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Abstract

People with Alzheimer’s disease (AD) and delusions have worse quality of life and prognosis. However, early markers of 

delusions have not been identified yet. The present study investigated whether there are any detectable differences in grey 

matter (GM) volume and cognitive changes in the year before symptom onset between patients with AD who did and did 

not develop delusions. Two matched samples of AD patients, 63 who did (PT-D) and 63 who did not develop delusions 

(PT-ND) over 1 year, were identified from the Alzheimer’s Disease Neuroimaging Initiative database. The Neuropsychiatric 

Inventory (NPI) was used to assess the presence of delusions. Sixty-three additional matched healthy controls (HC) were 

selected. Repeated-measures ANCOVA models were used to investigate group-by-time effects on the volume of selected 

GM regions of interest and on cognitive performance. No neurocognitive differences were observed between patient groups 

prior to symptom onset. Greater episodic memory decline and GM loss in bilateral caudate nuclei, medio-temporal and mid-

line cingulo-parietal regions were found in the PT-D compared with the PT-ND group. A pattern of faster GM loss in brain 

areas typically affected by AD and in cortical and subcortical targets of dopaminergic pathways, paralleled by worsening of 

episodic memory and behavioural symptoms, may explain the emergence of delusions in patients with AD.
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Introduction

People with Alzheimer’s disease (AD) often experience neu-

ropsychiatric symptoms, especially in the more advanced 

stage of the disease [1, 2]. A subgroup of approximately 30% 

of patients may present with psychoses [3] (i.e. delusions 

and hallucinations). These symptoms represent a challenge 

to patients’ management since they recur in about 57% of 

cases [4] and are differentially associated with worse cogni-

tive decline that is particularly severe in patients with hal-

lucinations [5, 6]. Moreover, psychotic symptoms represent 

a risk factor for institutionalisation, particularly among 

patients with delusions [7], and are associated with higher 

caregiver burden [7–9]. Delusions, defined as false beliefs 

maintained despite contrary evidence, are the psychotic 

symptoms most commonly observed in people with AD with 

a prevalence almost twice that of hallucinations [3, 10]. Both 

misidentification and persecutory beliefs have been reported 

in this clinical population and they seem to represent two 

partially distinct clusters of psychotic symptoms, as stressed 

also by the most recent research and clinical criteria for psy-

chosis in AD [11–13]. Moreover, psychoses appear to affect 

particularly psychosocial functioning [14], probably because 

patients with delusions have been found to present with a 
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behavioural profile that is more extensively compromised 

than that of patients without delusions [5, 15].

The neurobiological substrates of psychotic symptoms 

in AD are still poorly understood. Post-mortem studies have 

highlighted that psychotic symptoms are frequently asso-

ciated with comorbid non-AD neuropathology, in particu-

lar with the presence of Lewy bodies and cerebrovascular 

damage, rather than with AD-related pathology [16–18]. 

Palmqvist et al. [19] found that lacunar lesions to the left 

basal ganglia predicted increased odds of psychotic symp-

toms in patients with AD. However, patients presenting 

exclusively with AD neuropathology in Braak stages V/VI 

also had increased odds of delusions and these symptoms 

were associated only with neurofibrillary tangle burden and 

not with amyloid-β pathology [20].

Cross-sectional neuroimaging investigations of delusional 

AD patients have shown damage across multiple cortical 

and subcortical regions. Voxel-based morphometry analy-

ses of structural magnetic resonance imaging (MRI) found 

lower grey matter (GM) volumes in the right fronto-parietal 

cortices and left claustrum [21], right hippocampal regions 

[22], left orbito-frontal and superior temporal cortices [23] 

in AD patients with delusions compared with those with-

out. Moreover, Tetreault et al. [24] found that delusions in 

AD were associated with atrophy in bilateral ventrolateral 

frontal, orbitofrontal, and superior frontal cortices. Using an 

atrophy network mapping approach applied to resting-state 

functional MRI, these authors also found that delusions were 

associated with functional alterations in the same areas. Qian 

et al. [25], instead, observed that delusional patients with 

AD had reduced resting-state functional connectivity of the 

default mode network (DMN) in the left inferior parietal lob-

ule. Single-photon emission computed tomography studies 

have found that patients with AD who experienced delusions 

had diffuse and predominantly right-lateralised hypoperfu-

sion in frontal, temporal and parietal cortices [26–32], as 

well as in subcortical GM nuclei [33], with partially disso-

ciable correlates for different subtypes of delusions. Simi-

larly, investigations based on positron emission tomography 

(PET) showed metabolic alterations in consistent cortical 

and subcortical GM regions associated with delusions in 

AD [34–36]. Moreover, using a radiotracer selective for 

dopamine receptors, Reeves et al. [37] found upregulation 

of dopaminergic function in the striatum in patients with 

AD and delusions.

