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Catoids and modal convolution algebras

Uli Fahrenberg, Christian Johansen, Georg Struth and

Krzysztof Ziemiański

Abstract. We show how modal quantales arise as convolution algebras QX

of functions from catoids X, multisemigroups equipped with source and
target maps, into modal quantales value or weight quantales Q. In the tra-
dition of boolean algebras with operators we study modal correspondences
between algebraic laws in X, Q and QX . The catoids introduced gener-
alise Schweizer and Sklar’s function systems and single-set categories to
structures isomorphic to algebras of ternary relations, as they are used for
boolean algebras with operators and substructural logics. Our correspon-
dence results support a generic construction of weighted modal quantales
from catoids. This construction is illustrated by many examples. We also
relate our results to reasoning with stochastic matrices or probabilistic
predicate transformers.

Mathematics Subject Classification. 03B45, 06F07, 20M75.

Keywords. Multisemigroups, Catoids, Categories, Quantales, Convolution
algebras, Modal algebras, Quantitative software verification.

1. Introduction

Convolution is an ubiquitous operation in mathematics and computing. For
instance, let (Σ∗,⊙, ε) be the free monoid over the finite alphabet Σ and
(S,+, ·, 0, 1) a semiring. The convolution of f, g : Σ∗ → S is defined as

(f ∗ g)(x) =
∑

x=y⊙z

f(y) · g(z),

where
∑

represents finitary addition in S. The maps f and g associate a value
or weight in S with any word in Σ∗. The weight of the convolution f ∗ g at
word x is computed by splitting x into all possible words y and z related
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by x = y ⊙ z, multiplying their values f(y) and g(z) in S, and adding up
the results. In fact, a finite addition suffices as only finitely many y and z
satisfy x = y ⊙ z for any x. If S = 2, the semiring of booleans with max
as + and min as ·, then f : Σ∗ → 2 becomes a characteristic function for
a set, f(x) = 1 can be read as x ∈ f and convolution becomes language
product. The generalisation to arbitrary semirings yields languages weighted
in S. It is known that convolution algebras SΣ∗

of weighted languages form
again semirings with convolution as multiplication.

We may generalise Σ∗ to a multisemigroup (X,⊙) with multioperation
⊙ : X × X → PX satisfying a suitable associativity law [31], or to a multi-
monoid with many units. We may also replace S by a quantale Q, a complete
lattice with a monoidal composition and unit satisfying sup-preservation laws.
Arbitrary sups in Q then compensate for the lack of finite decomposability in
X. For f, g : X → Q, convolution becomes

(f ∗ g)(x) =
∨

x∈y⊙z

f(y) · g(z),

where
∨

indicates a supremum and · the multiplication in Q; the convolution
algebra QX becomes a quantale [12]. For Q = 2 it becomes a powerset quantale,
for X = Σ∗ the quantale of all Q-weighted languages. Further examples for
this construction are the convolution quantales of binary and Q-valued binary
relations [20], as well as those of boolean and Q-valued matrices. These lift
from instances of multimonoids known as pair groupoids.

The relation between multimonoids, value quantales and convolution
quantales, however, is not just a lifting. Multimonoids are isomorphic to rela-
tional monoids formed by ternary relations with suitable monoidal laws, where
R(x, y, z) holds if and only if x ∈ y ⊙ z. The construction of convolution al-
gebras can therefore be seen in light of Jónsson and Tarski’s duality between
boolean algebras with n-ary operators and n + 1-ary relations [29,21], and of
the associated modal correspondences. Convolution can be seen as a gener-
alised binary modality on QX and X as a ternary frame. So we may ask about
correspondences between relations in X and equations in Q and QX .

Such correspondence triangles between X, Q and QX have already been
studied, and adapted to cases where Q is merely a semiring [5]. For Q = 2,
they are known from substructural logics. They have also been extended to
correspondences between concurrent relational monoids and concurrent semir-
ings and quantales [5], where two quantalic compositions interact via a weak
interchange law akin to that of higher categories [27].

Here, our main motivation is the study of correspondences between the
source and target maps that arise in multimonoids and the domain and
codomain maps that are present in many convolution quantales, in partic-
ular powerset quantales. On one hand, every element of a multimonoid has a
unique left and a unique right unit, which gives rise to source and target maps
like in categories [4], and every small category can be modelled as a partial
semigroup equipped with such maps [32]. On the other hand, quantales of bi-
nary relations, for instance, have non-trivial domain and codomain structures,
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which has led to more abstract definitions of modal semirings and quantales
[7,8,15]. Yet what is the precise correspondence between the source and target
structure of the pair groupoid, say, and these relational domain and codomain
operations? And how does it generalise to source and target maps in arbi-
trary multisemigroups and to domain and codomain operations in arbitrary
convolution quantales?

As a first step towards answers, we introduce catoids: multisemigroups
(X, ⊙) with source and target operations s, t : X → X inspired by similar op-
erations in Schweizer and Sklar’s function systems [38] and by the source and
target maps of single-set categories [32]. We study the basic algebra of catoids
and present a series of examples, including categories and non-categories. Most
of these results have been formalised with the Isabelle/HOL proof assistant.
(See https://github.com/gstruth/catoids.) It turns out that the locality laws
s(x ⊙ s(y)) = s(x ⊙ y) and t(t(x) ⊙ y) = t(x ⊙ y) of catoids, which have previ-
ously been studied at the level of modal semigroups, semirings and quantales
[6,7,8,15], are equivalent to the composition pattern of categories, namely that
x ⊙ y is defined, and hence not ∅, if and only if t(x) = s(y) (for categories,
the order of composition is usually reversed). Indeed, local catoids based on
partial semigroups are (small) categories.

As a second step, we generalise the standard definitions of domain and
codomain for modal semirings and quantales to convolution algebras. When
relations are represented as 2-valued matrices, for instance, domain elements
in 2X are diagonal matrices in which the value of each diagonal element is
1 if there is a 1 in the respective row of the matrix, and 0 otherwise. More
generally, for Q-valued relations represented as Q-valued matrices, a domain
element in QX can be seen as a diagonal matrix in which the value of each
diagonal element is the domain of the supremum of the respective row values
of the matrix, taken in Q.

Equipped with catoids and domain and codomain operations for QX , we
prove our main results: correspondence triangles between equational proper-
ties of source and target operations in catoids X and those of domain and
codomain operations in the modal quantales Q and QX . We develop them
in full generality, but keep an eye on the Q = 2 instance, which has been
formalised with Isabelle. From the point of view of boolean algebras with op-
erators, this yields a multimodal setting where the quantalic composition in
QX is a generalised binary modality associated with a ternary frame in X,
whereas the domain and codomain operations in QX are generalised unary
modalities that can be associated with binary frames in X based on s and t.

These results show, in particular, how the equational axioms for modal
semirings and quantales, as powerset or proper convolution algebras, origi-
nate in the much simpler catoid axioms and how the composition pattern of
categories translates into the locality axioms of modal algebras. For the (for-
ward) modal operators present in these modal algebras, locality means that
the standard properties 〈α · β〉 = 〈α〉 ◦ 〈β〉 and [α · β] = [α] · [β] hold.

More generally, the lifting from X and Q to QX yields a generic con-
struction recipe for modal quantales. Any category, for instance, can be lifted

https://github.com/gstruth/catoids
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like that, but we present other examples, such as generalised effect algebras or
shuffle algebras, where locality laws are absent or multioperations are proper.
Conversely, by our correspondences, before constructing a modal quantale one
should ask what the underlying catoid might be. The benefit is that the catoid
laws are much easier to check than those of modal quantales. Proof assistants
can benefit particularly from such a generic construction.

The relevance of our construction is underpinned by many examples.
Most of the catoids presented are categories, for instance categories of paths
in digraphs or Moore paths in topology, pair groupoids, segments and intervals
of posets or pomsets, simplices and cubical sets with interfaces, but some others
are neither local nor partial. For all of them we get modal convolution quantales
for free, and even modal convolution semirings, if the underlying catoid is
finitely decomposable. This is the case for Σ∗ above or for Rota’s incidence
algebras constructed over locally finite posets [36]. Well-known constructions
from algebra, such as matrix rings, group rings, or category algebras, are closely
related.

Beyond the results mentioned, we discuss the relationship between the
domain and codomain operations in modal convolution quantales and the di-
amond and box operators defined using them. This opens the door to convo-
lution algebras of quantitative predicate transformer semantics for programs,
including probabilistic or fuzzy ones, just like in the qualitative case, using for
instance the Lawvere quantale or related quantales over the unit interval as
instances of Q. Yet our definitions of domain and codomain in QX , despite
being natural for correspondences, turn out to be too strict for stochastic ma-
trices or Markov chains. We outline how more liberal definitions of domain
and codomain in QX can be used instead, but leave details to future work.

2. Multisemigroups

Categories can be axiomatised in single-set style [32] as partial monoids with
many units that satisfy a certain locality condition. Their correspondence to
relational monoids, which are sets X equipped with ternary relations R ⊆ X ×
X ×X with many relational units that satisfy relational associativity and unit
laws, have already been studied [4]. Here we use an isomorphic representation,
namely multioperations of type X × X → PX, which relate pairs in X × X
with a set of elements of X, including ∅. This encompasses partial and total
operations, where each such pair is related to at most one or precisely one
element, respectively. Multioperations have a long history in mathematics.
See [31] for a discussion, references and additional material.

Dealing with general categories requires classes in some of our exam-
ples. In the tradition of single-set categories, we tacitly extend the following
definitions to classes, but do not formally distinguish them from sets. Our
constructions are not likely to lead to paradoxes.

Let ⊙ : X × X → PX be a multioperation on set X. We write Dxy for
x ⊙ y �= ∅ to indicate that the composition x ⊙ y is non-empty (intuitively:
defined) and extend ⊙ to PX × PX → PX for all A,B ⊆ X as
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A ⊙ B =
⋃

{x ⊙ y | x ∈ A and y ∈ B}.

We write x⊙B instead of {x}⊙B, A⊙x instead of A⊙{x} and f(A) instead
of {f(a) | a ∈ A}. Note that A ⊙ ∅ = ∅ ⊙ B = ∅.

A multimagma (X, ⊙) is a non-empty set X with a multioperation ⊙ :
X × X → PX.

• The multioperation ⊙ is associative if x ⊙ (y ⊙ z) = (x ⊙ y) ⊙ z.
• It is local if u ∈ x ⊙ y ∧ Dyz ⇒ Duz for all u, x, y, z ∈ X.
• It is functional if x, x′ ∈ y ⊙ z imply x = y for all x, x′, y, z ∈ X.
• Element e ∈ X is a left unit if ∃x. x ∈ e⊙x and ∀x, y. x ∈ e⊙y ⇒ x = y;

it is a right unit if ∃x. x ∈ x ⊙ e and ∀x, y. x ∈ y ⊙ e ⇒ x = y. We write
E for the set of all units in X, left or right.

Functional multioperations are nothing but partial operations, where par-
tiality is captured by mapping to ∅.

Remark 2.1. Intuitively, locality states that if x can be composed with y and y
with z, then each element in the composition of x and y can be composed with
z. For partial operations this reduces to the composition pattern of categories,
binary relations, paths in digraphs and many other examples, as explained
below. Locality has previously been called coherence [4]. It will become clear
below why we now prefer another name.

A multimagma X is unital if for every x ∈ X there exist e, e′ ∈ E
such that Dex and Dxe′ . This definition follows that for single-set categories.
Equivalently, we may require that there exists a set E ⊆ X such that, for all
x ∈ X, E ⊙ x = {x} and x ⊙ E = {x}.

A multisemigroup is an associative multimagma; a multimonoid a unital
multisemigroup.

These definitions imply that a multisemigroup (X, ⊙) is a partial semi-
group if ⊙ is functional and a semigroup if ⊙ is total—and likewise for partial
monoids and monoids.

Multimagmas and relatives form categories in several ways. A multimagma
morphism f : X → Y satisfies f(x ⊙X y) ⊆ f(x) ⊙Y f(y). The morphism is
bounded if, in addition, f(x) ∈ u ⊙Y v implies that x ∈ y ⊙X z, u = f(y) and
v = f(z) for some y, z ∈ X.

