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Recognition Performance in SSVEP-based BCIs
Yue Zhang, Sheng Quan Xie, Senior Member, IEEE,, Chaoyang Shi, Member, IEEE,, Jun Li , Member, IEEE, and

Zhi-Qiang Zhang, Member, IEEE

Abstract—Steady-state visual evoked potential (SSVEP)-based
brain-computer interfaces (BCIs) have been substantially studied
in recent years due to their fast communication rate and high
signal-to-noise ratio. The transfer learning is typically utilized to
improve the performance of SSVEP-based BCIs with auxiliary
data from the source domain. This study proposed an inter-
subject transfer learning method for enhancing SSVEP recogni-
tion performance through transferred templates and transferred
spatial filters. In our method, the spatial filter was trained
via multiple covariance maximization to extract SSVEP-related
information. The relationships between the training trial, the
individual template, and the artificially constructed reference are
involved in the training process. The spatial filters are applied
to the above templates to form two new transferred templates,
and the transferred spatial filters are obtained accordingly via
the least-square regression. The contribution scores of different
source subjects can be calculated based on the distance between
the source subject and the target subject. Finally, a four-
dimensional feature vector is constructed for SSVEP detection. To
demonstrate the effectiveness of the proposed method, a publicly
available dataset and a self-collected dataset were employed
for performance evaluation. The extensive experimental results
validated the feasibility of the proposed method for improving
SSVEP detection.

Index Terms—Brain-computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potential
(SSVEP), transfer learning, cross-subject

I. INTRODUCTION

Electroencephalogram (EEG)-based brain-computer inter-

faces (BCIs) provide humans a direct communication path

between brain activities and external equipment without the

need to move peripheral nerves or muscles [1]–[3]. Steady-

state visual evoked potential (SSVEP) is one of the most

popular paradigms in the research area of BCI due to its

high signal-to-noise ratio (SNR), reliability, and minimal set

up requirement [4]–[7]. SSVEP-based BCI has been broadly

employed in various applications, such as communication [5],

robot [8], [9], and smart home [10].
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By analyzing the information from the measured SSVEP

signals, the visual stimulus that the user is gazing at can

be detected, and the corresponding control command can

be output accordingly [11]. In recent years, many target

recognition methods have been proposed for SSVEP-based

BCI systems. Canonical correlation analysis (CCA) is the

most popular method to classify stimuli due to its ease of

use and robustness [12], [13]. However, as a training-free

method, its performance is easily influenced by interference

from spontaneous brain activities. To alleviate this issue,

many improved approaches have been proposed for SSVEP

detection. In the direction of template optimization, to name a

few, the L1-regularized multiway CCA (L1-MwayCCA) [14],

Multiset CCA (MsetCCA) [15], individual template-based

CCA (ITCCA) [16] and multi-layer correlation maximization

(MCM) [17]. Alternatively, several spatial filtering methods

have also been reported to lower the misclassification rate in

SSVEP detection, such as a combination method of CCA and

ITCCA [18], the sum of squared correlations (SSCOR) [19],

and task-related component analysis (TRCA) [20].

Although the performance of SSVEP-based BCI systems

was significantly boosted by these templates- or spatial filter-

based methods, EEG usually suffers from inter-subject non-

smoothness and variability problems [21]. Therefore, trained

templates or spatial filters can only be used for a single

subject and it is difficult to transmit knowledge directly across

subjects. It would prevent the broad and practical usage of

BCIs in our real lives. Recently, the transfer learning (TL)

technique was explored in BCIs to transfer knowledge from

old sessions or subjects (the source domain) to new sessions

or subjects (the target domain) so that the performance of

the target domain can be boosted [22], [23]. As one of the

research directions, training data is usually transferred across

different domains to augment the size of calibration data for

new users [24], [25]. Template-based transfer learning is also

a popular study area, and several approaches are listed, such

as transfer template-based canonical correlation analysis (tt-

CCA) [26], adaptive combined-CCA (Adaptive-C3A) [27] and

inter- and intra-subject template-based multivariate synchro-

nization index (IIST-MSI) [28]. In these methods, the trans-

ferred template is simply generated by averaging multiple trials

from source subjects, which may not contain sufficient SSVEP

features. Alternatively, there are multiple BCI transfer learning

studies cooperating on spatial filters to learn the common

feature representations across different domains [13], [29]. Liu

et.al [30] proposed an all-to-one method to use data from all

source subjects to train TRCA-based spatial filters. Wang et.al
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Fig. 1. The SSVEP experimental paradigm.

[31] presented an inter-subject maximal correlation method to

improve the robustness of SSVEP classification. Wong et.al

[32] proposed a subject transfer based CCA method which

utilizes the knowledge within-subject and between subjects.

However, these methods rarely consider the correlation among

the training data, the individual template, and the predefined

sine-cosine signal simultaneously to enhance the effectiveness

of the spatial filter [33].

