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Figure S1. Scanning electron microscopy (SEM) images of the Al2O3/ZnO 

heterostructures at high magnification after the ALD process and deposition of the Al2O3, 

overlayer with thicknesses of: (a) 7 nm; (b) 10 nm; and (c) 12 nm. 
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Figure S2. X-ray diffraction (XRD) patterns of the Al2O3/ZnO heterostructures thermally 

annealed at 600 °C for 30 min with different thicknesses of the Al2O3 overlayer: 7 nm – 

curve 1 and 12 nm – curve 2. 
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Figure S3. Electrical resistance as a function of the operating temperature. 
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Figure S4. (a) Current-voltage characteristics of the Al2O3/ZnO heterostructures with 

different thicknesses of the Al2O3 overlayer. (b) The current-voltage characteristics of the 

Al2O3/ZnO heterostructures with an Al2O3 thickness of 10 nm is shown at different 

operating temperatures. 
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Figure S5. (a) Dynamic response to 1000 ppm of C3H6O2 vapors for the Al2O3/ZnO 

heterostructures thermally annealed at 600 C for 30 min with an Al2O3 thickness of 10 nm. 
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Figure S6. The interaction of the 1,3-Dioxolane molecule with oxygen ions on the surface 

of the Al2O3/ZnO heterostructure.  
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Table S1. Surface energies (γr) for the pristine α-Al2O3(0001) and ZnO(101̅0) surfaces as 

well as surface free energy (σint) for the Al2O3/ZnO(101̅0) interface. The average atomic 

charges (q) and work function (Φ) are also indicated for each surface. 

Surface 
α-Al2O3(0001) ZnO(101̅0) Al2O3/ZnO(101̅0) 

 layer  layer  layer 
γr/σint (meV Å−2) 110a  84b  99  
qAl/Zn (e− atom−1) 2.410 Al−1 1.152 Zn−O−1 1.148 Zn3−O4−1 
 2.467 Al−3 1.155 Zn−O−2 1.199 Zn in Zn2−Al2−O4−2 
     2.415 Al in Zn2−Al2−O4−2 
qO (e− atom−1) −1.619  −1.154 Zn−O−1 −1.326 Zn3−O4−1 
   −1.150 Zn−O−2 −1.264 Zn2−Al2−O4−2 
Φ (eV) 5.48  5.80b  5.35  

a Ref. [1], b Ref. [2] 
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Table S2. Adsorption energies (Eads) and charge transfers (Δq) for C3H6O2, C4H10O2, NO2, 

PF5 and H2O on the α-Al2O3(0001) and ZnO (101̅0)  surfaces as well as on the 

Al2O3/ZnO(101̅0) interface. The adsorption site of the adsorbate is also indicated. A 

negative value of Δq denotes that the adsorbate gains electron charge. 

Adsorbate 
α-Al2O3(0001) ZnO(101̅0) Al2O3/ZnO(101̅0) 

Eads (eV) Δq (e−) Eads (eV) Δq (e−) Site Eads (eV) Δq (e−) 
C3H6O2 −1.593 0.019 −1.034 0.048 Al −0.608 −0.018 
     Zn −1.401 0.065 
C4H10O2 −1.531 0.019 −0.895 0.044 Al −0.652 −0.022 
     Zn −1.279 0.040 
NO2 −0.859 −0.428 −0.674 −0.361 Al −0.226 −0.041 
     Zn −0.861 −0.476 
PF5 −1.783 −0.228 −0.349 −0.016 Al −0.326 −0.027 
     Zn −0.430 −0.023 
H2O −1.297 0.011 −1.138 0.013 Al −0.103 −0.005 
     Zn −1.226 0.034 
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