Obviously, f is a multimagma morphism if and only if x ∈ y⊙X z implies
f(x) ∈ f(y)⊙Y f(z). This is a natural generalisation of the fact that x = y⊙X z
implies f(x) = f(y) ⊙Y f(z) and hence of f(x ⊙X y) = f(x) ⊙Y f(y), for total
operations. For partial operations, it implies that the right-hand side of the
inclusion is defined whenever the left-hand side is, and, in the bounded case,
that the left-hand side is defined whenever the right-hand side is.

A morphism f : X → Y of unital multimagmas needs to preserve units
as well: f(e) ∈ EY holds for all e ∈ EX , and e ∈ EY implies that there is
an e′ ∈ EX such that f(e′) = e holds if f is bounded. Morphisms of single-
set categories are of course functors. More generally, bounded morphisms are
standard in modal logic as functional bisimulations or open maps.
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In every multimagma, every unit e satisfies e ⊙ e = {e} and Dee. If
e, e′ ∈ E, then Dee′ if and only if e = e′; for if Dee′ holds, then e ⊙ e′ = {x}
for some x ∈ X and hence e = x = e′ by the unit axioms. Units are therefore,
in some sense, orthogonal idempotents.

In every multimonoid, each element has precisely one left and one right
unit: if e, e′ ∈ E both satisfy e ⊙ x = {x} = e′ ⊙ x for some x ∈ X, then
∅ �= e ⊙ x = e ⊙ (e′ ⊙ x) = (e ⊙ e′) ⊙ x, which is only the case when e = e′,
as explained above (the argument for right units is similar). This functional
correspondence allows defining source and target maps s, t : X → X such that
s(x) denotes the unique left unit and t(x) the unique right unit of x. Then
Dxy implies t(x) = s(y) and the converse implication is equivalent to locality.
These properties have been proved for relational structures [4], but hold in the
corresponding multialgebras via the isomorphism.

Example 2.2 (Multimonoids). (1) Single-set categories, as in Mac Lane’s book
[32, Chapter I.1], and local partial monoids are the same class, as already men-
tioned. The category of such categories and that of local partial monoids (with
bounded or unbounded morphisms) are isomorphic. Local partial monoids are
small categories. They are categories if the partial monoid is built on a class.
(2) Every monoid (X, ·, 1), as a one-object category, is local. The digraph

with vertex 1 and edge 1
a
→ 1, for instance, corresponds to a partial monoid

X = {1, a} with multiplication defined by 11 = {1} and 1a = {a} = a1. In
addition we can impose aa = {a}. Locality is trivial: composition is total and
s(x) = 1 = t(x) for all x ∈ X.
(3) The pair groupoid (X × X,⊙, IdX) over any set X with

(w, x) ⊙ (y, z) =

{

{(w, z)} if x = y,

∅ otherwise
and E = IdX ,

where IdX is the identity relation on X, is a local partial monoid, hence a
category, and in fact a groupoid as its name indicates. Source and target maps
are s((x, y)) = (x, x) and t((x, y)) = (y, y). This category is equivalent to a
trivial category.
(4) The pair groupoid generalises from X × X to relations R ⊆ X × X. If R
is transitive, then ⊙ is well-defined and (R,⊙) a local partial semigroup. If R
is also reflexive, and hence a preorder, then (R,⊙, IdX) is a partial monoid;
it is a groupoid if and only if R is symmetric. Finally, if R is a partial order,
then (X,R) is a poset category.
(5) The shuffle multimonoid (Σ∗, ‖, {ε}), where Σ∗ is the free monoid over the
(finite) alphabet Σ with unit ε, has a composition ‖ : Σ∗ ×Σ∗ → PΣ∗ defined,
for a, b ∈ Σ, v, w ∈ Σ∗, as

v ‖ ε = {v} = ε ‖ v, (av) ‖ (bw) = a(v ‖ (bw)) ∪ b((av) ‖ w).

It is not a category because ‖ is a proper multioperation. Locality is trivial
because v ‖ w �= ∅ and s(v) = ε = t(v) for all v, w ∈ Σ∗.
(6) The monoid in (2) becomes functional and non-local when we break com-
position and impose aa = ∅, because s(a) = t(a) still holds. Instead of a
one-object category, it is now a plain digraph.
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(7) The partial abelian monoid of heaplets (H,⊙, ε) used in separation logic
is formed by the set H of partial functions between two sets. The partial
operation ⊙ is defined as

f ⊙ g =

{

{f ∪ g} if dom(f) ∩ dom(g) = ∅,

∅ otherwise.

Its unit is the partial function ε with empty domain. Locality fails because
s(f) = ε = t(g) for all f, g ∈ H, but f ⊙ g = ∅ when domains of f and g
overlap. This algebra of heaplets is a non-local instance of a generalised effect
algebra, used for modelling unsharp measurements in quantum mechanics: a
partial abelian monoid with a single unit (which in addition is cancellative and
positive) [25].
(8) In the unital multimagma ({a, e, e′},⊙, {e, e′}) with composition x ⊙ x =
{x}, x⊙a = {a}, e⊙e′ = e′ ⊙e = a⊙e = ∅ and a⊙e′ = {a}, element a has left
units e, e′ and right unit e′. Associativity fails because (e⊙e′)⊙a �= e⊙(e′⊙a).
This shows that units need not be uniquely defined in multimagmas. �

Additional examples can be found in Section 9.

3. Catoids

The correspondence between units in relational monoids and multimonoids and
source/target functions motivates alternative axiomatisations of these struc-
tures and thus of single-set categories that generalise the function systems of
Schweizer and Sklar [38]. Such categories can be found inMac Lane’s book
[32, Chapter XII.5]. We define catoids, which are multisemigroups with such
functions. An isomorphic alternative based on relational semigroups has been
outlined in [4].

An st-multimagma is a structure (X, ⊙, s, t) such that (X, ⊙) is a mul-
timagma and the operations s, t : X → X satisfy, for all x, y ∈ X,

Dxy ⇒ t(x) = s(y), s(x) ⊙ x = {x}, x ⊙ t(x) = {x}.

We refer to the second and third of these axioms as unit or absorption axioms.
Henceforth we often write xy instead of x ⊙ y and AB instead of A ⊙ B.

A catoid is an associative st-multimagma. An st-multimagma is st-local
if t(x) = s(y) ⇒ Dxy and hence Dxy ⇔ t(x) = s(y). Locality in the sense
of multimonoids and st-locality coincide in catoids, so we can simply refer to
locality of catoids.

Duality for st-multimagmas arises by interchanging s and t as well as
the arguments of ⊙. The classes of st-multimagmas and catoids are closed
under this transformation; locality and functionality are self-dual. The dual
of any property that holds in any of these classes, obtained by making these
replacements, therefore holds as well. This generalises opposition in categories.

Lemma 3.1. In any st-multimagma, the following laws hold:

(1) the compatibility laws s ◦ t = t, t ◦ s = s and retraction laws s ◦ s = s,
t ◦ t = t,
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(2) the idempotency law s(x)s(x) = {s(x)},
(3) the commutativity law t(x)s(y) = s(y)t(x),
(4) the export laws s(s(x)y) = s(x)s(y) and t(xt(y)) = t(x)t(y),
(5) the weak twisted laws s(xy)x ⊆ xs(y) and xt(yx) ⊆ t(y)x.

All proofs have been checked with Isabelle.

Remark 3.2. We compare our axioms and derived laws with those of Schweizer
and Sklar’s function systems [38] (see Appendix A for a list). The associativity
axiom of multisemigroups generalises that of function systems. The compat-
ibility laws are their Axioms (2a), the absorption axioms their Axioms (2b);
the commutativity law is their Axiom (3b). The export laws are Axioms (D3)
and its opposite (R3) of modal semigroups [6]. The relationship between st-
algebras, function systems and modal semigroups is summarised in Remark 3.4
below.

The compatibility laws imply that s(x) = x ⇔ t(x) = x and further that
Xs = {x | s(x) = x} = {x | t(x) = x} = Xt. Moreover, by the retraction laws,
Xs = s(X) and Xt = t(X).

Lemma 3.1 implies further laws, including s(x)s(y) = s(y)s(x) and t(x)t(y)
= t(y)t(x), the idempotency law t(x)t(x) = {t(x)} and the orthogonality laws
Ds(x)s(y) ⇔ s(x) = s(y), Dt(x)t(y) ⇔ t(x) = t(y). Every st-multimagma is
unital with E = Xs = Xt.

Lemma 3.3. In any catoid,

(1) s(xy) ⊆ s(xs(y)) and t(xy) ⊆ t(t(x)y) (weak locality),
(2) Dxy ⇒ s(xy) = s(xs(y)) and Dxy ⇒ t(xy) = t(t(x)y) (cond. locality),
(3) s(xy) ⊆ {s(x)} and t(xy) ⊆ {t(y)},
(4) Dxy ⇒ s(xy) = {s(x)} and Dxy ⇒ t(xy) = {t(y)},
(5) Dxy ⇒ s(xy)x = xs(y) and Dxy ⇒ yt(xy) = t(x)y (cond. twisted).

The proofs have again been checked with Isabelle.

Remark 3.4. The two locality laws generalise Axioms (3a) for function systems
[38]. The twisted laws generalise Axiom (3c) and law (D3c), in this order.
Function semigroups without (3c) and law (D3c) axiomatise modal semigroups
[6], which relate to semigroups of binary relations. Adding Axiom (3c) to both
classes axiomatises domain and codomain of functions. Law (D3c) is relevant
for function systems with so-called subinverses [38]. These are related to inverse
semigroups and irrelevant here. In sum, catoids generalise function systems and
modal semigroups beyond totality. For a discussion of related semigroups and
applications see [6].

Lemma 3.5. In any local catoid, the following laws hold:

(1) the equational locality laws s(xy) = s(xs(y)) and t(xy) = t(t(x)y),
(2) the twisted laws s(xy)x = xs(y) and yt(xy) = t(x)y.

Once again, all proofs have been checked with Isabelle. Locality is in fact
an equational property.



Catoids and modal convolution algebras Page 9 of 40    10 

Proposition 3.6. An catoid is st-local if and only if

s(xs(y)) ⊆ s(xy) and t(t(x)y) ⊆ t(xy).

Proof. Isabelle confirms that the equational locality laws imply st-locality in
any st-multimagma. Equality in catoids holds by Lemma 3.5. �

Remark 3.7. Locality and weak locality have been studied in the context of
predomain, precodomain, domain and codomain operations for semirings [7].
There, predomain and precodomain operations satisfy the weak locality ax-
ioms, but not the strong ones. Relative to catoids, these variants of domain
and codomain axioms are at powerset level. Our results in Sections 6–8 explain
how they originate from locality in catoids

Remark 3.8. It seems natural to ask whether the axiom Dxy ⇒ t(x) = s(y) in
the definition of st-multimagmas could be replaced, like locality, by equational
axioms. Experiments with Isabelle show that adding the equational properties
derived in Lemmas 3.1–3.5 does not suffice. We leave this question open.

The final lemma on catoids yields a more fine-grained view on definedness
conditions and st-locality.

Lemma 3.9. In any st-multimagma,

(1) t(x) = s(y) ⇔ Dt(x)s(y) and Dxy ⇒ Dt(x)s(y),
(2) Dt(x)s(y) ⇒ Dxy if the st-multimagma is a local catoid.

The proofs have again been obtained by Isabelle. The correspondence
between multimonoids and catoids can now be summarised.

Proposition 3.10. Every multimonoid (X,⊙, E) forms a catoid (X, ⊙, s, t) in
which s(x) and t(x) indicate the unique left and right units of each x ∈ X.
Conversely, every catoid (X, ⊙, s, t) forms a multimonoid (X,⊙, E) in which
E = Xs = Xt.

This result carries over to local structures and extends to isomorphisms
between categories of catooids and relational monoids with suitable morphisms.
A morphism f of st-multimagmas X and Y is a multimagma morphism that
satisfies f ◦ sX = sY ◦ f and f ◦ tX = tY ◦ f .

Example 3.11 (Catoids). All structures in Example 2.2 are catoids by Propo-
sition 3.10. We reconsider some of them.
(1) Local function catoids and the single-set categories mentioned in Mac
Lane’s book [32, Chapter XII.5] are the same class. The categories of such
single-set categories and local partial functional catoids (with bounded or un-
bounded morphisms) are isomorphic: local functional catoids are categories.
We briefly recall the relationship with standard two-sorted categories based
on objects and morphisms.

