
This is a repository copy of Ultra-short-term wind power prediction based on double 
decomposition and LSSVM.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/196868/

Version: Accepted Version

Article:

Qin, B. orcid.org/0000-0001-5695-0791, Huang, X., Wang, X. orcid.org/0000-0002-9075-
2833 et al. (1 more author) (2023) Ultra-short-term wind power prediction based on double
decomposition and LSSVM. Transactions of the Institute of Measurement and Control, 45 
(14). pp. 2627-2636. ISSN 0142-3312 

https://doi.org/10.1177/01423312231153258

Qin B, Huang X, Wang X, Guo L. Ultra-short-term wind power prediction based on double 
decomposition and LSSVM. Transactions of the Institute of Measurement and Control. 
2023. Copyright © 2023 The Author(s). DOI: https://doi.org/10.1177/01423312231153258. 
Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



  1 

Ultra-Short-Term Wind Power Prediction Based on Double 
Decomposition and LSSVM 

BIN QIN a , XUN HUANG b, XIN WANGa*, LINGZHONG GUOc 

 

aSchool of Electrical & Information Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China 

bCollege of Railway Transportation, Hunan University of Technology, Zhuzhou, Hunan, 412007, China 

cDepartment of Automatic and Systems Engineering, The University of Sheffield, S1 3JD, UK 

Abstract 

In order to reduce the influence of the random fluctuation on wind power prediction, a new ultra-

short term wind power prediction model, based on wavelet decomposition (WD)-variational mode 

decomposition (VMD)-least square support vector machine (LSSVM), is proposed in this paper. 

The method is based on the double decomposition and LSSVM, where the wind power sequence 

is decomposed by WD into low and high frequency components which are further decomposed 

by VMD to obtain many modal components with tendency and periodicity. Multiple LSSVM 

prediction models are then established with historical wind power data and weather data as the 

inputs to obtain the predicted values of the multiple modal components. The final predicted values 

of wind power are achieved by data fusion of outputs of these LSSVM models. The experimental 

results show that the MAPE (Mean Absolute Percentage Error) of the combined prediction model 

is 4.66%, which is the best compared with eight benchmark models. This demonstrates the high 

performance of the proposed WD-VMD-LSSVM model for short-term prediction of wind power. 
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1. Introduction 

With the development of new energy technologies, more and more attention has been 

paid to wind power generation due to its being cost-effective and environmentally 

friendly. Wind power prediction plays a crucial role during wind power generation (Wang 

et al., 2019). However, wind is considered highly intermittent, non-stationary, highly 

random, and difficult to predict (Sun et al., 2020), which brings challenges to the accurate 

prediction of wind power output. In general, wind power prediction is to process and 

analyze historical wind power data and external influencing factors, and establish a 

specific mathematical model to predict future wind power output, which can be long-term 

(one year to ten years), medium-term (one month to one year), short-term (one day to one 

week), or ultra-short-term (seconds to hours) (Li et al., 2020). Among them, the ultra-

short-term wind power prediction is of great significance to the safety and stability of the 

power systems as well as economical energy saving, and helps to improve their operating 

performance (Li and Li, 2019). Therefore, in this paper, we will focus on the ultra-short-

term prediction of wind power output. 

In the past few decades, many mathematical models and methods have been used to 

predict wind power. These methods can be generally divided into three categories. The 
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first category is to construct mechanism models of wind power through physical 

information, such as the use of spatial correlation (Alexiadis et al., 1999) and numerical 

weather forecast (Zhao et al., 2016), and other information. The second category is to use 

statistical methods or artificial intelligence methods to find the correlation between 

historical data and then establish data-driven models of wind power, such as 

autoregressive integrated moving average model (AIMAM) (Korprasertsak and 

Leephakpreeda, 2016), neural networks (NN) (Mason et al., 2018), and support vector 

machine (SVM) (Wu and Gao, 2018). The third category is the combined prediction 

methods, such as the probabilistic WPF ensemble of ensemble empirical mode 

decomposition (EEMD)-sample entropy (SE)-extreme learning machine(ELM) proposed 

by (Zhang, et al., 2014), which combines the signal decomposition technology with the 

prediction model to obtain better prediction performance. Wang et al. (Wang et al., 2020) 

proposed a complete EEMD with adaptive noise (CEEMDAN) in combination with 

neural network-induced ordered weighted averaging (IOWA) algorithm. Compared with 

