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Tonal noise emitted from the trailing edge of an airfoil is considered using modal
analysis techniques to investigate secondary quadrupole tones. We examine the origin
of quadrupole sound generated from two-dimensional unsteady laminar flow over a
NACA0012 airfoil. In this paper, we consider two flow configurations at Mach numbers
of M∞ = 0.1 and 0.05 that lead to different acoustic characteristics: the former has a
significant high-frequency quadrupole noise source, whereas the latter does not. We use
vortex sound theory, dynamic mode decomposition (DMD), and resolvent analysis to
analyze the sound source. First, we employ DMD modes to reveal that the quadrupole
sound is only observed in the higher Mach number case. Next, the vortex dynamics in
the vicinity of the trailing edge are studied to identify the origin of quadrupole sound.
It is found that the quadrupole sound is caused by vortex shedding in the vicinity of the
trailing edge. The complex vortex interaction between both sides of the airfoil strengthens
the quadrupole source in the higher Mach number case, while it is negligible in the lower
one. Furthermore, we perform resolvent analysis to examine the vortex generation over
the airfoil. The resolvent mode indicates that the interaction between the vortices on both
sides of the airfoil causes a multi-scale vortex structure on the suction-side wall.
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1. Introduction

An aerofoil in freestream can radiate strong, narrow-band pressure waves from the
trailing edge. This pressure wave radiation, known as trailing-edge noise, arises from
an acoustic feedback between the trailing edge and the boundary layer over the
mid-chord (Desquesnes, Terracol & Sagaut 2007; Fosas de Pando, Schmid & Sipp
2014). Trailing-edge noise appears in low-speed flows over a range of moderate Reynolds
numbers, and the peak loudness can reach over 40 dB above the background level (Nash,
Lowson & McAlpine 1999; Nakano, Fujisawa & Lee 2006). With the recent trend of
downsizing aircraft, including unmanned air vehicles and air taxis, noise reduction is a
critical component of design for the aforementioned flow conditions (Taira & Colonius
2009; Ananda, Sukumar & Selig 2015). Understanding the physical mechanism of
trailing-edge noise could facilitate achieving the noise reduction of small-scale aircraft
and other aerodynamic machinery.

Since the early 1970s, many studies have been undertaken from theoretical (Fink 1975;
Howe 1978; Kingan & Pearse 2009; Ricciardi, Arias-Ramirez & Wolf 2020), experimental
(Paterson et al. 1973; Arbey & Bataille 1983; Lowson, Fiddes & Nash 1994; Nash et al.
1999; Moreau & Roger 2005; Nakano et al. 2006; Pröbsting & Yarusevych 2015; Noda
et al. 2018) and numerical (Desquesnes et al. 2007; Kurotaki et al. 2008; Le Garrec,
Gloerfelt & Corre 2008; Sandberg et al. 2009; Tam & Ju 2012; Fosas de Pando et al.
2014; Fosas de Pando, Schmid & Sipp 2017) perspectives to improve the understanding of
trailing-edge noise generation. Paterson et al. (1973) conducted pioneering trailing-edge
noise experiments with two-dimensional NACA aerofoils at various angles of attack and
Reynolds numbers in an open-jet wind tunnel. Their results identified flow conditions
at which intense noise radiations occur. The broad consensus in previous studies is that
acoustic feedback plays an essential role in sustaining the trailing-edge noise. Arbey
& Bataille (1983) suggested that acoustic feedback is established between the trailing
edge and the boundary layer over the aerofoil. A detailed analysis of the hydrodynamic
instabilities of the boundary layer was performed by Nash et al. (1999) by employing
a high-resolution laser-Doppler anemometer measurement. Their experimental results
indicate that the velocity fluctuations are strongly amplified inside the laminar separation
bubble on the pressure side. They also performed a hydrodynamic instability analysis by
considering the Orr–Sommerfeld equation. Their result shows that the most amplified
frequency of the Tollmien–Schlichting waves agrees with the dominant frequency of
trailing-edge noise. The strong fluctuations on the pressure side are also identified
experimentally by using particle image velocimetry (Nakano et al. 2006; Pröbsting &
Yarusevych 2015) and pressure-sensitive paint (Noda et al. 2018) measurements.

Numerical studies reported in-depth insights from a full acoustic feedback analysis.
Desquesnes et al. (2007) presented a model of the trailing-edge noise for the dominant
tonal noise. Their linear stability analysis via the Chebyshev collocation method shows
that the laminar separation bubble on the pressure side is crucial in amplifying the velocity
fluctuations and in selecting the dominant frequency. Their local linear stability analysis
suggests that the hydrodynamic instabilities may be essential in selecting the dominant
frequency. However, a complete understanding of the trailing-edge noise generation
mechanism cannot be achieved solely by such linear stability analysis since it depends
on a local-parallel flow assumption. To this end, the last two decades of progress on global
stability analysis (Theofilis 2003, 2011) have advanced our understanding of the feedback
loop coupled with boundary layer instability and reception of the acoustic disturbances.
Fosas de Pando et al. (2014) performed a global stability analysis of trailing-edge noise
flow and suggested that the acoustic feedback mechanism of the dominant tonal noise
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is related to the least stable modes. Moreover, the same authors employed an adjoint
(Fosas de Pando et al. 2017) and resolvent analysis for receptivity analysis (Fosas de
Pando, Schmid & Sipp 2013; Fosas de Pando & Schmid 2014) and showed that the
predominant tonal noise originates from the instability on the pressure-side of the aerofoil.
More recently, Ricciardi, Wolf & Taira (2022) employed bi-global stability and resolvent
analysis to understand the role of flow instabilities on multiple secondary tones around
a main tone frequency. They argued that a laminar separation bubble on the suction
side of the aerofoil acts as an amplifier and leads to vortex shedding on the suction
side.

Previous studies have elucidated the mechanism of the main tone of trailing-edge
noise, but have not focused on higher-frequency secondary tones (Oberai, Roknaldin
& Hughes 2002; Wolf, Azevedo & Lele 2012). The higher-frequency tones have
different physical features from the main tonal noise. The higher-frequency tone has
a quadrupole sound source, while the main tonal noise is widely considered to have
a dipole source. The difference in sound source indicates that the acoustic pressure
direction has frequency dependency, which makes the trailing-edge noise phenomena
more complicated. Previous studies suggested that the quadrupole source originated from
a three-dimensional turbulent flow over an aerofoil (Oberai et al. 2002; Khalighi et al.
2010). However, some signatures of high-frequency sound features can be found in an
acoustic spectrum of a numerical simulation (Desquesnes et al. 2007) and global stability
analysis (Fosas de Pando et al. 2014), even for a two-dimensional set-up. These results
have high-frequency acoustic features, but evidence of quadrupole sound is not clear. Wolf
et al. (2012) argued that the acoustic direction of the higher-frequency tone is sensitive
to the uniform flow conditions. Despite the previous studies’ clarification of the basic
characteristics of the higher-frequency tone, its physical mechanism and origin remain
undiscovered.

In order to understand the origin of the multi-component tones, we apply modal analysis
techniques (Taira et al. 2017, 2020) on the flow field around an aerofoil where trailing-edge
noise is generated. First, we perform dynamic mode decomposition (DMD) (Schmid
2010) on the flow field to extract the dominant coherent flow structures. We then employ
resolvent analysis with respect to the linearized governing equations (Trefethen et al.
1993; McKeon & Sharma 2010) to elucidate the input–output relations above the dominant
tonal frequencies. Using these methods, we will clarify the relationship between the flow
over the suction side of the aerofoil and the trailing-edge noise with multiple dominant
frequencies.

The present paper is organized as follows. In § 2, we perform direct numerical
simulations (DNS) for unsteady compressible laminar flow over a two-dimensional
NACA0012 aerofoil with a sharp trailing edge. The numerical set-up and flow analysis
are described in detail. In the analysis, we examine the time-averaged flow field, acoustic
field and vortex dynamics around the trailing edge to extract characteristic flow features for
both the main tone and the higher-frequency tones. In § 2.5, we perform DMD analysis of
the trailing-edge noise flow to extract coherent structures. Then, in § 2.6, the mechanism of
trailing-edge noise generation is analysed in detail by considering the acoustic source term
using vortex sound theory. In § 3, resolvent analysis for the linearized governing equation
is performed. Through the resolvent analysis presented in § 3.3, we clarify the origins of
trailing-edge noise for the main tone and the higher-frequency tone. A summary of our
study and conclusions are offered in § 4.
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2. Numerical simulation and flow analysis

2.1. Governing equations
We consider the two-dimensional compressible form of the governing equation:

∂

∂t

∫
V

q dV = −
∫

S

[
Fiv(q) − 1

Re
Fv(q)

]
· dS. (2.1)

The conservative variables q are defined as q = [ρ ρu ρv e]T, where ρ, u, v, e
are the density, streamwise velocity, cross-stream velocity and total energy per unit
mass, respectively. The superscript T denotes matrix transpose. Here, the variables are
non-dimensionalized as