A (small) category consists of a set O of objects and a set M of mor-
phisms with source and target maps s, t : M → O, an operation id : O → M
associating an identity arrow with each object, and a partial operation of com-
position ; of morphisms such that f ; g is defined whenever t(f) = s(g), where
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f ; g = g ◦ f . The following axioms hold for all X ∈ O and f, g, h ∈ M (for
Kleene equality, that is, whenever compositions are defined):

s(id(X)) = X, t(id(X)) = X, s(f ; g) = s(f), t(f ; g) = t(g),

f ; (g;h) = (f ; g);h, id(s(f)); f = f, f ; id(t(f)) = f.

In a category, defining s = id ◦ s and t = id ◦ t yields local functional catoids
(source and target maps of categories on the right, those of catoids on the
left). Conversely, the set of units of a local functional catoid defines the set of
objects of a category.
(2) The pair groupoid is a local functional catoid.
(3) Locality of s and t fail in the broken monoid from Example 2.2 because
s(aa) = s(∅) = ∅ ⊂ {1} = s(a1) = s(as(a)). The proof for t is dual.
(4) In the functional abelian catoid of heaplets from Example 2.2, locality
fails, too: s(fg) = s(∅) = ∅ ⊂ {ε} = s(f) = s(fε) = s(fs(g)) if the domains of
f, g ∈ H overlap. Locality of t fails by duality.
(5) The set MS =

⋃

n,m≥0 Sn×m of matrices over a semiring S forms a partial
monoid with matrix multiplication as composition. MS is a local functional
catoid with s and t defined, for any M ∈ Sn×m, by s(M) = In and t(M) = Im,
the identity matrices of appropriate dimension. This category is isomorphic to
the standard category of matrices, which has natural numbers as objects and
n × m-matrices as elements of the hom-set [n,m]. �

4. Convolution quantales

We have already extended the multioperation ⊙ : X × X → PX to type
PX × PX → PX and the maps s, t : X → X to type PX → PX by taking
images. We wish to explore the algebraic structure of such powerset liftings
over st-multimagmas and their relatives. Powerset liftings of relational monoids
yield quantales [35,12]. Yet the precise lifting of source and target operations
remains to be explored. This requires some preparation.

A quantale (Q,≤, ·, 1) is a complete lattice (Q,≤) with a monoidal com-
position · with unit 1 that preserves all sups in both arguments [34].

We write
∨

for the sup and
∧

for the inf operator, and ∨, ∧ for binary
variants. We write ⊥ =

∧

Q =
∨

∅ for the least and ⊤ =
∨

Q =
∧

∅ for
the greatest element of Q. We write Q1 = {α ∈ Q | α ≤ 1} for the set of
subidentities of quantale Q.

A quantale is boolean if its lattice reduct is a complete boolean algebra—a
complete lattice and a boolean algebra. We write − for boolean complemen-
tation. In a boolean quantale Q, the set of subidentities Q1 forms a complete
boolean subalgebra with complementation x′ = 1 − x restricted to this subal-
gebra, and in which composition is meet [15].

Our examples in Section 9 require weaker kinds of quantales. A prequan-
tale is a quantale in which the associativity law is absent [34].

Proposition 4.1. Let (X, ⊙, s, t) be a catoid. Then (PX, ⊆,⊙, E) forms a boolean
quantale in which the complete boolean algebra is atomic.
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Proof. If (X, ⊙, s, t) is a catoid, then (X,⊙, E) is a multimonoid by Proposi-
tion 3.10, hence isomorphic to a relational monoid, and its powerset algebra a
quantale [35,12], in fact a boolean atomic one. �

Remark 4.2. If X is merely an st-multimagma, then PX forms a prequantale
instead of a quantale [12,5]. This weaker result is needed in Section 6.

Remark 4.3. Dualities between n+1-ary relational structures and boolean al-
gebras with n-ary (modal) operators have been studied by Jónsson and Tarski
[29]; correspondences between relational associativity laws and those at pow-
erset level are well-known from substructural logics. Here we consider ternary
relations—as binary multioperations—and the quantalic composition as a bi-
nary (modal) operation.

Example 4.4 (Powerset quantales over catoids). While lifting works for arbi-
trary catoids we restrict our attention to categories.
(1) Let C = (O,M) be a category. Then (PC,⊆,⊙, 1) is an atomic boolean
quantale with the operations from Section 4 and 1 = {idX | X ∈ O}. This
holds by Proposition 4.1, as categories are catoids (Example 2.2).
(2) Lifting the pair groupoid on X yields the quantale of binary relations over
X. The quantalic composition is relational composition, the monoidal unit the
identity relation, set union is sup and set inclusion the partial order. Relations
are possibly infinite-dimensional boolean-valued square matrices with matrix
multiplication as quantalic composition (Example 3.11). �

The fact that groupoids can be lifted to algebras of binary relations with
an additional operation of converse, R� = {(y, x) | (x, y) ∈ R}, was known
to Jónsson and Tarski [30]. It includes in particular groups as single-object
groupoids. Further examples of powerset liftings of categories and other catoids
can be found in Section 9.

The powerset lifting can be seen as a lifting to the function space 2X ,
where 2 is the quantale of booleans. It generalises to function spaces QX for
arbitrary quantales Q [12]. We present a multioperational version.

Let (X,⊙, s, t) be an st-multimagma and (Q,≤, ·, 1) a quantale. For func-
tions f, g : X → Q, we define the convolution ∗ : QX × QX → QX as

(f ∗ g)(x) =
∨

x∈y⊙z

f(y) · g(z) =
∨

{f(y) · g(z) | x ∈ y ⊙ z}.

For any predicate P we define

[P ] =

{

1 if P,

⊥ otherwise,

and then idE : X → Q as

idE(x) = [x ∈ E].

In addition, we extend sups and ≤ pointwise from Q to QX . This leads
to the following generalisation of Proposition 4.1.
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Theorem 4.5. If X is a catoid and Q a quantale, then (QX ,≤, ∗, idE) is a
quantale.

Proof. If (X,⊙, s, t) is a catoid and Q a quantale, then (X,⊙, E) is a multi-
monoid by Proposition 3.10 and a relational monoid up-to isomorphism. Hence
QX is a quantale [12] (shown for slightly different, but equivalent relational
monoid axioms). �

Further, QX is distributive (as a lattice) if Q is, and boolean if Q is [12].
We call QX from Theorem 4.5 the convolution quantale of X and Q.

Remark 4.6. If X is an st-multimagma and Q a prequantale, then the convo-
lution algebra QX is a prequantale [12,5]. This result is needed in Section 7.

The following laws help working with convolutions. Using the notation
δx(y) = [x = y] we can write f(x) =

∨

y∈X f(y) · δy(x) for any f ∈ QX , and

f =
∨

x∈X

f(x) · δx,

if we regard f(x) · δx and α · f , for any α ∈ Q and f : X → Q, as a scalar
product in a Q-module on QX . We can then rewrite convolution as

(f ∗ g)(x) =
∨

y,z∈X

f(y) · g(z) · [x ∈ y ⊙ z],

f ∗ g =
∨

x,y,z∈X

f(y) · g(z) · [x ∈ y ⊙ z] · δx,

sups as
∨

F =
∨

x∈X

∨

{f(x) | f ∈ F}·δx and (f +g) =
∨

x∈X(f(x)+g(x))·δx,
and finally the identity function as idE =

∨

e∈E δe.

Example 4.7 (Convolution quantales over catoids). Once again we restrict our
attention to categories.

(1) A category algebra is the convolution algebra of a small category with
values in a commutative unital ring. This generalises group algebras such as
group rings. Similarly, Theorem 4.5 constructs category quantales, evaluating
small categories in quantales and yielding quantales as convolution algebras.

(2) An instance are Q-fuzzy relations [20], which are Q-valued binary rela-
tions. The associated quantales are convolution quantales over pair groupoids.
If Q is the Lawvere quantale described in Example 4.8 below, this yields t-
norms. Q-valued relations correspond to possibly infinite-dimensional Q-valued
square matrices. If the base set is finite, we recover the matrix theories of Ex-
ample 3.11. Heisenberg’s original formalisation of quantum mechanics [26] is
based on a similar convolution algebra over the pair groupoid [3] with values
in the field C. �

Other relational or partial monoids and convolution algebras are dis-
cussed in [5,11,12]. For examples based on categories and non-local catoids
see Section 9. Finally, we recall some well-known value-quantales.
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Example 4.8 (Quantales).
(1) We have already mentioned the quantale of booleans (2,≤,∧, 1). It has
carrier set {0, 1} and ∧, in fact min, as composition.
(2) The Lawvere quantale (R∞

+ ,≥,+, 0) has
∧

as supremum, + as quantalic
composition, extended by x+∞ = ∞ = ∞+x, and 0 as its unit. It is important
for defining generalised metric spaces and t-norms.
(3) The unit interval ([0, 1],≤, ·, 1) forms a quantale with

∨

as supremum. It
is isomorphic to the Lawvere quantale via x �→ − ln x and its inverse, and
important in probability applications.
(4) The structures ([0, 1],≤,min, 1) and ([0, 1],≥,max, 0), and their variants
with [0, 1] replaced by R

∞
+ (and unit ∞ for the first), form further quantales

over [0, 1]. They are examples of max-plus algebras and similar semirings. �

5. Modal quantales

The results of Section 4 do not lift the source and target structure of catoids
to QX faithfully: all relational units are mapped to the unit in Q by idE rather
bluntly. A refinement, in which different elements of E may map to different
elements in PX or different values in Q, is possible.

Example 5.1 (Relational domain and codomain). The relational domain and
codomain operations in a relation quantale are, for R ⊆ X × X,

dom(R) = {(a, a) | ∃b. (a, b) ∈ R}, cod(R) = {(b, b) | ∃a. (a, b) ∈ R}.

Thus dom(R) = s(R) and cod(R) = t(R), taking images on the right and
computing s and t in the pair groupoid on X. �

This can be captured more abstractly. A domain quantale [15] is a quan-
tale (Q,≤, ·, 1) with an operation dom : Q → Q such that, for all α, β ∈ Q,

α ≤ dom(α) · α, dom (α · dom(β)) = dom(α · β), dom(α) ≤ 1,

dom(⊥) = ⊥, dom(α ∨ β) = dom(α) ∨ dom(β).

We refer to the domain axioms as absorption, locality, subidentity, strictness
and (binary) sup preservation, respectively. In fact, dom(α)α = α. Henceforth
we often continue to omit ·.

The domain axioms are those of domain semirings [8]. Domain quantales
are thus domain semirings with addition as binary sup. Properties of domain
semirings are therefore inherited, for instance the export law dom(dom(α)β) =
dom(α) dom(β), order preservation of dom the weak twisted law: α dom(β) ≤
dom(αβ)α, least left absorption (lla), dom(α) ≤ ρ ⇔ α ≤ ρα and the ad-
junction dom(α) ≤ ρ ⇔ α ≤ ρ⊤. In the last two laws, we have assumed that
ρ ∈ Qdom = {α | dom(α) = α}.

Domain axioms for finite sups suffice [15]. In any domain quantale, dom
preserves arbitrary sups, dom (

∨

A) =
∨

dom(A), hence in particular dom(⊤) =
1, and dom (

∧

A) ≤
∧

dom(A). Domain elements also left-distribute over non-
empty infs, dom(α) ·

∧

A =
∧

(dom(α)A) for all A �= ∅.
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Much of the structure of the domain algebra induced by dom is inherited
from domain semirings as well. It holds that Qdom = dom(Q). The domain
algebra (Qdom,≤, ·, 1) is therefore a subquantale of Q that forms a bounded
distributive lattice with · as binary inf. It contains the largest boolean subal-
gebra of Q bounded by ⊥ and 1 [8]. The elements of Qdom are called domain
elements of Q. Yet, in the quantalic case, the lattice Qdom is complete [15]:
dom(

∨

dom(A)) =
∨

dom(A) follows from sup-preservation of dom. All sups
of domain elements are therefore again domain elements, but sups and infs in
Qdom need not coincide with those in Q.