EEMD and EMD, the decomposition process of EEMDAN is more complete and 

outperforms the combined prediction model of the single prediction model ELM and 

EEMD. To enhance the predictive performance of single mechanism models or single 

data-driven models, a fusion of multiple predictive models is desirable, which will be the 

focus of the study in this paper. In view of the random fluctuation of wind power series, 

it is difficult to fully extract data feature information (Abedinia et al., 2020). Therefore, 
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it is necessary to stabilize the series first, so that some statistics in the stabilized series do 

not change with time, enhance the regularity of the series, and then improve the prediction 

accuracy (Sun and Zhao, 2020). The sequence stabilization can be implemented by using 

signal decomposition techniques, such as EMD, wavelet decomposition (WD) and 

variational mode decomposition (VMD) techniques. Among them, WD can be used to 

obtain unstable and nonlinear features from the signals and analyze the signals with 

intermittent and instability (Liu et al., 2021). The problem of modal mixing is appeared 

in the application of EMD (Lu et al., 2021), and the EEMD obtained by improving EMD 

has been used to solve this problem (Liu et al., 2016), while VMD not only has no problem 

of modal mixing, but also its number of components is far smaller than EEMD (Zhang et 

al., 2019). Given that the single signal decomposition methods do not fully consider the 

mutual influence of wind power sequence across different frequencies (Wu et al., 2020), 

a combined WD-VMD decomposition of the wind power sequence is adopted in this 

paper. 

Regarding the nonlinear characteristics of wind power prediction, NN and SVM have 

been shown to be powerful in dealing with them (Xu et al., 2021, Khosravi, et al., 2018). 

The results of wind speed prediction by Mohandes et al. (Mohandes et al., 2014) using 

SVM and multi-layer perceptron (MLP) have shown that SVM has higher prediction 

accuracy than MLP. However, SVM is often replaced by least squares support vector 

machines (LSSVM) due to its complex computation (Zhongda, 2020). De Giorgi et al., 
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2014 used LSSVM and ANN to compare and predict wind power, and the results showed 

that the LSSVM model has higher prediction accuracy. Considering that there will be 

some information loss after the decomposition of the wind power sequence and error 

superposition caused by multiple predictors, only summing all modal components to 

obtain the final predicted values could have a large error. Therefore, the final predicted 

values are obtained by data fusion of all modal components (Xu et al., 2019). 

Taking all the discussions above, an ultra-short-term wind power prediction model, 

based on WD-VMD and LSSVM, is proposed in this paper. WD is used to decompose 

the wind power sequence into low and high frequency components, and VMD is then 

used to further decompose the low frequency components to obtain multiple sub-

components. An LSSVM model for each sub-component is constructed with historical 

wind power data and weather data and the predicted values of each sub-component are 

further fused to obtain the final predicted values by an LSSVM model. The main 

contributions of this work are as follows: 

1) The double decomposition technology of WD and VMD is used to decompose the 

wind power sequence to stabilize it and enhance its regularity, based on which a new 

combined prediction model WD-VMD-LSSVM is proposed for ultra-short-term 

prediction of wind power. 

2) The proposed model takes into consideration both historical wind power data and 

historical weather data and a data fusion method is proposed to obtain the final wind 
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power prediction values, reducing the influence of the information loss and error 

superposition from multiple LSSVM predictors. 

The paper is organized as follows: Section 2 presents the double decomposition method 

and the combined prediction model WD-VMD-LSSVM; Section 3 compares and 

analyzes the experimental results; conclusions are drawn in Section 4. 

2. Ultra-short-term wind power prediction modeling based on WD-VMD-LSSVM 

(data fusion) 

2.1. WD-VMD-LSSVM (data fusion) combined prediction model 

The structure of the proposed WD-VMD-LSSVM (data fusion) combined prediction 

model is shown in Figure 1. 