ρ ≡ ρ̃

ρ̃∞
, u ≡ ũ

ã∞
, v ≡ ṽ

ã∞
, e ≡ ẽ

ρ̃∞ã2∞
, (2.2a–d)

where a is the speed of sound. The tilde ·̃ and subscript ∞ indicate dimensional and
far-field variables, respectively. Physical coordinates are normalized by the chord length
Lc, and the Reynolds number is defined as Re ≡ ρ̃∞ã∞L̃c/μ̃∞, where μ is the dynamic
viscosity. The inviscid flux Fiv(q) and viscous flux Fv(q) are defined as

Fiv(q) ≡

⎛
⎜⎝

ρu
ρu2 + p

ρuv

(e + p)u

⎞
⎟⎠ i +

⎛
⎜⎝

ρv

ρuv

ρv2 + p
(e + p)v

⎞
⎟⎠ j (2.3)

and

Fv(q) ≡

⎛
⎜⎝

0
τxx
τxy
βx

⎞
⎟⎠ i +

⎛
⎜⎝

0
τyx
τyy
βy

⎞
⎟⎠ j, (2.4)

where i, j are unit vectors, and p is the pressure. The viscous components of the momentum
and energy fluxes are given by

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
δijμ

∂uk

∂xk
, (2.5)

βi = ujτij + κ

(γ − 1) Pr
∂T
∂xi

, (2.6)

where κ , γ , Pr and T are the heat-transfer coefficient, specific heat ratio, Prandtl number
and temperature, respectively. The dynamic viscosity μ and heat-transfer coefficient κ

are constant. This simplification is useful in linearizing the governing equation for later
modal analysis. We confirmed that the maximum temperature fluctuation is less than 0.2 %
of T∞; hence this constant setting does not harm the validity of our study. Finally, we
employ the non-dimensionalized form of the equation of state p = ρT/γ for closure. The
above equations can be discretized spatially and integrated numerically in time once an
appropriate numerical set-up is established.
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Mach number M∞ Reynolds number ReU∞ Angle of attack (deg.) α

Case 1 0.1 2 × 105 2◦
Case 2 0.05 1 × 105 5◦

Table 1. Flow configurations simulated in this study.

2.2. Numerical set-up
We study an unsteady laminar flow over a NACA 0012 aerofoil with a sharp trailing edge
by DNS. This simulation also provides the base flow field for constructing linear operators.
The flow configurations on which we focus in this study are summarized in table 1
and referred to as case 1 and case 2 hereinafter. Here, M∞ ≡ U∞/a∞ is a freestream
Mach number, ReU∞ ≡ ρ̃∞Ũ∞L̃c/μ̃∞ = Re M∞ is a streamwise velocity-based Reynolds
number, α is the angle of attack, and U∞ is the freestream velocity. The Prandtl number is
set as Pr = 0.7, and the specific heat ratio as γ = 1.4. Desquesnes et al. (2007) conducted
two-dimensional numerical simulations of unsteady flow over a NACA0012 aerofoil at
these two flow conditions and observed strong noise radiations in case 1, but relatively
lesser ones in case 2. We assume the flow to be two-dimensional even if the Reynolds
number is within the laminar to turbulent transition range. Indeed, the trailing-edge
noise was correctly simulated in the numerical investigations with two-dimensional grids
(Desquesnes et al. 2007; Fosas de Pando et al. 2014). It should be noted that the vortices
over the aerofoil surfaces and the consequent pressure waves from the trailing edge are
two-dimensional even though their simulations were conducted in a three-dimensional
manner (Kurotaki et al. 2008; Le Garrec et al. 2008).

In the present analysis, we use the rhoPimpleFoam solver in the OpenFOAM package
for solving numerically the governing equations (Weller et al. 1998). The rhoPimpleFoam
solver uses a density-based PIMPLE (pressure implicit with the splitting of operator)
algorithm for simulating compressible flows. For the spatial discretization of the inviscid
flux, we employ a third-order weighted essentially non-oscillatory (WENO) scheme (Liu,
Osher & Chan 1994; Martin & Shevchuk 2018; Gärtner, Kronenburg & Martin 2020). The
second-order backward differentiation algorithm is used for time integration. A fixed time
step is chosen such that the Courant–Friedrichs–Lewy (CFL) number is below 0.9 for the
whole computational domain.

We utilize hexahedral grids with C-type topology for the two flow configurations,
as shown in figure 1. The computational domain has extent x/Lc ∈ [−100, 100] and
y/Lc ∈ [−100, 100], which is sufficiently large to capture the unsteady wake and
aeroacoustics. We confirmed that the acoustic waves on the current grid are well resolved
in the range 5Lc from the trailing edge, which is considered the noise source. Additional
details on the grid resolution of the acoustic waves are summarized in Appendix A. The
leading edge of the aerofoil is positioned at the origin, at angles of attack α = 2◦ and 5◦.
The total number of elements over the computational domain is approximately 810 × 103

cells, with 1500 nodes on each side of the aerofoil, 549 nodes along the wake region,
and 210 nodes in the wall-normal direction. The height of the first wall cells is set to be
Δy/Lc = 1 × 10−4 or Δy+ ∼ 1 in the wall unit. For both sides of the aerofoil wall, we
adopt fine grid spacing Δx/Lc = 1.3 × 10−3 at x/Lc = 0.55, and Δx/Lc = 2 × 10−4 at
the trailing edge, with small stretching ratios less than 0.1 %. Moreover, we apply a uniform
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Figure 1. (a) Numerical grid for the simulation. The near-field grid is shown with (b) the instantaneous field
of the pressure fluctuations p̌ ≡ p − p̄, and (c) the spanwise vorticity Ωz.

grid spacing within x/Lc ∈ [1.5, 3.5] for capturing accurately the wake dynamics. In the
far-field domain, numerical damping is applied to avoid the reflection of outgoing waves.
Figures 1(b) and 1(c) show that the current grid is sufficient to resolve pressure waves far
from the wing and vortex dynamics in the vicinity of the trailing edge. To examine the
grid convergence, we use a finer grid with 2250 nodes on both sides of the aerofoil, with
the same grid size in the wall-normal direction as the standard one. The fine grid has the
same grid distribution as the standard one for the wall-normal direction. The freestream
condition is prescribed at the far-field boundary, whereas the no-slip adiabatic condition
is prescribed over the aerofoil. The numerical grid and setting files used in the present
simulation are available at https://doi.org/10.5281/zenodo.5214250.

2.3. Separation bubbles on the aerofoil
We now analyse the flow field and describe the feature of separation bubbles on the
aerofoil. First, let us present the validation of our numerical simulation. Figure 2 shows
time-averaged skin-friction coefficients Cf ≡ t · τij · n/0.5U2∞Lc, where t and n are the
unit wall-tangential and -normal vectors, respectively. The time-averaged values are
calculated from snapshots collected over 50 convection units. The plots contain the current
results from cases 1 and 2. To confirm grid convergence for the current simulation,
we present the skin-friction profiles in figure 2. The standard and fine grid results
show excellent agreement. The current simulation provides the flow field with sufficient
accuracy.

In figure 3, we present the time-averaged streamwise velocity field for cases 1 and 2.
Figure 3(a) shows that the flow field from case 1 has two separation bubbles on both sides
of the aerofoil. The separation bubbles lie over x/Lc ∈ [0.52, 0.70] on the suction side and
x/Lc ∈ [0.77, 0.98] on the pressure side. As observed from streamlines, the pressure-side
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Figure 2. (a) Time-averaged flow skin-friction coefficients for cases 1 (red) and 2 (blue). (b) An expanded view
around the separation bubbles. The grey line marks the result of case 1 (fine grid), showing grid convergence.
The solid and dashed lines show the skin-friction coefficient profiles over the pressure and suction surfaces,
respectively.

separation bubble in the vicinity of the trailing edge shows a complex flow structure,
whereas the suction-side bubble has a relatively simple structure. On the other hand, for
case 2, the separation bubble appears only on the suction side over x/Lc ∈ [0.22, 0.47],
as shown in figures 2 and 3(b). The difference in separation bubble arrangements between
the cases is also reported by Desquesnes et al. (2007). They also argued that the separation
bubbles on the pressure side are essential in emitting intense noise radiation. Indeed, the
trailing-edge noise in case 1 is much stronger than in case 2, as discussed in § 2.4.

Next, the velocity fluctuation with respect to the time-averaged flow is presented in
figure 4, showing that the velocity fluctuations grow rapidly around the separation bubbles.
The comparison between the two flow cases indicates that the number and positions of
the separation bubbles make a difference in velocity fluctuations that result from the
generation and advection of vortices on the walls. In case 1, the velocity exhibits high
fluctuation levels on both sides of the aerofoil, whereas in case 2, the fluctuation is
observed only on the suction side. Therefore, the intensity of the fluctuations is observed
to be stronger in case 1 than in case 2. Moreover, we observe that the root mean square
(r.m.s.) of velocity fluctuations shows two peaks parallel to the wall. This characteristic
r.m.s. distribution has also been reported in several numerical (Desquesnes et al. 2007;
Fosas de Pando et al. 2014) and experimental (Nash et al. 1999) studies.