A few longitudinal studies have also been carried out to 

investigate neuroimaging parameters predictive of brain 

changes over a period of time associated with the emergence 

of AD-related delusions. Koppel et al. [38] found that orbito-

frontal hypometabolism in patients with AD is not detectable 

prior to psychosis onset, but only after symptomatic mani-

festation. In contrast, several brain structural alterations were 

observed in patients who subsequently developed delusions 

over 1–2 years after MRI assessment; in detail: lower vol-

ume in medio-temporal, cingulate, insular and orbito-frontal 

GM [39]; lower fractional anisotropy in left parieto-occipital 

temporal and callosal white matter (WM) tracts [40]; and 

higher WM hyperintensity volume [41]. Using a simple 

within-group t test on a sample of 24 patients with AD and 

delusions from the Alzheimer’s Disease Neuroimaging Ini-

tiative (AD), Fisher et al. [42] found that patients had lost 

GM volume in both insulae, the cerebellum, the left superior 

temporal and parahippocampal gyri and the right thalamus 

and posterior cingulate gyrus prior to the onset of delusions. 

By comparing AD patients who did and did not develop psy-

choses, instead, greater GM loss over 4 years prior to onset 

was observed only in the right insula [43]. However, a study 

that focussed on delusional patients without hallucinations 

revealed greater longitudinal GM loss in left middle tempo-

ral and right inferior frontal and postcentral areas associated 

with symptom onset [44].

In summary, an integrative view of the current neuroim-

aging studies suggests the right frontal lobe as the primary 

region associated with delusional manifestations in AD, with 

important contributions of alterations in temporal and pari-

etal cortices [45–47] and associated subcortical nuclei that 

are part of dopaminergic pathways [19, 33]. To date, how-

ever, most neuroimaging investigations have used a cross-

sectional design and investigated patients with active delu-

sions. In contrast, only a few studies have investigated the 

longitudinal MRI changes associated with the development 

of delusions. In general, these investigations were carried 

out on small samples of patients and neglected important 

potentially confounding factors such as, for example, the 

ApoE status of patients with and without delusions, since 

the ε4 allele is associated with increased risk of psychotic 

symptoms [48, 49]. Although these studies provide impor-

tant insights into the neuroimaging correlates of AD-related 

delusions, they cannot be used to support causal inferences 

on the neural processes leading to the manifestation of such 

behavioural alterations. Their clinical utility is also limited, 

as signalled by the fact that recent clinical and research crite-

ria for AD-related psychosis, although advocating for further 

research to clarify the underlying biological mechanisms, do 

not currently include neuroimaging as a potential diagnostic 

tool [11, 13].

Considering the heterogeneity of neuroimaging findings 

on the neural correlates of delusions in AD, the primary 

aim of this study was to ascertain the pattern of longitudinal 

GM degeneration associated with the manifestation of these 

symptoms in patients with AD. In fact, investigating brain 

changes leading to the onset of delusions could potentially 

provide mechanistic insight that could serve as a transla-

tional foundation for possible clinical therapeutic inter-

ventions by targeting selective neural pathways commonly 

overlooked within the current clinical context. This primary 



231European Archives of Psychiatry and Clinical Neuroscience (2023) 273:229–241 

1 3

aim was pursued by comparing changes in GM volume of 

selected brain areas in the year prior to symptom onset in 

two large samples of well characterised and matched patients 

with and without delusions. The research hypothesis behind 

this study, based on the available literature, is that greater 

GM volume loss over the course of the year prior to symp-

tom onset should be observed primarily in fronto-parietal 

cortices and/or connected GM areas in the sample of patients 

who did develop delusions.

The secondary aim was to investigate whether differential 

changes in cognition could be detected in patients with AD 

who did and who did not develop delusions over a year. It 

was hypothesised that greater cognitive decline could paral-

lel neurodegeneration, since more severe cognitive impair-

ment is a risk factor for AD-related psychoses [50].

Methods

Participants

Data used in the preparation of this article were obtained 

from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu).1 The study pro-

tocol was approved by the institutional review board of 

each site and all participants provided written informed 

consent. All data contained in the ADNI database are 

anonymised publicly available. Approval for secondary 

analyses of this dataset was granted by the Research Com-

mittee of Brunel University of London (reference number 

30422-TISS-Jul/2021- 33,453-2).