Quantales are closed under opposition: interchanging the order of com-
position in quantale Q yields the quantale Qop; properties translate under this
duality. The opposite of the domain operation is a codomain operation.

A codomain quantale is the opposite of a domain quantale, just like a
codomain semiring is the opposite of a domain semiring. Codomain quantales
can be axiomatised using a codomain operation cod : Q → Q that satisfies the
dual domain axioms, making (Qop, cod) a domain quantale.

A modal quantale (Q,≤, ·, 1, dom, cod) is a domain and codomain quantale
that satisfies the following compatibility axioms, which make the domain and
codomain algebras Qdom and Qcod coincide:

dom ◦ cod = cod and cod ◦ dom = dom .

Remark 5.2. In modal semirings, dom and cod can be modelled through their
boolean complements in the subalgebras of subidentities—by antidomain and
antirange operations. This allows expressing boolean complementation in Qdom,
which becomes the largest complete boolean subalgebra of Q bounded by ⊥,
1 [8]. We lift from catoids, where complements of s and t may not exist, into
arbitrary quantales, hence do not follow this approach.

In a boolean quantale Q, the subalgebra Q1 of subidentities is a com-
plete boolean algebra with quantalic composition as binary inf, hence in par-
ticular Qdom = Q1. One can then axiomatise domain using the adjunction
dom(α) ≤ ρ ⇔ α ≤ ρ⊤, for all ρ ∈ Q1 together with weak locality dom(αβ) ≤
dom(α dom(β)) [15]. Dual results hold for codomain. The adjunction alone
yields only predomain and precodomain operations without locality [7]. Fi-
nally, in a boolean quantale, antidomain and anticodomain operations can be
defined as adom = (λx. x′) ◦ dom and its dual. The axioms of antidomain and
anticodomain semirings [8] can then be derived [15].

Some of the st-multimagmas and catoids in the examples in Section 9
fail to yield associativity or locality laws when lifted. This requires more fine-
grained axiomatisations.

(1) A modal prequantale is based on a prequantale and, in its modal axioms,
the two locality axioms are replaced by the export axioms

dom(dom(α)β)) = dom(α) dom(β), cod(α cod(β)) = cod(α) cod(β).

Then Qdom = dom(Q) = cod(Q) = Qcod is still a complete distributive lattice,
but even inequational locality laws for dom or cod are no longer derivable.
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(2) A weakly local modal quantale is a modal quantale in which the locality
axioms for dom and cod have been replaced by the export axioms above. In
the presence of associativity, the weak locality laws

dom(αβ) ≤ dom(α dom(β)) and cod(αβ) ≤ cod(cod(α)β)

are then derivable, but locality still fails.
As mentioned before, this hierarchy of definitions is reflected by lifting

and modal correspondence properties in Sections 6–8 and justified by mathe-
matically meaningful examples in Section 9.

All definitions and properties mentioned have been checked with Isabelle.
They also hold of dioids, but have not been worked out in detail.

6. Modal powerset quantales

We outline how catoids lift to powerset algebras, using the lifted operations
s, t : PX → PX defined, for all A ⊆ X, by

s(A) = {s(x) | x ∈ A} and t(A) = {t(x) | x ∈ A}.

Remark 6.1. To relate this with the lifting of the ternary relation R to a binary
modality ⊙ on the powerset quantale in the sense of Jónsson and Tarski,
consider R(s) = {(x, y) | y = s(x)}, the graph of s, which is a functional
binary relation, and likewise the graph R(t) of t. Then

s(A) = {y | ∃x ∈ A. (x, y) ∈ R(s)}, t(A) = {y | ∃x ∈ A. (x, y) ∈ R(t)},

which shows that s and t are indeed modal diamonds on PX with respect to
the standard Kripke semantics. The next lemmas show that they satisfy the
laws for operators on boolean algebras.

Our main aim is to verify the domain quantale axioms and then use
properties of domain and codomain to infer that local catoids can be lifted
to boolean modal power set quantales. We develop this theorem step-by-step,
starting from st-multimagmas to clarify correspondences.

Lemma 6.2. Let X be an st-multimagma. For A,B ⊆ X and A ⊆ PX, the
following laws hold:

(1) the compatibility laws s(t(A)) = t(A) and t(s(A)) = s(A),
(2) the absorption laws s(A)A = A and At(A) = A,
(3) the sup-preservation laws

s
(

⋃

A
)

=
⋃

{s(A) | A ∈ A} and t
(

⋃

A
)

=
⋃

{t(A) | A ∈ A},

(4) the binary sup-preservation laws s(A∪B) = s(A)∪ s(B) as well as t(A∪
B) = t(A) ∪ t(B), and the zero laws s(∅) = ∅ = t(∅),

(5) the commutativity laws f(A)g(B) = g(B)f(A), for f, g ∈ {s, t},
(6) the subidentity laws s(A) ⊆ Xs and t(A) ⊆ Xt,
(7) the export laws s(s(A)B) = s(A)s(B) and t(At(B)) = t(A)t(B).
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The proof has been verified with Isabelle. It is subsumed by Theorem 7.1.
As powerset liftings are important and the proof may be instructive, we present
details in [14]. Lemma 6.2 shows that the domain axioms, except locality, can
already be lifted from st-multimagmas. The identities in (4) are subsumed by
those in (3) in powerset quantales, but needed for lifting to modal semirings;
see Section 7. This is why we list them.

Lifting weak variants of locality for s and t requires catoids. Lifting lo-
cality, in addition, requires local catoids.

Lemma 6.3. Let X be a catoid and A,B ⊆ X. Then

s(AB) ⊆ s(As(B)) and t(AB) ⊆ t(t(A)B).

The converse inclusions hold if X is local.

The proofs have again been checked with Isabelle. Weak locality holds in
any weakly local modal semiring and quantale (which satisfy export axioms,
see Section 5).

The results of the previous two lemmas can be summarised as follows.

Theorem 6.4. Let X be an st-multimagma.

(1) Then (PX,⊆,⊙, E, dom, cod) is a boolean modal prequantale in which
dom(A) = s(A), cod(A) = t(A), for all A ⊆ X, and the complete boolean
algebra is atomic.

(2) It is a weakly local modal quantale if X is a catoid.
(3) It is a modal quantale if X is local.

Proof. We have derived the respective variants of modal prequantale and quan-
tale axioms in Lemmas 6.2 and 6.3 for st-multimagmas, catoids and local
catoids. They hold with the boolean prequantale and quantale axioms lifted
via Proposition 4.1 and the remark following it. �

The three items in Theorem 6.4 emphasise the role of locality in the
three stages of lifting. The construction follows one direction of Jónsson-Tarski
duality between relational structures and boolean algebras with operators [29],
which generalises to categories of relational structures and boolean algebras
with operators [21]. Theorem 6.4 is an instance of this duality. Like in modal
logic, there are correspondences between relational structures and boolean
algebras with operators. The identities lifted in Lemma 6.2 and 6.3 are one
direction of these. They are generalised in Section 8.

Example 6.5 (Modal powerset quantales over catoids). (1) Any category lifts
to a modal powerset quantale. It is boolean and has the arrows of the category
as atoms. The domain algebra is the entire boolean subalgebra of subidentities,
the set of all objects of the category (or its identity arrows). A modal powerset
algebra can thus be constructed from any category.
(2) In the modal powerset quantale over the pair groupoid on X, the modal
quantale of binary relations, domain and codomain elements are the relational
domains and codomains from Example 5.1. The domain algebra is formed by
the relations below IdX . In the associated matrix algebras, these correspond
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to (boolean-valued) subidentity matrices and further to predicates (Exam-
ple 3.11). The consideration of domain refines Jónsson and Tarski’s classical
lifting result from pair groupoids to relation algebras, while we ignore the
converse structure.
(3) In this and the next example, locality at powerset-level fails. Recall that the
functional catoid of the broken monoid (Example 3.11) is only weakly local.
The powerset quantale is therefore only weakly local, too. To check this, we
simply replay the non-locality proof for the functional catoid with A = {a}:
dom(AA) = dom(∅) = ∅ ⊂ {1} = dom(A{1}) = dom(A dom(A)). Locality of
codomain is ruled out by duality.
(4) Locality of domain and codomain of the powerset algebra over the non-local
partial abelian monoid of heaplets is ruled out with singleton sets as above,
using the non-locality argument from Example 3.11. The powerset quantale of
heaplets is an assertion quantale for separation logic with separating conjunc-
tion as quantalic composition. In separation logic, another notion of locality
relates to a frame rule of its inference system. It is completely unrelated to the
notion used in this article. �

In these examples, antidomain and anticodomain can be defined along
the lines of Section 5. Most models of domain and modal semirings considered
previously are in fact powerset structures lifted from categories. Theorem 6.4
yields a uniform construction recipe for all of them. Further examples of modal
prequantales, weakly local modal quantales and modal quantales lifted from
underlying st-structures can be found in Section 9.

The two final examples of this section show that Axioms (3c) and (D3c)
for function systems (shown in Appendix A) do not lift to powersets.

Example 6.6. (1) The category 1
a
→ 2 is a local functional catoid with X =

{1, a, 2}, s and t defined by s(1) = t(1) = 1 = s(a) and s(2) = t(2) = 2 = t(a)
and composition 11 = 1, 1a = a = a2 and 22 = 2. Then, for A = {1, a} and
B = {2}, A · dom(B) = A · B = {a} ⊂ A = {1} · A = dom(A · B) · A refutes
(3c) in PX. The opposite law (D3c) for cod is refuted by a dual example.

(2) Axiom (3c) also fails in modal quantales of relations. Encoding 1
a
→ 2 on

the set X = {1, 2} using the relations R = {(1, 1), (1, 2)} and S = {2, 2} yields
R dom(S) = RS = {(1, 2)} ⊂ R = {(1, 1)}R = dom(RS)R in P(X × X).
Then dom(RS) = dom(R dom(S)) models the relational preimage of dom(S)
under R. Executing R from all those inputs that may lead into dom(S) and
restricting the outputs of R to dom(S) is only the same when R is a function.

A dual example for cod and (D3c) uses the converses of R and S. The
discussion above implies that (D3c) does not hold for general functions, but it
does for monos in Rel. �

We thus remain within the realm of modal quantales as opposed to func-
tion systems. Weak variants of Schweizer and Sklar’s axioms (3c) and (D3c),
α dom(β) ≤ dom(αβ)α and cod(α)β ≤ β cod(αβ), can be derived in any modal
semiring, as already mentioned. Yet they need not hold in modal prequantales.
The equational catoid variants of Axioms (3c) and (D3c) do not lift to power-
sets. A theorem by Gautam [19] shows that identities lift to the powerset level
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if and only if all variables in the identity occur precisely once on each side.
Neither the generalisations of (3c) and (D3c) satisfy this condition, nor their
equational specialisations.

Remark 6.7. The functor G : Set → Rel that maps functions to their graph
associates convolutions of (graphs of) functions with function composition
G(f) ⊙ G(g) = G(f ; g) = G(g ◦ f) and distributes over dom:

G(dom(f)) = Iddom(G(f)) = dom(G(f)).

Axiom (3c) can then be derived in the convolution algebra:

G(f) ⊙ dom(G(g)) = G(f ; dom(g)) = G(dom(f ; g); f)

= dom(G(f) ⊙ G(g)) ⊙ G(f)

It depends on the form of convolution for (graphs of) functions and is beyond
the general lifting by convolution. The case of (D3c) is analogous.

An asymmetry between catoids and modal quantales remains. While the
domain quantale axioms are equations, we do now know an finitary equational
axiomatisation for catoids.

7. Modal convolution quantales

We now prove our first main theorem, and perhaps the most useful one. It
refines both the lifting from catoids to convolution quantales in Theorem 4.5
and the lifting from catoids to modal powerset quantales Theorem 6.4, namely
to modal convolution quantales.

Once again we aim to spell out the conditions on the algebras used in
the lifting. Yet first we generalise the definitions of domain and codomain at
powerset level to convolution quantales. For every st-multimagma X, modal
prequantale Q and f : X → Q we define

Dom(f) =
∨

x∈X

dom(f(x)) · δs(x) and Cod(f) =
∨

x∈X

cod(f(x)) · δt(x).