2.4. Acoustic characteristics
Now let us examine the pressure waves emitted from the trailing edge and their acoustic
propagation. Representative distribution of instantaneous pressure fluctuation p̌ around
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Figure 3. Time-averaged streamwise velocity ū with separation bubbles for (a) case 1, and (b) case 2.
The bubbles on the aerofoil are highlighted by the magenta contour lines at ū = 0. The time-averaged
streamlines in case 1 are also shown in the expanded views for the suction-surface separation bubble (left)
and pressure-surface separation bubble (right).

the aerofoil is shown in figures 5(a) and 5(b) for cases 1 and 2, respectively. Figure 5(c)
contains their power spectrum density (PSD) at (x/Lc, y/Lc) = (1, 2). We collect the
probe data over 100 convective units time and employ the Welch method together with
a Hamming window with 25 % data length and overlap 50 %. The pressure fields show
acoustic waves radiated from the trailing edge, as also observed in previous numerical
studies (Desquesnes et al. 2007; Fosas de Pando et al. 2014). Moreover, it can be found
that the pressure waves in case 1 are more intense than those in case 2. The r.m.s. values
of pressure fluctuations for cases 1 and 2 at (x/Lc, y/Lc) = (1, 2) are prms/(0.5ρ∞a2∞) =
2.60 × 10−5 and 1.00 × 10−5, respectively, and equivalently can be converted to overall
sound pressure levels 105 dB and 97.3 dB under International Standard Atmosphere
condition at sea level. These observations are consistent with a previous study by
Desquesnes et al. (2007) that reported stronger pressure waves in case 1 than in case 2.

The PSD of the pressure fluctuations in figure 5(c) shows typical characteristic
frequencies associated with the trailing-edge noise. The peak frequencies can be found
around St = 7.2 in case 1, whereas it is St = 4.1 in case 2. With a focus around the primary
frequencies, we notice that there are some discrete peaks with constant spacing ΔSt = 0.5.
Desquesnes et al. (2007) and Ricciardi et al. (2020) argued that the discrete nature was
due to the amplitude modulation of the pressure waves. It can be found that there are lower
peaks at St = 11.2 in case 1.
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Figure 4. Root mean square (r.m.s.) of the velocity fluctuations ‖u‖rms for (a) case 1, and (b) case 2. The
magenta lines indicate the contour lines of ū = 0.

As we observe in figure 6, the pressure waves have propagation angles resulting from
the Doppler effect (Inoue & Hatakeyama 2002). The distributions of fluctuation (prms)
are presented in figure 6 with a polar plot of the prms values extracted 5Lc away from the
trailing edge. The centre of the polar coordinates is positioned at the trailing edge, and
the angle is defined as θ = tan−1[−(x − xTE)/( y − yTE)], where xTE and yTE indicate the
trailing edge coordinates. To examine the grid convergence of the acoustic characteristics
of the current simulation, we show a result using the fine grid in figure 5. The results
indicate that the presence of tones and their frequencies are independent of the grid
resolution.

In figure 6, we show the pressure wave directivity for each case. In case 1, the
predominant pressure fluctuation is directed towards θp = 54.7◦ for the suction side
surface, and θp = −51.4◦ for the pressure side surface. The prms distributions are slightly
angled towards the incoming flow because of the existence of the aerofoil. Furthermore,
the prms distributions show further noticeable peaks at θp = 84.7◦ and −83.4◦, which
do not appear clearly in figure 5(a). Figures 6(b) and 6(d) indicate that the pressure
propagation in case 2 has just two propagation angles, 84.2◦ and −74.5◦, whereas case
1 has four propagation angles. These differences in acoustic characteristics essentially
distinguish the two cases in terms of noise generation mechanism, which will be discussed
in §§ 2.5 and 2.6.3.
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Figure 5. Instantaneous pressure fluctuation p̌ for (a) case 1, and (b) case 2. (c) Power spectrum density of p̌
at (x/Lc, y/Lc) = (1, 2) plotted for case 1 (red) and 2 (blue). The dashed grey line results from case 1 using the
finer grid for the grid convergence study.

2.5. Dynamic mode decomposition of the flow field
In this section, we use the dynamic mode decomposition (DMD; Schmid 2010) to extract
coherent structures of the flow field. By considering the coherent structures, we extract
insights from the flow field and acoustic features associated with dominant frequencies
discussed in the previous subsections.

2.5.1. Algorithm
We employ the total least squares DMD (tlsDMD; Dawson et al. 2016; Hemati et al.
2017). We collect snapshots of the flow field qi ∈ R4N for m + 1 time steps with
Δtc between consecutive snapshots, and form two data matrices X ≡ [q0 · · · qm−1],
Y ≡ [q1 · · · qm], where N is the number of numerical cells. The tlsDMD algorithm first
performs a dimension reduction of the data matrices X and Y with its proper orthogonal
decomposition (POD) mode Ψ r ∈ R4N×r, where r � m is the number of POD modes
selected:

XΨ = Ψ T
r X , YΨ = Ψ T

r Y . (2.7a,b)

The POD modes are obtained by performing the singular value decomposition (SVD) of
the data matrix: X = Ψ ΞΦT , where Ψ ∈ R4N×4N and Φ ∈ Rm×m are unitary matrices,
and Ξ ∈ R4N×m is a matrix holding the singular values. The truncated matrices Ψ r, Ξ r
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Figure 6. Distributions of pressure fluctuations log10( prms) for (a) case 1, and (b) case 2. The dash-dotted
lines indicate preferential radiation angles highlighted in polar plots of prms for (c) case 1, and (d) case 2,
respectively. The prms values are extracted 5Lc away from the trailing edge.

and Φr are obtained by considering only the first r columns of Ψ and Φ, and the first r
diagonal elements of Ξ . We then compute the SVD of the data matrices, and partition the
left singular matrix UΨ ∈ R2r×2r into r × r submatrices, written as

[
XΨ

YΨ

]
= UΨ ΣΨ VΨ , UΨ =

[
U11 U12
U21 U22

]
. (2.8a,b)

The tlsDMD is performed by considering Ã = U11U12. In particular, the DMD
eigenmodes ηi and eigenvalues λi are given by the eigenvalues and eigenvectors of Ã:

Ãθ i = λiθ i, (2.9)

ηi = λ−1
i YΦrΞ

−1
r θ i. (2.10)
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The growth rate γi and oscillation frequency in Strouhal number Sti for each DMD mode
can be determined from

γi = Re(log(λi))

Δtc
, Sti = Im(log(λi))

2πU∞ Δtc
. (2.11a,b)

Additionally, we employ a compressed sensing method (Ohmichi 2017) to identify
dominant DMD modes from a set of a large number of modes, and analyse complex
multi-frequencies phenomena such as the trailing-edge noise. This compressed sensing
method chooses s < r modes from DMD modes to minimize a reconstruction error defined
as

E(S) = ‖XΨ − XS
Ψ ‖2. (2.12)

Here, S is a set of mode numbers that are chosen for reconstruction, and XS
Ψ ∈ Rr×m is

a reconstructed data matrix from the chosen DMD modes calculated by XS
Ψ = ΘSD. The

matrix ΘS ∈ Cr×r contains chosen DMD modes for reconstruction and is generated by

ΘS = [θ1 · · · θ r]

⎛
⎝ δ1 0

. . .

0 δr

⎞
⎠ , δi =

{
1 if i ∈ S,

0 if i /∈ S.
(2.13a,b)

The matrix D ∈ Cr×m is the weight matrix to fit the modes to the original data matrix.
Here, D is estimated through a least squares regression, that is, D = ΘS+XΨ , where
the superscript + denotes the Moore–Penrose pseudo-inverse. With the above-defined
reconstruction error function, a greedy mode selection algorithm (Ohmichi, Kobayashi
& Kanazaki 2019) is applied to find the principal modes for flow reconstruction.

2.5.2. DMD spectrum
We collect m = 1500 snapshots of the flow field with constant interval Δtc = 0.1 for case
1, and Δtc = 0.2 for case 2, and set the number of POD modes as r = 1000. For the
compressed sensing method, the number of modes to be chosen is set to s = 10. The
DMD spectrum is shown in figure 7, with highlights on the selected DMD modes by the
compressed sensing method. Here, we present only eigenvalues with positive frequencies
since the spectrum is symmetric about St = 0.

The compressed sensing algorithm is able to extract characteristic frequencies. In case
1, the selected modes contain St = 7.2 and 11.2. These frequencies are reasonably close
to the main trailing-edge noise frequency and the higher-frequency peak in figure 5(b).
In case 2, the algorithm detects some characteristic modes, including St = 4.1, that
correspond to the main tonal noise frequency shown in figure 5(c). Note that the algorithm
detected a few additional modes around the main tonal noise frequency for both flow cases.
We visualized these DMD modes and confirmed that the coherent structures of the modes
have representations similar to those that are visualized in figures 8 and 9, but with slightly
different spatial wavelengths depending on their modal frequency. We see that these modes
correspond to the frequency modulation of the flow field that we explain in § 2.6.2.