  
Fig. 1. Structure of WD-VMD-LSSVM prediction model. 
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2.2. WD 

The wavelet transform is a time-frequency transform, which is ideal for analyzing 

nonstationary signals such as wind power output. Discrete wavelet transform separates 

the original signal into sub-sets at a smaller size, capturing signals with more information 

(Gürsoy and Engin, 2019). The Daubechies wavelet functions (Azimi et al., 2016), being 

effective for dealing with irregular signals such as wind power sequences, are adopted to 

implement the wind power signal decomposition. 

In particular, the db10 wavelet (Adly et al, 2016) is used as the basic wavelet to perform 

discrete wavelet transform (DWT) on the wind power data, as shown in Eq. (1) (Azimi et 

al., 2016): 
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where g  and h  are the wavelet and scaling coefficients, respectively. 



  8 

A wind power signal ( )W t  can be therefore written as: 

1 1
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The cascade decomposition of a wind power time series signal  1 2 3( ) , , ,..., nW t w w w w  can 

be defined as follows: 

( ) ( ) ( ) A Dw t f t f t                             

(5) 
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where ( )
nAf t  and ( )

nDf t  are approximation and detail coefficients, respectively. ( )Af t  

and ( )Df t  are the low and high frequency components, respectively. 

2.3. VMD   

VMD decomposition is an adaptive and non-recursive signal decomposition proposed by 

(Dragomiretskiy and Zosso, 2013). Compared with WD and EMD, the signal can be 

better restored by VMD (Zhou et al., 2022). Using this method, the frequency components 

are decomposed to obtain a series of natural mode components at low and high 

frequencies: 

Low frequency modal components: [IMF1_A, IMF2_A, …, IMFn_A]; 

High frequency modal components: [IMF1_D, IMF2_D, …, IMFm_D]; 
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Then a variational problem is solved to minimize the sum of the bandwidths of the 

low/high frequency components with the constraint that it is equal to the original low/high 

frequency components, as shown in Eq. (7) (Dragomiretskiy and Zosso, 2013): 
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where k  is the modal number, ( )t  is the Dirac function, { }ku  is the k  modal 

component, { }k  is the center frequency corresponding to the k  modal component, 

/A Df  is the original low/high frequency component from Eqs.(5-6), t  is the time, and j  

is the imaginary unit. Introducing the quadratic penalty factor   and Lagrange 

multiplier  , Eq. (7) can be re-formulated as Eq. (8): 
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The final update process of VMD is shown in the Eqs. (9-11): 
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where /
ˆ ( )A Df  , ˆ ( )n

iu  , ˆ ( )n

ku  , ˆ ( )n   are the Fourier transform of / ( )A Df t , ( )iu t , ( )ku t , 

( )n
t  respectively,   is the update parameter, and n  is the number of iterations. 

In general, a sequence is said to be convergent if it approaches some limit and 

furthermore every convergent sequence is a Cauchy sequence. Therefore, let  ˆn

ku  be 

the sequence, if there exists  ˆm

ku , for any given number 0q , there is always 

ˆ ˆ n M

k ku u q  when n M  and M  is a positive integer, that is,  ˆn

ku  converges to 

 ˆm

ku . 

Thus, we will use the following criterion for convergence: for a given precision 

convergence criterion 0 , if Eq. (12) is satisfied, thenVMD converges, that is, Eqs (9-

11) stops updating. 

21

2
2

2

ˆ ˆ

ˆ

 


n n

k k

k n

k

u u

u
                                 (12) 

2.4. LSSVM 

Compared with SVM, the LSSVM facilitates the solution of Lagrange multiplier α and 

improves the convergence speed (Xie et al, 2021). Different kernel functions have 

different effects on the regression performance of LSSVM, and radial basis functions 

(RBF) (Zhang et al, 2018) are used here as shown in Eq. (13) (Zhang et al, 2018): 
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where   is the kernel function parameter. 

Set  
11( , ),...,( , )

nk n kx u x u  as the input training sample set and use the following high-

dimensional linear mapping to fit the training sample set, as shown in Eq. (14) (Zhang et 

al, 2018): 

( ) ( ) T

kf x w x b                                (14) 

where w  is the weight, b  is the bias, and ( )x  is the nonlinear mapping function. 

According to the structured risk minimization principle, the LSSVM regression problem 

can be transformed into the following constrained optimization problem: 
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where ie  is the training error;   is the regularization factor, 
iku  is the outputs of the 

kth LSSVM model from Eq.(9); ix  includes historical wind power data and weather data 

is the inputs of LSSVM model.  