It follows that Dom(f)(x) = Cod(f)(x) = ⊥ for x /∈ E. Restricted to functions
E → Q, we have Dom(f) ◦ s = dom ◦f and Cod(f) ◦ t = cod ◦f .

Theorem 7.1. Let (X, ⊙, s, t) be an st-multimagma, Q a modal prequantale.

(1) Then (QX ,≤, ∗, idE ,Dom,Cod) is a modal prequantale.
(2) It is a weakly local modal quantale if X is a catoid and Q a weakly local

modal quantale.
(3) It is a modal quantale if X is also local and Q a modal quantale.

Proof. Relative to Theorem 4.5 and the remark following it we need to check
the domain and codomain axioms. We show proofs up-to duality. We point
out where an st-multimagma X together with a modal prequantale Q or a
catoid together with a weakly local modal quantale suffices for the lifting: this
is the case in (1)–(5) below. It is convenient to view α · δx as an element of the
convolution algebra or a Q-module.
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(1) First we show sup-preservation in QX , assuming this law in Q:

Dom
(

∨

F
)

=
∨

x

dom
(

∨

{f(x) | f ∈ F}
)

δs(x)

=
∨

{

∨

x

dom(f(x))δs(x) | f ∈ F

}

=
∨

{Dom(f) | f ∈ F}.

The first step unfolds the definition of Dom. The second uses its sup-preserva-
tion in modal quantales. The third folds back its definition. Preservation of
binary sups and domain strictness, Dom(λx. ⊥) = ⊥, follow.
(2) For the first compatibility axiom in QX , assuming such laws in X and Q,

(Dom ◦Cod)(f) =
∨

x

dom

(

∨

y

cod (f(y)) δt(y)(x)

)

δs(x)

= dom

(

∨

y

cod(f(y))δs(t(y))

)

=
∨

y

dom(cod(f(y)))δs(t(y))

=
∨

y

cod(f(y))δt(y)

= Cod(f).

The first step unfolds the definitions of Dom and Cod. The second one uses
x = t(y), the third sup-preservation of dom and the fourth compatibility for
dom and cod, s and t. The last step folds back the definition of Cod.
(3) For the domain subidentity axiom in QX , assuming this law in Q,

Dom(f) =
∨

x

dom(f(x))δs(x) ≤
∨

x∈E

1δx = idE .

The second step uses the domain subidentity axioms in Q and the fact that
x ∈ E if and only if x = s(x). The last step uses one of the Q-module-style
laws following Remark 4.6.
(4) For domain absorption in QX , assuming such laws in X and Q,

Dom(f) ∗ f =
∨

w,x,y

(

∨

z

dom(f(z))δs(z)(x)

)

f(y)[w ∈ x ⊙ y]δw

=
∨

w,y,z

dom(f(z))f(y)[w ∈ s(z) ⊙ y]δw

=
∨

w,y

dom(f(y))f(y)[w ∈ s(y) ⊙ y]δw

=
∨

y

f(y)δy

= f.
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The first step unfolds the definition of Dom and convolution. The second
uses x = s(z) and sup-preservation of composition in Q. The third holds
because [w ∈ s(z) ⊙ y] is ⊥ unless y = z, in which case it is 1, and because
s(z) ⊙ y = s(z) ⊙ s(y) ⊙ y = ∅ unless y = z by the orthogonality law for s
preceding Lemma 3.3. The fourth follows from the absorption laws for s and
dom. The final one uses a Q-module-style property following Remark 4.6.

(5) For domain export in QX , assuming such laws in X and Q,

Dom(Dom(f) ∗ g)

=
∨

x

dom

(

∨

y,z

(

∨

w

dom(f(w))δs(w)(y)

)

g(z)[x ∈ y ⊙ z]

)

δs(x)

=
∨

x,z,w

dom(dom(f(w))g(z))[s(x) ∈ s(s(w) ⊙ z)]δs(x)

=
∨

x,z,w

dom(f(w)) dom(g(z))[s(x) ∈ s(w)s(z)]δs(x)

=

(

∨

w

dom(f(w))δs(w)

)

∗

(

∨

z

dom(g(z))δs(z)

)

= Dom(f) ∗ Dom(g).

The first step unfolds the definitions of Dom and convolution. The second
applies the distributivity laws for dom and quantalic composition; at the same
time it uses y = s(w) and x = s(x) and the fact that therefore x ∈ y ⊙ z if
and only if s(x) ∈ s(y ⊙ z). The third uses the export laws for dom and s. The
fourth uses x = s(x) and the definition of convolution with respect to x. The
final step folds back the definitions of Dom.

This is a domain axiom for prequantales, as already mentioned.

(6) For weak domain locality in QX , assuming such laws in X and Q,

Dom(f ∗ g) =
∨

x

dom

(

∨

y,z

f(y)g(z) · [x ∈ y ⊙ z]

)

δs(x)

=
∨

x,y,z

dom(f(y)g(z))[s(x) ∈ s(y ⊙ z)]δs(x)

≤
∨

x,y,z

dom(f(y) dom(g(z)))[s(x) ∈ s(y ⊙ s(z))]δs(x)

=
∨

x

dom

(

∨

y,z

f(y)

(

∨

w

dom(g(w))δs(w)(z)

)

[x ∈ y ⊙ z]

)

δs(x)

= Dom(f ∗ Dom(g)).

After the usual unfoldings in the first step, the second uses sup-preservation
of dom, the fact that x = s(x) and that therefore x ∈ y ⊙ z if and only if
s(x) ∈ s(y ⊙ z). The third uses locality of dom and s. The fourth uses sup-
preservation of dom, the fact that x ∈ y⊙s(z) if and only if s(x) ∈ s(y⊙s(z)),
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and it introduces a new variable w such that s(w) = z to bring the innermost
dom in shape for the last step. Finally, we can then fold back definitions.
(7) For domain locality, we replay the weak locality proof with equations. This
requires locality in X and Q. �

Remark 7.2. Theorem 7.1 comprises the case where Q is merely a quantale,
that is, dom and cod map ⊥ to ⊥ and all other elements to 1 �= ⊥ (or another
fixed element α �= ⊥). A further specialisation leads to the quantale 2 of
booleans and hence Theorem 6.4.

Full modal correspondence results for Q-valued functions are more com-
plicated than for powersets. They are investigated in the next section. Exam-
ples for all three cases of Theorem 7.1 are presented in Section 9.

Next we return to our two running examples.

Example 7.3 (Modal convolution quantales over catoids).
(1) In the construction of category quantales, the st-structure of the underlying
category lifts to the modal structure of the convolution quantale. Any category
can therefore be lifted to a Q-valued modal convolution quantale.
(2) As an instance, for any modal quantale Q, the convolution algebra QX

over the pair groupoid X forms a modal quantale. In this algebra,

Dom(f)(a, b) =
∨

c

dom(f(a, c)) · δa(b) = dom

(

∨

c

f(a, c)

)

· δa(b),

and likewise for Cod. The subalgebra of weighted domain and codomain ele-
ments is then the algebra of all weighted elements below the identity relation.
These can be identified with Q-valued predicates. For Q = 2, this reduces to
the standard definitions of dom and cod in the quantale of binary relations.
We may view Q-valued relations as possibly infinite dimensional matrices. Do-
main and codomain elements then correspond to diagonal matrices with values
given by domain and codomain elements below 1 in Q along the diagonal and
⊥ everywhere else. For instance,

Dom

((

α β
γ δ

))

=

(

dom(α ∨ β) ⊥
⊥ dom(γ ∨ δ)

)

,

Cod

((

α β
γ δ

))

=

(

cod(α ∨ γ) ⊥
⊥ cod(β ∨ δ)

)

.

This refines the matrix theories from Example 3.11. �

The matrix example does not actually require a quantale as value alge-
bra: in a finite weighted relation, the summation used in relational composi-
tion, that is, matrix multiplication, is over a finite set and can be represented
by a finite supremum. In the absence of domain and codomain in the value
algebra, even a semiring can be used. More generally, we can require that the
multioperation of the catoid satisfies a finite decomposition property. Here are
two classical examples beyond matrices.
(1) Schützenberger and Eilenberg’s approach to weighted languages, discussed
in the Introduction, generalises language products to convolutions of functions
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Σ∗ → S from Σ∗ into a semiring S [13]. A semiring suffices for convolutions
because the number of prefix/suffix pairs into which any finite word in Σ∗

can be split is obviously finite. The resulting convolution algebra is then a
semiring.
(2) Rota’s incidence algebra [36] of functions P → R from a poset P to a
commutative ring R requires P to be locally finite, that is, every closed seg-
ment [x, y] = {z | x ≤ z ≤ y} must be finite. The incidence algebra is then
an associative algebra in which the sup of the convolution is replaced by a
summation in R. See also Section 9.

Alternatively, in group rings, it is usually assumed that functions G → R
have finite support, yet we focus on the property used for matrices, formal
powerseries and incidence algebras in this article.

A multimagma (X, ⊙) is finitely decomposable if for each x ∈ X the fibre
⊙−1(x) = {(y, z) | x ∈ y ⊙ z} is finite. The following variant of Theorem 4.5 is
then immediate from corresponding results for relational monoids [5].

Theorem 7.4. Let X be a finitely decomposable catoid and (S,+, ·, 0, 1) a semi-
ring. The convolution algebra SX is then a semiring.

A direct proof requires verifying that all sups in the proof of Theorem 4.5
remain finite if X is finitely decomposable. The operation + of semirings cor-
responds to ∨ in quantales, 0 corresponds to ⊥.

This result extends to domain semirings. Formally, a domain semiring [8]
is a semiring (S,+, ·, 0, 1) with a domain operation dom : S → S that satisfies
the same domain axioms as those of domain quantales, replacing ⊥ by 0 and ∨
by +. Every domain semiring is additively idempotent. The relation ≤, defined
as λx, y. x + y = y, is thus a partial order. A modal semiring is a domain
semiring and a codomain semiring, defined as for quantales by opposition,
which satisfies cod ◦ dom = dom and dom ◦ cod = cod.

Verifying finiteness of sups in the proof of Theorem 7.1 then extends
Theorem 7.4 as follows.

Proposition 7.5. If X is a finitely decomposable catoid and S a modal semiring,
then the convolution algebra SX is a modal semiring.

The small sup-preservation properties of Lemma 6.2(4) are needed in the
proof. The result can be adapted to st-multimagmas and modal presemirings,
and to catoids and weakly modal semirings, as in previous sections.

8. From liftings to correspondences

In Section 7 we have presented liftings from st-multimagmas to modal con-
volution prequantales. These yield one direction of a modal correspondence
triangle formed by two-out-of-three properties for st-multimagmas X, modal
prequantales Q and modal prequantales QX . For relational semigroups and
monoids, the triangles from [5] show that certain properties in any two of a
relational magma X, a prequantale Q and a prequantale QX induce corre-
sponding properties in the remaining algebra, for instance associativity. They
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include the following results for units, translated to multimagmas by isomor-
phism.

Proposition 8.1. Let X be a multimagma and Q a prequantale, not necessarily
unital.

(1) If QX is a unital prequantale and 1 �= ⊥ in Q, then X is an st-multi-
magma.

(2) If QX is a unital prequantale and X an st-multimagma, then Q is unital.

Proof. The results are known for relational magmas [5, Proposition 4.1]
and thus hold for multimagmas. Proposition 3.10 translates them to
st-multimagmas. �

The restriction ⊥ �= 1 in Proposition 8.1 is weak: ⊥ = 1 ⇒ Q = {⊥}.
We now complete the correspondence triangle, refining Proposition 8.1 to

variants of modal quantales. Relative to Proposition 8.1 we only consider the
st-axioms and the modal ones for prequantales and quantales while assuming
the multimagma and prequantale ones. We use a technique from [5] which in
turn comes from representation theory.

In the following, we assume that s, dom and Dom, and similarly t, cod
and Cod, are related as in Theorem 7.1. Thus

Dom(αδx) =
∨

y

dom(αδx(y))δs(y) = dom(α)δs(x)

and therefore Dom(δx) = δs(x) with dual laws for Cod. Moreover,

(αδx ∗ βδy)(z) =
∨

u,v

αδx(u)βδy(v)[z ∈ u ⊙ v] = αβ[z ∈ x ⊙ y]

and in particular (δx ∗ δy)(z) = [z ∈ x ⊙ y].

