve 
γ . That is, for every γ : [0, 1] → Rn and every smooth family of curves qε such that q = q0 and qε(γ (0)) = q(γ (0)) and 
qε(γ (1)) = q(γ (1)) there holds

d

dε

∣∣∣
ε=0

∫
γ

L[qε] = 0 .

If the Lagrangian depends on second or higher derivatives, we also require the derivatives of q and qε to be equal at the 
endpoints of γ

A system that is described by a Lagrangian 1-form via this variational principle is known in the literature as a “pluri-
Lagrangian system” [7,6,39]. Additionally, one often requires that q is critical with respect to variations of the curve γ too, 
which is equivalent to requiring that L[q] is closed. This perspective is known as “Lagrangian multiform” theory [21,46,19]. 
The closure property dL = 0 implies that the corresponding Hamiltonian functions are in involution [38,43]. In addition 
to being a formalism to derive equations from a given Lagrangian, Lagrangian multiform theory can be seen as a guiding 
principle to determine integrable Lagrangians.

Multi-time Euler-Lagrange equations The differential equations which characterise criticality in the sense of Definition 2.1 are 
called multi-time Euler-Lagrange equations (or multiform Euler-Lagrange equations). They were first derived in [39] and using a 
different approach in [36,37]. Below we give a heuristic explanation of this system of equations.

If we choose the curve γ to be a straight line in the ti -direction, we recover a familiar action integral with the corre-
sponding component of L as the Lagrangian: 

∫
Li dti . This leads to the Euler-Lagrange equation

∂Li

∂q
− Di

∂Li

∂qi
+ . . . = 0 ,

where Di denotes the total derivative with respect to ti , qi = dq
dti

, and the dots represent terms of the Euler-Lagrange 
equation which are relevant if the Lagrangian depends on second or higher derivatives. We call this expression a variational 
derivative and denote it by

δi Li

δq
= ∂Li

∂q
− Di

∂Li

∂qi
+ . . . ,

where the first index i indicates that additional derivatives, which originate from integration by parts in the standard 
derivation of the Euler-Lagrange equations, are only with respect to ti . Because γ was taken in the ti -direction, these are 
the only integrations by parts that could be carried out. In particular, derivatives of q with respect to other time variables 
cannot be integrated away. Therefore we should consider them as additional variables and include the corresponding Euler-
Lagrange equations

δi Li

δq j
= ∂Li

∂q j
− Di

∂Li

∂q ji
+ . . . = 0 ,

δi Li

δq jk
= ∂Li

∂q jk
− Di

∂Li

∂q jki
+ . . . = 0 ,

...

where j, k, . . . �= i and subscripts of q denote partial derivatives.
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So far we have only considered curves γ which are in coordinate directions. Additional multi-time Euler-Lagrange equa-
tions are found when we consider curves in other directions (or curves that are not straight). They are of the form

δi Li

δqi
= δ j L j

δq j
,

δi Li

δqki
= δ j L j

δqkj
, . . .

In summary, the variational principle of Definition 2.1 is equivalent to the following system of multi-time Euler-Lagrange 
equations:

δi Li

δqI
= 0 , I /� ti ,

δi Li

δqIi
= δ j L j

δqI j
,

where I is a multi-index listing the differentiations applied to q, I /� ti means that none of them are with respect to ti , and 
the i in qIi denotes an additional differentiation with respect to ti .

An even more compact expression for the multi-time Euler-Lagrange equations can be given as

δi Li

δqI\ j
= δ j L j

δqI\i
,

where I \ i denotes one fewer differentiation with respect to ti . If I does not list any differentiations with respect to ti , then 
any term containing I \ i is taken to be zero.

Exterior derivative The variational principle of Definition 2.1 gives a single Lagrangian description of a number of commuting 
flows. To capture integrability in the sense of Liouville, we need more than commutativity of the flows. (Commutativity cor-
responds to constant, not necessarily vanishing, Poisson brackets.) The key integrability feature in the multi-form approach is 
the closure relation: the exterior derivative dL should vanish when evaluated on solutions of the multi-time Euler-Lagrange 
equations.

Furthermore, taking variations of (the coefficients of) dL is equivalent to the variational principle. Hence dL is zero on 
solutions if and only if it attains a double zero on solutions. In many examples one can write the coefficients of dL explicitly 
as a product of two expressions which vanish on the multi-time Euler-Lagrange equations.

The closedness of the form L is immediately related to the vanishing of Poisson brackets between the correspond-
ing Hamiltonian functions [38,43], and to the fact that the commuting flows are variational symmetries of each other’s 
Lagrangian functions [36,33].

Higher forms So far in this introduction we have only mentioned the multi-form principle for 1-forms, which applies to 
systems of ODEs. In the case of hierarchies of PDEs, a completely analogous principle applies for a higher form. For example, 
in integrable hierarchies such as KdV [39] and AKNS [35,36], the individual equations are 2-dimensional, so the classical 
variational principle involves integration over a plane. In the multi-time setting, all the equations of such a hierarchy share 
the same space variable, but they each have their own time variable. Multi-time is spanned by the full set of space and 
time directions. The pluri-Lagrangian principle now requires that the integral of a 2-form is critical regardless of which 
2-dimensional surface of integration is chosen. As before, the Lagrangian multiform principle augments this by the fact that 
the action should also be critical with respect to variations of the surface of integration. For higher-dimensional PDEs one 
can consider higher forms. For example, there is a Lagrangian 3-form description of the KP hierarchy [37].

3. A Lie group as multi-time

Many systems have symmetries that do not all commute with each other. Of particular interest are those Hamiltonian 
systems where there exist functions H1, . . . , Hn+� : T ∗ Q →R such that

{Hi, Hk} = 0 for all i ∈ {1, . . . ,n − �} and all k ∈ {1, . . . ,n + �} ,

and the remaining Poisson brackets may be nonzero. Systems like this are called non-commutative integrable or degenerate 
integrable and a simple adaptation of the Liouville-Arnold theorem applies to them [25,8]. For � = 0 we recover Liouville 
integrability, and it can be shown that these conditions for � > 0 also imply Liouville integrability [8], hence the term 
superintegrability is also used for such systems [14]. Of course, one may also be interested in non-integrable systems that 
still possess some smaller amount of symmetries with nontrivial commutation relations.

If some of the Hk have non-constant Poisson brackets, their flows will not commute. Hence we cannot consider the 
flows of all H1, . . . , Hn+� together as functions of some multi-time Rn+� . Indeed equation (2.1) breaks down because it now 
depends on the order in which we list the flows �ti , which defeats the point of putting all flows on the same footing. But 
all is not lost. The infinitesimal generators of the flows of the Hi form a Lie algebra. We can use a copy of the (universal 
4
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covering) Lie group G of this Lie algebra as multi-time. The Hamiltonian “flow” on multi-time now depends on a Lie group 
element g instead of a number of time coordinates,

� : G × T ∗ Q → T ∗ Q : (g, z0) �→ �g(z0) = g · z0 , (3.1)

where · denotes the left group action of G on T ∗ Q by symplectomorphisms. Hence � assigns to an initial condition 
z0 ∈ T ∗ Q its flow under an element g ∈ G of multi-time. In case all symmetries commute, g would be the vector of times 
(t1, . . . , tn).

Unlike dynamical systems where the Lie group is the phase space (such as e.g. in rigid body dynamics, [2,24]), in this 
setting it is the space of independent variables that possesses the structure of a Lie group G . Here we take phase space to 
be a cotangent bundle T ∗ Q for which no additional structure is assumed.

We would like to think of the Lie group G not just as the multi-time, but also as a symmetry group acting on fields, 
with g ∈ G acting on a field z : G → T ∗ Q to produce a new field (g • z) : G → T ∗ Q defined by

(g • z)(h) = z(gh) .

Note that we defined both actions, · and •, as left actions. Alternatively, we could have adopted a convention where both 
are right actions.

We are interested in those fields z : G → T ∗ Q for which the two actions of G agree: the flow over “time” g ∈ G maps 
the field to its transformation by g . We call such fields “symmetry group solutions” and define them as follows.

Definition 3.1. Let G act by symplectic transformations on T ∗ Q and denote this action by ·. We say that a field z : G → T ∗ Q
is a symmetry group solution of this group action if for all h ∈ G there holds �g(z(h)) = (g • z)(h) or, equivalently,

g · z(h) = z(gh), (3.2)

Example 3.2. Let G = (R, +) act on R2, with coordinates (q, p) by horizontal translation:

�g(q, p) = g · (q, p) = (q + g, p) .

Note that � is the flow of the Hamiltonian H(q, p) = p, assuming the standard symplectic structure. For any constants q0, 
p0 we have a symmetry group solution zs : G →R2 defined as

zs(g) = (q0 + g, p0) .

Indeed we have

(g • zs)(h) = (q0 + g + h, p0) = g · zs(h) = �g(zs(h)) .

Any function z : G → R2 that is not of this form will not be a symmetry group solution. As a specific counterexample, 
consider

zc(g) = (q0, p0 + g) .

We have (g • zc)(h) = (q0, p0 + g + h) but �g(zc(h)) = g · zc(h) = (q0 + g, p0 + h).

Example 3.3. As an example involving a nonabelian group, consider the Lie group S E(2), parameterised by (x, y, θ), with 
multiplication

(x′, y′, θ ′)(x, y, θ) = (x′ + x cos θ ′ − y sin θ ′, y′ + x sin θ ′ + y cos θ ′, θ + θ ′) . (3.3)

It acts by Euclidean transformations of the (q, p)-plane:

�(x,y,θ)

(
q
p

)
= (x, y, θ) ·

(
q
p

)
=

(
cos θ − sin θ

sin θ cos θ

)(
q
p

)
+

(
x
y

)
. (3.4)

Note that the one-parameter flow maps �(x,0,0) , �(0,y,0) and �(0,0,θ) correspond to the Hamiltonian systems given by 
H(q, p) = p, H(q, p) = −q and H(q, p) = − 1

2 (p2 + q2), respectively.
Any function z : S E(2) →R2 of the form

z(x, y, θ) = (x, y, θ) ·
(

q0
p0

)
,

with constant q0 and p0, is a symmetry group solution. Indeed:
5
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(
(x′, y′, θ ′) • z

)
(x, y, θ) = z

(
(x′, y′, θ ′)(x, y, θ)

)
= (

(x′, y′, θ ′)(x, y, θ)
) ·

(
q0
p0

)
= (x′, y′, θ ′) ·

(
(x, y, θ) ·

(
q0
p0

))
= (x′, y′, θ ′) · z(x, y, θ).

The following proposition shows that all symmetry group solutions are of this form.

Proposition 3.4. The field z : G → T ∗ Q is a symmetry group solution if and only if

g · z(e) = z(g) , (3.5)

where e is the unit element of the Lie group G.

Proof. Equation (3.5) follows form Equation (3.2) by choosing h = e.
Considering both sides of Equation (3.5) as a function of g and acting with h• we find

hg · z(e) = z(hg) .

On the other hand, considering both sides of Equation (3.5) as an element of T ∗ Q and acting with h· we find

hg · z(e) = h · z(g) .

Hence h · z(g) = z(hg), which is Equation (3.2) with g and h interchanged. �
Let g be the Lie algebra of G . An abstract Lie algebra element ξ ∈ g has two differential geometric interpretations. First, 

there is its representation as a left-invariant vector field ∂ξ ∈X(G). It acts on functions z on G as

∂ξ z = d

ds

∣∣∣
s=0

(exp(sξ) • z) , (3.6)

i.e.

(∂ξ z)(g) = d

ds

∣∣∣
s=0

z
(

exp(sξ)g
)
.

In the abelian case, where G = Rn with coordinates t1, . . . , tn , we can identify ∂ξi = ∂
∂ti

. Second, there is the infinitesimal 
generator V ξ ∈ X(T ∗ Q ) of its action on phase space. The vector field V ξ is defined by, for z0 ∈ T ∗ Q ,

V ξ (z0) = d

ds

∣∣∣
s=0

exp(sξ) · z0 . (3.7)

If the action of G on T ∗ Q is locally effective, then the Lie algebra of vector fields V ξ is isomorphic to g [30, Theorem 2.62].
A symmetry group solution is characterised infinitesimally as follows:

Proposition 3.5. The field z : G → T ∗ Q is a symmetry group solution if and only if, for all g ∈ G,

(∂ξ z)(g) = V ξ (z(g)) . (3.8)

Proof. Equation (3.8) is the infinitesimal form of

z
(

exp(ξ)g
) = exp(ξ) · z(g) ,

which is equivalent to Equation (3.2). �
The motivation behind these definitions and propositions is to extend to the non-abelian case the familiar situation 

where one associates a time derivative ∂
∂ti

to each Hamiltonian vector field V Hi on the phase space T ∗ Q , for a family of 
functions Hi on T ∗ Q which are in involution, {Hi, H j} = 0. In that abelian case, for a basis ξ1, . . . , ξn of the abelian Lie 
algebra g, (3.8) reduces to

∂

∂ti
z(t1, . . . , tn) = V Hi (z(t1, . . . , tn))

and we consider the collection of these n differential equations on the function z, giving rise to n commuting time flows on 
the phase space T ∗ Q .
6
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3.1. Jet bundles over a Lie group

As sketched in Section 2, the variational principle on multi-time involves a differential form depending on configuration 
variables and their derivatives, i.e. depending on elements of a jet bundle. See for example [34] or [31, Section 2.3] for 
a detailed treatment of jet bundles. Here, we will introduce jet bundles over Lie groups, in a slightly unusual way which 
allows us to understand how the Lie algebra structure affects prolongations of functions. This will help us derive multi-time 
Euler-Lagrange equations after we have formulated the variational principle. In the present section we discuss the jet bundle 
of a real function on a Lie group. It is easy to extend this to vector-valued functions (or functions into a single coordinate 
patch of configuration space Q ), but for ease of presentation we restrict the discussion to real functions.