Eq. (15) is transformed into the dual problem of Eq. (16) by a Lagrange multiplier method: 
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where i  is the Lagrange multiplier. 

The partial derivative of Eq. (16) is obtained by KKT conditions: 
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Eq. (17) is arranged into Eq. (18), and the linear Eq. (18) is solved to obtain   and b 

of the LSSVM model  
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where K  is the kernel function matrix and I  is the nth-order unit matrix. 

The LSSVM prediction model is given by: 
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Using Eq. (19), the predicted values of k modal components are obtained. In the same 

way, A LSSVM data fusion model is constructed according to Eqs. (13-19) with the 

predicted values of k modal components as inputs and the actual value of wind power as 

the output, thus the final wind power predicted value ( )Y t  is given by: 
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2.5. Experimental data and its preprocessing 

The dataset used in the paper contains onshore wind power data and weather data (wind 

direction and speed) in Spain from January 1, 2015 to 2016, with a sampling time of 1 

hour, and a total of 8782 pieces of data. In this paper, the data mining method was used 

to find out that the data missing rate of the wind power data set is 0.0018%, and the 

missing values were filled by means of mean interpolation. The data on the 1st January 

2016 was used as the test set (24h). 

The predicted horizon was set to be two hours, which means the current prediction is 

made based on the wind power and weather data two hours ago. The input data were 

normalized for consistency. The dataset was taken from the Kaggle website (Nicholas 

Jhana, 2019). 

2.6. Evaluation indicators 

Three evaluation indicators are used to evaluate the performance of the proposed 

model: Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and 

fitting coefficient R-square as shown in Eqs. (21-23): 
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where N  is the total number of wind power prediction samples, ( )iy t  is the original 

wind power data at time, ˆ ( )iy t  is the predicted value of wind power at time, and ŷ  

represents the mean value of the original wind power data. 

2.7. Ultra-short-term wind power prediction based on WD-VMD-LSSVM (data fusion) 

3.3.1 WD 

Because the length of the wind power sequence is 8758, there are six layers from the 

wavelet decomposition. DWT was performed on the wind power sequence by db10 

wavelet, and then the 1A  and 1D  were obtained as Eq. (1). The signals before and after 

the WD decomposition of the wind power sequence are shown in Figure 2. 

 
Fig. 2. Signal comparison  
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3.3.2 VMD 

The VMD algorithm needs to set the number of modal decompositions K first. The 

selection of the K value is very important. Different K values will produce different 

decomposition effects. The selection principle is to avoid modal aliasing and preserve the 

main feature information in the signal as much as possible (Xinghua et al., 2019). Here 

the method of observing the centre frequency of each mode after decomposition was used 

to determine the K value (Fu et al., 2021). The centre frequencies of 1A  and 1D  after 

VMD with different K values are shown in Table 1. 

It can be observed from Table 1 that when K = 9, the two centre frequencies in the low 

frequency component 42233.14 10  and the high frequency component 42172.45 10  

are too close, and the phenomenon of modal aliasing may occur. When K=7, the 

difference between the two centre frequencies of the low frequency component 

41867.83 10  and the high frequency component 42305.28 10  is too large, and the 

phenomenon of under-decomposition may occur, so it is more appropriate to choose K=8. 

Therefore, the time-domain waveforms and spectrograms of the 1A  and 1D  were 

obtained by using the VMD of K=8, as shown in Figure 3. It can be seen from Figure 3 

that the signal decomposition results are satisfactory. 

Table 1. Corresponding centre frequency to different K values in the low and high frequency 
components 

K Centre frequency( 410 Hz) 

5(low) 1.53 144.85 400.99 738.19 1281.96 - - - - 

6(low) 1.25 129.92 308.02 566.94 965.69 1583.58 - - - 

7(low) 1.05 113.92 259.21 489.69 802.70 1225.83 1867.83 - - 
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8(low) 1.00 110.02 248.13 466.94 734.59 1051.87 1496.93 2061.20 - 