2.5.3. Coherent structures of the trailing-edge noise flow
We visualize the streamwise velocity components of DMD modes in case 1 for St = 7.2,
and 11.2 in figures 8(a) and 8(b), respectively. The DMD mode at St = 7.2 in figure 8(b)
shows the coherent structures associated with the generation of the primary tone. The
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Figure 7. The DMD spectrum for (a) case 1, and (b) case 2. The eigenvalues highlighted with the red circles
correspond to the selected DMD modes detected by the compressed sensing algorithm. The selected DMD
modes in case 1 are detected at St = 0.0, 5.8, 7.2, 8.8, 11.2. For case 2, the highlighted eigenvalues correspond
to St = 0.0, 3.5, 4.1, 4.7, 7.7, 8.2.
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Figure 8. The streamwise velocity components of DMD modes in case 1 for (a) St = 7.2, and (b) St = 11.2.
(c) The streamwise velocity mode for case 2 at St = 4.1. The dashed lines indicate the contour lines of ū = 0.

structures indicate that the hydrodynamic instabilities of the laminar bubbles generate the
vortices. The higher-frequency mode at St = 13.3 shows a similar structure but with a
narrower wavelength, as visualized in figure 8(c).

We also visualize the streamwise velocity DMD mode in case 2 at St = 4.1, and present
it in figure 8(c). The mode frequency corresponds to the main tone noise frequency in case
2. Hence the velocity modes in figure 8(c) are responsible for the tone noise. The velocity
mode shows that the velocity fluctuations arise from the separation bubbles on the suction
side of the aerofoil.

Let us discuss the pressure components of DMD modes presented for case 1 in
figures 9(a) and 9(b), and for case 2 in figure 9(c). The pressure mode for case 1 at St = 7.2
in figure 9(a) shows the trailing-edge noise structure shown in figure 5(a). The mode also
shows preferential radiation angles highlighted by the dash-dotted lines for θp = −51.4◦
and 54.3◦ identified in figure 6. For the higher-frequency mode in case 1 at St = 11.2,

958 A3-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.37


Y. Kojima, C.S. Skene, C.-A. Yeh, K. Taira and M. Kameda

–4 –2

–74.5°

84.2°

0

x/Lc

y/
L c

2 4 6

–4

–5.0 × 10–6

5.0 × 10–6

–2.0 × 10–6

2.0 × 10–6

–5.0 × 10–6

5.0 × 10–6

–2

0

2

4

6

–6

–4 –2

–51.4°

54.3°

0

x/Lc

y/
L c

2 4 6

–4

–2

0

2

4

6

–6
–4 –2

–30.0° –83.4°

30.0°

84.7°

0

x/Lc

2 4 6

–4

–2

0

2

4

6

–6

(a) (b)

(c)

Figure 9. The pressure components of DMD modes in case 1 for (a) St = 7.2, and (b) St = 11.2.. (c) The
pressure DMD mode in case 2 for St = 4.1. The dash-dotted lines in the figures indicate preferential radiation
angles of acoustic propagation.

the acoustic waves show different propagation angles. Figure 9(b) shows the angles
θp = −83.4◦ and 84.7◦, which are presented in figure 6. They agree with the propagation
angles of the higher-frequency waves. These near-vertical propagation angles originate
from the higher-frequency pressure waves. We also notice that the higher-frequency waves
have different propagation angles, θp = ±30◦, even though they may not be clear from
in figure 6. These propagation angles are buried under the main tonal noise at St = 6.7.
A similar quadrupole profile for the higher-frequency acoustic wave was reported by
three-dimensional numerical results (Wolf et al. 2012). Such an observation suggests that
the higher-frequency features from figures 8 and 9 likely exist in the three-dimensional
flow and not only in two-dimensional simulations.

In figure 9(c), we visualize and present the pressure DMD mode for case 2 at St = 4.1,
which corresponds to the main tonal frequency in case 2. The pressure mode shows a
dipole sound, and similar dipole structures were observed in the rest of the DMD modes
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detected by compressed sensing, except for the mode at St = 0.0. The quadrupole sound
does not appear in the DMD modes in case 2. The next subsection will discuss the pressure
wave structure found in this subsection, and its generation mechanism.

2.6. Generation mechanism of the trailing-edge noise

2.6.1. Vortex dynamics around the trailing edge
In this subsubsection, we use the theory of vortex sound to identify the source of
trailing-edge noise. Powell (1964) derived a simple formula for sound generation in flow at
low Mach number and high Reynolds number where the role of the vorticity was identified
clearly as a noise source. In Powell’s theory, the time evolution of acoustic waves is
described with (

∂2

∂t2
− a2

∞∇2
)

ρ = −ρ∞∇ · (Ω × u), (2.14)

where Ω is the vorticity. Equation (2.14) represents a wave propagation equation for the
density field, and the right-hand-side term acts as a source of acoustic waves. Powell’s
source term is used in a wide range of applications, including jet flows (Violato & Scarano
2011, 2013), noise from aerofoils (Mann et al. 2016; Avallone, van der Velden & Ragni
2017) and instruments (Miyamoto et al. 2013).

We present the instantaneous distributions of Powell’s source term and pressure
fluctuations for case 1 in figure 10 when the trailing-edge noise increases. Figure 10 also
shows vortices on both sides of the wall identified by the second invariant of the velocity
gradient tensor Q. Figure 10 depicts interactions between the vortices and the trailing
edge, leading to noise generation. For example, in a period from t = 600.6 to 601.0, a
counterclockwise (CCW) vortex on the pressure-side wall interacts with the sharp edge
and entrains the fluid on the suction side with a clockwise (CW) vortex. As shown in the
distribution of the source term and pressure fluctuations, the CW vortex on the trailing
edge acts as a strong noise source. It consequently generates a negative pressure wave on
the suction side and a positive pressure on the other side of the aerofoil. Taking account of
the time-averaged streamlines around the trailing edge, the strong reversed flow induced
by the separation bubble likely strengthens the vortices on the trailing edge that may be
responsible for the noise generation.

On the other hand, in a period from t = 601.2 to 601.6, a CW vortex on the suction
side interacts with the trailing edge, and it creates a CCW vortex with a noise source at
t = 602.4. It can be found from the pressure field that the CCW vortex on the trailing
edge generates a negative pressure wave on the pressure side. The laminar bubble on the
pressure side might strengthen the vortices, not only the CCW vortex on the pressure side,
but also the CW vortex on the suction side. The exponential increases of the skin friction
around the trailing edge in figure 3(a) serve as evidence that the pressure-side bubble
supports accelerating the flow velocity on the suction side. The snapshots in figure 10(b)
show the vortex interaction between both sides of the aerofoil. At t = 601.0, we can find a
small CCW vortex on the trailing edge, which is generated due to vortex dynamics on the
pressure side, as shown in figure 10(a). The CCW vortex sheds from the trailing edge at
t = 601.2 and rolls up with the other CCW vortex that is on the suction-side surface. This
complex vortex interaction may cause a source of quadrupole noise.

We also present snapshots showing a noise generation process for case 2 in figure 11. In
case 2, the vortex dynamics is simpler and less complicated than in case 1 since significant
vortices are observed only on the suction-side wall. The snapshots show that the CCW
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Figure 10. Time series of instantaneous flow fields for case 1 from t = 600.6 to 601.6. The plots show
(a) the pressure fluctuations p̌, and (b) the source term of Powell’s equation ρ∞∇ · (Ω × u) in the vicinity
of the trailing edge. The magenta lines indicate the contour of ū = 0. The vortices on the wall are identified
with contour lines of Q = 1 and displayed with solid curves for counterclockwise vortices and dashed curves
for clockwise vortices. See supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.37.

vortex on the suction side interacts with the trailing edge and consequently bring a noise
source. It can be found that the noise source is much smaller than that in case 1.

2.6.2. Frequency characteristics of vortices on the wall
To consider the frequency characteristics of the vortices, we extract the velocity
fluctuations inside the boundary layers on both sides of the aerofoil. Figure 12 presents
the PSD of the fluctuations for both cases. The velocity fluctuations contain characteristic
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Figure 11. Time series of instantaneous flow fields for case 2 from t = 603.4 to 604.2. The plots show
(a) the pressure fluctuations p̌, and (b) the source term of Powell’s equation in the vicinity of the trailing edge.
The vortices are identified with contour lines of Q = 5 and displayed with solid curves for CCW vortices, and
dashed curves for CW vortices. See supplementary movie 2.
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Figure 12. PSD of velocity fluctuations for (a) case 1, and (b) case 2. In case 1, the pressure data are
probed at (x/Lc, y/Lc) = (0.95, −0.051) (red) and the suction surface at (x/Lc, y/Lc) = (0.95, −0.016)

(blue). In case 2, the probe positions are (x/Lc, y/Lc) = (0.95, −0.10) (red) and the suction surface at
(x/Lc, y/Lc) = (0.95, −0.066) (blue). Each probe point is located 0.01Lc away from the aerofoil surface.

frequency peaks such as the pressure fluctuation in figure 5. Note that in both flow cases,
the PSD around the main tonal noise frequency has secondary peaks that are also observed
on the acoustic waves shown in figure 5. These secondary peaks might come from the
frequency and amplitude modifications of the vortices on the wall (Desquesnes et al. 2007;
Ricciardi et al. 2020).