The procedure of selection of the participants included 

in this study is shown in Fig. 1. First, the total ADNI data-

base was searched to identify all participants with a clini-

cal diagnosis of either MCI or dementia and presenting 

with delusions (n = 227) recorded by means of either the 

Neuropsychiatric Inventory (NPI) [51] or the NPI-Ques-

tionnaire (i.e. a shorter version of the NPI) [52] at any 

time point. Second, the following exclusion criteria were 

applied to select a phenotypically characterised sample 

of patients with AD and delusions: presence of halluci-

nations (as different psychotic symptoms may be caused 

by partially different neural alterations [11, 15]), lack of 

assessments in the year before delusion onset, rare ApoE 

genotypes (i.e. ε2 carriers), left-handedness (due to pos-

sible neurostructural differences between right- and left-

handed people [53]), lack of MRI data at any of the time 

points of interest, lack of evidence of cognitive decline 

(i.e. classified as cognitively unimpaired at all ADNI time 

points), lack of participants (either patients without delu-

sions or healthy controls) without delusions who could be 

matched with the patients with delusion according to the 

specified matching criteria detailed below. The observa-

tion period of 1 year was selected for three reasons: (1) 

to detect neurocognitive changes more likely to precede 

and, thus, be linked to the onset of delusions, (2) to max-

imise sample size on the basis of data availability, (3) by 

considering that the annual incidence rate (over 5 years of 

observation) of new psychotic symptoms among patients 

with AD has been found to be stable at around 10% [54]. 

A final count of 63 people with either MCI (n = 29) or 

Fig. 1  Flowchart depicting the 

selection process for the partici-

pants with AD and delusions 

included in this study

1 The ADNI was launched in 2003 as a public–private partnership, 

led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biologi-

cal markers, and clinical and neuropsychological assessment can be 

combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). For up-to-date informa-

tion, see www. adni- info. org.

http://www.adni-info.org
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dementia (n = 34) due to AD and delusions (PT-D) were 

identified and matched to a sample of 63 (29 with MCI 

and 34 with dementia) patients with AD without delu-

sions (PT-ND). Matching was done for diagnosis, Mini 

Mental State Examination (MMSE) score, age, education, 

sex, handedness and ApoE genotype. These variables were 

used for a one-to-one matching process that was aimed at 

minimising the potential confounding impact of disease 

severity, demographic and genetic variables that can affect 

clinical and neural decline. None of the patients with MCI 

progressed to dementia during the year of observation. 

Additionally, 63 healthy controls (HC) were selected and 

matched to the patients’ groups for age, education, sex, 

handedness and ApoE genotype.

Clinical and cognitive data

Neuropsychiatric symptoms were assessed by means of 

either the NPI or the NPI-Q in different ADNI waves. Dif-

ferently from the NPI-Q, the NPI assessment also includes 

information about the frequency of symptoms to calculate 

the total score. Therefore, to quantify global severity of 

neuropsychiatric manifestations homogenously across par-

ticipants, we converted NPI scores into NPI-Q-like scores 

by summing up only the severity score for each symptom 

without multiplying it for the frequency score. Information 

on cardiovascular risk factors was also extracted, since pre-

vious research has highlighted a potential impact of cerebro-

vascular damage on risk of psychosis in AD. Scores for the 

following neuropsychological tests were extracted, for the 

PT-D group, about 1 year prior to delusion onset (Time 1) 

and at delusion onset (Time 2) and, for the PT-ND and HC 

groups, at two time points one year apart from one another: 

MMSE, Clock Drawing Test (CDT, drawing and copy), Trail 

Making Test (TMT, part A and B), Logical Memory Test 

(LMT, Immediate and Delayed Recall), Category Fluency 

Test (CFT–animals). Details of the clinical, neuropsychiatric 

and cognitive assessments are available at http:// adni. loni. 

usc. edu/ metho ds.

AD biomarkers

Data on two biomarkers of AD pathological processes, i.e. 

cerebrospinal fluid (CSF) levels of β-Amyloid (Aβ) and 

phosphorylated tau (p-tau) [55], were also extracted at both 

time points for all those participants who had undergone a 

lumbar puncture. The relevant methods have been described 

in detail by previous publications [56]. Levels of CSF Aβ 

were considered abnormal when below a cut-off of 977 pg/

mL, while values of the p-tau/Aβ ratio were categorised as 

pathological when above the cut-off of 0.025 [57].

MRI data and pre‑processing

Two T1-weighted MRI scans were selected for each par-

ticipant: one at delusion onset and one in the year prior to 

onset. Details on the MRI data collection protocol have 

been published by Jack Jr et al. [58]. Scans were acquired 

at different MRI scanner field strengths, either 1.5 T or 3 T, 

but participants groups were matched for this variable (see 

Supplementary materials for details). MRI data were pre-

processed and analysed using the most updated analytical 

pipeline of the standard voxel-based morphometry (VBM) 

procedure [59] implemented with Statistical Parametric 

Mapping 12 (Wellcome Centre for Human Neuroimaging, 

London, UK). In particular, the Computational Anatomy 

Toolbox (CAT12, http:// www. neuro. uni- jena. de/ cat/) was 

used to implement a longitudinal pre-processing pipeline 

optimised to detect large changes (such as neurodegenera-

tion). The following steps were carried out (1) reorientation 

of images to the bi-commisural axis, (2) inverse-consistent 

co-registration bias-correction of the scans of each partici-

pant, (3) and segmentation, (4) modulation (by means of 

the Jacobian determinant of the deformation), normalisa-

tion and registration to the MNI space, and (5) smoothing 

with an 8 mm full-width at half maximum Gaussian kernel. 