Consider a Lie group G and its Lie algebra g, generated by ξ1, . . . , ξN , with structure relations

[ξi, ξ j] =
∑

k

Ck
i jξk . (3.9)

We consider fields q : G → R as sections of the trivial bundle G × R → G with coordinates (g, q). The first jet bundle is 
J1 → G with J1 = G ×R ×RN and has coordinates (g, q, q1, . . . , qn). The prolongation of a smooth function q to the first 
jet bundle is

pr1 q : G → J1 : g �→ (g,q(g), ∂ξ1 q(g), . . . , ∂ξN q(g)) .

Starting from the second jet bundle we need to take into account the possibly non-commuting derivatives. The deriva-
tives qij and q ji (i �= j) are not necessarily the same, but neither are they independent, because g comes with commutation 
relations. There are two jet bundles we could consider. Below we only present their definition for the second order jet 
bundle. Higher jet bundles can be constructed in an analogous way.

The first definition we present is of a jet bundle which ignores any relation between qij and q ji (i �= j), hence it is “free” 
in a similar sense as in “free algebra”.

Definition 3.6. The free jet bundle J2 → G has coordinates (g, q, qi, qij), where both i ≤ j and i > j are allowed, i.e.

(g,q,qi,qij) = (g,q,qi,qii,qij,q ji)|i< j .

The fibre is thought of as the vector space spanned by (q, qi, qij). The prolongation of q to the second jet bundle is

pr2 q : G → J2 : g �→ (g,q(g), ∂ξi q(g), ∂ξ j ∂ξi q(g)) .

Taking into account the Lie algebra structure, we can reduce the free jet bundle as follows. Guided by the commutation 
relation

∂ξi ∂ξ j = ∂ξ j ∂ξi +
∑

k

Ck
i j∂ξk ,

we define the equivalence relation

q ji ∼ qij +
∑

k

Ck
i jqk,

and quotient the fibres of the free jet bundle by ∼. Since these relations reflect the Lie group structure, they will become 
identities for prolongations of fields. In particular, the variational principle involves prolonged fields rather than abstract 
bundle variables, so it will be independent of the choice of representative.

Definition 3.7. The quotiented jet bundle is J̃2 → G , with J̃2 = G ×R ×RN ×R
N(N+1)

2 , and has coordinates (g, q, qi, qij)|i≤ j . 
The prolongation of q to the second jet bundle is

pr2 q : G → J2 : g �→ (g,q(g), ∂ξi q(g), ∂ξ j ∂ξi q(g))|i≤ j .

For a function f :J2 →R of the free jet bundle, we denote by f̃ its projection to the quotiented jet bundle:

f̃ (g,q,qi,qij)|i≤ j = f
(

g,q,qi,qii,qij,qij +
∑

k

Ck
i jqk

)∣∣∣
i< j

.

To easily denote elements of higher free jet bundles we use index-strings:
7
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Definition 3.8. An index-string is a finite sequence I = s1, . . . , sk where k ∈N and si ∈ {1, . . . , N}, where N is the dimension 
of the Lie group G . An index-string defines a derivative of the field, qI = ∂ξsk

. . . ∂ξs2
∂ξs1

q, which is a coordinate of the 
prolongation of q to the k-th free jet bundle.

To easily denote elements of higher quotiented jet bundles we use multi-indices:

Definition 3.9. A multi-index is an element of NN . A multi-index I = (i1, . . . , iN) ∈ NN defines a derivative of the field, 
qI = ∂

iN
ξN

. . . ∂
i1
ξ1

q, which is a coordinate of the prolongation of q to the k-th quotiented jet bundle.

When no confusion is possible, we will also use a string notation for multi-indices, for example both “12” and “21” 
represent the multi-index (1, 1, 0, . . . , 0). We use the notation ∅ for the empty index-string and for the corresponding 
multi-index (0, . . . , 0).

For a function f :Jk →R of a free jet bundle we denote by Di the total derivative

Di f =
∑
I

∂ f

∂qI
∂ξi qI + ∂ξi f ,

where the sum is over all index-strings I and the final term is the analogue of ∂ f
∂ti

in the case of commuting flows, which 
vanishes in case f does not depend explicitly on g ∈ G . For a function f̃ : J̃k →R of a quotiented jet bundle we denote by 
D̃i the total derivative

D̃i f̃ =
∑

I

∂ f̃

∂qI

˜∂ξi qI + ∂ξi f̃ ,

where the sum is over all multi-indices I . Recall that ̃ denotes projection onto the quotiented jet bundle, so ˜∂ξi qI means 
that we evaluate ∂ξi qI while taking into account the commutation relations to write it as a linear combination of well-
ordered derivatives. For example, if i = 1 and f̃ = q2 the only nonzero term in the sum is the one with I = (0, 1, 0, . . . , 0), 
i.e. with qI = q2, yielding

D̃1q2 = ˜∂ξ1q2 = q̃21 = q12 +
∑

k

Ck
12qk .

Note that for any function f : G ×J 2 →R there holds D̃i f̃ = D̃i f .

Proposition 3.10. For functions f :J1 →R of the first free jet bundle there holds

∂

∂q
Di f = Di

∂ f

∂q
, (3.10a)

∂

∂q j
Di f = Di

∂ f

∂q j
+ δ

j
i

∂ f

∂q
, (3.10b)

∂

∂q ji
Di f = ∂ f

∂q j
, (3.10c)

∂

∂qij
Di f = δ

j
i

∂

∂q j
, (3.10d)

∂

∂q jk
Di f = 0 if j,k �= i , (3.10e)

where δ j
i is the Kronecker delta.

Proof. We have

Di = qi
∂

∂q
+

∑
k

qki
∂

∂qk
+ ∂ξi .

Since none of the coefficients contain an undifferentiated q, it follows that

∂

∂q
Di = Di

∂

∂q
.

Furthermore, we find
8
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∂

∂q j
Di = Di

∂

∂q j
+ δ

j
i

∂

∂q

and

∂

∂q ji
Di = Di

∂

∂q ji
+ ∂

∂q j
= ∂

∂q j
,

where the last equality holds because we are only considering function of the first jet bundle. Similarly, if j �= i and k �= i
we find ∂

∂qij
Di = 0 and ∂

∂q jk
Di = 0. �

For the sake of completeness, we also state the corresponding result in the quotiented jet bundle. However, in the 
calculations to follow we will always commute total and partial derivatives using Proposition 3.10, before projecting to the 
quotiented bundle.

Proposition 3.11. For functions f : J̃1 →R of the first quotiented jet bundle there holds

∂

∂q
D̃i f = D̃i

∂ f

∂q
, (3.11a)

∂

∂q j
D̃i f = D̃i

∂ f

∂q j
+ δ

j
i

∂ f

∂q
+

∑
k>i

C j
ik

∂ f

∂qk
, (3.11b)

∂

∂qij
D̃i f = ∂

∂q ji
D̃i f = ∂

∂q j
, (3.11c)

∂

∂q jk
D̃i f = 0 if j,k �= i , (3.11d)

where δ j
i is the Kronecker delta.

Proof. The proof is analogous to the proof of Proposition 3.10, starting from the expansion

D̃i = qi
∂

∂q
+

∑
k

q̃ki
∂

∂qk
+ ∂ξi

= qi
∂

∂q
+

∑
k≤i

qki
∂

∂qk
+

∑
k>i

(
qik +

∑
�

C�
ikq�

)
∂

∂qk
+ ∂ξi . �

3.2. Variational principle for functions on a Lie group

We are now in a position to formulate the variational principle on a Lie group and derive the corresponding multi-time 
Euler-Lagrange equations. In this subsection we will state the definition for general d-forms and derive some results which 
will be helpful to carry out the calculus of variations. In Sections 4 and 5 we will specialise the discussion to d = 1 and 
d = 2.

Definition 3.12. Consider a d-form L[q] on a Lie group G . We say that q : G → Q is critical if for every d-dimensional 
submanifold γ ⊂ G , we have

∂

∂ε

∣∣∣
ε=0

∫
γ

L[q + εη] = 0 , (3.12)

for any variation η that vanishes (along with all its derivatives) at the boundary of γ .

The following characterisation of critical fields makes use of the vertical exterior derivative δ in the variational bicomplex 
(see for example [3], [39, Appendix A], or [10]). This δ can be thought of as taking an infinitesimal variation (Gateaux 
derivative) in a direction yet to be specified. For example, δq is an operator which maps a vector field to the variation of q
in the direction of this vector field. In the variational bicomplex, δ anti-commutes with d.

Lemma 3.13. The following are equivalent:

(i) q : G → Q is critical,
9
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(ii) All infinitesimal variations of the exterior derivative of L vanish, i.e.

δdL[q] = 0 .

Proof. (i) ⇒ (ii) Let q be critical and consider a (d + 1)-dimensional oriented submanifold D of G with boundary ∂ D . Then 
by Stokes theorem and the variational principle (3.12) with γ = ∂ D there holds∫

D

δdL = −
∫
D

dδL = −
∫
γ

δL = 0 . (3.13)

Since D is arbitrary, this implies that δdL = 0.
(ii) ⇒ (i) Reading Equation (3.13) from right to left, we see that if δdL = 0 then the variational principle (3.12) is satisfied 

for all closed d-dimensional submanifolds γ = ∂ D . Below we argue that this implies that the variational principle holds 
on all d-dimensional submanifolds.
In the variational principle it is sufficient to consider variations supported in a small neighbourhood, because using a 
partition of unity we can write any variation as a sum of variations with smaller supports. Hence we can assume that 
the manifold γ in Equation (3.12) is bounded, so we can extend it to a closed d-dimensional submanifold γ̄ , such that 
γ ⊂ γ̄ . Since we already established that the variational principle holds on closed submanifolds, it now follows that is 
also holds on γ . �

In the following sections, we will use Lemma 3.13 to derive the multi-time Euler-Lagrange equations in the case of 
1-forms and 2-forms. Before doing so, we explore some properties of the vertical exterior derivative δ.

For any function P of the free jet bundle, there holds

δP =
∑
I

AIδqI , (3.14)

where

AI = ∂ P

∂qI

for every index-string I. Because of the redundant nature of the set of index-strings, the δqI in this sum are not indepen-
dent when we take into account the commutation relations. An expansion into δqI , which are independent in the quotiented 
jet bundle, is obtained in the following Lemma.

Lemma 3.14. For any function P : J 2 → R of the free second jet bundle. The vertical exterior derivative of its projection onto the 
quotiented bundle reads

δ P̃ =
∑

I

B IδqI ,

where

Bkk = Ãkk ,

Bk� = Ãk� + Ã�k where k < �,

Bk = Ãk +
∑
m<n

Ck
mn Ãnm ,

B∅ = Ã∅ ,

(3.15)

A J = ∂ P
∂v J

, and ̃ denotes the projection onto the quotiented jet. In particular, we define δ̃qI = δq̃I , hence δ̃P = δ P̃ .

Proof. We start from the expansion (3.14) in the free jet bundle. From the Lie bracket relations (Equation (3.9)) it follows 
that

δq ji = δqij +
∑

k

Ck
i jδqk .

Using this relation we find the B I in terms of the AI as in Equation (3.15). �

10
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4. Lagrangian 1-forms on Lie groups

Let L[q] be a 1-form on G , depending on the first jet of a field q. It is determined by its pairings Li[q] with the generators 
∂ξi ∈X(G) of the Lie algebra,

∂ξi�L[q] = Li[q] .
Once again we pose the variational principle that the action along every curve must have a critical value with respect to 
variations of q : G → Q . The same multi-time Euler-Lagrange equations as in the commutative case apply:

Theorem 4.1. If L only depends on the first jet of q, the variational principle of Definition 3.12 is equivalent to the following set of 
multi-time Euler-Lagrange equations

∂L j

∂q j
= ∂Li

∂qi
, (4.1)

∂L j

∂qk
= 0 if k �= j , (4.2)

δ j L j

δq
= 0 . (4.3)

Proof. Let Pij[q] = ∂ξ j� ∂ξi� dL[q], with i < j. Then

Pij = Di(∂ξ j�L) − D j(∂ξi�L) − ∂[ξi ,ξ j ]�L
= Di L j − D j Li −

∑
k

Ck
i j Lk .

We consider Pij as a function of the free jet bundle, i.e. we allow it to contain derivatives that are not well-ordered. We 
have

δPij =
∑
I

AIδqI ,

where the sum is over all index-strings and

AI = ∂ Pij

∂qI
.