In figure 12(a), for case 1, the PSD has peaks around St = 7.2 and St = 11.2. The lower
frequency component corresponds to larger vortices in figure 10, which is responsible for
the main tonal noise around St = 7.2. On the other hand, the higher-frequency peak might
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involve smaller-scale vortices; for example, in figure 10(b) at t = 600.60, a small CW
vortex appears at x = 0.995 on the suction side.

For the velocity fluctuations in case 2 presented in figure 12(b), we can observe
the frequency peaks around St = 4.1, which correspond to the tonal noise frequency
in figure 5(c). The PSD of the velocity fluctuation reconfirms our observation that
suction-side vortices trigger the noise emission in case 2.

2.6.3. Source of the dipolar and quadrupolar pressure waves
In the previous subsubsections, we discussed how the vortices on the wall interact with
the trailing edge and consequently emit pressure waves. Next, let us further analyse the
noise generation mechanism to investigate the sources of dipole and quadrupole waves
identified in § 2.5. In this subsubsection, we employ Curle’s acoustic analogy (Curle 1955)
to account for the solid boundary effect on the noise radiation. Inoue & Hatakeyama (2002)
introduced a two-dimensional form of Curle’s analogy:

a2
∞[ρ(x, t) − ρ∞] = ∂2

∂xi ∂xj

∫
Vq

Tij

(
y, t − |x − y|

a∞

)
d3y

2π |x − y|

− ∂

∂xi

∮
Sd

pij

(
y, t − |x − y|

a∞

)
dSi(y)

2π |x − y| , (2.15)

where
Tij ≡ ρuiuj + δij[( p − p∞) − a2

∞(ρ − ρ∞)] − τij (2.16)

is Lighthill’s stress tensor, and pij in the second term is defined as

pij ≡ ( p − p∞)δij − τij. (2.17)

Here, x is the observer’s position. The viscous stress tensor τij appearing in (2.16) and
(2.17) is negligible for the acoustic problem in the present flow condition since the
flow Reynolds number is large enough. The first term of (2.15) represents the sound
generation by quadrupoles distributed in a control volume Vq, whereas the second term
is the influence of the solid surface Sd, whose effect brings in the dipole sound source.
Assuming that the body is acoustically compact and the flow is isentropic, (2.15) can be
reduced to

p(x, t) =
x′

ix
′
j

23/2πa3/2
∞ |x’|5/2

∂2

∂t2

∫
Vq

Tij

(
y, t − |x’|

a∞

)
d3y

− x′
i

23/2πa1/2
∞ |x’|3/2

∂

∂t

∮
Sd

pij

(
y, t − |x’|

a∞

)
dSj(y), (2.18)

where x’ is the distance between the object centre and the observer’s position (Inoue &
Hatakeyama 2002). The time differential and integral of (2.18) represent the intensity and
time evolution of the noise source, whereas the time-invariant (coefficient) parts model the
spatial distribution of noise far from the noise source. We substitute the speed of sound
a∞ in (2.18) with

aθ (θ) ≡ a∞
(√

1 − M2∞ sin2 θ − M∞ cos θ

)
, (2.19)

which takes account of the Doppler effect (Inoue & Hatakeyama 2002). The surface
integration in (2.18) is computed along the aerofoil surface. The control volume Vq has
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Figure 13. The time evolutions of the sound source terms for case 1. (a) The dipole noise source consists of
x-direction (blue) and y-direction (red) components. (b) Three independent elements of the quadrupole source
for (i, j) = (1, 1) (blue), (i, j) = (2, 2) (red), and (i, j) = (1, 2) (green).

extent x/Lc ∈ [−0.1, 1.2] and ( y − yTE)/Lc ∈ [−0.1, 0.1] so that the volume includes the
region around the trailing edge and wake where the quadrupole sound sources may be
considerable. Note that the aerofoil in the present study is technically not acoustically
compact since the acoustic wave is scattered from the trailing edge, especially in the
high-frequency range (Howe 2001; Roger & Moreau 2005; Wolf et al. 2012). Thus
predicting far-field acoustics through (2.18) may bring inaccurate results. In this study,
we employ (2.18) to make it easy to estimate the intensity and time evolution of the noise
sources.

We calculate the integral and time differential parts of the right-hand-side terms in
(2.18), and present time evolutions of dipole and quadrupole sources for case 1 in figure 13.
The time evolution of the dipole source in figure 13(a) shows periodical movement. The
difference in intensity between the x- and y-direction components may reflect the thin
shape of the aerofoil. Let us examine the relation of vortex dynamics around the trailing
edge, and the time evolution of the dipole noise source. Figure 13(a) shows that the dipole
source reaches one of the local maximum values at approximately t = 601, and the flow
snapshots around the trailing edge at the corresponding time can be found in figure 10(a).
As we already mentioned in § 2.6.1, the interaction between the pressure-side vortex and
the trailing edge generates a strong noise source. Figures 10(a) and 13(a) suggest that
the dynamics of the pressure-side vortex and consequent noise source generation bring a
dipole noise that contributes to the main tonal noise.

Next, we consider the quadrupole noise source plotted in figure 13(b). The three
lines in the plot correspond to the independent elements of Lighthill’s stress tensor.
Figure 13(b) shows that the non-diagonal element of the source term has relatively intense
peaks with regular periods. Comparing figures 13(a) and 13(b), the timings for when
the quadrupole source reaches its peaks do not match the peak positions in the dipole
source. This observation indicates that the quadrupole source emits the pressure waves
at timing different from that of the dipole source; thus this source may be responsible
for the higher-frequency noise at St = 11.2. As in the previous paragraph, we compare
the source terms in figure 13(b) and corresponding flow snapshots in figure 10(b) to
examine the relation between vortex dynamics and noise source. Both figures indicate
that the quadrupole source shows an intense peak when the suction-side vortex interacts
with the pressure-side vortex shed from the trailing edge. This indicates that the vortex
interaction between both sides of the aerofoil generates the quadrupole sound. We estimate
the contribution of the quadrupole source on the pressure wave power. The time evolution
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Figure 14. Time evolutions of the sound source terms for case 2. (a) The dipole noise source consists of
x-direction (blue) and y-direction (red) components. (b) Three independent elements of the quadrupole source
for (i, j) = (1, 1) (blue), (i, j) = (2, 2) (red), and (i, j) = (1, 2) (green). The ratio of the vertical axis range
between (a) and (b) is set to be the same as in figure 13.

of sound sources in figure 13 and (2.18) indicates that the contributions of the dipole and
the quadrupole sound at (x/Lc, y/Lc) = (1, 2) are 92.2 % and 7.8 %, respectively.

Finally, we calculate the dipole and quadrupole sources in case 2 and plot them in
figure 14. Note that we set the ratio of the vertical axis range between figures 14(a) and
14(b) as the same as in figure 13 to make clear the contribution of the quadrupole source
in both flow cases. Examining the relation between the vortex dynamics in figure 11 and
the time evolution of the noise sources, we find a similar observation in case 1 that the
interaction between the vortex and the trailing edge leads to the dipole sound, and the
quadrupole is substantial when the vortex sheds from the wall. The main differences
between the cases are the vortex interaction between both sides of the aerofoil, and
the contribution ratio of the quadrupoles. In case 2, the acoustic power contribution of
the quadruple at (x/Lc, y/Lc) = (1, 2) is 0.0015 %, whereas it is 7.8 % in case 1. The
order estimation of (2.18) suggests that the power ratio between dipole and quadruple is
∼ O(M2∞) (Curle 1955). Considering the difference in Mach numbers in the two cases,
the contribution of the quadrupole in case 1 exceeds the expected power by the order
estimation. This observation suggests that the vortex interaction between both sides of the
aerofoil may strengthen the intensity of the quadrupole.

3. Stability and resolvent analysis

We examined characteristic flow features related to the noise radiation from the trailing
edge on the basis of the numerical simulation described in § 2. Next, we perform linear
global stability and resolvent analysis about the mean flow to analyse the origin of the
trailing edge noise.

3.1. Linearized governing equation
Let us consider the Reynolds decomposition of the flow variable q into its base state q̄
and the fluctuating components q̌. Substituting q with its decomposed form q̄ + q̌ into the
governing equation (2.1) yields

∂

∂t

∫
V

[q̄ + q̌] dV = −
∫

S

[ (
Lq̄

iv(q̌) + Fiv(q̄)
)

− 1
Re

(
Lq̄

v(q̌) + Fv(q̄)) + N (q̌
)]

· dS. (3.1)
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Here, Lq̄
iv(q̌) and Lq̄

v(q̌) are linearized inviscid and viscous fluxes, respectively. The term
N (q̌) is the collection of the higher-order terms. With a statistically stable base state q̄,
(3.1) can be simplified as

∂

∂t

∫
V

q̌ dV = −
∫

S
[Lq̄

iv(q̌) + Lq̄
v(q̌) + f̌ ] · dS, (3.2)

where f̌ ≡ Fiv(q̄) − Fv(q̄) + N (q̌n). The Reynolds number in the above equation is
incorporated into the viscous terms for clearer notation. The internal forcing term f̌ in
(3.2) accounts for the Navier–Stokes operator on q̄, and the nonlinear, higher-order term
for q̌ such as the Reynolds stress (McKeon & Sharma 2010).