Only GM maps were used to answer the research question 

of this study.

Finally, GM volumes were extracted from 30 regions of 

interest (ROIs) using the Automated Anatomical Labelling 

(AAL) atlas 2 [60]. These ROIs were selected on the basis 

of what emerged from previous studies that have investigated 

the neural alterations associated with delusions in AD: 6 

ROIs in the dorsolateral prefrontal cortex, i.e. bilateral infe-

rior, middle and superior frontal gyri; 4 ROIs in the medial 

temporal lobe, i.e. bilateral hippocampi and parahippocam-

pal gyri; 8 ROIs in the DMN, i.e. bilateral inferior parietal 

lobules, precunei, posterior cingulate and medial prefrontal 

cortex; and 12 ROIs in the nigrostriatal pathway, i.e. sub-

stantia nigra (SN) and bilateral caudate and putamen nuclei, 

and in the mesocortico-limbic pathway, i.e. ventral tegmen-

tal area (VTA), bilateral accumbens, anterior cingulate and 

orbito-frontal cortices. The SN and VTA ROIs were defined 

following the methods used in previous research [61–64].

Statistical analyses

Cognitive and clinical data were compared at baseline across 

all three groups to characterise the clinical profile of patients 

with ANOVA and FDR-corrected post hoc tests using SPSS 

version 26 (IBM, Chicago, IL, USA). Frequencies of par-

ticipants with positive AD biomarkers (Aβ and p-tau) were 

compared across groups using the Chi-square test.

Repeated-measures ANCOVA models were used to 

investigate the primary aim, i.e. differences in longitudinal 

http://adni.loni.usc.edu/methods
http://adni.loni.usc.edu/methods
http://www.neuro.uni-jena.de/cat/
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GM changes in all ROIs between the two patient groups 

(group × time interactions). The significance threshold was 

set at p < 0.05 with a False Discovery Rate (FDR) correction 

for multiple testing. Three covariates were included in the 

models: total intracranial volume, MRI scanner field strength 

and an index of longitudinal change in NPI scores. Total 

intracranial volume was used as a proxy measure of brain 

reserve [65] to rule out the possible confounding influence 

of this variable. MRI scanner field strength was included to 

account for any potential difference in acquisitions across 

centres, because MRI data were acquired either at 1.5 T or 

3 T. It must be stressed that the three groups were matched 

for this parameter and that previous methodological studies 

using the ADNI dataset found that pooling together data 

acquired at different MRI scanner field strengths does not 

significantly affect reproducibility and reliability of findings 

of brain volumetric analyses [66, 67].

Finally, an index that could capture change in the total 

NPI score as a proportion of (i.e. corrected by) the baseline 

NPI score was calculated using the following procedure: 

(1) NPI scores at Time 1 and Time 2 were first subtracted 

from the maximum NPI score (i.e. 36), this step was needed, 

because some participants had a NPI score of 0 at Time 1 

that would have made it impossible to calculate the pro-

portion of NPI change over time; (2) a proportion of NPI 

change was calculated using the following formula: ((36—

NPITime1)—(36—NPI Time2))/(36—NPI Time1).

Post hoc VBM analyses were carried out to investigate 

whole-brain GM volume changes (group × time interaction 

effects), as well as to quantify GM atrophy in the patient 

groups compared to HC at baseline.

Finally, the secondary aim was investigated using 

repeated-measures ANCOVA models to quantify 

group × time interaction effects on cognitive performance 

in the two patient groups, using the index of NPI change as 

a covariate (p < 0.05, FDR-corrected).

Results

At baseline, patients in the PT-D and PT-ND groups showed 

worse cognitive performance, higher NPI scores and lower 

GM fraction (i.e. GM volume divided by total intracranial 

volume) than HC (Table 1). The two patient groups were 

matched for all characteristics, but the PT-D group presented 

with higher NPI scores already 1 year before the manifesta-

tion of delusions. No significant differences were found in 

rates of cardiovascular risk factors across groups (Supple-

mentary materials Table S2).

The time between Time 1 and Time 2 assessments 

was about a year for all participant groups (PT-D: 

347.41 ± 77.52  days, PT-ND: 398 ± 243.40  days, HC: 

397.25 ± 99.93 days) and no significant differences were 

observed across groups (F = 2.125, p = 0.122).

Very similar rates of participants with abnormal Aβ and 

p-tau levels were observed in sub-samples of the two patient 

groups with available biomarker data and no significant dif-

ferences between patient groups were found either at Time 1 

or Time 2 (Table 1 and Supplementary materials Table S3). 