Since we are on the free jet bundle, we are ignoring the commutation relations, hence the δqI are not independent. To 
remedy this we use Lemma 3.14 and find

δPij =
∑

I

B IδqI ,

where the sum is over all multi-indices and the B I are given by Equation (3.15). In particular, using Proposition 3.10 we 
find

Bii = Ãii = ∂̃ Pij

∂qii
= ∂L j

∂qi
,

Bij = Ãi j + Ã ji = ∂̃ Pij

∂qij
+ ∂̃ Pij

∂q ji
= ∂Li

∂qi
− ∂L j

∂q j
,

Bik = Ãik + Ãki = ∂̃ Pij

∂qik
+ ∂̃ Pij

∂qki
= −∂L j

∂qk
.

Hence δPij = 0 implies Equations (4.1) and (4.2). Furthermore, using Equations (4.1)–(4.2),

Bi = Ãi +
∑
m<n

Ci
mn Ãnm = ∂̃ Pij

∂qi
+ Ci

ji
∂̃ Pij

∂qij

= ∂L j

∂q
− D j

∂Li

∂qi
+ Ci

i j
∂Li

∂qi
+ Ci

ji
∂Li

∂qi

= δ j L j

δq
,

hence δPij = 0 also implies Equation (4.3).
11
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We have shown, using Lemma 3.13, that the variational principle implies Equations (4.1)–(4.3). The converse can be 
proved by retracing our steps and observing that the equations Bk = 0 (k �= i, j) and B∅ = 0 are consequences of Equations 
(4.1)–(4.3) as well. �

An alternative proof can be given using the stepped curve approach of [39], which for 1-forms easily generalises to the 
Lie group setting. The stepped curve approach also applies to forms depending on higher jets, and again leads to the same 
multi-time Euler-Lagrange equations as in the commutative case.

4.1. Building a 1-form from symmetries of a given Lagrangian

In this subsection we start from a mechanical Lagrangian (of Newtonian type) and build a Lagrangian 1-form describing 
its variational symmetry group. As is common in this context, we use q̇ as shorthand for the time-derivative of q, which 
will be identified ∂ξ1 q in the multi-time setting. Suppose we are given a mechanical system on T Q with Lagrangian

L1(q, q̇) = 1

2
|q̇|2 − U (q) (4.4)

and a group G0 of variational symmetries of L1. We allow elements of G0 to be generalised symmetries, meaning that 
they do not necessarily act as point transformations on Q and have infinitesimal generators that potentially depend on 
derivatives of the curve. We do require the symmetries in G0 to act on the space of curves from R to Q . This rules out 
some generalised symmetries which are defined infinitesimally as a generalised vector field but cannot be integrated to a 
symmetry transformation [31, Chapter 5]. By definition, g is a variational symmetry if for any q :R → Q :

L1

(
(g · q)(t),

d

dt
(g · q)(t)

)
= L1(q(t), q̇(t)) + d

dt
Fg(q(t), q̇(t))

for some function Fg : T Q →R.
We assume that the infinitesimal generators of all g ∈ G0 are prolongations of vector fields of the form W = w(q, ̇q)∂q:

pr(W ) = w(q, q̇)∂q +
(

∂ w

∂q
q̇ + ∂ w

∂q̇
q̈

)
∂q̇ .

The infinitesimal characterisation of a variational symmetry reads

pr(W )L1(q, q̇) = d

dt
F W (q, q̇) , (4.5)

where the function F W is called the flux of the variational symmetry.
In this setting, a natural choice of multi-time is G = R × G0. The additional R represents translations in time t . Picking 

some reference time (t0, e) ∈ G and initial conditions (q0, v0) ∈ T Q such that q(t0, e) = q0, q̇(t0, e) = v0, the Euler-Lagrange 
equation of the Lagrangian (4.4) defines q(t, e) for all t ∈ R. This solution can be extended to a symmetry group solution 
on G by

q(t,h) = �h(q(t, e)) = h · q(t, e) (4.6)

for h ∈ G0 (see Proposition 3.4). When writing (4.6), we took advantage of the fact that the t-flow and �h commute (because 
G0 is a symmetry group of L1), hence the order in which the two flows are applied does not matter.

The infinitesimal characterisation (see Proposition 3.5) of a symmetry group solution is that for all g ∈ G and ξ ∈ g:

q̈(g) = −U ′(q(g)) ,

∂ξ q(g) = Wξ q(g) = wξ (q(g), q̇(g)) ,

where Wξ = wξ ∂q is the infinitesimal generator of the group action and the differential operator ∂ξ is defined in Equation 
(3.6).

Let ξ1 = ∂t , ξ2, . . . , ξN be a basis of the Lie algebra g of G and wξi (q, ̇q)∂q the corresponding generalised vector fields, 
which are assumed to be variational symmetries of (4.4) with fluxes Fi(q, ̇q). Following [32] we consider for i ≥ 2

Li(q,q1,qi) = ∂L1

∂q1
(qi − wξi (q,q1)) + Fi(q,q1)

= q1qi − q1 wξi (q,q1) + Fi(q,q1) , (4.7)

where qi = ∂ξi q. The key point here is that we do not assume that the variational symmetries commute. This is a departure 
from the setting of [32] and other previous works on Lagrangian multiforms. We allow a general Lie algebra structure:
12
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[ξi, ξ j] =
∑

k

Ck
i jξk . (4.8)

Given q : G → Q , we define the Lagrangian 1-form L[q] on G by

ξi �L[q] = Li(q,q1,qi) , (4.9)

where Li is defined by Equation (4.7) for i ≥ 2 and by Equation (4.4) for i = 1. Note that if all ξi commute, then G ∼= RN

and we can choose coordinates ti such that L = ∑N
i=1 Li dti , which is the familiar expression for a Lagrangian 1-form, as it 

appears in the literature in the context of commuting symmetries. The definition of L is independent of the basis ξ1, . . . , ξn , 
as the following proposition shows.

Proposition 4.2. For every ξ = ∑
k αkξk ∈ g and every q : G → Q there holds

ξ �L[q] = q1∂ξ q − q1 wξ (q,q1) +
∑

k

αk Fk(q,q1) ,

where wξ = ∑
k αk wξk is the characteristic of the generalised vector field on Q induced by ξ and Fk are the fluxes of the variational 

symmetries ξk, with F1 =L1 and wξ1 = q1 .

Proof. We have

ξ �L =
∑

k

αkξk �L =
∑

k

αk Lk(q,q1,qk)

=
∑

k

αk
(
q1qk − q1 wξk (q,q1) + Fk(q,q1)

)
= q1∂ξ q −

∑
k

αkq1 wξk (q,q1) +
∑

k

αk Fk(q,q1) . �

Theorem 4.3. A field q : G → Q is a symmetry group solution of the group action of G if and only if it is critical in the sense of 
Definition 3.12 for the Lagrangian 1-form L.

The proof is essentially the same as that of [32, Prop. 7.1]. First we prove some Lemmas.

Lemma 4.4 ([32, Lemma 3.1]). Let F be the flux of a variational symmetry W = w∂q of the Lagrangian (4.4). There holds

∂ F

∂q̇α
= ∂ wβ

∂q̇α
q̇β ,

where the Greek upper indices denote vector components and summation over repeated indices is assumed.

Proof. Using the chain rule we find from Equation (4.5)

− ∂U

∂qβ
wβ + q̇β

(
∂ wβ

∂qα
q̇α + ∂ wβ

∂q̇α
q̈α

)
= ∂ F

∂qα
q̇α + ∂ F

∂q̇α
q̈α .

Since this holds for any curve q, the coefficients of q̈ must match, hence q̇β ∂ wβ

∂q̇α = ∂ F
∂q̇α . �

Lemma 4.5. On solutions of the Euler-Lagrange equation q̈ + U ′(q) = 0 there holds

∂ F

∂qα
= dwα

dt
+ q̇β ∂ wβ

∂qα
,

where summation over repeated indices is assumed.

Proof. We have

∂ F

∂qα
= ∂

∂q̇α

dF

dt
− d

dt

∂ F

∂q̇α

= ∂

˙α pr(W )L1 − d
(

q̇β ∂ wβ

˙α
)

∂q dt ∂q

13
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= ∂

∂q̇α

(
q̇β dwβ

dt
− ∂U

∂qβ
wβ

)
− q̈β ∂ wβ

∂q̇α
− q̇β d

dt

∂ wβ

∂q̇α

= dwα

dt
+ q̇β ∂

∂q̇α

dwβ

dt
− ∂U

∂qβ

∂ wβ

∂q̇α
− q̈β ∂ wβ

∂q̇α
− q̇β d

dt

∂ wβ

∂q̇α

= dwα

dt
+ q̇β ∂ wβ

∂qα
−

(
q̈β + ∂U

∂qβ

)
∂ wβ

∂q̇α
. �

Proof of Theorem 4.3. Critical fields q : G → Q are characterised by the multi-time Euler-Lagrange equations (4.1)–(4.3). In 
particular, Equation (4.3) with j = 1 yields

q11 + U ′(q) = 0

and Equation (4.2) with k = 1 yields

qα
j − wα

ξ j
− qβ

1

∂ wα
ξ j

∂qβ
1

+ ∂ F

∂qα
1

= 0 ,

which by Lemma 4.4 is equivalent to

q j − wξ j = 0 .

Equation (4.1) is equivalent to the trivial equation q̇ = q̇. Equation (4.3) with j �= 1 is a differential consequence of the 
previous equations, as the following computation shows. We have

(4.3) ⇔ −qβ
1

∂ wβ
ξ j

∂qα
+ ∂ F j

∂qα
− qα

1 j = 0
Lemma 4.5⇐====⇒ ∂1 wα

ξ j
− qα

1 j = 0 ,

which is equivalent to ∂1(wα
ξ j

− qα
j ), hence it is a consequence of Equation (4.2) with k = 1. �

4.2. Building a 1-form from Hamiltonians

Suppose we have a Hamiltonian of Newtonian type, H(q, p) = 1
2 |p|2 + U (q), with a number of symmetries defined by 

Hamiltonians H2, . . . , H N . Let XH1 , . . . , XHN be the corresponding Hamiltonian vector fields on T ∗ Q .

Proposition 4.6. If there exist constants Ck
i j such that

{Hi, H j} =
∑

k

Ck
i j Hk , (4.10)

then the vector space spanned by the Hamiltonian vector fields XH1 , . . . , XHN is a Lie algebra with Lie bracket given by the commutator.

Proof. We have

[XHi , XH j ] f = {Hi, {H j, f }} − {H j, {Hi, f }}
= {{Hi, H j}, f }
=

∑
k

Ck
i j{Hk, f } . (4.11)

Hence [XHi , XH j ] =
∑

k Ck
i j XHk . �

In this case, we can take as our multi-time the universal covering Lie group G of the Lie algebra g. In other words, we 
take the group of symmetries generated by H1, . . . , H N as multi-time.

The role played in the commuting case by the time derivatives ∂ti is now played by a basis of left-invariant vector fields 
∂ξi on G . They satisfy the same Lie-algebraic relations as the XHi , but we choose not to identify them. This is to emphasise 
the conceptual difference between the vector fields ∂ξi on multi-time G and the vector fields XHi on the phase space T ∗ Q . 
The Hamiltonian vector fields XHi play the role of the symmetry generators V ξi in Proposition 3.5.

If the Poisson relations fail to be linear, i.e. if Equation (4.10) does not hold for any constants Ck
i j , then we need a different 

approach to find a Lie algebra and Lie group on which to formulate the variational principle. This case will be handled in 
Section 4.2.1. First we will discuss the construction of a suitable 1-form on G in case Equation (4.10) does hold.
14
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In the context of commuting flows, the relation between Lagrangian 1-forms and Hamiltonian structures is well un-
derstood [38,43], at least if they are of Newtonian form. We use the same construction here and define the 1-form L[q]
by

∂ξi�L[q] = Li[q] := q1qi − Hi(q,q1) , (4.12)

where we identify p = q1. Note that L1 = 1
2 q1 − U (q).

Proposition 4.7. The multi-time Euler-Lagrange equations for L, as defined in Equation (4.12), are equivalent to the set of canonical 
Hamiltonian equations for H1, . . . , H N , under the identification p = q1 .

Proof. The multi-time Euler-Lagrange equations of type (4.1) are trivially satisfied. The multi-time Euler-Lagrange equations 
of type (4.2) yield

qi = ∂ Hi(q,q1)

∂q1

for i > 0 (and nothing for L1). Finally, the multi-time Euler-Lagrange equations of type (4.3) yield

q1i = −∂ Hi(q,q1)

∂q

for i > 0 and

q11 = −∂V (q)

∂q
. �

Proposition 4.8. The exterior derivative dL, where L is as in Equation (4.12), attains a double zero on solutions to the multi-time 
Euler-Lagrange equations.

Proof. First, observe that

∂[ξi ,ξ j ]�L =
∑

k

Ck
i j Lk

= q1

∑
k

Ck
i jqk −

∑
k

Ck
i j Hk(q,q1)

= q1[∂ξi , ∂ξ j ]q − {Hi, H j}(q,q1) .

Hence, by linearity, for all ξ, ν ∈ g there holds

∂[ξ,ν]�L = q1[∂ξ , ∂ν ]q − {Hξ , Hν}(q,q1) .