We first link properties of X with those of Q and QX via δ-functions.

Lemma 8.2. Let X be a multimagma with s, t : X → X, let Q and QX be
prequantales with dom, cod : Q → Q and Dom,Cod : QX → QX . Then, for all
α, β ∈ Q and x, y, z ∈ X,

(1) Dom(αδx) ∗ (αδx) =
∨

y dom(α)α[y ∈ s(x) ⊙ x]δy,

(2) Dom(Dom(αδx) ∗ (βδy)) =
∨

z dom(dom(α)β)[z ∈ s(s(x) ⊙ y)]δs(z),
(3) Dom(αδx) ∗ Dom(βδy) =

∨

z dom(α) dom(β)[z ∈ s(x) ⊙ s(y)]δz,
(4) Dom((αδx) ∗ Dom (βδy)) =

∨

z dom(α dom(β))[z ∈ s(x ⊙ s(y))]δs(z),
(5) Dom((αδx) ∗ (βδy)) =

∨

z dom(αβ)[z ∈ s(x ⊙ y)]δs(z).
(6) Corresponding properties hold for Cod, cod and t.

Proof. We write δα
x for αδx and drop multiplication symbols as convenient.

(1) The first proof uses the above law for Dom(δα
x ) together with the usual

conditions imposed by δ:

Dom(δα
x )δα

x =
∨

y,u,v

δ
dom(α)
s(x) (u)δα

x (v)[y ∈ uv]δy =
∨

y

dom(α)α[y ∈ s(x)x]δy.
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(2)

Dom(Dom(δα
x )δβ

y ) =
∨

z

dom

(

∨

v,w

δ
dom(α)
s(x) (v)δβ

y (w)[z ∈ vw]

)

δs(z)

=
∨

z

dom(dom(α)β)[z ∈ s(x)y])δs(z)

=
∨

z

dom(dom(α)β)[z ∈ s(s(x)y)]δs(z).

The first step uses the law for Dom and unfolds the definition of convolution.
The second uses sup-preservation of dom and simplifications based on δ. The
third uses z = s(z) and that z ∈ s(x)y if and only if z = s(z) ∈ s(s(x)y).
(3) The following proof uses the law for Dom and properties of δ.

Dom(δα
x )Dom(δβ

y ) =
∨

z,v,w

δ
dom(α)
s(x) (v)δ

dom(β)
s(y) (w)[z ∈ vw]δz

=
∨

z

dom(α) dom(β)[z ∈ s(x)s(y)]δz.

(4) The steps in the following proof should now be clear.

Dom
(

(δα
x )Dom(δβ

y )
)

=
∨

z

dom

(

∨

u,v

δα
x (u)δ

dom(β)
s(y) (v)[z ∈ uv]

)

δs(z)

=
∨

z

dom(α dom(β)[z ∈ xs(y)])δs(z)

=
∨

z

dom(α dom(β))[z ∈ s(xs(y))]δs(z).

(5) And likewise in the next one:

Dom(δα
x δβ

y ) =
∨

z

dom

(

∨

v,w

δα
x (v)δβ

y (w)[z ∈ vw]

)

δs(z)

=
∨

z

dom (αβ[z ∈ xy]) δs(z)

=
∨

z

dom(αβ)[z ∈ s(xy)]δs(z).

(6) Proofs for Cod, cod and t are dual. �

The following statements add structure to Proposition 8.1(1). They ex-
pose the laws in Q and QX needed to derive the catoid axioms, with and with-
out locality. The catoid structure comes from [5, Corollary 4.7] for relational
semigroups together with Proposition 3.10, which translates it to catoids. Prov-
ing them requires mild assumptions on X and Q or QX .

Proposition 8.3. Let QX and Q be quantales with 1 �= ⊥ in Q. Then X is a
catoid.
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The catoid X is therefore completely determined by elements below idE ,
more specifically, functions δs(x) and their relations to the elements in X. We
calculate the absorption law for s explicitly as an example of the technique
used: with Lemma 8.2(1),

δx = Dom(δx) ∗ δx =
∨

y

[y ∈ s(x) ⊙ x]δy.

Hence s(x) ⊙ x = {x} whenever the corresponding domain absorption law
holds in QX and 1 �= ⊥ in Q. The fact that Dom appears in the calculation
does not go beyond Proposition 8.3: Dom(δx) = δs(x) is below idE in QX .

The next statement adds locality to the picture.

Theorem 8.4. Let QX and Q be modal quantales, with 1 �= ⊥ in Q. Then X
is a local catoid.

Proof. It remains to consider locality. Lemma 8.2 yields

Dom(δx ∗ Dom (δy)) =
∨

z

[z ∈ s(x ⊙ s(y))]δs(z),

Dom(δx ∗ δy) =
∨

z

[z ∈ s(x ⊙ y)]δs(z).

So Dom(δx ∗ Dom (δy)) (z) = Dom(δx ∗ δy)(z) implies s(x ⊙ s(y)) = s(x ⊙ y).
�

Finally, we turn to the correspondences from X and QX to Q. We first
consider modal axioms in Q that do not depend on catoids. Similarly to the
assumption that 1 �= ⊥ in Q above, we need to assume the existence of certain
elements in X.

Theorem 8.5. Let X be an st-multimagma in which there exist x, y, z, w ∈ X,
not necessarily distinct, such that s(x) ⊙ s(y) �= ∅ and z ⊙ w �= ∅, let Q be a
prequantale and QX a modal prequantale such that idE �= ⊥.

(1) Then Q is a modal prequantale.
(2) It is a weakly modal quantale if X is a catoid and QX a weakly local

quantale.
(3) It is a modal quantale if X is also local and QX a modal quantale.

Proof. By definition, ∅ �= E ⊆ X. We verify the modal quantale axioms in Q,
using in each case the corresponding axiom in X and QX . Suppose X is an
st-multimagma and QX a modal prequantale with idE �= ⊥.

For domain absorption, using Lemma 8.2(1) with s(x) ⊙ x = {x},

dom(α)α = (Dom(δα
x ) ∗ (δα

x ))(x) = δα
x (x) = α.

For domain export, Lemma 8.2(2),(3) and hypothesis s(x) ⊙ s(y) �= ∅
yield z ∈ s(x) ⊙ s(y) = s(s(x) ⊙ y) for some z and therefore

dom(dom(α)β) = Dom(Dom(δα
x ) ∗ δβ

y )(z)

= (Dom(δα
x ) ∗ Dom(δβ

y ))(z)

= dom(α) · dom(β).
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For the subidentity axiom, dom(α) = Dom(δα
x )(s(x)) ≤ idE(s(x)) = 1

and for domain strictness, dom(⊥) = Dom(δ⊥
x )(s(x)) = Dom(⊥)(s(x)) = ⊥.

For binary sup-preservation of domain,

dom(α ∨ β) = Dom(δα∨β
x )(s(x))

= Dom(δα
x ∨ δβ

x )(s(x))

= Dom(δα
x )(s(x)) ∨ Dom(δβ

x )(s(x))

= dom(α) ∨ dom(β).

For weak domain locality Lemma 8.2(5),(4) with hypothesis z ⊙ w �= ∅
yields x ∈ s(z ⊙ w) ⊆ s(z ⊙ s(w)) for some x and therefore

dom(αβ) = Dom(δα
z ∗ δβ

w)(x)

≤ Dom((δα
z ) ∗ Dom(δβ

w))(x)

= dom(α dom(β)).

For domain locality, replay the previous proof with identities, and for
compatibility,

dom(cod(α)) = Dom(Cod(δα
x ))(s(t(x))) = Cod(δα

x )(t(x)) = cod(α).

The remaining proofs follow by duality. �

9. Examples

In this section we list additional examples of modal convolution quantales. We
start with those related to categories.

Example 9.1 (Modal convolution quantales over path categories).
(1) A digraph K is a pair s, t : E → V of source and target maps from a set
E of edges into a set V of vertices. The path category on K has elements V as
objects and sequences π = (v1, e1, v2, . . . , vn−1, en−1, vn) : v1 → vn, in which
vertices and edges alternate, as arrows. Composition (as usual, we reverse the
order of the standard composition) π1 · π2 of π1 : v1 → v2 and π2 : v3 → v4 is
defined whenever v2 = v3, and it concatenates the two paths while gluing the
common end. Sequences (v) of length 1, considered as paths of length 0, are
identities. Path categories are local functional catoids with s(π) = (v1) and
t(π) = (vn). By Theorem 7.1, the convolution algebra or category algebra over
the path category of any digraph with values in Q is a modal quantale for any
modal quantale Q. As paths are finitely decomposable, Q could be a modal
semiring.
(2) A special path category is generated by the one-point digraph with n
arrows, the free monoid with n generators. The st-structure and hence the
modal structure is then trivial. Lifting along Theorem 7.1 yields the quantale
or semiring of weighted languages.
(3) Forgetting edges yields paths modelled as lists of vertices. Lifting results
transfer.
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(4) Forgetting the internal structure of paths and keeping only their ends,
brings us back to the pair groupoid and weighted binary relations. �

In applications, paths could be execution sequences of programs, au-
tomata or transition systems. Sets of paths might model the behaviours of
concurrent or distributed computing systems. Lifting along Theorem 6.4 con-
structs modal path quantales at powerset level; lifting along Theorem 7.1 the
associated modal convolution quantales of Q-weighted paths. Once again, for
finite paths, semirings suffice as weight algebras. Algebras of weighted paths
are generally important for quantitative analyses of systems or the design of
algorithms. The construction of the modal powerset quantale over the path
category of a digraph has recently been extended to higher-dimensional modal
Kleene algebras and higher-dimensional (poly)graphs [2], which applications
in higher rewriting.

Example 9.2 (Modal incidence algebras over categories of segments). The ar-
rows or pairs in poset categories, as in Example 2.2(4), represent (closed)
segments of posets; those of linear orders represent (closed) intervals. By Theo-
rem 6.4, for any modal quantale Q, the convolution algebra or category algebra
over a poset category with values in Q forms a modal quantale.

Without the modal structure, such convolution quantales have been stud-
ied [12]. When the underlying total orders are locally finite, that is, all segments
and intervals are finite (all arrows in the poset category are finitely decompos-
able), values can be taken in (semi)rings and the convolution algebras become
incidence algebras à la Rota [36]. The general setting supports algebraic gen-
eralisations of duration calculi [41,12]. It specialises to interval and interval
temporal logics [24,33] for powerset liftings. The additional modal structure
enriches algebras for reasoning about states as well as intervals and supports
mixed modalities over weighted intervals and their endpoints. This, and ap-
plications to weighted and probabilistic interval temporal logics and duration
calculi, remains to be explored. �

Our next example considers catoids that arise from composing digraphs,
but we specialise to finite posets. We show how locality can be obtained by
introducing interfaces.

Example 9.3 (Weighted poset languages).
(1) Finite posets form functional catoids (based on classes) with respect to
serial composition, which is the disjoint union of posets with all elements of
the first poset preceding that of the second one in the order of composition.
This yields partial monoids with the empty poset as unit and hence functional
catois in which s and t map every poset to the empty poset. The algebra
is thus not local and does not form a category. The convolution algebras are
therefore weakly local quantales, but the modal structure is trivial as Dom and
Cod map the empty poset to ⊥ and any other element to id{1}. The powerset
lifting yields poset languages.
(2) The points of finite posets can be labelled with letters from some alphabet.
Equivalence classes of such labelled posets can be taken with respect to the
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isomorphism that preserves the order and labels, but forgets the names of
nodes. This leads to partial words [22], also called pomsets in concurrency
theory. The serial composition becomes total on equivalence classes, making
the resulting catoid a monoid and hence a category.
(3) Winkowski has equipped finite pomsets with interfaces [40]. The source
interface of a pomset consists of all its minimal elements (with their labels); its
target interface of all its maximal elements (again with their labels). Pomsets
with interfaces form a functional catoid with s mapping every pomset to its
source interface, t mapping every poset to its target interface. Composition
glues pomsets on their interfaces whenever they match, the order is extended as
in the previous example. The functional catoid of such pomsets with interfaces
is local and thus a category. Winkowski also defines a parallel composition
that turns pomsets with interfaces into a partial monoidal category (parallel
composition is a partial tensor). �

Winkowski’s pomsets with interfaces have been generalised to posets in
which interfaces may be arbitrary subsets of minimal or maximal elements
of posets [16]. Our lifting results extend to the resulting categories. Digraphs
with interfaces can alternatively be composed by juxtaposing these objects and
then making interface nodes disappear in the composition. This yields again
categories, yet with different units given by identity relations [28,18]. The usual
liftings apply. In all these examples one considers an additional operation of
parallel composition, which is simply the coproduct of posets or digraphs. For
these, the powerset lifting yields standard models of concurrency.