9(low) 0.97 107.53 241.32 453.02 694.58 963.55 1305.73 1728.55 2233.14 

5(high) 2534.48 2977.58 3432.99 3986.31 4671.78 - - - - 

6(high) 2339.96 2723.00 3108.89 3545.31 4085.54 4721.23    

7(high) 2305.28 2635.78 2937.41 3286.29 3688.88 4194.96 4744.32   

8(high) 2291.74 2614.09 2865.27 3135.04 3509.78 3874.27 4325.68 4784.49  

9(high) 2172.45 2429.41 2659.92 2893.22 3141.12 3480.44 3892.02 4330.02 4789.93 

 

 
Fig. 3. VMD decomposition results and spectrum of low and high frequency components 

 

3.3.3 WD-VMD-LSSVM (data fusion) combined prediction model 

Taking the 16 modal components in Figure 3 as outputs, and the wind power and 

weather data (wind direction and speed) in the past two hours as inputs, 16 LSSVM 

prediction models were established by Eqs. (8-14). The data of 2015 (8760h) was used 
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for training, and the test data of January 1, 2016 (24h) was then input into the trained 16 

prediction models to obtain the predicted values of 16 modal components. Finally, an 

LSSVM model for data fusion of 16 modal components was performed to obtain the 

predicted values of wind power after signal reconstruction. 

In order to verify the feasibility of the WD-VMD-LSSVM (data fusion) combined 

prediction model, a comparison study was conducted with 9 benchmark models, which 

are shown in Table 2. The description of the parameters of the models and their values 

are shown in Table 3. 

Table 2. Comparing experimental model with benchmark models 
Serial number Predictive model Describe 

1 ELM Extreme Learning Machine 

2 LSSVM Least Squares Support Vector Machine 

3 WD-VMD-ELM Small wave decomposition + Variational Mode Decomposition +ELM 

4 WD-VMD-LSSVM WD+VMD+LSSVM(component prediction) 

5 VMD-LSSVM-ARMA-BPNN VMD+LSSVM+Auto Regression Moving Average+BP Nerual Network 

6 VMD-LSSVM(Data Fusion) VMD+ LSSVM(Component prediction and data fusion) 

7 EMD-LSSVM (Data Fusion) 
Empirical Mode Decomposition +LSSVM 

(Component prediction and data fusion) 

8 EEMD-LSSVM (Data Fusion) 
Ensemble empirical mode decomposition + LSSVM 

(Component prediction and data fusion) 

9 CEEMDAN-LSSVM(Data Fusion) 
Complete EEMD with adaptive noise +LSSVM 

(Component prediction and data fusion) 

10 WD-VMD-LSSVM (Data Fusion) WD+VMD+LSSVM(Component prediction and data fusion) 

 
Table 3. Main model parameters 

Main model Main parameters Parameter description 

ARMA 
5p  

4q

Autoregressive 

Moving average 

BPNN 

22in  

10hbpn  

1on

Input layer nodes 

Hidden layer nodes 

Output layer nodes 

ELM 22in  Input layer nodes 
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100hn  

1on  

Hidden layer nodes 

Output layer nodes 

LSSVM 
100  

20  

Regularization parameter 

Kernel function parameters 

WD 6n  Decomposition layers 

VMD 
16K  

1000a  

Decomposition number 

Penalty factor 

EEMD 

CEEMDAN 

0.2Ntsd  

500NR  

5000MaxIter  

Signal to noise ratio 

Number of noise additions 

Maximum number of envelopes 

The combined prediction model proposed in this paper uses WD once for wind power 

series, and its computational complexity is ( log( ))O N N , and uses VMD respectively for 

low and high frequency components, and its computational complexity is (2* lg( ))O N N . 

Finally, sixteen LSSVM predictors and one LSSVM fusion are constructed, and their 

computational complexity is 3(17 * )O N , so the computational complexity of the 

proposed model is 3( log( ) 2* lg( ) 17 * ) O N N N N N . Here N is the number of training 

samples, namely 8760. However, the higher the computational complexity of the 

algorithm, the more time will be spent on model training and prediction, which can not 

quickly verify the idea and improve the model, and can not achieve rapid prediction. 

Therefore, this paper makes a comparative analysis of the time spent on experimental 

model training and prediction. In addition, Eq. (21) and Eq. (22) were used to evaluate 

the prediction results of the models, as shown in Table 4. 