Now, identifying p = q1, we find

∂ν�∂ξ�dL = ∂ξ Lν − ∂ν Lξ − ∂[ξ,ν]�L
= ∂ξ p∂νq − ∂ν p∂ξ q − ∂ξ Hν + ∂ν Hξ + {Hξ , Hν}
= ∂ξ p∂νq − ∂ν p∂ξ q − ∂ Hν

∂q
∂ξ q − ∂ Hν

∂ p
∂ξ p + ∂ Hξ

∂q
∂νq − ∂ Hξ

∂ p
∂ν p + {Hξ , Hν}

=
(

∂ξ p + ∂ Hξ

∂q

)(
∂νq − ∂ Hν

∂ p

)
−

(
∂ν p + ∂ Hν

∂q

)(
∂ξ q − ∂ Hξ

∂ p

)
,

where the last equality makes use of the canonical form of the Poisson bracket, { f , g} = ∂ f
∂ p

∂ g
∂q − ∂ g

∂ p
∂ f
∂q . �

4.2.1. Nonlinear Poisson relations
If the Poisson relations are not linear, then (some of) the coefficients of {Hk, f } in Equation (4.11) will depend on the Hi

instead of being constant. This would mean that the commutators between the vector fields depend on the values of the 
Hamiltonians, which means that the vector fields themselves do not constitute a Lie algebra. However, even in this case, we 
can find a Lie algebra underlying the system.

Consider the commutative algebra F generated by the functions H1, . . . , H N : T ∗ Q →R, i.e. the algebra of functions of 
H1, . . . , H N . If this algebra is closed under the canonical Poisson bracket, then it is an example of a function group in the 
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sense of Lie [20].3 Such function groups have been considered in geometric mechanics [44,18] and control theory [41]. The 
canonical Poisson bracket on T ∗ Q turns F into a Lie algebra

h = (F, {·, ·}) .

Even though structure constants in the sense of Equation (4.10) do not exist in this case, one can define structure constants 
on h by choosing a basis { fα} of h. (Every vector space has a basis if the axiom of choice is assumed.) We then take Cγ

αβ

such that

{ fα, fβ} =
∑
γ

Cγ
αβ fγ .

Even though the index set that γ belongs to is infinite, the above sum will only contain a finite number of nonzero terms, 
because every vector can be written as a linear combination of finitely many basis elements.

Using the correspondence between functions f ∈F and their canonical Hamiltonian vector fields X f , we can see that h, 
modulo additive constants, is isomorphic to the Lie algebra

({X f | f ∈ F}, [·, ·]) ,

where [·, ·] denotes the commutator of vector fields on T ∗ Q . Note that the finite set of vector fields {XH1 , . . . , XHN } does 
not necessarily span a Lie algebra. On the other hand, the infinite-dimensional h is always a Lie algebra, regardless of what 
the Poisson relations look like.

We would like to define a 1-form L and impose the variational principle on a Lie group that has h as its Lie algebra. 
However, since Lie’s (converse) third theorem does not hold in an infinite-dimensional setting [42], the existence of such a 
Lie group cannot be guaranteed. At first sight this seems to be an insurmountable obstruction, since we need a Lie group 
(or at least a manifold) to formulate the variational principle of Definition 3.12. However, the characterisation δdL = 0 is 
formulated within a single tangent space of multi-time, so it can be considered without referring to the manifold structure. 
In particular, we can impose it on the Lie algebra h with no requirement for a Lie group structure. Lemma 3.13 shows 
the characterisation δdL = 0 to be equivalent to the variational principle whenever a Lie group exists, and the formal 
calculations will be the same whether or not a Lie group associated to h exists. Below we provide some details of this 
construction.

As multi-time we consider a subgroup of the group of symplectic diffeomorphisms on Q, given by

GF = {exp(X f1) ◦ . . . ◦ exp(X fm ) | m ∈N, f1, . . . , fm ∈ F} , (4.13)

where exp denotes the flow of the vector field over one unit time. This is the group of all transformations which can be 
obtained as concatenation of finitely many flows of Hamiltonian vector fields with Hamiltonian function in F . We do not 
claim that GF has a manifold structure. For each pair (g, f ) ∈ GF × F we consider the smooth one-parameter subgroup 
{exp(t X f ) ◦ g | t ∈R}. This allows us to define the derivative of a field q : GF → Q with respect to f ∈F :

(∂ f q)(g) = d

dt
q(exp(t X f ) ◦ g)

∣∣
t=0 , (4.14)

where we assume that q is smooth in the sense that all such derivatives exist. We check that this definition leads to the 
usual relation between commutators and Poisson brackets:

Proposition 4.9. There holds [∂ f1 , ∂ f2 ] = ∂{ f1, f2} .

Proof. For i = 1, 2 we denote by �t
i = exp(t X fi ) the flow of X fi over time t . For any q : GF → Q and g ∈ GF we have

[∂ f1 , ∂ f2 ]q(g) = d

ds

d

dt

(
q
(
�s

2 ◦ �t
1 ◦ g

) − q
(
�t

1 ◦ �s
2 ◦ g

)) ∣∣∣
s=t=0

= d

ds

d

dt

(
q
(
�s

2 ◦ �t
1 ◦ �−s

2 ◦ �−t
1 ◦ y

) − q(y)
) ∣∣∣

s=t=0
,

where y = �t
1 ◦ �s

2 ◦ g . Denote by �{ f1, f2} the flow of the commutator of X f1 and X f2 . We have that

�s
2 ◦ �t

1 ◦ �−s
2 ◦ �−t

1 = �st
{ f1, f2} + O (s2 + t2) .

Hence we find

3 For all examples in this work it would be sufficient to consider the subalgebra of this function group consisting of polynomials in H1, . . . , HN .
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[∂ f1 , ∂ f2 ]q(g) = d

ds

d

dt

(
q
(
�st

{ f1, f2} ◦ y
)

− q(y)
) ∣∣∣

s=t=0

= d

ds

d

dt

(
st∂{ f1, f2}q(y) + O (s2t2)

) ∣∣∣
s=t=0

= ∂{ f1, f2}q(g) . �
Given a field q : GF → Q , we define a 1-tensor L[q] by the condition that for all f ∈F there holds

f �L[q] = q1 · ∂ f q − f (q,q1) ,

where q1 = ∂H1 q. We call L[q] a 1-tensor, not a 1-form, because we do not assume a manifold structure on GF . Neverthe-
less, we can consider a formal exterior derivative dL[q] defined by

f2� f1�dL[q] = ∂ f1( f2�L[q]) − ∂ f2( f1�L[q]) − { f1, f2}�L[q] .
In this context we use δdL[q] = 0 as definition of critical fields, instead of the variational principle of Definition 3.12. The 
operator δ is a Gateaux derivative (in a direction to be specified) of tensors. It can be calculated coefficient-wise:

f2� f1� (δdL[q]) = δ( f2� f1�dL[q]) .

The calculation of dL formally takes the same form as before in the proof of Proposition 4.8. Using Proposition 4.9, we 
find

f2� f1�dL[q] =
(

∂ f1 q1 + ∂ f1

∂q

)(
∂ f2 q − ∂ f2

∂q1

)
−

(
∂ f2 q1 + ∂ f2

∂q

)(
∂ f1 q − ∂ f1

∂q1

)
.

In particular, f2� f1� dL has a double zero on solutions to the canonical Hamiltonian equations for f1 and f2, hence δdL = 0
is equivalent to the system of all Hamiltonian equations for Hamiltonian functions in F .

Since the multi-time Euler-Lagrange equations (4.1)–(4.3) are equivalent to the condition δdL = 0, they will also be 
equivalent to the system of Hamiltonian equations. Indeed, we find

0 = ∂

∂q1
( f �L) = ∂ f q − ∂ f

∂q1
( f �= H1) ,

0 = ∂

∂q
( f �L) − ∂ f

∂

∂(∂ f q)
( f �L) = −∂ f q1 − ∂ f

∂q
,

while

∂

∂(∂ f1 q)
( f1�L) = ∂

∂(∂ f2q)
( f2�L)

is trivially satisfied.
The above construction can be thought of as a generalisation of the procedure described in [13] to obtain an infinite-

dimensional Lie algebra for the Kepler problem. As we will see below, this particular problem actually admits a finite 
dimensional Lie group, because the Poisson relations can be linearised by rescaling the Runge-Lenz vector.

4.3. Exterior derivative and Poisson bracket

We know from Lemma 3.13 that every critical field q satisfies δdL = 0. In the case of commuting flows, it has been 
shown that dL = 0 implies that the corresponding Hamiltonian functions are in involution [38,43]. In this section we 
generalise this property to the Lie group setting describing non-commuting flows.

For basis elements ξi, ξ j ∈ g (or ξi, ξ j ∈ h) we have

∂ξ j�∂ξi�dL[q] = ∂ξi L j(q,q1,q j) − ∂ξ j Li(q,q1,qi) − ∂[ξi ,ξ j ]�L[q]
= ∂ξi L j(q,q1,q j) − ∂ξ j Li(q,q1,qi) −

∑
k

Ck
i j Lk(q,q1,qk) .

A basis-independent form of this expression is obtained in terms of Lξ = ∂ξ� L[q]:
∂ν�∂ξ�dL[q] = ∂ξ Lν(q,q1, ∂νq) − ∂ν Lξ (q,q1, ∂ξ q) − L[ξ,ν](q,q1, ∂[ξ,ν]q) .

Hence if dL = 0 (as is typically the case on solutions) then

L[ξ,ν](q,q1, ∂[ξ,ν]q) = ∂ξ Lν(q,q1, ∂νq) − ∂ν Lξ (q,q1, ∂ξ q) . (4.15)

As we will argue below, Equation (4.15) is the Lagrangian form of the fundamental relation between the Poisson bracket of 
two Hamiltonian functions and the commutator of the corresponding vector fields.
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Regardless of how a Lagrangian 1-form L on a Lie group was constructed, we can find Hamiltonian functions corre-
sponding to L if L1 is of a suitable form. To do this, we generalise the construction from [38,43] to our setting. Assume that 
L is of the form

∂ξ1�L = L1(q,q1) = 1

2
q2

1 − V ,

∂ξi�L = Li(q,q1,qi) ,

(4.16)

and produces multi-time Euler-Lagrange equations of the form

q11 = f (q,q1) ,

qi = wξi (q,q1) .

The Hamiltonian function associated to Lξ , for ξ = ∑
k αkξk , is

Hξ (q, p) = pwξ (q, p) − Lξ (q, p, wξ (q, p)) ,

where wξ = ∑
k αk wk . Note that on solutions, we have wξ (q, p) = ∂ξ q. If the Lagrangian 1-form is constructed from varia-

tional symmetries as in Section 4.1, the Hamiltonian can also be written as

Hξ (q, p) = pwξ (q, p) −
∑

k

αk Fk(q, p) .

Proposition 4.10. The canonical Hamilton equations for Hξ are equivalent to the Euler-Lagrange equations, i.e. to the lifted action of 
wξ ∂q on (q, q1), under the identification p = q1 .

Note that this can be thought of as an inverse statement to Proposition 4.7. Accordingly, the proof will be quite similar, 
but we find it instructive to include it.

Proof of Proposition 4.10. If ξ = ξ1 this is nothing but the Legendre transform. Below we prove the result for ξ an arbitrary 
linear combination of ξ2, . . . , ξN . Then the general claim follows from linearity. We have

∂ Hξ

∂ p
= wξ + p

∂ wξ

∂ p
− ∂Lξ

∂q1
− ∂Lξ

∂qξ

∂ wξ

∂ p

= wξ +
(

p − ∂Lξ

∂qξ

)
∂ wξ

∂ p
− ∂Lξ

∂q1

and

∂ Hξ

∂q
= p

∂ wξ

∂q
− ∂Lξ

∂q
− ∂Lξ

∂qξ

∂ wξ

∂q

=
(

p − ∂Lξ

∂qξ

)
∂ wξ

∂q
− ∂Lξ

∂q
.

On solutions to the multi-time Euler-Lagrange equations this gives

∂ Hξ

∂ p
= wξ and

∂ Hξ

∂q
= −∂ξ p . �

Written in terms of the Hamiltonians, Equation (4.15) becomes

p∂[ξ,ν]q − H[ξ,ν](q, p) = ∂ξ (p∂νq − Hν(q, p)) − ∂ν

(
p∂ξ q − Hξ (q, p)

)
,

which simplifies to

−H[ξ,ν](q, p) = (∂ξ p)(∂νq) − ∂ξ Hν(q, p) − (∂ν p)(∂ξ q) + ∂ν Hξ (q, p)

= −∂ Hξ

∂q

∂ Hν

∂ p
− {Hξ , Hν} + ∂ Hν

∂q

∂ Hξ

∂ p
+ {Hν, Hξ }

= −{Hξ , Hν} .

Hence Equation (4.15) is a Lagrangian version of the Poisson relations between the integrals of the system (4.4). In summary, 
we have:
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Theorem 4.11. Let L be of the form (4.16) and Hξ the corresponding Hamiltonian functions. The following are equivalent:

(i) dL = 0 on solutions,
(ii) Equation (4.15) holds: L[ξ,ν] = ∂ξ Lν − ∂ν Lξ ,

(iii) H[ξ,ν] = {Hξ , Hν}.