Now we spatially discretize (3.2). With the computational domain V divided into
the control volumes ΔVi of N polyhedra without gaps or duplications, we obtain the
discretized form of (3.2) for each control volume ΔVi:

∂ q̌i

∂t
= − 1

ΔVi

∑
face j

ΔSj · [Lq̄
iv(q̌i) + Lq̄

v(q̌) + f̌ i]face j. (3.3)

We assume that each control volume has polygonal surfaces ΔSj numbered by
j. Employing appropriate spatial numerical schemes and boundary conditions, the
numerical flux Lq̄

iv(q̌) + Lq̄
v(q̌) can be rewritten as its matrix form Lq̄q̌. We employ

the kinetic energy preservation scheme (Jameson 2008a,b) for the inviscid flux, and
the Green–Gauss/weighted least squares method (Shima, Kitamura & Haga 2013) for
calculating the spatial gradient. We then obtain a first-order linear system expressing the
time evolution of the perturbation q̌:

∂ q̌
∂t

= Lq̄q̌ + f̌ . (3.4)

The above equation can be converted into its wavespace representation through the
temporal Fourier transform of the fluctuations:

[q̌, f̌ ](x, y, z, t) =
∫ ∞

−∞
[q̂ω, f̂ ω](x, y, z) exp (−iωt) dω, (3.5)

where ω ∈ R is the angular frequency. The superscript ·̂ indicates the Fourier coefficient
of the fluctuating components. Substituting q̌ and ǔ in (3.4) yields the equation

− iωq̂ω = Lq̄q̂ω + f̂ ω, (3.6)

which describes the linearized input–output dynamics between f̂ ω (input) and q̂ω (output)
in frequency space.

We validate our linear approach through a test case of two-dimensional laminar flow
around a cylinder. A parametric stability analysis is performed over a range of Reynolds
numbers. We found that the linear analysis predicts the critical Reynolds number and
frequency of the Hopf bifurcation. See Appendix B for details. In this study, we use the
time-averaged flow discussed in § 2.3 for the base flow field q̄. Previous studies have shown
that averaged flow can be used to extract global modes associated with trailing-edge noises
(Fosas de Pando et al. 2014, 2017).

For discretizing the linearized Navier–Stokes operator, we adopt an H-type hexahedral
grid shown in figure 15. The computational domain has extent x/Lc ∈ [−25, 25] and
y/Lc ∈ [−25, 25]. The total number of elements is approximate 390 × 103 cells, with 1000
nodes on each side of the aerofoil. The height of the first wall cell is 2 × 10−4Lc.
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Figure 15. (a) H-type hexahedral grid for discretizing the linearized Navier–Stokes operator. (b) The near-field
grid with resolvent forcing (top) and response (bottom) mode for case 1 at St = 7.2 with its streamwise velocity
component.

3.2. Spectrum of the linear operator
Analysing (3.6) provides us with insights into the asymptotic behaviour of the linear
system. Substituting f̌ = 0 in (3.6), we obtain the general solution expressed as

q̌ = q̂ exp (−iω̂t). (3.7)

The complex modal frequency ω̂ and the Fourier coefficient q̂ can be found through an
eigenvalue problem for matrix Lq̄:

− iω̂q̂ = Lq̄q̂. (3.8)

The imaginary part of the modal frequency, Im(ω̂), represents the growth (or decay) rate,
whereas the real part, Re(ω̂), provides the modal frequency. In this work, we employ the
SciPy package (Virtanen et al. 2020) with ARPACK (Arnoldi package) library (Lehoucq,
Sorensen & Yang 1998) for solving the sparse eigenvalue problem in (3.8).

We solve the eigenvalue problem in (3.8) and present a spectrum of the linear operators
for both flow cases in figures 16(a) and 16(b). Since the linear operator Lq̄ is real, the
spectrum is symmetric about the real axis. It thus suffices to show only the positive
frequency domain Im(λ) > 0. The eigenmode is identified as physical if 99.95 % of its
modal energy, calculated with Chu’s disturbance energy (Chu 1965), lies in the range
x/Lc ∈ [−1, 4] and y/Lc ∈ [−2.5, 2.5]. This window size is large enough to cover an area
where the high-resolution grid is adopted in the DNS computation. Figure 16(c) shows
the physical mode for case 1 at the main trailing-edge noise frequency St = 7.2, which is
highlighted by the red arrow in the spectrum, with its streamwise velocity component. The
eigenmode shows that velocity fluctuations arise from the laminar separation bubbles on
both sides of the aerofoil, as could also be seen in figure 8(b) and was discussed in § 2.5.
For case 2, we present the spectrum and streamwise velocity component of the eigenvector
at St = 4.1 in figures 16(c) and 16(d), respectively. The velocity mode corresponds to the
velocity fluctuation growth behind the separation bubble on the suction-side surface. We
note that the linear operators for both flow cases about the mean flow are unstable since
the spectrum has some eigenvalues with positive growth rates. We need to be careful when
performing resolvent analysis for an unstable operator, as discussed below.
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Figure 16. The spectrum of the linear operator for (a) case 1, and (b) case 2. Also, the global stability mode
for (c) case 1 at St = 7.2 (highlighted by the red arrow in (a)), and (d) case 2 at St = 4.1 (blue arrow in (b)),
with its streamwise velocity components. The black dotted lines in (c) and (d) indicate the contour of ū = 0.
The eigenvalues corresponding to the physical modes are plotted in blue, whereas unphysical modes are shown
in grey.

3.3. Resolvent analysis of the linear operator
In this subsection, we perform a resolvent analysis of the mean flow. Resolvent analysis
has been utilized to uncover the origin of unsteady fluctuations in turbulent boundary
layers (Luhar, Sharma & McKeon 2014) and transonic flow over an aerofoil (Kojima et al.
2020), in terms of the input–output relation analysis. Through resolvent analysis, we aim
to uncover the origin of the trailing-edge noise for the primary tone noise at St = 7.2 and
the higher frequency tone at St = 11.2, presented in figure 5(a).

3.3.1. Resolvent analysis
Let us consider the linear equation (3.6) as an input–output system, written as

q̂ω = [−iωI − Lq̄]−1f̂ ω. (3.9)

Here,
H q̄(ω) ≡ [−iωI − Lq̄]−1 ∈ C

4N×4N, (3.10)

is referred to as the resolvent operator. Equation (3.9) can be interpreted as the linear
transform between f̂ ω and q̂ω through the resolvent operator. We can also implement a
spatial window on the output of the system, which can be written as ŷ = Cq̂ (Jeun, Nichols
& Jovanović 2016; Schmidt et al. 2018), where C is a diagonal weight matrix that equals 1
if the element is in a domain of interest, and 0 otherwise. With spatial windowing C, the
resolvent operator forms

H q̄
c(ω) = C[−iωI − Lq̄]−1. (3.11)

Using the spatial window C can aid in studying the optimal energy amplification from
forcing to a response in local domains (Schmidt et al. 2018; Kojima et al. 2020;
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Yeh et al. 2020). In this study, the spatial window is chosen to cover the laminar separation
bubbles on both sides of the aerofoil, where the velocity fluctuations are mainly generated.
The extents of the windows are shown in § 3.3.3.

We seek the optimal forcing and response modes that maximize the energy amplification
between input f̂ ω and output q̂ω with

G(ω) ≡ max
f̂ ω /= 0

〈q̂ω, q̂ω〉E

〈f̂ ω, f̂ ω〉E
= max

f̂ ω /= 0

〈H q̄
c(ω) f̂ ω, H q̄

c(ω) f̂ ω〉E

〈f̂ ω, f̂ ω〉E
, (3.12)

where 〈q1, q2〉E is the energy norm defined with a weighted inner product over the domain
of interest V (Chu 1965):

〈q1, q2〉E ≡
∫

V
q∗

1 diag
(

RT̄
ρ̄

, ρ̄, ρ̄,
Rρ̄

(γ − 1)T̄

)
q2 dx, (3.13)

where R is the ideal gas constant, and superscript ∗ denotes the Hermitian transpose. For
the spatially discretized domain, the energy norm can be expressed as

〈q1, q2〉E = q∗
1W q2. (3.14)

The diagonal matrix W involves energy weight and spatial integration. Note that the energy
norm is defined with the primitive variables ([ρ u v T]T), while the governing (2.1) is
written using the conservative variables. Hence the weight matrix here also acts as the
transformation matrix between the primitive variables and conservative variables.