Table 4. Comparison of prediction results 

Predictive model MAPE（%） RMSE（KWh） Time/s 

ELM 8.07 623.77 1.62 

LSSVM 7.32 612.63 19.52 

WD-VMD-ELM 9.76 689.74 138.95 
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WD-VMD-LSSVM 7.60 626.48 491.28 

VMD-LSSVM-ARMA-BPNN 9.51 850.69 195.07 

VMD-LSSVM(Data Fusion) 5.96 729.72 483.21 

EMD-LSSVM(Data Fusion) 7.19 693.82 264.16 

EEMD-LSSVM (Data Fusion) 5.72 531.80 656.43 

CEEMDAN-LSSVM(Data Fusion) 5.44 550.66 934.63 

WD-VMD-LSSVM (Data Fusion) 4.66 489.63 501.96 

In order to analyze and compare the prediction performance of the 10 models, the 

results are visualized as shown in Figures 4 and 5 where the blue solid line is the 

regression line of the predicted result, the red dotted line is the ±5% error bar, and the 

black solid line is the “predicted value=actual value” baseline.  

 
Fig. 4. Wind power prediction performance of benchmark models 

 

It can be observed from Figure 4 and the left panels in Figure5 that the points predicted 

by the WD-VMD-LSSVM (data fusion) model are closer to the black "predicted value = 

actual value" baseline than the points predicted by the other 9 benchmark models. At the 

same time, its blue regression line is also nearly coincident with the black reference line, 
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and the blue regression line is basically within the range of the ±5% error red line. It 

indicates that the predicted value is close to the actual value. 

 

 

Fig. 5. Wind power prediction performance of different models 

As can be seen from Table 4 and the right panels in Figure5, comparing Model 1 and 

Model 2, it can be found that LSSVM has better prediction effect than ELM, while ELM 

is faster than LSSVM. Compared with Models 1 and 2, Models 3 and 4 introduce a double 

decomposition method, but they cannot improve the prediction accuracy and improve the 

running time. The reason is that after the signal passes through WD and VMD, each modal 

component obtained has the superposition of two decomposition errors. Although the 

prediction sequence becomes stable, its information is lost, at the same time, errors caused 

by multiple LSSVM predictors are superimposed, which leads to the simple summation 

of sub-components and the failure to describe the wind power sequence well, thus 
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eventually leading to the deterioration of prediction accuracy. Through the comparison 

of Model 2, Model 4, and Model 10, it can be observed that adding an LSSVM as a data 

fusion device can effectively eliminate the errors caused by the previous signal 

decomposition, thereby improving the accuracy of the prediction model. Comparing 

Models 6-10, it can be found that double decomposition can stabilize the sequence more 

thoroughly than other single decomposition techniques, and thus obtain better prediction 

accuracy. Meanwhile, compared with EEMD and CEEMDAN single decomposition 

technique, the double decomposition technique of WD-VMD has faster speed and better 

effect. The comparison between Model 5 and model 10 further shows that WD-VMD 

double decomposition has more advantages than single decomposition VMD and LSSVM 

has better effects than ARMA and BPNN as predictor and fusion. In summary, the wind 

power data step is 1h, and the slowest of the above models can be completed in 16min. 

The proposed model can be predicted in eight and a half minutes. For the processing 

power of current mainstream computers, the computational complexity of this algorithm 

is very low. Meanwhile the error indicators MAPE and RMSE of Model 10 are 4.66% 

and 489.63, respectively, which are the lowest among all models, demonstrating the 

effectiveness of the proposed method. 



  22 

3. Conclusions 

A new ultra-short-term wind power combined prediction model has been proposed by 

a combination of double decomposition and LSSVM. The experimental results show that: 

1) The combination of WD and VMD decomposition techniques can well extract the 

effective information in the wind power time series. The two-level decompositions 

complement each other, resulting better stable modal components from the non-stationary 

wind power series, reducing the predictive difficulty. 

2) By taking into consideration the historical wind power data and weather data, the 

proposed model improves the existing similar methods. 

3) In order to eliminate the information loss caused by the signal decomposition and 

the errors caused by multiple LSSVM predictors, an LSSVM is introduced as a fusion 

device to reconstruct the modal components of the wind power sequence so as to further 

improve the prediction accuracy. 
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