4.4. Example: Kepler problem

The Kepler problem, governed by the Hamiltonian

H(q, p) = 1

2
p2 − 1

|q|
on T ∗R3, is superintegrable. Rather than the obvious S O (3) rotational symmetry, it actually possesses a symmetry group 
isomorphic to S O (4). The conserved quantities are the angular momentum � = q × p and the Runge-Lenz vector

A = p × � − q

|q| ,

see for example [16,17]
A Lax pair for the Kepler problem was proposed in [4] as a restriction of KdV flows (cf. also [40] for an explicit form of 

this Lax representation). However, this Lax pair does not seem suitable for deriving the integrals of the Kepler problem. A 
simpler, but at the same time more powerful Lax representation is given as follows. Define matrices Lα and M by

Lα =
(

qT αp pT αp
−qT αq −pT αq

)
, M =

(
0 |q|−3

−1 0

)
, (4.17)

where α is an arbitrary 3 × 3 matrix, which plays the role of the spectral parameter. Note that M does not depend on this 
matrix spectral parameter. An elementary calculation shows that:

Proposition 4.12. The equations of motion of the Kepler problem,

q̇ = p , ṗ = − 1

|q|3 ,

follow from the Lax equation L̇α = [M, Lα].

It follows from the Lax equation that any expression of the form

tr(Lα Lβ Lγ · · · )
is an integral of the Kepler problem, for arbitrary choices of 3×3 matrices α, β, γ , · · · . In particular, tr(Lα), with α an 
arbitrary skew-symmetric matrix, yields the angular momentum vector � as integral. Curiously, the Hamiltonian H follows 
from the quantity tr(M Lα) with α = 1 taken to be the identity matrix. In fact, this quantity is by itself not an integral of 
the motion, but instead we have

d

dt
tr(M Lα) = d

dt

(
− 3

|q|
)

,

where the right-hand side stems from the derivative of the matrix M . Thus, we can deduce that

tr(M Lα) + 3

|q| = −2H

is an integral, which is the Hamiltonian up to a factor. It remains an open problem if the Runge-Lenz vector A arises from 
the Lax representation (4.17).

Using the same construction as for Hamiltonians in involution [43], we can construct a Lagrangian 1-form from these 
conserved quantities:

L1 = 1

2
|q1|2 + 1

|q| ,

L2 = q1 · q2 − �x = q1 · q2 − (q × q1) · x̂ ,

L3 = q1 · q3 − �y = q1 · q3 − (q × q1) · ŷ ,

L4 = q1 · q4 − �z = q1 · q4 − (q × q1) · ẑ ,
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L5 = q1 · q5 − Ax = q1 · q5 − |q1|2(q · x̂) + (q1 · x̂)(q1 · q) + q · x̂

|q| ,

L6 = q1 · q6 − A y = q1 · q6 − |q1|2(q · ŷ) + (q1 · ŷ)(q1 · q) + q · ŷ

|q| ,

L7 = q1 · q7 − Az = q1 · q7 − |q1|2(q · ẑ) + (q1 · ẑ)(q1 · q) + q · ẑ

|q| ,

where A = (Ax, A y, Az), � = (�x, �y, �z) and {x̂, ŷ, ̂z} is the Cartesian orthonormal basis. The multi-time Euler-Lagrange 
equations are given by Q i = 0 for 1 ≤ i ≤ 7, where

Q 1 = q11 + q

|q|3 ,

Q 2 = q2 − x̂ × q ,

Q 3 = q3 − ŷ × q ,

Q 4 = q4 − ẑ × q ,

Q 5 = q5 − 2(q · x̂)q1 + (q1 · q)x̂ + (q1 · x̂)q ,

Q 6 = q6 − 2(q · ŷ)q1 + (q1 · q) ŷ + (q1 · ŷ)q ,

Q 7 = q7 − 2(q · ẑ)q1 + (q1 · q)ẑ + (q1 · ẑ)q .

By cross-differentiating we can verify that ∂ξ2 , . . . , ∂ξ7 (and hence ξ2, . . . , ξ7) satisfy the following Lie algebra relations:

[ξi, ξ j] j = 2 3 4 5 6 7
i = 2 0 −ξ4 ξ3 0 −ξ7 ξ6

3 0 −ξ2 ξ7 0 −ξ5
4 0 −ξ6 ξ5 0
5 0 2Hξ4 + 2�zξ1 −2Hξ3 − 2�yξ1
6 0 2Hξ2 + 2�xξ1
7 0

If we replace ξ5, ξ6, ξ7 by

ν5 = ξ5√−2H
+ Axξ1√−2H

,

ν6 = ξ6√−2H
+ A yξ1√−2H

,

ν7 = ξ7√−2H
+ Azξ1√−2H

,

we can recover from this table the standard Lie algebra relations of so(4). Hence it is natural to define the Lagrangian 
1-form L on R × S O (4) by ∂ξi� L = Li .

Using the properties of the triple product, the coefficients Pij = ∂ξ j� ∂ξi� dL are obtained by an elementary calculation. 
We find for example

P23 = ∂ξ2 L3 − ∂ξ3 L2 − [∂ξ2 , ∂ξ3 ]� L

= q12(q3 − ŷ × q) + q1(q32 − ŷ × q2)

− q13(q2 − x̂ × q) − q1(q23 − x̂ × q3)

+ q1(q23 − q32 − ẑ × q)

= (q12 − x̂ × q1)(q3 − ŷ × q) − (q13 − ŷ × q1)(q2 − x̂ × q) ,

which is a double zero on solutions. In general we find that for 2 ≤ i, j ≤ 7,

P1i = ∂ξ1 Li − ∂ξi L1 − [∂ξ1 , ∂ξi ]� L

= Q 1 Q i

and
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Pij = ∂ξi L j − ∂ξ j Li − [∂ξi , ∂ξ j ]� L

= Q j∂ξ1 Q i − Q i∂ξ1 Q j ,

so all Pij have a double zero on solutions.
On the Hamiltonian side one can check that indeed H is in involution with each of the components of � and A. In 

addition, we have the following relations

{�i, � j} = −εi jk�k ,

{Ai, � j} = −εi jk Ak ,

{Ai, A j} = 2εi jk H�k ,

{H, ·} = 0 ,

where εi jk is the totally anti-symmetric tensor with εi jk = 1 (see e.g. [16, Sec. 9–7], but beware that we use the opposite sign 
convention for the Poisson bracket). These Poisson brackets reflect the commutation relations between the corresponding 
vector fields, as found above. There are several possible choices of three independent integrals in involution, which make 
the Kepler problem into a Liouville integrable system, for example (H1, �i, |�|2), (H1, �i, Ai), or (H1, �i, |A|2).

4.5. Example: Calogero-Moser system

The Calogero-Moser (CM) system is governed by the Hamiltonian

H(q, p) = 1

2
|p|2 + 1

2

n∑
β=1

β−1∑
α=1

1

(qα − qβ)2
,

see for example [9,26,29]. Introducing the notation

F (q) =
⎛⎝∑

α �=1

(q1 − qα)−3, . . . ,
∑
α �=n

(qn − qα)−3

⎞⎠
we can write this as

H(q, p) = 1

2
|p|2 + 1

2
F (q) · q .

Noting that ∂
∂q (F (q) · q) = −2F (q) we find the equations of motion q̈ = F (q)

The CM system possesses a sequence of conserved quantities I j , containing H as I2, which are pairwise in involution. In 
addition, there exist conserved quantities K j , which make the system superintegrable [45]. These conserved quantities can 
be constructed from the system’s Lax pair, consisting of the n × n matrices L and M with entries

L =

⎛⎜⎜⎜⎜⎝
p1

i
q1−q2

. . . i
q1−qn

i
q2−q1

p2 . . . i
q2−qn

...
...

. . .
...

i
qn−q1

i
qn−q2

. . . pn

⎞⎟⎟⎟⎟⎠ ,

M =

⎛⎜⎜⎜⎜⎝
−∑

k �=1
i

(q1−qk)
2

i
(q1−q2)2 . . . i

(q1−qn)2

i
(q2−q1)2 −∑

k �=2
i

(q2−qk)
2 . . . i

(q2−qn)2

...
...

. . .
...

i
(qn−q1)2

i
(qn−q2)2 . . . −∑

k �=n
i

(q1−qk)
2

⎞⎟⎟⎟⎟⎠ ,

and the additional matrix N = diag(q1, . . . , qn). They are

I j = 1

j
tr(L j)

and

K j = tr(N L j−1) tr(L) − tr(L j) tr(N) .
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Denote e = (1, . . . , 1). As a minimal example to illustrate our framework, we consider only three non-commuting Hamil-
tonians,

I2(q, p) = H(q, p) ,

I1(q, p) = e · p ,

K2(q, p) = (q · p)(e · p) −
(
|p|2 + F (q) · q

)
(e · q) .

We have {I2, K1} = 0, {I2, K2} = 0, and {I1, K2} = 2nH − I2
1, hence we are dealing with nonlinear Poisson relations.

Let h be the space of functions of I1, I2, K2. As in Section 4.2.1 we define L by

f �L = q1 · ∂ f q − f

for f ∈ h. In particular, setting ∂1 = ∂H , ∂2 = ∂I1 , and ∂3 = ∂K2 (such that ∂1 corresponds to the flow of the Calogero-Moser 
equation itself), we have

L1 := H�L = 1

2
|q1|2 − 1

2
F (q) · q ,

L2 := I1�L = q1 · (q2 − e) ,

L3 := K2�L = q1 · q3 − (q · q1)(e · q1) +
(
|q1|2 + F (q) · q

)
(e · q) .

Note that these are just three components of the 1-tensor L on the infinite-dimensional space g̃. The multi-time Euler-
Lagrange equations yield

q11 = F (q) ,

q2 = e ,

q3 = (q · q1)e + (e · q1)q − 2(e · q)q1 .

The coefficients of dL corresponding to the generators ∂1, ∂2, and ∂3 are

∂1L2 − ∂2L1 = (q2 − e) · (q11 − F (q)) ,

∂1L3 − ∂3L1 = (q11 − F (q)) · (q3 + 2(e · q)q1 − (q · q1)e − (e · q1)q) ,

and

∂2L3 − ∂3L2 + {I1, K2}�L
= q12 · (q3 + 2(e · q)q1 − (q · q1)e − (e · q1)q)

− (q2 − e) ·
(

q13 + 2q11(e · q) + q1(e · q1) − e|q1|2 − e(q · q11) − q(e · q11)
)

+ (q2 − e) · (2(e · q)(q11 − F (q)) − (q · (q11 − F (q)))e − (e · (q11 − F (q)))q)

+ q1(q32 − q23 + ∂{I1,K2}q) ,

where the last term vanishes because it equals −q1([∂I1 , ∂K2 ] − ∂{I1,K2})q = 0. Hence we see that all three coefficients attain 
a double zero on solutions to the multi-time Euler-Lagrange equations.

Remark 4.13. Looking only at H , I1 and K2, one may argue that we can linearise the Poisson relations by rescaling the 
Hamiltonians, in which case we would not need the extension discussed in Section 4.2.1 and we could give this small 
system a multiform structure on a finite-dimensional Lie group. Indeed, taking the following particular combinations

H(q, p) = 1

2
|p|2 + 1

2
F (q) · q ,

I(q, p) = 1

2
I1(q, p)2 = 1

2
(e · p)2 ,

K (q, p) = K2(q, p)

I1
= q · p −

(
|p|2 + F (q) · q

) e · q

e · p
,

the Poisson brackets between pairs of these functions are given by {H, I} = {H, K } = 0 and {I, K } = 2I − 2nH so that the 
corresponding vector fields form a Lie algebra. However, this seems rather specific to the small set of functions H , I1 and K2. 
We have not been able to establish such a linearisation procedure in general for a large collection of conserved quantities 
I j , K j for the CM model.
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5. Lagrangian 2-forms on Lie groups

So far we have been dealing with Lagrangian 1-forms, which describe ODEs. Now we turn our attention to field theory, 
which in the simplest case is described by Lagrangian 2-forms.

Consider a first order Lagrangian 2-form L[v] on a Lie group G defined by

∂ξ j�∂ξi�L[v] = Li j(v, v1, . . . , vn) ,

where vi = ∂ξi v are the derivatives of the field v : G → Q along a basis vector ξi of the Lie algebra of G . In this case 
the multi-time Euler-Lagrange equations will be different from their counterparts for commuting flows. We adopt a similar 
approach as in Theorem 4.1 to obtain the following.

Theorem 5.1. Let L be a 2-form depending on the first jet of v. The variational principle of Definition 3.12 is equivalent to

∂L jk

∂v j
+ ∂Lki

∂vi
= 0 , (5.1a)

∂L jk

∂v�

= 0 for � �= j,k , (5.1b)

δ jk L jk

δv
+

∑
�

C�
jk p� = 0 , (5.1c)

where p j = ∂Li j
∂vi

, which is well-defined (i.e. independent of i) in view of Equation (5.1a), and

δ jk

δv
= ∂

∂v
− D j

∂

∂v j
− Dk

∂

∂vk
.

Proof. Fix i < j < k and consider the function Pijk[v] = ∂ξk� ∂ξ j� ∂ξi� dL[v] of the free jet bundle. Then

Pijk = Di(∂ξk�∂ξ j�L) − ∂ξk�∂[ξi ,ξ j ]�L+ �i jk

= Di L jk +
∑

�

C�
jk Li�+ �i jk ,

where �i jk denotes all terms obtained by cyclicly permuting i, j, k in the previous terms.
The vertical exterior derivative of Pijk (which gives the multi-time Euler-Lagrange equations using Lemma 3.13) can be 

expanded into a sum over index-strings:

δPijk =
∑
I

AIδvI

with

AI = ∂ Pijk

∂vI

.