Rates of healthy controls with positive biomarkers were sig-

nificantly lower than those observed in the patient groups at 

both time points.

Primary analyses—GM ROIs

Repeated-measures ANCOVA analyses of GM ROIs carried 

out on the patient groups highlighted significantly greater 

GM volume loss in both the left (F = 8.479, p = 0.004) 

and the right caudate nuclei (F = 12.204, p < 0.001) in the 

patients who subsequently developed delusions (Table 2). 

Similarly, greater longitudinal GM loss in delusional patients 

was also observed in the bilateral medio-temporal ROIs 

(bilateral parahippocampal gyri and left hippocampus), in 

the right anterior cingulate cortex and in posterior hubs of 

the DMN (bilateral precuneus and left posterior cingulate 

cortex) (Fig. 2). No significant differences in GM volume 

changes were observed for any of the other ROIs.

Whole-brain repeated-measures models revealed no sig-

nificant differences in GM degeneration over time in the 

PT-D vs PT-ND comparison. At baseline, no regional GM 

volume differences were observed between patient groups 

who both showed similar patterns of medio-temporal GM 

atrophy in comparison to HC (Fig. 3).

Secondary analyses—cognitive performance

Longitudinal decline in cognitive performance was greater 

in both patient groups when compared with HC across func-

tions, but significantly greater decline was observed only 

for verbal delayed recall (F = 5.136, p = 0.025) in the PT-D 

compared with the PT-ND group (Supplementary materials 

Table S4).

Discussion

In this study, patients with AD who developed delusions 

over a year showed greater GM loss than patients who did 

not develop delusions in subcortical and cortical regions that 

are part of dopaminergic pathways, as well as in medial tem-

poro-parietal areas. These longitudinal changes were mainly 

seen in the right caudate nucleus, a target of the nigrostri-

atal dopaminergic pathway, despite no detectable volumet-

ric differences between PT-D and PT-ND 1 year prior to 

delusion onset. The two samples were carefully selected and 



234 European Archives of Psychiatry and Clinical Neuroscience (2023) 273:229–241

1 3

represent, to the best of our knowledge, some of the largest 

ever to be used to investigate this research question including 

patients matched for potentially confounding demographic 

and genetic characteristics.

These findings suggest that delusions may result from 

a prominent involvement of widespread subtle structural 

damage in the brain regions that are part of dopaminergic 

pathways and in areas of the medio-temporal lobe and of 

the DMN, that are typically affected by AD pathology. In 

particular, accelerated GM loss in the right caudate nucleus 

was especially evident in the PT-D group. Previous accounts 

have been published implicating caudate damage in delu-

sional thoughts both in people with [68] and without AD: 

lacunar stroke in the right caudate associated with frontal 

hypometabolism [69] and left caudate infarction in the 

absence of dementia [70, 71]. Moreover, lower caudate 

volume was observed in early-stage unmedicated patients 

with schizophrenia [72], thus suggesting a role for dysfunc-

tion in the dorsal striatum in relation to the emergence of 

psychotic symptoms. Lower dorsal striatum volume has been 

previously found associated with lower dopamine receptor 

availability [73, 74] and appears to be linked to higher likeli-

hood of odd beliefs in people with no psychiatric conditions, 

although volumetric alterations were mainly detected in the 

putamen [75]. Moreover, greater GM loss was detected in 

the PT-D group also in the right anterior cingulate, a corti-

cal target of the mesocortical dopaminergic pathway, in line 

with previous accounts [27, 33, 39]. This finding suggests 

that a degree of right-lateralised frontal damage may indeed 

contribute to delusion onset in patients with AD. In fact, this 

brain region is thought to be involved in several executive 

cognitive functions, including performance-monitoring and 

regulation of attention [76], that may contribute to belief 

formation. Activation in both the anterior cingulate and the 

caudate nucleus has been found to be associated with value 

attribution during multiple choice tasks [77]. Connectivity 

between the caudate nucleus and several prefrontal areas 

is also crucial to support episodic and working memory 

Table 1  Differences in characteristics between participant groups at Time 1 (mean and SD)

Aβ amyloid beta, CDT Clock Drawing Test, CFT Category Fluency Test, GMF grey matter fraction, LMT–DR/IR Logical Memory Test–delayed 

recall/immediate recall, MMSE Mini Mental State Examination, NPI Neuropsychiatric Inventory, p-tau phosphorylated tau, TIV total intracranial 

volume, TMT–A/B Trail Making Test–part A/part B, WMF white matter fraction
a Frequencies
b Chi-squared
c Hispanic or Latino/Not Hispanic or Latino
d Black or African American/White/Two or more races
e Significant PT-D vs PT-ND difference, p = 0.001 (FDR-corrected)
f Frequency of participants with positive biomarker status (number of participants with available biomarker data)