With the gain function defined above, seeking the optimal gain is achieved
by performing a singular value decomposition of the weighted resolvent operator
H q̄,w

c (ω) = W 1/2 H q̄
c(ω) W −1/2:

H q̄,w
c (ω) = QwΣF w∗. (3.15)

Each column vector of the unitary matrices Qw = W 1/2[q̂1 q̂2 · · · q̂4N] and F w =
W 1/2[f̂ 1 f̂ 2 · · · f̂ 4N] represents the response and forcing modes of the system,
respectively. The singular value matrix Σ = diag(σ1, σ2, . . . , σ4N) (σ1 ≥ σ2 ≥ . . .

≥ σ4N ≥ 0) gives the gain (amplification) between forcing and response modes. The
singular vectors q̂i and f̂ i give the optimal response and forcing pair with energy
amplification. For faster calculation, we employ the randomized resolvent analysis
technique (Ribeiro, Yeh & Taira 2020) for performing the analysis.

The stability and resolvent analyses described above assume an infinite-time horizon,
while many base flows may be unstable. Jovanović (2004) introduced a technique to
deal with the short-term transient phenomena in the context of resolvent analysis through
exponential temporal filtering (discounting). The temporal filtering for both response and
forcing such that q̌α = q̌ e−αt and f̌ α = f̌ e−αt with α > 0 for (3.4) leads to a discounted
linear system in frequency space written as

(α − iω)q̂α = Lq̄q̂α + f̂ α. (3.16)

Then the resolvent analysis for a finite-time horizon is performed by an SVD of the
discounted-resolvent operator written as

H q̄
α,c(ω) ≡ C[−i(ω + iα)I − Lq]−1. (3.17)

The discounting parameter α is set so that the temporal filter covers the dominant unstable
growth of the system that is α > max Im(ω̂) = 0.22 for the present case. Additional
details for temporal discounting can be found in Yeh & Taira (2019) and Yeh et al. (2020).
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Figure 17. (a) The leading resolvent gain for case 1 over the modal frequency, and streamwise velocity
components of (b) forcing and (c) response modes at St = 7.2 for the leading gain. (d) The response mode
is also visualized with its density component. The dashed lines on the aerofoil are contours of ū = 0.

3.3.2. Resolvent gains and modes
We perform a resolvent analysis on the unstable linear operator with the time discounting
parameter αLc/2πU∞ = 1.59 and present resolvent gains over its modal frequency ω in
figure 17(a) for case 1 and figure 18(a) for case 2. This choice of the discounting value
is sufficiently large to prevent the unstable behaviour of the base flow from affecting the
transient analysis and to capture the dominant dynamics. The time discounting removes
the spikes from the leading gain distributions that arise from spurious eigenmodes (Yeh &
Taira 2019).

From the leading gain distribution in case 1, we find that the optimal gain appears
at St = 7.2. The peak frequency shows good agreement with the frequency of vortex
generation (St = 7.2) on the pressure-side wall, at which vortices generate the main tonal
noise, as discussed in § 2.6. Indeed, the forcing and response modes in figures 17(b) and
17(c) show the linear input-output process of the pressure-side separation bubble. The
pressure component of the response mode in figure 17(d) shows the trailing-edge noise
mode with dipolar nature, as observed through the instantaneous pressure fluctuation fields
shown in figure 5. The current observations are consistent with previous studies (Nash
et al. 1999; Desquesnes et al. 2007; Fosas de Pando et al. 2014), and it can be concluded
that the origin of the main tonal noise is the pressure-side separation bubble.

On the other hand, in case 2, shown in figure 18, the optimal gain can be found at
frequency St = 4.1, which agrees with the main tonal frequency observed in the numerical
simulation (see figure 5c). The response mode in figure 18(c) shows the velocity modes
that may correspond to the fluctuations behind the separation bubble on the suction-side
surface. The response mode also appears on the pressure side, although we did not find
considerable velocity fluctuations on the pressure side in figure 12(b). Furthermore, the
forcing mode at St = 4.1 is shown only on the pressure side. These pressure-side forcing
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Figure 18. (a) The leading resolvent gain for case 2 over the modal frequency and its streamwise velocity
components of (b) forcing and (c) response modes at St = 4.1. (d) The response mode is also visualized with
its density component. The dashed lines on the aerofoil are contours of ū = 0.

and response modes may correspond to a linear instability on the pressure-side wall
shear layer. However, since the velocity gradient in the shear layer is not significant,
the instability does not produce strong velocity fluctuations that can affect the pressure
generation around the trailing edge. The density component of the response mode shows
the pressure waves emitted from the trailing edge.

3.3.3. Resolvent analysis with response windowing
In this subsubsection, we employ resolvent analysis with spatial windowing as explained in
§ 3.3.1 to gain further insight into the trailing-edge noise phenomena. As discussed in § 2.5,
the laminar separation bubbles on both sides of the aerofoil generate vortices with different
dominant frequencies. Using spatial windows for both bubbles aids us in investigating the
local harmonic response, and reveals the associated frequencies for amplification.

For the spatial window C, we employ three rectangular windows for both cases, as
can be found in figures 19(b–d) for case 1 and figure 20(b) for case 2. For case 1, the
suction-side window covers x/Lc ∈ [0.45, 0.85], and the pressure-side window covers
x/Lc ∈ [0.6, 1.0], which are large enough to cover both separation bubbles. For case
2, we set the suction-side window, which has extent x/Lc ∈ [0.1, 0.5], to cover the
separation bubble. Since the pressure-side bubble does not appear, we did not apply spatial
windowing for the pressure side for case 2.

The windowed gains in case 1 for both windows are plotted with their leading and
second-largest gains in figure 19(a). For the pressure-side windowed case, we find the peak
of the leading gain at St = 7.0, which is reasonably close to the main tonal frequency in
figure 5(b). On the other hand, over the suction-side windowed case, the peak frequency for
the first mode appears at a much higher frequency, St = 11.2. The suction-side windowed
case also peaks at St = 7.2 for its second-largest gain.

958 A3-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.37


On the origin of quadrupole sound

(b)

(a)

(c)

(d)

G
ai

n
: 
σ

x/Lc x/Lc

y/
L c

y/
L c

y/
L c

–0.2

0.2

103

100

101

102

0.1

–0.1

0

0 1.00.80.60.40.2 0 1.00.80.60.40.2

0 1.00.80.60.40.2 0 1.00.80.60.40.2

0 1.00.80.60.40.2 0 1.00.80.60.40.2

–0.2

0.2

0.1

–0.1

0

–0.2

0.2

0.1

–0.1

0

–0.2

0.2

0.1

–0.1

0

–0.2

0.2

0.1

–0.1

0

–0.2

0.2

0.1

–0.1

0

St = ωLc/2πU∞

(d)

(b)
(c)

20151050

Figure 19. (a) The windowed resolvent gains over the frequency, and (b–d) representative
windowed forcing (left), and response (right) modes with their streamwise velocity components
for case 1. Plotted in (a) are the largest (blue lines) and second-largest (orange lines) gains
for the suction-side windowed case (dashed lines) and pressure-side windowed case (solid
lines). The vertical lines indicate St = 7.2 and St = 11.1. The representative cases visualized
in (b–d) are marked with red circles in the gain plot. The dashed lines on the aerofoil wall
are the contours of ū = 0. The red and blue boxes indicate the pressure- and suction-side windows for the
response modes.

The current windowed analysis considers only the local response in the vicinity of the
separation bubbles; hence the present observations do not indicate directly the existence of
a linear relationship between the velocity amplification via the hydrodynamic instability
and far-field acoustic waves. Such analysis is beyond the current discussion and requires
another windowed resolvent analysis targeting the far-field acoustics, such as Jeun et al.
(2016). However, recalling the discussions in § 2.6, it is clear that there is a direct
relationship between the strong vortices originating from the separation bubbles and the
trailing-edge noise radiation.

We visualize the resolvent modes for three representative cases highlighted in
figure 19(a) and present them in figures 19(b–d). From figure 17(b), which is the
pressure-side windowed case at St = 7.2, it we can find the mode involved in the velocity
amplification on the pressure-side separation bubble. We note that the resolvent analysis
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Figure 20. (a) The windowed resolvent gains over the frequency, and (b) representative windowed forcing
(left) and response (right) modes with their streamwise velocity components for case 2. Plotted in (a) are the
largest (blue lines) and second-largest (orange lines) gains for the suction-side windowed case. For consistency
with figure 19, we plot the gain with dashed lines. The representative case at St = 4.1 visualized in (b) is
marked with the red circle in the gain plot. The dashed lines on the aerofoil wall are the contours of ū = 0. The
blue box indicates the suction-side window for the response modes.

without windowing also identifies the same mode as the optimal amplification of the
linear system. Thus we observe that the pressure-side windowed result also points to the
origin of the main tonal noise.

Next, let us discuss the suction-side windowed case, visualized in figures 19(c) and
19(d). Figure 19(c) presents the forcing and response modes at St = 11.2, uncovering
the origin of the higher-frequency peak in figure 12(a). The forcing and response modes
show that the harmonic response at St = 11.2 involves the hydrodynamic instability of the
suction-side separation bubble. Recalling the discussion of the frequency characteristics of
vortices in § 2.6.2, this high-frequency amplification relates to the high-frequency vortex
generation observed in figure 12.