Using Lemma 3.14 we can project to the quotiented jet bundle and write δPijk as a sum over independent δv I , where I
ranges over the set of multi-indices:

δPijk =
∑

I

B Iδv I ,

where the B I are given by Equation (3.15). This allows us to find the multi-time Euler-Lagrange equations in terms of the 
Li j as follows.

We have

Bii =
˜∂ Pijk

∂vii
= ∂L jk

∂vi
.

Setting this equal to zero, we obtain Equation (5.1b). Similarly, the equations given by B jj and Bkk give the same equation 
with the indices permuted.

For � /∈ {i, j, k}, the coefficients Bi� (in the case where � > i) and B�i (in the case where � < i) are given by

˜∂ Pijk = ∂L jk
.

∂v�i ∂v�
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Setting this to zero is again equivalent to Equation (5.1b).
We next consider

Bij =
˜∂ Pijk

∂vij
+
˜∂ Pijk

∂v ji
= ∂Lki

∂vi
+ ∂L jk

∂v j
,

which leads to Equation (5.1a), as do B jk = 0 and Bik = 0. Modulo equation (5.1a) we can define p j = ∂Li j
∂vi

.
Next, we find

Bi =
˜∂ Pijk

∂vi
+

∑
�<m

Ci
�m

˜∂ Pijk

∂vm�

= ∂L jk

∂v
+ Di

∂L jk

∂vi
+ D j

∂Lki

∂vi
+ Dk

∂Li j

∂vi
+

∑
�

(
C�

i j
∂Lk�

∂vi
+ C�

jk
∂Li�

∂vi
+ C�

ki

∂L jk

∂vi

)
+ Ci

i j
∂Lki

∂v j
+ Ci

ik

∂L jk

∂vk
+ Ci

jk
∂Lki

∂vk
.

By applying equations (5.1b) and (5.1a) to the above expression, we obtain that

Bi = δ jk L jk

δv
+

∑
�

C j
jk p� ,

which we set equal to zero to obtain Equation (5.1c). The same equation follows from B j = 0 and Bk = 0.
The equations B∅ = 0 and B� = 0 for � /∈ {i, j, k} are consequences of Equations (5.1b)–(5.1c). �

Remark 5.2 (On the stepped surface approach). In the commutative case G =RN the multi-time Euler-Lagrange equations can 
be obtained by a stepped surface approach [39]. This consists in approximating any given surface by a stepped surface, i.e. a 
piecewise flat surface where each flat piece is tangent to two coordinate directions. On a flat piece tangent to ∂ti and ∂t j the 
action integral only sees the coefficient Li j of the Lagrangian two-form. This leads to the Euler-Lagrange equation δi j Li j

δv I
= 0. 

The boundary terms that occur where different flat pieces meet, lead to the other multi-time Euler-Lagrange equations.
In the non-commutative case this approach breaks down. If ξi and ξ j do not commute, then there may not exist any

surface that is tangent to ∂ξi and ∂ξ j . Indeed, Frobenius’ theorem indicates that such a surface only exists if [∂ξi , ∂ξ j ] lies in 
the span of ∂ξi and ∂ξ j . Hence we cannot in general reproduce the essential property that individual pieces of a stepped 
surface only see one coefficient of the Lagrangian 2-form.

Irrespective of whether we are in the commutative or non-commutative case, the integral of a (Lagrangian) 2-form over 
a 2-dimensional surface is well-defined. Given a surface one can always endow it with local coordinates, say x and y, and 
use the coordinate functions to pull back the 2-form to a subset of R2. This is the canonical way of defining the integral of 
a differential form. What we cannot do in general, is use the differential operators ∂x and ∂y as basis elements of the Lie 
algebra g, because ∂x and ∂y will not in general be left-invariant under G .

5.1. Example on S E(2)

In this subsection we consider an example of a Lagrangian 2-form with the Lie group S E(2) as multi-time. We parame-
terise S E(2) by (x, y, θ), such that its multiplication is given by Equation (3.3). Since we have global coordinates, we could 
take as multi-time the Euclidean space spanned by ∂x, ∂y, ∂θ , but in order to illustrate the non-commutative aspects of 
Lagrangian multiform theory, we consider a basis of left-invariant vector fields on S E(2), given by

∂1 = cos θ∂x + sin θ∂y ,

∂2 = − sin θ∂x + cos θ∂y ,

∂3 = ∂θ .

They satisfy

[∂i, ∂ j] =
3∑

k=1

Ck
i j∂k

with

C1 = C2 = −1, C1 = C2 = +1,
32 13 23 31
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and all other structure constants equal to zero.
We consider a Lagrangian 2-form L[v] which describes harmonic functions and the rotational symmetry of the notion 

of harmonicity. It is defined by ∂ j� ∂i� L = Li j with

L12 = 1

2
v2

1 + 1

2
v2

2 ,

L13 = v2 v3 − y(θ)v1 v2 − 1

2
x(θ)(v2

1 − v2
2) ,

L23 = −v1 v3 − x(θ)v1 v2 + 1

2
y(θ)(v2

1 − v2
2) ,

where x(θ) = x cos θ + y sin θ and y(θ) = −x sin θ + y cos θ . Note that L13 and L23 are non-autonomous and that we have

∂3x(θ) = y(θ) , ∂1x(θ) = 1 , ∂2x(θ) = 0 ,

∂3 y(θ) = −x(θ) , ∂1 y(θ) = 0 , ∂2 y(θ) = 1 .

The multi-time Euler-Lagrange equations of type (5.1a) are trivially satisfied. Those of type (5.1b) are

0 = δ13L13

δv2
= v3 − y(θ)v1 + x(θ)v2 ,

0 = δ23L23

δv1
= −v3 − x(θ)v2 + y(θ)v1 ,

so we find the multi-time Euler-Lagrange equation

v3 = −x(θ)v2 + y(θ)v1 . (5.2)

Differentiating this equation by ∂2 and ∂1, we have, respectively,

v32 = y(θ)v12 + v1 − x(θ)v22 ,

v31 = y(θ)v11 − v2 − x(θ)v21 .

Since vij = ∂ j∂i v = ∂i∂ j v + [∂ j, ∂i]v = v ji + ∑
k Ck

ji vk it follows that

v23 = (y(θ)v12 + v1 − x(θ)v22) − v1 = y(θ)v12 − x(θ)v22 , (5.3)

v13 = (y(θ)v11 − v2 − x(θ)v21) + v2 = −x(θ)v12 + y(θ)v11 . (5.4)

There are three multi-time Euler-Lagrange equations of type (5.1c). The first one is

0 = δ12L12

δv
= −v11 − v22 , (5.5)

because all the relevant structure constants are zero. The second one is

0 = δ13L13

δv
+ C2

13
∂L12

∂v1
= δ13L13

δv
− ∂L12

∂v1

= (−v23 + y(θ)v12 + x(θ)v11 + v1) − v1

= (−v23 + y(θ)v12 − x(θ)v22) + x(θ)(v22 + v11) ,

which is a consequence of equations (5.3) and (5.5). The third one is

0 = δ23L23

δv
+ C1

23
∂L21

∂v2
= δ23L23

δv
− ∂L21

∂v2

= (v13 + x(θ)v12 + y(θ)v22 + v2) − v2

= (v13 + x(θ)v12 − y(θ)v11) + y(θ)(v11 + v22) ,

which is a consequence of equations (5.4) and (5.5).
The coefficient P123 of exterior derivative of L is

P123 = D1 L23 −
∑

�

C�
12L�3+ �123

= D1 L23+ �123

= (v11 + v22)(−v3 + y(θ)v1 − x(θ)v2) + v1(v13 − v31) + v2(v23 − v32) .
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Due to the Lie algebra structure, the last two terms cancel against each other. The remaining term is a double zero on the 
multi-time Euler-Lagrange equations.

Solutions to the multi-time Euler-Lagrange equations (5.2)–(5.5) are harmonic functions with their rotations parame-
terised by θ . For example, we could take

v(x, y, θ) = exp(x(θ)) sin(y(θ)) .

Its derivatives are

∂1 v = exp(x(θ)) sin(y(θ)) = v ,

∂2 v = exp(x(θ)) cos(y(θ)) ,

∂3 v = y(θ)v1 − x(θ)v2 ,

and similarly for higher derivatives. It is an easy calculation to see that v satisfies the Euler-Lagrange equations.

5.2. Infinite hierarchy example

In this section, we construct an example of a multi-time with non-commuting vector fields by realising the idea initially 
proposed in [27]. We use the approach of [11] and [12] to produce an example of a generalisation of the AKNS hierarchy 
[1] with non-commuting flows.

Let us first recall the main ingredients of the description in the commutative case, i.e. the case where the multi-time is 
simply RN . In this case, the Lagrangian 2-form of interest is of the form

L =
∑
m<n

Lmn dtm ∧ dtn

and the Lagrangian coefficients Lmn are most conveniently assembled into a generating Lagrangian multiform, which is the 
following formal series in λ−1, μ−1,

L(λ,μ) =
∞∑

m,n=0

Lmn λ−m−1μ−n−1 , (5.6)

where Lmn = −Lnm . In [12] an expression for a large class of generating Lagrangian multiforms was introduced. In the 
present work, we focus on the following choice

L(λ,μ) = tr
(
ϕ(μ)−1∂λϕ(μ) J − ϕ(λ)−1∂μϕ(λ) J

) − 1

λ − μ
tr

(
Q (λ)Q (μ) − J 2

)
(5.7)

and will explain how to extend it to a non-commutative setting. A few definitions are in order. The matrix J is a constant el-
ement of the underlying Lie algebra g. The object ϕ(λ) is an element of the group with (matrix) Lie algebra g ⊗λ−1C[[λ−1]], 
that is a matrix of the form

ϕ(λ) = 1 +
∑
n≥1

ϕ(n)λ−n , (5.8)

and

Q (λ) = ϕ(λ) J ϕ(λ)−1 .

The group element ϕ(λ), or the algebra element Q (λ), contains the dynamical variables (fields) of the hierarchy and defines 
the phase space. The generating derivation ∂λ is given by the formal series

∂λ =
∞∑

n=0

∂tnλ
−n−1 .

One can check that (5.7) is of the form (5.6) and derive the Lagrangian coefficients Lmn in terms of the dynamical variables. If 
we choose g = sl(2) and take J = −iσ3, (5.7) produces all the coefficients for a Lagrangian multiform of the AKNS hierarchy 
[11,12]. Other choices of g would produce multicomponent generalisations of the AKNS hierarchy.

The multi-time Euler-Lagrange equation associated to (5.7) takes the form of a generating Lax equation,

∂λ Q (μ) =
[

1

λ − μ
Q (λ), Q (μ)

]
. (5.9)
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This is the central equation obtained in [15], written here in generating form (see also [28]). Of course, an important result 
is that the flows of the hierarchy commute, meaning that the generating vector fields satisfy [∂λ, ∂μ] = 0 or, in other words 
that [∂tn , ∂tm ] = 0 for all n, m ≥ 0.

In this construction, there is a freedom in choosing the matrix J defining the hierarchy. The effects of choosing another 
element of the underlying Lie algebra have been studied in detail in [12]. With this is mind, the idea promoted in [27]
consists in attaching a hierarchy of vector fields to each possible choice of matrix J and to consider the resulting hierarchies 
assembled in a single, enlarged hierarchy with not necessarily commuting vector fields. With the tools developed in the 
present paper, we are in a position to realise this idea in the context of Lagrangian multiforms as follows.

Let us consider the generators J1, . . . , J N of a matrix Lie algebra g, satisfying

[ Ja, Jb] =
∑

c

Cc
ab Jc . (5.10)

As in Equation (5.8), we denote by ϕ an element of the group corresponding to the half loop algebra g ⊗ λ−1C[[λ−1]] and 
define

Q a(λ) = ϕ(λ) Ja ϕ(λ)−1 , a = 1, . . . , N .

These elements Q a(λ) contain the phase space variables of our hierarchy. To each a ∈ {1, . . . , N}, we associate a generating 
vector field

∂λ,a =
∞∑

n=0

∂n,aλ
−n−1 , (5.11)

which acts on our phase space. Note that we wrote ∂n,a on purpose and not ∂tn,a since in general these vector fields do 
not commute and cannot be thought of as derivatives with respect to time coordinates tn,a . Instead, we will construct a 
hierarchy where these generating vector fields satisfy the Lie algebra relations

[∂λ,a, ∂μ,b] =
∑

c

Cc
ab

∂λ,c − ∂μ,c

λ − μ
. (5.12)

This should be understood as the generating form for the following algebra relations

[∂n,a, ∂m,b] =
∑

c

Cc
ab ∂n+m,c , n,m ≥ 0 . (5.13)

We can now define a generalisation of (5.7) to the present context as follows. Define the Lagrangian 2-form L by 
∂μ,b� ∂λ,a� L = Lab(λ, μ) where

Lab(λ,μ) = tr
(
ϕ(μ)−1∂λ,aϕ(μ) Jb − ϕ(λ)−1∂μ,bϕ(λ) Ja

) − 1

λ − μ
tr (Q a(λ)Q b(μ) − Ja Jb) . (5.14)

The following lemma ensures that Lab(λ, μ) can be expanded as in (5.6),

Lab(λ,μ) =
∞∑

m,n=0

Lmn
ab λ−m−1μ−n−1 . (5.15)

Lemma 5.3. The expression tr (Q a(λ)Q b(μ) − Ja Jb) in (5.14) is divisible by λ−1 − μ−1

Proof. We have

tr (Q a(λ)Q b(μ) − Ja Jb) = tr
(
ϕ(λ) Jaϕ(λ)−1ϕ(μ) Jbϕ(μ)−1 − Ja Jb

)
= tr

((
ϕ(μ)−1ϕ(λ) − 1

)
Jaϕ(λ)−1ϕ(μ) Jb

+ Ja(ϕ(λ)−1ϕ(μ) − 1) Jb
)

.