Characteristics PT-D (n = 63) PT-ND (n = 63) HC (n = 63) F p

Age (years) 75.67 (6.16) 75.54 (5.90) 75.06 (5.81) 0.18 0.84

Sex (F/M)a 26/37 26/37 26/37 0.00b 1.00

ApoE status (ε3ε3/ε3ε4/ε4ε4a 19/31/13 19/33/11 19/39/5 4.60b 0.33

Ethnicityc 2/61 3/60 2/61 0.30b 0.86

Raced 3/60/0 1/61/1 4/58/1 2.83b 0.59

Education (years) 15.49 (2.88) 15.22 (3.28) 15.73 (2.55) 0.49 0.62

NPI 4.11 (3.63)e 2.30 (3.02)e 0.68 (1.39) 22.96 1.22 ×  10−9

MMSE 25.10 (3.72) 25.14 (3.31) 29.32 (0.76) 43.78 2.62 ×  10−16

CDT–drawing 3.94 (1.09) 3.90 (1.17) 4.68 (0.62) 12.42 9.00 ×  10−6

CDT–copy 4.49 (0.93) 4.54 (0.86) 4.83 (0.42) 3.45 0.34

LMT–IR 6.02 (3.30) 6.32 (4.41) 14.52 (3.43) 104.45 3.90 ×  10−31

LMT–DR 2.94 (3.06) 3.29 (4.09) 13.49 (3.63) 172.92 3.70 ×  10−43

CFT–animals 13.40 (4.63) 13.46 (5.33) 20.87 (5.38) 44.29 1.85 ×  10−16

TMT-A (sec) 52.62 (29.09) 46.10 (26.67) 35.76 (11.13) 8.12 4.15 ×  10−4

TMT-B (sec) 174.06 (88.92) 144.84 (83.06) 84.42 (39.21) 23.85 6.10 ×  10−10

GMF 0.38 (0.02) 0.38 (0.03) 0.40 (0.03) 12.52 0.08 ×  10−4

WMF 0.32 (0.03) 0.32 (0.02) 0.33 (0.02) 2.70 0.07

TIV (ml) 1498.10 (172.26) 1492.14 (178.00) 1479.95 (156.17) 0.19 0.83

Aβ 31 (n = 37)f 37 (n = 43)f 16 (n = 32)f 14.99 0.001

p-tau 31 (n = 37)f 37 (n = 43)f 13 (n = 32)f 22.54 0.013 ×  10−4



235European Archives of Psychiatry and Clinical Neuroscience (2023) 273:229–241 

1 3

performance that appears to be mediated by dopamine 

levels following an inverted-U-shaped function [78, 79]. 

Hence, alterations in this fronto-striatal system caused by 

AD-related neurodegeneration may drive aberrant value/

meaning attribution leading to the formation and accept-

ance of false beliefs [80].

However, whether dopaminergic dysfunction contributed 

substantially to the GM loss observed in the caudate nuclei 

and the right anterior cingulate cortex of the PT-D group 

cannot be determined within the context of this study. In 

fact, although previous research found that normal belief 

formation in healthy participants [81] is associated with 

dopaminergic function, delusions in people with schizophre-

nia [72, 82] and AD [37] appear to be mainly caused by a 

striatal hyperdopaminergic state. A potential reconciliation 

between our findings and previous evidence about the rela-

tionship between dopaminergic upregulation and psychotic 

symptoms may come from the observation that elevated lev-

els of dopamine have been found to be neurotoxic and cause 

neuronal death under certain conditions [83]. Therefore, a 

condition of striatal hyperdopaminergia, potentially caused 

by severe AD-related cholinergic alterations in the PT-D 

group [84], might have driven an acceleration in GM loss. 

Additionally, we could not rule out the potential impact of 

Table 2  Group × time interaction effects on the volumes of selected GM ROIs (mean and SD)

a Significant interaction effect surviving FDR correction for multiple testing

ROI PT-D (n = 63) PT-ND (n = 63) F p

Time 1 Time 2 Time 1 Time 2

Dorsolateral prefrontal cortex

 Left inferior frontal gyrus 12.15 ± 1.74 11.85 ± 1.82 12.22 ± 1.66 12.01 ± 1.65 4.245 0.041

 Right inferior frontal gyrus 11.89 ± 1.64 11.61 ± 1.61 11.97 ± 1.68 11.77 ± 1.67 3.344 0.070

 Left middle frontal gyrus 10.42 ± 1.69 10.17 ± 1.75 10.42 ± 1.61 10.24 ± 1.64 1.765 0.187

 Right middle frontal gyrus 11.05 ± 1.68 10.81 ± 1.70 10.91 ± 1.53 10.75 ± 1.57 1.445 0.232

 Left superior frontal gyrus 6.84 ± 1.11 6.72 ± 1.42 6.92 ± 0.93 6.85 ± 0.95 2.087 0.151