The next example lifts a local st-multimagma to a modal prequantale.

Example 9.4 (Weighted path languages in topology).
(1) A path on set X is a map f : [0, 1] → X, where one usually assumes that X
is a topological space and f continuous. The source of path f is s(f) = f(0),
its target t(f) = f(1). Two paths f and g in X can be composed whenever
t(f) = f(1) = g(0) = s(g), and then

(f · g)(x) =

{

f(2x) if 0 ≤ x ≤ 1
2 ,

g(2x − 1) if 1
2 ≤ x ≤ 1.

The parameterisation destroys associativity of composition. Consequently,
(X [0,1], ·, s, t) is only a functional st-multimagma. The lifting to P(X [0,1]) sat-
isfies the properties of Lemma 6.2, but even weak locality fails due to the
absence of associativity in X [0,1] and, accordingly, P(X [0,1]). The same failure

occurs when lifting to a convolution quantale QX[0,1]

along Theorem 7.1: as-
sociativity of the modal (pre)quantale Q of weights makes no difference; the
convolution algebra forms merely a modal prequantale whenever Q does.
(2) Path composition is of course associative up-to homotopy. The associated
local functional catoid can then be lifted to a modal convolution quantale like
any other category. Associativity can also be enforced by considering paths
up-to reparametrisation equivalence [17].
(3) Alternatively, categories of Moore paths can be defined on intervals of
arbitrary length [1]. A path is then a (continuous) map f : [0, n] → X and,
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writing |f | instead of n and likewise,

(f · g)(x) =

{

f(x) if 0 ≤ x ≤ |f |,

g(x − |f |) if |f | ≤ x ≤ |f | + |g|.

Lifting along Theorem 6.4 now yields modal convolution quantales appropri-
ate, for instance, for interval temporal logics [33] or durational calculi [41] for
hybrid or continuous dynamical systems (paths could correspond to trajecto-
ries for initial value problems for vector fields or systems of differential equa-
tions). Lifting along Theorem 7.1 might yield algebraic models of weighted,
probabilistic or stochastic systems with continuous dynamics. �

Example 9.5 (∆-sets). A presimplicial set [37] K is a sequence of sets (Kn)n≥0

equipped with face maps di : Kn → Kn−1, i ∈ {0, . . . , n}, satisfying the
simplicial identities di ◦ dj = dj−1 ◦ di for all i < j. Elements of Kn are n-
simplices. Presimplicial sets generalise digraphs: K0, K1 are the sets of vertices
and edges of a digraph, respectively; d0, d1 : K1 → K0 are the source and target
maps. Higher simplices represent compositions of edges. For edges x, y ∈ X1,
for example, a 2-simplex z ∈ K2 with d2(z) = x and d0(z) = y reflects the fact
that the edge d1(z) is a composition of x and y. For given x and y there may
be many such 2-simplices z, or none at all.

There are several ways of constructing a catoid from a presimplicial set K
[14]. For 0 ≤ i ≤ n and x ∈ Kn, let

si(x) = (di+1 ◦ di+2 ◦ · · · ◦ dn)(x) and ti(x) = (d0 ◦ d1 ◦ · · · ◦ dn−i−1)(x).

By definition, si(x), ti(x) ∈ Ki. The coproduct of simplices K =
⊔

n≥0 Kn

forms a graded catoid (K,⊙, s, t) with x ∈ y ⊙ z if and only if y = si(x) and
z = tn−i(x) for some i and s(x) = s0(x), t(x) = t0(x). Associativity follows
from the relationship tj(si(x)) = sj(tk(x)) that holds for all x ∈ Xn and
0 ≤ i, j, k ≤ n such that i + k = n + j.

In general, the graded catoid (K,⊙) is neither local nor functional. These
properties hold if K is the nerve of a category C (we omit degeneracies). In
this case, elements of Kn are sequences of morphisms

x = (c0
α1−→ c1

α2−→ · · ·
αn−−→ cn)

with s(x) = (c0) and t(x) = (cn), while ⊙ is sequence concatenation. �

Example 9.6 (Precubical sets). A precubical set X [39,23] is a sequence of
sets (Xn)n≥0 equipped with face maps dε

i : Xn → Xn−1, 1 ≤ i ≤ n, ε ∈
{0, 1}, satisfying the identities dε

i ◦ dη
j = dη

j−1 ◦ dε
i for i < j and ε, η ∈ {0, 1}.

Like presimplicial sets, precubical sets generalise digraphs: X0 and X1 may be
regarded as sets of vertices and edges, respectively, and d0

1, d
1
1 : X1 → X0 as

source and target maps. Higher cells represent homotopies between paths. A
square x ∈ X2, for example, reflects the fact that the paths (d0

1(x), d1
2(x)) and

(d0
1(x), d1

1(x)) are homotopic.

For a subset A = {a1 < · · · < ak} ⊆ [n] = {1 < · · · < n}, n > 0
and ε ∈ {0, 1}, define the iterated face map dε

A : Xn → Xn−|A| as dε
A(x) =
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dε
a1

◦ · · · ◦ dε
ak

(x). The precubical set X then forms catoid (X, ⊙, s, t) where

x ∈ y ⊙ z ⇔ ∃A ⊆ [n]. y = d0
A(x) ∧ z = d1

[n]\A(x)

and s(x) = d0
[n](x) ∈ X0, t(x) = d1

[n](x) ∈ X0 for all x ∈ Xn. Like in the

previous example, the catoid X is neither local nor functional.
A special case of this example is the shuffle multimonoid from Exam-

ple 2.2. Let Σ be a finite alphabet, Xn the set of all words of length n, and
dε

i : Xn → Xn−1 the map that removes the i–th letter. Then X = (Xn, dε
i ) is a

precubical set and the associated catoid (X,⊙, s, t) is the shuffle multimonoid
on Σ. There is only one unit—the empty word—and the catoid is finitely de-
composable. Correspondences for Q-weighted shuffle languages are discussed
in [5]. The dom/cod-structure of the convolution algebra is trivial. �

Our final example is a weakly local modal convolution quantale.

Example 9.7 (Weighted assertions in separation logic). Lifting the non-local
functional catoid of heaplets along Theorem 7.1 yields a weakly local modal
quantale as the convolution algebra, yet with trivial modal structure as the
empty heaplet is the only unit [11] and there are no elements between ∅ and {ε}.
This models weighted assertions of separation logic, including fuzzy or proba-
bilistic ones. �

10. Quantitative modal algebras

The domain and codomain operations yield modal diamond and box operators
on the convolution algebra, as usual for modal semirings [8]. Many properties
of such semirings translate automatically to quantales, and additional ones
hold. Forward and backward modal diamond operators can be defined in a
modal quantale Q, as on any modal semiring, for α, β ∈ Q:

|α〉β = dom(αβ) and 〈α|β = cod(βα).

They are related by opposition and the following conjugation [8].

Lemma 10.1. In every modal quantale Q, for all α ∈ Q and ρ, σ ∈ Qdom,

ρ · |α〉σ = ⊥ ⇔ 〈α|ρ · σ = ⊥.

Proof. ρ · |α〉σ = ⊥ ⇔ ρ dom(ασ) = ⊥ ⇔ ρασ = ⊥ ⇔ cod(ρα)σ = ⊥ ⇔
〈α|ρ · σ = ⊥. �

The laws cod(α)β = ⊥ ⇔ αβ = ⊥ ⇔ α dom(β) = ⊥ used in this proof
hold in any modal quantale as dom(α) = ⊥ ⇔ α = ⊥ ⇔ cod(α) = ⊥ and by
locality [8]. We have seen similar ones in Lemma 3.9, Section 3.

Another consequence of locality is that |α〉β = |α〉 dom(β), so that β is
automatically a domain element. We henceforth indicate this by writing |α〉ρ
for ρ ∈ Qdom. Further, locality of s and t is equivalent to |αβ〉 = |α〉 ◦ |β〉
and 〈αβ| = 〈β| ◦ 〈α|, which are standard properties standard of modal logics.
Without locality, only inequalities hold.
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Lemma 10.2. In any modal quantale Q, the operators |α〉 and 〈α| preserve
arbitrary sups in Qdom, for all α ∈ Q.

Proof. The dom and cod operations preserve all sups in the complete lattice
Qdom ( = Qcod) [15]. Thus diamonds preserve all sups, too: for all P ⊆ Qdom,

|α〉
(

∨

P
)

= dom
(

α ·
(

∨

P
))

= dom
(

∨

{αρ | ρ ∈ P}
)

=
∨

{dom(αρ) | ρ ∈ P} =
∨

{|α〉ρ | ρ ∈ P}.

Sup preservation of 〈α| follows by duality. �

Remark 10.3. In modal semirings, diamonds are strict and preserve finite sups:
|α〉⊥ = ⊥ = 〈α|⊥, |α〉(ρ∨σ) = |α〉ρ∨ |α〉σ and 〈α|(ρ∨σ) = 〈α|ρ∨〈α|σ (using
quantale notation with ∨ in place of + and ⊥ in place of 0).

Modal quantales admit box operators due to sup-preservation.

Proposition 10.4. In any modal quantale Q, the operators |α〉 and 〈α| have
right adjoints in Qdom:

[α|ρ =
∨

{σ | |α〉σ ≤ ρ} and |α]ρ =
∨

{σ | 〈α|σ ≤ ρ}.

These satisfy |α〉ρ ≤ σ ⇔ ρ ≤ [α|σ and 〈α|ρ ≤ σ ⇔ ρ ≤ |α]σ.

Proof. The diamonds |α〉 and 〈α| preserve all sups by Lemma 10.2 and hence
have right adjoints (by the adjoint functor theorem), defined as above. �

It follows that |αβ] = |α] ◦ |β], because, for all σ ∈ Qdom,

σ ≤ |αβ]ρ ⇔ 〈αβ|σ ≤ ρ ⇔ 〈β|〈α|σ ≤ ρ ⇔ 〈α|σ ≤ |β]ρ ⇔ σ ≤ |α]|β]ρ,

and dually [αβ| = [β| ◦ [α|.
The following lemma relates boxes and diamonds with laws that do not

mention modalities.

Lemma 10.5. In every modal quantale,

|α〉ρ ≤ σ ⇔ αρ ≤ σα, 〈α|ρ ≤ σ ⇔ ρα ≤ ασ,

ρ ≤ |α]σ ⇔ ρα ≤ ασ, ρ ≤ [α|σ ⇔ αρ ≤ σα.

Proof. We consider only the first law. The others follow from duality and
the adjunctions. First, suppose |α〉ρ ≤ σ, that is, dom(αρ) ≤ σ. Then αρ =
dom(αρ)αρ ≤ σαρ ≤ σα. For the converse direction, suppose αρ ≤ σα. Then
dom(αρ) ≤ dom(σα) = σ dom(α) ≤ σ. �

Therefore, |α]σ =
∨

{ρ | ρα ≤ ασ} and [α|σ =
∨

{ρ | αρ ≤ σα}, and
the diamond operators, as left adjoints, satisfy |α〉ρ =

∧

{σ | αρ ≤ σα} and
〈α|ρ =

∧

{σ | ρα ≤ ασ}.
In any boolean modal semiring and therefore any boolean modal quantale,

the following De Morgan duality relates boxes and diamonds [8], where ρ′ is
the complement of ρ in Qdom as before.

Lemma 10.6. In any boolean modal quantale, |α]ρ = (|α〉ρ′)′, [α|ρ = (〈α|ρ′)′.
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Proof. |α〉ρ ≤ σ ⇔ |α〉ρ · σ′ = ⊥ ⇔ ρ · 〈α|σ′ = ⊥ ⇔ ρ ≤ (〈α|σ′)′, hence
(〈α|σ′)′ = [α|ρ. The proof for |α] follows by opposition. �

In boolean modal semirings and quantales, we therefore obtain conjuga-
tion laws for boxes as for diamonds.