Now it remains to show that (ϕ(μ)−1ϕ(λ) − 1) and (ϕ(λ)−1ϕ(μ) − 1) are divisible by λ−1 − μ−1. We can expand 
ϕ(λ)−1ϕ(μ) as

ϕ(λ)−1ϕ(μ) =
∑
n≥0

n∑
j=0

Fn, jλ
− jμ−(n− j) , (5.16)

where F0,0 = 1. Setting λ = μ in equation (5.16) we find that for all n ≥ 1
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n∑
j=0

Fn, j = 0 .

Hence

ϕ(λ)−1ϕ(μ) =
∑
n≥0

n∑
j=0

Fn, j(λ
− jμ−(n− j) − μn) + 1

=
∑
n≥0

n∑
j=0

Fn, jμ
−(n− j)(λ− j − μ− j) + 1 .

Similarly we also find that (ϕ(μ)−1ϕ(λ) − 1) is divisible by λ−1 − μ−1. �
The multi-time Euler Lagrange equations for L so defined produce a non-commutative version of the generating Lax 

equation (5.9), controlled by the Lie algebra with Lie bracket given by (5.10). Indeed, we have the following

Proposition 5.4. The multi-time Euler Lagrange equations for L take the form

∂λ,a Q b(μ) =
[

Q a(λ) − Q a(μ)

λ − μ
, Q b(μ)

]
= 1

λ − μ

(
[Q a(λ), Q b(μ)] −

∑
c

Cc
ab Q c(μ)

)
.

(5.17)

Proof. Using the fact that partial derivatives of a trace are calculated as ∂
∂ BT tr(ABC) = C A, we find

δLab(λ,μ)

δϕ(μ)T
= [

Jb,ϕ(μ)−1∂λ,aϕ(μ)
]
ϕ(μ)−1 + 1

λ − μ
ϕ(μ)−1 [Q a(λ), Q b(μ)]

and

pb(μ) := ∂Lab(λ,μ)

∂(∂λ,aϕ(μ)T )
= Jbϕ(μ)−1 .

The multi-time Euler-Lagrange equations of types (5.1a) and (5.1b) are trivially satisfied. Equation (5.1c) reads

0 = δLab(λ,μ)

δϕ(μ)
+

∑
c

Cc
ab

λ − μ
pc(μ) . (5.18)

Hence we find

0 = [
Jb,ϕ(μ)−1∂λ,aϕ(μ)

]
ϕ(μ)−1 + 1

λ − μ
ϕ(μ)−1 [Q a(λ), Q b(μ)] −

∑
c

Cc
ab

λ − μ
Jcϕ(μ)−1

= [
Jb,ϕ(μ)−1∂λ,aϕ(μ)

]
ϕ(μ)−1 + 1

λ − μ
ϕ(μ)−1

(
[Q a(λ), Q b(μ)] −

∑
c

Cc
ab Q c(μ)

)

= [
Jb,ϕ(μ)−1∂λ,aϕ(μ)

]
ϕ(μ)−1 + 1

λ − μ
ϕ(μ)−1 [Q a(λ) − Q a(μ), Q b(μ)] , (5.19)

where the second term can be expanded in negative powers of λ and μ because Q a(λ) − Q a(μ) is divisible by λ−1 − μ−1. 
As a consequence we find

∂λ,a Q b(μ) = ∂λ,aϕ(μ) Jbϕ(μ)−1 − ϕ(μ) Jbϕ(μ)−1∂λ,aϕ(μ)ϕ(μ)−1

= ϕ(μ)
[
ϕ(μ)−1∂λ,aϕ(μ), Jb

]
ϕ(μ)−1

= 1

λ − μ
[Q a(λ) − Q a(μ), Q b(μ)] (5.20)

as claimed. �
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Equation (5.17) is a non-commutative generalisation of the generating Lax equation (5.9) in the sense that the latter is 
obtained in the special case where we consider only one generator Ja (which would be proportional to σ3 in the historical 
example of [15]). In our more general context, we have N copies of (5.9), obtained when b = a, which are coupled with 
each other by the remaining equations when b �= a.

A direct calculation shows that (5.17) implies

[∂λ,a, ∂μ,b]Q c(ν) =
∑

d

Cd
ab

∂λ,d − ∂μ,d

λ − μ
Q c(ν) ,

so that we have a realisation of the Lie algebra (5.12) as desired. In fact, the calculations show the stronger result that the 
following deformation of the usual zero curvature equations for a hierarchy holds. Let us introduce

Va(λ, ν) = Q a(λ)

λ − ν
. (5.21)

The formal series expansion in this expression is understood as

Va(λ, ν) =
∞∑

n=0

1

λn+1 V (n)
a (ν) , where V (n)

a (ν) =
n∑

k=0

νk Q (n−k)
a . (5.22)

This defines the Lax matrices V (n)
a (ν) of the hierarchy, which are polynomials in ν , and in terms of which we have:

Proposition 5.5. The following non-commutative zero curvature equation, in generating form, holds:

∂λ,a Vb(μ,ν) − ∂μ,b Va(λ, ν) + [Vb(μ,ν), Va(λ, ν)] =
∑

c

Cc
ab

V c(λ, ν) − V c(μ,ν)

λ − μ
. (5.23)

The coefficient of λ−n−1μ−m−1 gives the set of zero curvature equations for the non-commutative hierarchy,

∂n,a V (m)

b (ν) − ∂m,b V (n)
a (ν) + [V (m)

b (ν), V (n)
a (ν)] = −

∑
c

Cc
ab V (m+n)

c (ν) , (5.24)

where n, m ≥ 0.

Proof. Equation (5.23) is obtained by direct calculation from Equations (5.17) and (5.21).
The coefficient of λ−n−1μ−m−1 in Equation (5.23) gives Equation (5.24). On the left hand side this is obvious, whereas 

on right hand side we use

1

λ − μ
(V c(λ, ν) − V c(μ,ν)) = λ−1μ−1

μ−1 − λ−1

∞∑
n=0

(
λ−n−1 − μ−n−1) V (n)

c (ν)

=
∞∑

n=0

(
−λ−n−1μ−1 − λ−nμ−2 − . . . − λ−1μ−n−1

)
V (n)

c (ν)

= −
∞∑

m,n=0

λ−n−1μ−m−1 V (m+n)
c (ν) . �

Remark 5.6. The terminology “non-commutative zero curvature equations” is used to suggest that our Equations (5.23) and 
(5.24) generalise the usual zero curvature equations in the commutative case. The latter have the interpretation of encoding 
the flatness of a (Lax) connection or, equivalently, the commutativity of the components of a covariant derivative. On the 
other hand, Equations (5.23) and (5.24) are not meant to be interpreted as such a flatness condition. However, they do 
possess a beautiful interpretation in terms of (generating) “covariant vector fields”, defined as

Dλ,a(ν) ≡ ∂λ,a − Va(λ, ν) .

We do not call these “covariant derivatives” because the vector fields ∂n,a should not be thought of as derivatives with 
respect to time variables tn,a , as already advocated above. Assuming the Lie algebra relations (5.12) hold, (5.23) is equivalent 
to

[Dλ,a(ν),Dμ,b(ν)] =
∑ Cc

ab

λ − μ

(
Dλ,c(ν) −Dμ,c(ν)

)
. (5.25)
c

29



V. Caudrelier, F. Nijhoff, D. Sleigh et al. Journal of Geometry and Physics 187 (2023) 104807
This is the generalisation to our (generating) non-commutative context of the following well-known fact. If one has com-
muting vector fields, say [∂x, ∂t] = 0, and a (Lax) connection U dx + V dt , then the flatness or zero curvature condition is 
equivalent to the commutativity of the covariant derivatives, [∂x − U , ∂t − V ] = 0. In our setting, with Lie algebra relations 
(5.12), the “non-commutative zero curvature equations” (5.23) are equivalent to the relations (5.25) on the “covariant vector 
fields” Dλ,a(ν) which realise once again the Lie algebra structure.

Remark 5.7. There is a different way of using the generating zero curvature equation (5.23) which was used in [27]. If we 
set λ = �, μ = �′ , ν = k, Q a(λ) = R� , Q b(μ) = R̃�′ , and [R�, ̃R�] = R̂� , and if we multiply (5.23) by (� −k)(�′ −k) and require 
that it holds identically in k, then we obtain the pair of equations (43) from [27]:

∂̃�′ R� − ∂� R̃�′ = − R̂� − R̂�′

� − �′ , (5.26a)

�′̃∂�′ R� − �∂� R̃�′ + [R�, R̃�′ ] + �′ R̂� − �R̂�′

� − �′ = 0 . (5.26b)

In [27], the commutative analogue of (5.26) led to a connection with the Wess-Zumino-Witten sigma model and it is an 
intriguing problem to cast (5.26) into a non-commutative version of this connection.

Proposition 5.8 (Closure relation). The form L with coefficients (5.14) satisfies the closure relation. On the equations of motion (5.17), 
we have

∂ν,cLab(λ,μ) + ∂μ,bLca(ν,λ) + ∂λ,aLbc(μ,ν) = 0 . (5.27)

The proof is given in Appendix A.
In the rest of this section we restrict our attention to g = sl(2) to illustrate how the usual (unreduced) nonlinear 

Schrödinger equation of the AKNS hierarchy sits within our non-commutative extension. It is enough to consider (5.24)
for n, m ∈ {0, 1, 2}. To avoid confusing notations on the vector fields that would arise if we also used a, b ∈ {1, 2, 3}, we pre-
fer to use the other common choice of a, b ∈ {x, y, z} for the labels associated to the basis elements of sl(2). Hence, instead 
of having vector fields such as ∂1,2 and ∂2,1 in Equation (5.11), we will have ∂1,y and ∂2,x . This shows more clearly what 
labels the level in the hierarchy and what labels the direction in the underlying Lie algebra. Let us emphasise again that 
x, y, z should not be thought of as actual coordinates, since in general the vector fields ∂n,x , ∂m,y and ∂k,z do not commute.

As a basis of sl(2) we choose

J x =
(

0 1
1 0

)
= σx , J y =

(
0 −i
i 0

)
= σy , J z =

(
1 0
0 −1

)
= σz ,

which gives us Cc
ab = 2iεabc where εabc is the totally antisymmetric tensor with εxyz = 1. We write the coefficients ϕ(n) of 

ϕ(λ) in (5.8) as

ϕ(n) =
(

An Bn

Cn Dn

)
.

Because we consider g = sl(2), we have detϕ = 1 which implies that D1 + A1 = 0 and D2 + A2 + A1 D1 − B1C1 = 0. We use 
this to eliminate D1 and D2. This gives us

Q (0)
x = σ1 , Q (1)

x =
(

B1 − C1 2A1
−2A1 C1 − B1

)
,

Q (2)
x =

(
B2 − C2 − A1(B1 + C1) A2

1 − B2
1 + 2A2

3A2
1 + 2B1C1 − C2

1 − 2A2 C2 − B2 + A1(B1 + C1)

)
,

Q (0)
y = σ2 , Q (1)

y =
(

i(B1 + C1) −2i A1
−2i A1 −i(B1 + C1)

)
,

Q (2)
y =

(−i(A1(B1 − C1) − B2 − C2) −i(A2
1 + B2

1 + 2A2)

i(3A2
1 + 2B1C1 + C2

1 − 2A2) i(A1(B1 − C1) − B2 − C2)

)
,

Q (0)
z = σ3 , Q (1)

z =
(

0 −2B1
2C1 0

)
,

Q (2)
z =

(
2B1C1 −2A1 B1 − 2B2

−2A1C1 + 2C2 −2B1C1

)
.
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We now spell out the content of (5.24) for the first three levels n, m = 0, 1, 2 and write the equations they entail on the 
dynamical variables A1, B1, C1. The level n = 0, m = 0 just gives the Lie algebra relations (5.10). At the level n = 0, m = 1, 
we have

∂0,a Q (1)

b + [Q (1)

b ,σa] = −
∑

c

Cc
ab Q (1)

c .

Looking at the possible cases for a, b, this gives

∂0,x A1 = C1 − B1 , ∂0,x B1 = −2A1 , ∂0,xC1 = 2A1 , (5.28a)

∂0,y A1 = −i(B1 + C1) , ∂0,y B1 = 2i A1 , ∂0,yC1 = 2i A1 , (5.28b)

∂0,z A1 = 0 , ∂0,z B1 = 2B1 , ∂0,zC1 = −2C1 . (5.28c)

In the standard AKNS case, at this first level we would only have (5.28c) corresponding to σz , which is easily integrated. 
Here, to integrate the full set of equations would require the use of the whole group S L(2). For the higher flows, the 
first few of which are described next, this becomes even more complicated. One can imagine that a version of the usual 
dressing method could be implemented which will require the use of the group corresponding to the loop algebra sl(2) ⊗
λ−1C[[λ−1]] but, contrary to the standard case, it is far from clear how explicitly the (seed) solutions can be constructed. 
This task is beyond the scope of the present paper.