 Right superior frontal gyrus 8.51 ± 1.39 8.31 ± 1.40 8.48 ± 1.26 8.34 ± 1.25 0.877 0.351

Medio-temporal lobe

 Left hippocampus 2.68 ± 0.45 2.58 ± 0.46 2.66 ± 0.47 2.62 ± 0.48 8.523a 0.004a

 Right hippocampus 2.82 ± 0.51 2.72 ± 0.53 2.79 ± 0.48 2.72 ± 0.48 4.476 0.036

 Left parahippocampal gyrus 2.77 ± 0.45 2.67 ± 0.47 2.78 ± 0.53 2.73 ± 0.53 8.867a 0.004a

 Right parahippocampal gyrus 3.58 ± 0.56 3.47 ± 0.57 3.55 ± 0.53 3.50 ± 0.53 7.040a 0.009a

Default mode network

 Left posterior cingulate cortex 1.34 ± 0.26 1.30 ± 0.26 1.36 ± 0.26 1.34 ± 0.26 6.670a 0.011a

 Right posterior cingulate cortex 0.64 ± 0.12 0.63 ± 0.12 0.64 ± 0.11 0.64 ± 0.11 3.367 0.059

 Left precuneus 10.30 ± 1.72 10.04 ± 1.70 10.36 ± 1.77 10.28 ± 1.74 6.810a 0.010a

 Right precuneus 9.18 ± 1.59 8.93 ± 1.60 9.27 ± 1.65 9.19 ± 1.63 6.618a 0.011a

 Left inferior parietal lobule 5.20 ± 0.73 5.10 ± 0.78 5.26 ± 0.82 5.16 ± 0.84 0.004 0.952

 Right inferior parietal lobule 3.10 ± 0.50 3.02 ± 0.53 3.15 ± 0.55 3.08 ± 0.57 0.148 0.701

 Left medial prefrontal cortex 2.24 ± 0.41 2.18 ± 0.39 2.24 ± 0.30 2.20 ± 0.29 1.543 0.217

 Right medial prefrontal cortex 2.02 ± 0.36 1.98 ± 0.34 2.04 ± 0.27 2.01 ± 0.26 2.010 0.159

Dopaminergic pathways

 Substantia nigra 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 1.125 0.291

 Left caudate 2.54 ± 0.41 2.50 ± 0.42 2.49 ± 0.40 2.49 ± 0.40 8.479a 0.004a

 Right caudate 2.71 ± 0.48 2.69 ± 0.51 2.69 ± 0.43 2.70 ± 0.44 12.204a  < 0.00a

 Left putamen 3.58 ± 0.44 3.47 ± 0.48 3.42 ± 0.47 3.38 ± 0.50 4.891 0.029

 Right putamen 3.71 ± 0.49 3.59 ± 0.53 3.61 ± 0.46 3.54 ± 0.049 2.470 0.119

 Ventral tegmental area 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 2.199 0.141

 Left nucleus accumbens 0.15 ± 0.02 0.14 ± 0.02 0.14 ± 0.02 0.14 ± 0.02 3.949 0.049

 Right nucleus accumbens 0.25 ± 0.03 0.24 ± 0.04 0.25 ± 0.04 0.25 ± 0.04 5.516 0.020

 Left anterior cingulate cortex 4.18 ± 0.62 4.05 ± 0.62 4.11 ± 0.53 4.03 ± 0.55 5.820 0.017

 Right anterior cingulate cortex 3.66 ± 0.55 3.55 ± 0.54 3.62 ± 0.49 3.55 ± 0.51 6.901a 0.010a

 Left orbitofrontal cortex 2.51 ± 0.46 2.45 ± 0.45 2.48 ± 0.35 2.44 ± 0.35 3.959 0.049

 Right orbitofrontal cortex 2.35 ± 0.43 2.28 ± 0.42 2.33 ± 0.32 2.28 ± 0.32 4.863 0.029
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Lewy body pathology as the driving factor of dopaminer-

gic alterations and, in turn, neurodegeneration [85]. Lewy 

body pathology, in fact, has been found to be associated with 

higher risk of delusions in people with AD [16]. Hence, the 

accumulation of Lewy body pathology in the dopaminergic 

pathways might represent one of the factors contributing to 

greater subcortical GM loss and predisposing some patients 

with AD to manifest delusional thoughts. These interpreta-

tional avenues are speculative, however, and cannot be tested 

with the data available in the ADNI dataset, but will require 

future prospective testing.