We consider the suction-side windowed analysis for case 1 at St = 7.2 in figure 19(d),
whose mode corresponds to the second-largest gain. Interestingly, the forcing mode
appears around the pressure-side bubble even though we place the spatial window on the
suction side, as can be found in figure 19(d). Desquesnes et al. (2007) suggest that the main
tonal noise triggered by the pressure-side vortices excites the suction-side boundary layer,
and consequently, the vortices at the trailing-edge noise frequency appear on the suction
side. This argument is consistent with the present forcing and response modes involving
the energy transfer from the pressure side to the suction side. Moreover, as discussed in
§ 2.6, the vortices that appear over the suction-side wall possess two distinct sizes. The
larger vortices correspond to the velocity fluctuations at St = 7.2, and the smaller vortices
at St = 11.2. The windowed analysis suggests that these two sizes of vortices result from
the combination of two different origins: the hydrodynamic instability of the suction-side
bubble at St = 11.2, and the pressure-side bubble at St = 7.2. We find that this multi-scale
nature of vortices enriches the physics of trailing-edge noise generation.

Finally, we consider the windowed resolvent analysis for case 2, as visualized in
figure 20. The leading gain shows its optimal gain at St = 13.7, which is close to the
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optimal gain frequency of the suction-side windowed case for case 1. The similarity of the
leading gain distributions for the two cases might suggest the common underlying physics
of the suction-side bubbles in different flow conditions. Indeed, the leading windowed
resolvent mode at St = 4.1 shown in figure 20(b) shows a forcing-response structure
similar to that visualized in figure 19(c), and is responsible for the main noise generation in
case 2. In contrast to case 1, the second-largest gain in figure 20(a) does not significantly
peak around the main tonal noise frequency. Considering that the second mode in case
1 indicates the combination between both sides of the aerofoil, this difference on the
second-largest gain suggests that in case 2, the noise generation mechanism is closed only
on the suction-side surface.

4. Conclusion

We investigated the origin and physical mechanism of high-frequency quadrupole sound in
the trailing-edge noise over a two-dimensional aerofoil. The DNS were performed using
OpenFOAM with the rhoPimpleFoam solver for the unsteady flow over the NACA0012
aerofoil. For the flow condition, we chose two cases for our study. In case 1, the
chord-based Reynolds number is ReLc = 2 × 105, the Mach number is M∞ = 0.1, and the
angle of attack is α = 2◦. In case 2, the chord-based Reynolds number is ReLc = 1 × 105,
the Mach number is M∞ = 0.05, and the angle of attack is α = 5◦. The time-averaged
streamwise velocity field revealed that two separation bubbles appear on both sides of the
aerofoil in case 1, whereas in case 2, the bubble is observed only on the suction side.

The pressure fluctuation field indicates that intense acoustic waves are radiated from the
trailing edge. The frequency spectrum of the pressure fluctuation for case 1 has a primary
packet of peaks around St = 7.2, and a higher-frequency secondary packet around St =
11.2. The predominant pressure fluctuation is directed towards θp = 54.7◦ for the suction
side of aerofoil, and −51.4◦ for the pressure side. Two other distinct angles are found in
almost vertical directions, at θp = 84.7◦ and −83.4◦. In case 2, the PSD of the pressure
wave has peak frequency St = 4.1. The pressure waves are directed towards θp = 84.2◦
and −74.5◦.

Next, we employed tlsDMD to evaluate the coherent structures of the flow field.
With the use of a compressed sensing algorithm, we identified the modes related to
trailing-edge noise at St = 7.2 and 11.2 for case 1, and St = 4.1 for case 2; they agree
with the frequencies identified in the spectral analysis of pressure fluctuation. The DMD
pressure mode shows that case 1 has both dipolar and quadrupole pressure waves, which
respectively correspond to the primary and secondary frequency peaks observed in the
pressure wave spectrum. For the primary tone at St = 7.2, the mode exhibits a dipolar
nature. For the higher-frequency mode at St = 11.2, the mode has the property of a
quadrupole, and the radiation angles are θp = ±30◦ and ±84◦. On the other hand, in case
2, only the dipole sound mode is detected.

The dynamics of the vortices around the trailing edge were analysed to identify the
origin and physical mechanism of the quadrupole sound source. We employed Curle’s
acoustic analogy to examine the dipole and quadrupole sources separately. Time evolutions
of dipole sources indicate that the dipole sources are excited by the pressure-side vortices
in case 1, while the suction-side vortical effect is dominant in case 2. We then examined the
quadrupole source and showed that the source term fluctuates violently when the vortex
on the trailing edge is shed from the wall. Especially in case 1, the quadrupole source
shows intense value during the movement from the suction-side vortices interacting with
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the vortices on the trailing edge. We compared the power contributions of the quadrupole
to the acoustic waves in both flow cases, and found that the quadrupole’s contribution in
case 1 exceeds what was expected by the theoretical order estimation. These observations
suggest that the intensity of the quadrupole in case 1 is strengthened through the vortex
interaction between both sides of the aerofoil.

As the final step, we performed a resolvent analysis on the linearized governing
equation to investigate the vortex generation over the aerofoil. We analysed the local
energy amplifications related to the separation bubbles through spatially windowed
resolvent analysis. In case 1, the resolvent analysis with the response window for the
suction-surface bubble uncovered the origin of the higher-frequency velocity fluctuation
on the suction-side wall. The suction windowed analysis also indicated the existence of
energy transfer from the pressure side to the suction side at St = 7.2. The combination
of two origins with different frequencies induces multi-scale vortices on the suction side,
which consequently generates the trailing-edge noise for both the primary tone at St = 7.2
and the secondary tone at St = 11.2. In case 2, we performed a suction-side windowed
resolvent analysis since the pressure-side wall does not have a separation bubble. The
windowed analysis indicates the similarity of the physics of the suction-side bubbles
between both flow cases. Indeed, the forcing and response modes relating to the bubbles
show the close structures. The distribution of the second-largest gain suggests that the
noise generation mechanism is closed only on the suction-side surface.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.37.
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Appendix A. On the grid resolution for the acoustic waves

This appendix considers the grid resolution of the acoustic wave that travels far from
the walls. Equation (2.18) reveals that the power of the pressure waves decays following
prms ∝ r−1/2 for both dipole and quadrupole waves in the two-dimensional space (Inoue
& Hatakeyama 2002). We extract the spatial distribution of the r.m.s. of the pressure waves
prms along with x = xTE for both flow cases and present them in figure 21. The figure shows
that the numerical result follows the theoretical estimation up to 5Lc from the trailing edge.
The pressure waves are well resolved within the range r < 5Lc.
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Figure 21. The spatial decay of the acoustic waves for case 1 (red) and case 2 (blue). The r.m.s. values of the
pressure wave prms for each case are extracted along with x = xTE . The figure also contains the dashed-line
curve that is proportional to r−1/2, where r ≡

√
( y − yTE)2.
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Figure 22. (a) Computational grid for numerical simulation and modal analysis on two-dimensional cylinder
flow. (b) Expanded view, where contours indicate an instantaneous spanwise vorticity field for ReLd = 150 and
M∞ = 0.2.

Appendix B. Validation of the linear operator

For validating the discretization of the linearized Navier–Stokes operator discussed
in § 3.1, we perform global stability analysis of two-dimensional laminar flow
around a circular cylinder. We employ the rhoPimpleFoam solver for simulating
unsteady compressible flow around a cylinder. For the numerical grid, we construct a
two-dimensional O-type hexahedral grid with nr × nθ = 223 × 400, where nr and nθ

are the numbers of grid points in the radial and tangential directions, respectively. The
minimum grid spacing in the wall direction is set to be min(Δr/Ld) = 5 × 10−3, where
Ld is the diameter of the cylinder. The extent of the computational domain is equal to 200
times the cylinder diameter. Figure 22 shows the computational grid with an instantaneous
vorticity distribution for ReLd = 150 and M∞ = 0.2. We solve for the stable flow field at
a subcritical Reynolds number, which is used to construct the linear operator.

We estimate the critical Reynolds number and frequency for the cylinder flow using the
linear operator. The parametric simulations with changing Reynolds number at M∞ = 0.2
show that the flow undergoes a Hopf bifurcation at Recrit = 47 with modal frequency

958 A3-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.37


Y. Kojima, C.S. Skene, C.-A. Yeh, K. Taira and M. Kameda

References Recrit Stcrit Analysis

Taneda (1956) 45 None Exp.
Provansal, Mathis & Boyer (1987) 47 0.12 Exp.
Strykowski & Sreenivasan (1990) 46 0.12 Exp./Numerical
Zebib (1987) 45 0.11–0.13 Stability
Jackson (1987) 46.184 0.138 Stability
Current 47 0.115 Stability

Table 2. Comparison of critical Reynolds number and Strouhal number with previous studies.

Stcrit = 0.115. We compare the current values with results from previous studies, and find
that the present value reasonably predicts the critical values, as summarized in table 2.
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