The next levels are studied in detail in Appendix B. They lead to

∂1,b Q (1)
a + [Q (2)

b ,σa] = 0 , (5.29a)

∂2,a Q (1)

b − ∂1,a Q (2)

b + [Q (1)

b , Q (2)
a ] = 0 . (5.29b)

Equations (5.29) contain the required information to cast the (unreduced) NLS equation into our non-commutative exten-
sion. As derived in Appendix B, with B1 = − 1

2 q, C1 = 1
2 r, A1 = 1

2 p, we obtain

∂2,xq − 1

2
∂1,x∂1,zq + q∂1,x p = 0 , (5.30a)

∂2,xr − 1

2
∂1,x∂1,zr − r∂1,x p = 0 , (5.30b)

∂2,x p − 1

2
∂2

1,xq + p∂1,x p − 1

2
(q + r)∂1,xq = 0 , (5.30c)

as well as similar equations for ∂2,y

∂2,yq − 1

2
∂1,y∂1,zq + q∂1,y p = 0 , (5.31a)

∂2,yr + 1

2
∂1,y∂1,zr − r∂1,y p = 0 , (5.31b)

∂2,y p − i

2
∂2

1,yq + p∂1,y p + 1

2
(q − r)∂1,yq = 0 , (5.31c)

and for ∂2,z

∂2,zq − 1

2
∂2

1,zq + q2r = 0 , (5.32a)

∂2,zr + 1

2
∂2

1,zq − qr2 = 0 , (5.32b)

∂2,z p − 1

2
r∂1,zq − 1

4
∂1,z(∂1,x + i∂1,y)q + pqr = 0 . (5.32c)

When taken on their own, Equations (5.32a)-(5.32b) produce the unreduced NLS system. This is seen by setting 2∂2,z =
i∂T , ∂1,z = i∂X to obtain

i∂T q + ∂2
X q + 2qrq = 0 , −i∂T r + ∂2

X r − 2rqr = 0 .

The familiar nonlinear Schrödinger equation,

iqT + qX X ± 2|q|2q = 0,

is obtained by applying the reduction r = ±q∗ . Equations (5.32a)–(5.32b) are the lowest nonlinear ones in the usual AKNS 
hierarchy of vector fields ∂n,z associated to J z = σz . In our construction, it is now part of the larger set of equations 
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(5.30)-(5.32) which play the similar role of being the lowest nonlinear equations in our non-commutative AKNS hierarchy 
of vector fields ∂n,a . All these equations, including their higher counterparts contained in (5.24), derive from the multi-time 
Euler Lagrange equations for our multiform L. It is important to note that, unlike the commutative case where one can 
consider (5.32a)-(5.32b) without any reference to the entire hierarchy, it is not clear at this stage whether the truncated 
system (5.30)-(5.32) can be studied as a set of equations without the rest of the equations (5.24) in the hierarchy. This 
is because of the (infinite dimensional) Lie algebra relations (5.13) on the vector fields. If a �= b, this may mean that the 
“differential consequences” of (5.30)-(5.32) call upon higher equations not present in the truncation. This is an intriguing 
new feature which is not present in the usual case where a = b = z and the flows of different levels commute. Its full 
understanding requires to investigate the solutions of the non-commutative AKNS hierarchy. As mentioned above, this is left 
for future work.

6. Conclusions

The main purpose of this work has been to extend the ideas of Lagrangian multiforms and pluri-Lagrangian systems to 
apply to non-commuting flows. The resulting theory of Lagrangian multiforms on Lie groups allows us to capture the full 
symmetry group of a system in the variational description, no matter if this group is abelian or not. To our knowledge, this 
is the first attempt at a Lagrangian theory of Lie group actions on manifolds.

One application of the theory of Lagrangian multiforms on Lie groups is to provide a variational description of superinte-
grable systems. On the other hand, the development of this theory shows that the notion of Lagrangian multiforms should 
not be constrained to the context of integrable systems. Indeed, it can be applied to any Lagrangian system with symmetries 
and captures both the dynamical system and its symmetries in a single variational principle.

Some questions remain on the topic of non-commuting hierarchies of PDEs. These include the proper interpretation of 
a differential form in generating form L(λ, μ) and the derivation of exact solutions to the non-commutative generalisation 
of the AKNS hierarchy, possibly using a version of the dressing method. An additional topic for future research, given that 
previous results have shown a remarkable similarity between the continuous and discrete theories of Lagrangian multiforms, 
is to develop a theory discrete Lagrangian multiforms for non-commuting maps and partial difference equations.
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Appendix A. Proof of Proposition 5.8

The coefficients of dL are generated by

∂ν,cLab(λ,μ)+ � ,

where � denotes the two terms obtained by cyclic permutations of (a, b, c) and (λ, μ, ν). We write Lab(λ, μ) = Kab(λ, μ) −
Vab(λ, μ) with

Kab(λ,μ) = tr
(
ϕ(μ)−1∂λ,aϕ(μ) Jb − ϕ(λ)−1∂μ,bϕ(λ) Ja

)
,

Vab(λ,μ) = 1

λ − μ
tr (Q a(λ)Q b(μ) − Ja Jb) ,

and analyse the contributions in turn. Using the Euler-Lagrange equation (5.19) and the cyclic property of the trace repeat-
edly, we find

∂ν,c Kab(λ,μ)+ � = 1

λ − μ

1

ν − μ
tr ([Q c(ν) − Q c(μ), Q b(μ)] (Q a(λ) − Q a(μ)))+ � .

Note that tr ([Q c(ν), Q b(μ)] Q a(λ)) and tr ([Q c(μ), Q b(μ)] Q a(μ)) = tr ([ J c, Jb] Ja) are invariant under cyclic permutations 
and that 1 1 + �= 0. Hence
λ−μ ν−μ
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∂ν,c Kab(λ,μ)+ � = 1

λ − μ

1

ν − μ
tr (− [Q c(μ), Q b(μ)] Q a(λ) − [Q c(ν), Q b(μ)] Q a(μ))+ �

= 1

λ − μ

1

ν − μ
tr (Q a(λ) [Q b(μ), Q c(μ)] + [Q a(μ), Q b(μ)] Q c(ν))+ � . (A.1)

Similarly, we have

∂ν,c Vab(λ,μ)+ � = 1

λ − μ

1

ν − λ
tr ([Q c(ν) − Q c(λ), Q a(λ)] Q b(μ))

+ 1

λ − μ

1

ν − μ
tr ([Q c(ν) − Q c(μ), Q b(μ)] Q a(λ))+ � .

Using again that tr ([Q c(ν), Q b(μ)] Q a(λ)) and tr ([Q c(μ), Q b(μ)] Q a(μ)) are invariant under cyclic permutations, and that 
1

λ−μ
1

ν−μ+ �= 0, we find

∂ν,c Vab(λ,μ)+ � = 1

λ − μ

1

ν − μ
tr ([Q a(μ), Q b(μ)] Q c(ν) + Q a(λ) [Q b(μ), Q c(μ)])+ � . (A.2)

Comparing Equations (A.1) and (A.2) we obtain ∂ν,cLab(λ, μ)+ �= 0 as desired.

Appendix B. Derivation of Equations (5.30)-(5.32)

At the level n = 1, m = 1, Equations (5.24) give one automatically satisfied relation

[σb, Q (1)
a ] + [Q (1)

b ,σa] = −Cc
ab Q (1)

c

and the equation

∂1,a Q (1)

b − ∂1,b Q (1)
a + [Q (1)

b , Q (1)
a ] = −Cc

ab Q (2)
c , (B.1)

where summation over repeated indices is implied. At the level n = 1, m = 2 we have

∂1,a Q (1)

b + [Q (1)

b , Q (1)
a ] + [Q (2)

b ,σa] = −Cc
ab Q (2)

c , (B.2)

∂1,a Q (2)

b − ∂2,b Q (1)
a + [Q (2)

b , Q (1)
a ] = −Cc

ab Q (3)
c . (B.3)

We can combine (B.1) and (B.2) to obtain

∂1,b Q (1)
a + [Q (2)

b ,σa] = 0 . (B.4)

In a similar spirit, we can combine (B.3) with the equation coming from the coefficient of ν in Equation (5.24) with n = 2, 
m = 2, which reads

∂2,a Q (1)

b − ∂2,b Q (1)
a + [Q (1)

b , Q (2)
a ] + [Q (2)

b , Q (1)
a ] = −Cc

ab Q (3)
c .

This allows us to eliminate Q (3)
c and to obtain

∂2,a Q (1)

b − ∂1,a Q (2)

b + [Q (1)

b , Q (2)
a ] = 0 . (B.5)

There are various equivalent ways of writing the equations on the fields A1, B1 and C1 contained in (B.4) and (B.5). It is 
instructive to recall how one would proceed in the case a = b = z to obtain the unreduced NLS system (5.32a)-(5.32b). We 
have

∂1,z Q (1)
z + [Q (2)

z ,σz] = 0 ,

∂2,z Q (1)
z − ∂1,z Q (2)

z + [Q (1)
z , Q (2)

z ] = 0 .

The first equation tells us that −2A1 B1 − 2B2 = −∂1,z B1 and −2A1C1 + 2C2 = −∂1,zC1. Inserting into the second equation, 
the diagonal elements are automatically satisfied while the off-diagonal elements give

−2∂2,z B1 + ∂2
1,z B1 + 8B2

1C1 = 0 , (B.6a)

2∂2,zC1 + ∂2
1,zC1 + 8B1C2

1 = 0 . (B.6b)

With q = −2B1, r = 2C1, 2∂2,z = i∂T , ∂1,z = i∂T , this is (5.32a)-(5.32b).
We apply a similar strategy for the rest of the equations obtained for (a, b) �= (z, z). We use the off-diagonal elements of 

(B.4) with a = b = x to obtain the relation
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C2 − B2 + A1(B1 + C1) = ∂1,x A1 . (B.7)

Then, the off-diagonal elements of (B.5) with a = x, b = z give the action of the vector field ∂2,x on B1, C1,

2∂2,x B1 − ∂1,x∂1,z B1 + 4B1∂1,x A1 = 0 , (B.8a)

2∂2,xC1 + ∂1,x∂1,zC1 − 4C1∂1,x A1 = 0 . (B.8b)

The diagonal elements of (B.5) with a = x, b = z are automatically satisfied upon taking into account (B.4) with b = x and 
a = z.

We use the off-diagonal elements of (B.4) with a = b = y to obtain the relation

C2 + B2 + A1(C1 − B1) = i∂1,y A1 .

Then, the off-diagonal elements of (B.5) with a = y, b = z give the action of the vector field ∂2,y on B1, C1,

−2∂2,y B1 + ∂1,y∂1,z B1 − 4B1∂1,y A1 = 0 , (B.9a)

2∂2,yC1 + ∂1,y∂1,zC1 − 4C1∂1,y A1 = 0 . (B.9b)

The diagonal elements of (B.5) with a = y, b = z are automatically satisfied upon taking into account (B.4) with b = y and 
a = z. We have already obtained the action of the vector field ∂2,z on B1, C1 in Equation (B.6), which was the (unreduced) 
NLS equation.

It remains to obtain the actions of the vector fields ∂2,a on A1. This can be done in several equivalent ways. The consis-
tency is ensured by the equations relating the vector fields ∂n,a for different values of a. Let us first look at the off-diagonal 
elements in

∂2,x Q (1)
x − ∂1,x Q (2)

x + [Q (1)
x , Q (2)

x ] = 0 . (B.10)

We use (B.7) and (B.4) with b = x and a = z, which gives 2A2 = B2
1 − A2

1 − ∂1,x B1, to eliminate B2 − C2 and A2. We obtain

2∂2,x A1 + ∂2
1,x B1 + 4A1∂1,x A1 − 2(B1 − C1)∂1,x B1 = 0 . (B.11)

Now, let us look at the off-diagonal elements in

∂2,y Q (1)
y − ∂1,y Q (2)

y + [Q (1)
y , Q (2)

y ] = 0 , (B.12)

and use again (B.4) appropriately to eliminate A2, B2, C2. We obtain

2∂2,y A1 + i∂2
1,y B1 + 4A1∂1,y A1 + 2(B1 + C1)∂1,y B1 = 0 . (B.13)

Finally, let us look at the two equations

∂2,z Q (1)
x − ∂1,z Q (2)

x + [Q (1)
x , Q (2)

z ] = 0 , (B.14a)

∂2,z Q (1)
y − ∂1,z Q (2)

y + [Q (1)
y , Q (2)

z ] = 0 . (B.14b)

Multiplying the first one by i and subtracting the second one, the (1, 2)-entry gives

4i∂2,z A1 − 2i∂1,z(A2
1 + 2A2) − 8i A1 B1C1 + 8iB2C1 = 0 . (B.15)

As before, we can use (B.4) for appropriate choices of a, b to obtain 2B2 = ∂1,z B1 −2A1 B1 and 4A2 = −2A2
1 − (∂1,x + i∂1,y)B1

and eliminate B2 and A2. This yields

∂2,z A1 + C1∂1,z B1 + 1

4
∂1,z(∂1,x + i∂1,y)B1 − 4A1 B1C1 = 0 . (B.16)

Thus we have established that the vector fields ∂2,a , acting on A1, B1 and C1, give (5.30)-(5.32).
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