The PT-D group presented also with accelerated GM 

loss in areas of the medio-temporal lobe bilaterally and in 

the posterior DMN, consistently with findings from previ-

ous similar studies [16, 22, 39, 44]. It is worth noting that 

medio-temporal regions are connected to the striatum [86] 

and damage to these systems, as highlighted by our analy-

ses, could be involved in delusional beliefs, especially of the 

misidentification type, due to the role of medio-temporal 

structures in memory recollection (hippocampus) and con-

text attribution (parahippocampal gyrus) [26]. The medio-

temporal lobe is also tightly connected with the DMN [87], 

a functional brain network that has already been found par-

ticularly altered in patients with AD and delusions [25]. On 

the basis of the findings of this study, it may be hypothesised 

that a combination of damage in the cingulo-striatal and in 

the medio-temporal DMN systems may represent a more 

comprehensive mechanistic explanation of the genesis of 

delusions in AD [15].

In contrast, no structural alterations were observed in the 

dorsolateral prefrontal cortex in the PT-D group. It is pos-

sible that structural alterations in this part of the frontal lobe 

Fig. 2  Baseline GM atrophy in patient groups compared to HC (cluster-level FWE-corrected p = 0.05)
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may manifest at a later stage and be linked to persistence 

of symptoms, given their involvement in reality monitoring 

processes necessary to discard wrong beliefs on the basis 

of new evidence [88]. Alternatively, the emergence of delu-

sions in AD may be influenced by functional alterations, 

rather than GM loss, in dorsolateral prefrontal areas that 

were not investigated as part of this study.

Moreover, the PT-D group also showed greater decline 

than the PT-ND group in episodic memory (i.e. the delayed 

recall of the LMT) and in their behavioural profile (i.e. NPI 

score). These clinical findings appear to be consistent with 

an interpretation of a potential acceleration in neurodegen-

eration and, as a consequence, of symptoms that may have 

contributed to the emergence of delusions.

This study has several strengths: it represents one of the 

largest studies to date assessing the structural neuroimag-

ing correlates of delusions in AD; it provides a longitudinal 

investigation of GM changes associated with the emergence 

of this symptom by directly comparing two samples of par-

ticipants with AD; participants in all groups were care-

fully matched to control for all main potential confounders, 

including ApoE genotype. However, some limitations must 

also be taken into considerations: (1) the presence of differ-

ent delusion subtypes, potentially associated with partially 

different neural correlates and with different prognoses [89], 

could not be investigated due to lack of detailed phenom-

enological description of symptoms in the ADNI cohort; 

(2) delusions had been assessed by means of the NPI/NPI-Q 

Fig. 3  Regions of interest showing significantly greater GM loss (group × time interaction effect) in PT-D compared with PT-ND
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completed by participants’ partners, a mode of assessment 

that may lead to some misdiagnosis of delusions as a con-

sequence of agitation, confusion and AD-related cognitive 

decline [11, 90]; (3) the lack of neuroimaging data that could 

provide useful insights on dopamine pathways (e.g. positron 

emission tomography) limits our interpretation of the causal 

association between dopaminergic dysfunction and neurode-

generation and delusion onset, since different dopaminergic 

neurons and receptors may be differentially involved in psy-

chotic symptoms and even interact with other neurotransmit-

ters; (4) differences in severity of AD pathology between 

the two patient groups cannot be fully ruled out given the 

lack of AD biomarker data for some participants; however, 

no significant differences in positivity rates for either Aβ or 

p-tau were found between the two sub-groups of patients for 

whom CSF biomarkers were available.

This study detected greater neurodegeneration in cingulo-

striatal and medial temporo-parietal regions in people with 

AD and delusions than in those without, thus suggesting 

that a complex and multifaceted neuropathological process 

may be involved in the development of delusions. Dopa-

minergic dysfunction might contribute to GM loss in the 

caudate nuclei and in the anterior cingulate and interact 

with damage in medio-temporal and posterior DMN areas. 

However, future investigations are needed to understand 

the relationship between GM loss within and outside dopa-

minergic pathways and functional brain alterations (e.g. 

in metabolism, perfusion, resting-state functional connec-

tivity and brain activation) that may represent earlier and 

more sensitive predictors of delusions in AD. Identifying 

possible differences in neuroimaging markers of subtypes 

of delusions may help clarifying the cause of worse prog-

nosis observed in patients with AD and misidentification 

delusions [89]. Moreover, the effects of cognitive and brain 

reserve on the emergence of neuropsychiatric symptoms 

may offer insights on inter-individual variability in cogni-

tive and behavioural manifestations [65]. In addition, these 

findings, if confirmed in future investigations, may contrib-

ute to provide evidence supporting the use of antipsychotic 

medications acting on the dopaminergic system, like some of 

the currently available antipsychotics (e.g. aripiprazole and 

risperidone). However, these treatments are accompanied by 

important side effects and new compounds must be designed 

with improved safety and effectiveness profiles [15]. Finally, 

but crucially, considerable developments are needed in the 

conceptualisation and modelling of the cognitive and neural 

computations involved in belief formation [91, 92], as well 

as their alterations [80], to advance our understanding of the 

complex mechanisms that underpin delusions across neuro-

logical and psychiatric conditions.
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