Lemma 10.7. In every boolean modal quantale, ρ ∨ |α]σ = 1 ⇔ [α|σ ∨ ρ = 1.

Proof. Straightforward from De Morgan duality. �

While the De Morgan dualities do not depend on locality, the conjuga-
tions and adjunctions require these laws.

Remark 10.8. When the catoid X is finitely decomposable, one can use boolean
modal semirings, that is, boolean monoids equipped with the usual domain ax-
ioms, in the lifting. Boolean monoids are essentially boolean quantales in which
only finite sups and infs are assumed and required to be preserved, including
empty ones. It follows that, if X is a finitely decomposable local catoid and Q
a boolean modal semiring, then QX is a boolean modal semiring.

Next, we consider the modal operators in the convolution quantales QX

and relate them with similar properties in X and Q. For diamonds,

(|f〉g)(x) =
∨

x∈s(y⊙z)

|f(y)〉g(z) and (〈f |g)(x) =
∨

x∈t(z⊙y)

〈f(y)|g(z),

and as upper adjoints are lower adjoints in the dual lattice,

(|f ]g)(x) =
∧

x∈s(y⊙z)

|f(y)]g(z) and ([f |g)(x) =
∧

x∈t(z⊙y)

[f(y)|g(z).

Using locality s(x ⊙ y) = s(x ⊙ s(y)) and likewise for t makes these identities
slightly longer, but more symmetric. Alternatively, we can write

|f〉g =
∨

x,y,z∈X

|f(y)〉g(z) · [x ∈ s(y ⊙ z)] · δx.

The shape of the laws for the remaining boxes and diamonds is then obvious.

Example 10.9 (Modal operators in powerset quantales).
(1) In the modal powerset quantale over the path category from Example 9.1,
elements are sets of paths. Domain elements are formed by the source elements
in the set, codomain elements by its target elements. Both are vertices as paths
of length 0. Thus, for any set of paths A and set of vertices P ⊆ V ,

|A〉P = {(v) ∈ V | ∃π ∈ A. (v) = s(π) ∧ t(π) ∈ P}

is the set of all vertices in V from which one may reach a vertex in P along
some path in A. Dually, 〈A|P models the set of all vertices in V that one may
reach from a vertex in P along some path in A. Moreover,

|A]P = {(v) ∈ V | ∀π ∈ A. (v) = s(π) ⇒ t(π) ∈ P}

models the set of all vertices from which one must reach a vertex in P along
all paths in A, and [A|P the set of vertices one must reach from a vertex
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in P along all paths in A. The shape of the modal operators in algebras of
continuous paths in Example 9.4 is similar.
(2) The modal operators in the modal powerset quantale on the pair groupoid,
the quantale of binary relations, are the standard ones with respect to Kripke
semantics. Up to isomorphism between predicates and subidentity relations,

|R〉P = {a | ∃b. (a, b) ∈ R ∧ P (b)}, |R]P = {a | ∀b. (a, b) ∈ R ⇒ P (b)},

for binary relation R and predicate P , and likewise for 〈R|P and [R|P . �

Similar constructions apply to the other powerset algebras over catoids
outlined in Section 9. Working out details is routine.

Example 10.10 (Modal operators in convolution quantales).
(1) For weighted relations, the forward diamond is

(

|f〉
∨

c

δ
g(c,c)
(c,c)

)

((a, b)) =
∨

c

|f(a, c)〉g(c, c) · δa(b).

For finite relations we obtain matrices. In the 2 × 2 case, for instance,
∣

∣

∣

∣

(

α11 α12

α21 α22

)〉 (

β11 ⊥
⊥ β22

)

= Dom

((

α11β11 α12β22

α21β11 α22β22

))

=

(

|α11〉β11 ∨ |α12〉β22 ⊥
⊥ |α21〉β11 ∨ |α22〉β22

)

.

The other modalities satisfy similar laws. The diagonal matrices are isomorphic
to vectors and the computation performed corresponds to a linear transforma-
tion of a vector, except for the diamonds on the diagonal.
(2) In the modal quantale of weighted paths,

(

|f〉
∨

v∈V

δg(v)
v

)

(x) =
∨

v

|f(v)〉g(t(v)) · δs(v)(x).

For finite graphs, δ
dom(g(v))
v can again be seen as a diagonal matrix or vector

of weighted vertices, and f(x) as a matrix labelling pairs of vertices with the
set of weights of the (hom-set) of paths between them. Multiplications with

δ
dom(g(v))
v then project on the paths with targets in v. Taking the diamond

yields the supremum of the weights of all paths that end in a vertex in v. �

From a linear algebra point of view, the occurrences of dom or cod in
the computations of weights are irritating. Yet the correspondence results in
Sections 7 and 8 show that the condition that Q be a modal quantale cannot
be weakened. The approach is thus too restrictive, for instance, for deriving
probabilistic predicate transformer semantics where states and relations carry
more general weights. In the probabilistic quantale from Example 4.8, in par-
ticular, it is easy to check that Qs = {0, 1}, which precludes any assignment
of non-trivial weights to states of a system.

Predicate transformers, however, are more general than modal Kleene
algebras: they are order-, sup- or inf-preserving maps between (complete) lat-
tices. The absorption laws dom(α)·α = α and α·cod(α) = α seem irrelevant for
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them. Only an action on weighted relations is needed beyond properties like
sup-preservation. This is given by domain and codomain locality, as discussed
at the beginning of this section. Locality lifts from X to QX even if Q is only
a quantale. To explain this, we redefine domain on QX ,

Dom(f)(x) =
∨

y∈X

f(y) · δs(y)(x),

using f(y) instead of dom(f(y)), and likewise for Cod. Then, for locality in
QX and Q merely a quantale,

(Dom(f ∗ g))(v) =
∨

x,y,z

f(y)g(z)[x ∈ y ⊙ z]δs(x)(v)

=
∨

y,z

f(y)g(z)[v ∈ s(y ⊙ z)]δs(x)(v)

=
∨

y,z

f(y)g(z)[v ∈ s(y ⊙ s(z))]δs(x)(v)

=
∨

x,y,z

f(y)

(

∨

w

g(w)δs(w)(z)

)

[x ∈ y ⊙ z]δs(x)(v)

= Dom(f ∗ Dom(g))(v),

replaying part (6) the proof of Theorem 7.1. The first step unfolds the revised
definition for Dom and convolution. The second uses v = s(x) and the fact
that x ∈ y ⊙ z if and only if s(x) = v ∈ s(y ⊙ z). The third applies locality
of s. The fourth, like its counterpart in part (6) of the proof of Theorem 7.1,
brings g(z) in shape for the last step of the proof. The proof for Cod is dual,
as usual. Domain export lifts in the same way:

(Dom(Dom(f) ∗ g))(v) =
∨

x,y,z

(

∨

w

f(w)δs(w)(y)

)

g(z)[x ∈ y ⊙ z]δs(x)(v)

=
∨

z,w

f(w)g(z)[v ∈ s(s(w) ⊙ z)]

=
∨

z,w

f(w)g(z)[v ∈ s(w) ⊙ s(z)]

= (Dom(f) ∗ Dom(g))(v),

and again the proof for codomain export, with Q being merely a quantale, is
dual. But it is easy to check that absorption laws can no longer be lifted.

Example 10.11 (Generalised modal operators in convolution quantales).
Defining forward and backward diamonds as before in the quantale of weighted
relations, but using the revised domain definition, yields

(

|f〉
∨

c

δ
g(c,c)
(c,c)

)

((a, b)) =
∨

c

f(a, c) · g(c, c) · δa(b).
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The shape of the backward diamond is then obvious by duality. In the matrix
case, our previous example now reduces to

∣

∣

∣

∣

(

α11 α12

α21 α22

)〉 (

β11 ⊥
⊥ β22

)

=

(

α11β11 ∨ α12β22 ⊥
⊥ α21β11 ∨ α22β22

)

.

This has the right form for stochastic matrices and probabilistic predicate
transformers, using the probabilistic quantale from Example 4.8. �

We have checked with Isabelle that, without absorption laws, domain
elements still form a subalgebra and that commutativity lifts whenever Q
is abelian. (The proofs are routine. We have not added them to the Isabelle
repository, as theories from another repository (Archive of Formal Proofs) need
to be downloaded to make them compile.) Idempotency of domain elements
does not lift, which is consistent with the fact that multiplication of diagonal
matrices is not in general idempotent. This is appropriate for vector spaces
and similar structures. Developing the “modal” algebras of such approaches
and exploring applications is left for future work.

11. Conclusion

We have introduced catoids and used them to obtain a triangle of equational
correspondences between them, modal value quantales and quantale-valued
modal convolution quantales, explaining in particular the origin of locality in
axiomatisations of domain semirings and quantales in terms of the composi-
tion pattern for categories. Our results yield a generic construction recipe for
modal quantales: one gets such quantales for free as soon as the much simpler
underlying local catoid has been found. The relevance of this approach has
been illustrated by a list of examples from mathematics and computing.

We finish with directions for future work: In combination with previous
work on concurrent relational monoids and concurrent quantales [5], it seems
interesting to build models for non-interleaving concurrent systems based on
po(m)sets and graphs with interfaces and lift them to modal concurrent semir-
ings and quantales. Along similar lines it seems possible to define higher-
dimensional globular catoids as generalisations of 2-categories and prove cor-
respondence results with respect to the higher globular Kleene algebras in-
troduced for higher rewriting [2]. Ultimately, this should lead to ω-catoids
as generalisations of ω-categories and the corresponding ω-quantales, which
would share features of modal and concurrent quantales, in combination with
axioms for globular structure.

Further, the relevance of the weakened domain and codomain quantales of
Section 10 for the verification of quantitative computing systems, in particular
stochastic and probabilistic ones, remains to be explored.

We also aim at a categorification of the approach in terms of monoidal
categories with Day convolution. While this adds generality, we have chosen
a simpler algebraic approach in this work with a view on software verification
applications with proof assistants like Isabelle, where reasoning with monoidal
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categories, coends or coherence conditions seems currently unwieldy. Rela-
tional monoids, catoids and the construction of convolution quantales have
already been formalised with Isabelle [9]; Isabelle verification components for
separation logic use a less general approach with partial abelian monoids and
generalised effect algebras instead of catoids [10].

Last, but not least, Jónsson-Tarski duality should be related to the convo-
lution algebra setting and the role of the weight algebras should be explained.
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Appendix A. Function systems and domain semigroups

• A function system [38] is a structure (X, ·, L,R) such that (X, ·) is a
semigroup, L,R : X → X and the following axioms hold (using Schweizer
and Sklar’s notation):

L(R(x)) = R(x), R(L(x) = L(x), (2a)

L(x) · x = x, x · R(x) = x, (2b)

L(x · L(y)) = L(x · y), R(R(x) · y) = R(x · y), (3a)

L(x) · R(y) = R(y) · L(x), (3b)

y · R(x · y) = R(x) · y. (3c)

In addition, Schweizer and Sklar consider the identity

L(x · y) · x = x · L(y), (D3c)

https://github.com/gstruth/catoids
https://github.com/gstruth/catoids
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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which is valid in some, but not all function systems. They point out
that all axioms except (3c), which has subsequently been called twisted
axiom, hold of binary relations. Schweizer and Sklar’s axioms use function
composition ◦ instead of ·.

• A domain semigroup [6] is a semigroup (X, ·) with a binary operation
dom : X → X that satisfies

dom(x) · x = x, (D1)

dom(x · y) = dom(x · dom(y)), (D2)

dom(dom(x) · y) = dom(x) · dom(y), (D3)

dom(x) · dom(y) = dom(y) · dom(x). (D4)

• A modal semigroup is a domain semigroup X equipped with a codomain
operation cod : X → X that satisfies opposite laws, in which the ar-
guments of composition have been swapped, and the compatibility laws
dom ◦ cod = cod and cod ◦ dom = dom.

The axioms (D3), (D4) and the dual codomain axioms are derivable in function
systems. Conversely, the function system axiom (3b) is derivable in modal
semigroups. Disregarding the twisted law, function systems are therefore a
more compact, but equivalent axiomatisation of modal semigroups.
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