In this study, we aimed to explore and exploit a transfer

learning architecture to improve the recognition performance

in the SSVEP-based BCI system. The main contributions of

this paper are as follows: 1) a cross-subject scheme is proposed

which incorporates SSVEP knowledge from source subject

to effectively strengthen the recognition performance for the

target subject. 2) a powerful and informative feature vector is

constructed under this scheme. The multidimensional feature

vector is driven partly by the transferred spatial filter and the

transferred SSVEP template from source subject, and partly by

spatial filter of target subject obtained by multiple covariance

maximization. 3) a contribution score is introduced to each

source subject by further exploring the distance between the

source subject and the target subject. Validation of the perfor-

mance of the proposed method was performed on a publicly

available 40-class dataset [34] and a self-collected 12-class

dataset. Extensive evaluations were conducted to demonstrate

its effectiveness in comparison to some well-known methods.

The efficiency and reliability were demonstrated with an

average classification accuracy of 89.98% and 94.61% on the

two datasets, respectively.

This paper is organized as follows: Section II introduces the

SSVEP dataset and the proposed method. Section III presents

the experimental results. Discussion and conclusion are shown

in Section IV and V, respectively.

II. METHODS AND MATERIALS

A. SSVEP Datasets

In this study, the proposed method and comparing methods

were evaluated on a publicly available benchmark dataset [34]

and a self-collected SSVEP dataset. The benchmark dataset

was recorded from thirty-five healthy participants. The user

interface includes forty visual stimuli, which were coded

utilizing a joint frequency and phase modulation (JFPM)

method. The frequencies range from 8 to 15.8 Hz with a 0.2

Hz gap. There is a 0.5π difference between two nearby stimuli.

For each subject, the experiment contains six blocks, and each

block consists of forty trials corresponding to forty stimuli.

More details about the benchmark dataset can be found at [34].

Information about the self-collected dataset is shown below.

Hereafter, the two datasets are named Dataset I and Dataset

II.

1) Participants: In Dataset II, eleven healthy subjects (five

females and six males, mean age: twenty-five years) took part

in this experiment. All participants had normal or corrected-

to-normal vision. The experiment has been approved by the

Research Ethics Committee of the University of Leeds. Each

participant read and signed an informed consent form.

2) Visual Stimulus Presentation: In Dataset II, there was

a 4 × 3 stimulus matrix on a 23.6-inch LCD monitor with

a resolution of 1920 × 1080 pixels and a refresh rate of

60 Hz. Twelve stimuli were coded using JFPM approach.

The frequencies ranged from 9.25 Hz to 14.75 Hz with an

interval of 0.5 Hz. The phase differed from 0 π to 1.5 π,

and the interval was 0.5 π. For each subject, the experiment

included five blocks, and each block contained twelve trials

corresponding to twelve visual stimuli. Each trial began with a

0.5 s target cue (a red dot). After the cue, all targets flickered

for 5 s simultaneously. The subject is required to focus on the

target stimulus and avoid eye movement. The subject can have

a rest between two neighboring blocks. Fig. 1 describes the

SSVEP experimental paradigm.

3) SSVEP Signal Recording: In Dataset II, data was

recorded by the equipment from g.tec medical engineering

GmbH. The SSVEP data was sampled at 256 Hz by g.USB

amplifier. SSVEP signals mainly appear over parietal and

occipital regions since they are closer to the visual cortex

of the human brain [35]–[37]. Some studies presented that

SSVEP signals near these areas have larger amplitude and

SNR [34], [38]. Therefore, nine electrodes (i.e., Pz, PO3, POz,

PO4, PO7, O1, Oz, O2, and PO8) located in parietal and

occipital areas were used to record EEG signals. The ground

electrode and reference electrode were placed over FPz and

the right earlobe, respectively.

B. Data preprocessing

Due to the effect of visual latency in the human visual

system, the data was extracted in [0.14 (0.14 + d)]s, where d
refers to the data length selected for performance analysis. The

data were filtered by the Chebyshev Type I Infinite Impulse

Response (IIR) filter to pass signals between eight Hz and

forty Hz for Dataset II.

C. The Proposed Method

Assume that the four-dimensional EEG signal is denoted

as χ ∈ R
Nt×Nf×Nc×Ns , where Nt represents the number

of training trials, Nf indicates the number of visual stimuli,

Nc is the number of channels, and Ns is the number of

samples. Hereafter, i and j refer to the index of stimulus

and training trial, respectively. Therefore, the two-way tensor

χi,j ∈ R
Nc×Ns represents the individual EEG signal for the i-

th stimulus and the j-th training trial. The continuous training

data is denoted as χ̂i = [χi,1,χi,2, ...,χi,Nt
] ∈ R

Nc×(Nt·Ns)

which is constructed by concatenating Nt training trials. The
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Fig. 2. The diagram of the cross-subject transfer learning method for enhancing SSVEP detection. For i-th stimulus, the spatial filter for n-th source subject

ŵn
i

and for the target subject ¨̂wi are firstly calculated based on the correlation maximization between any two of the three kinds of signals (training trials,

the individual template, and the reference signal) as well as themselves via (1) - (13). The transferred template In
i

, Rn
i

and transferred spatial filter Ŝn
i

, T̂n
i

are then be obtained via (14) - (19). The contribution score p
n,1

i
, p

n,2

i
are assigned to correlation coefficients of n-th source subject via (22) - (25). Finally,

four-dimensional feature vector ρi can be formed by (26) and recognition results are determined via (27) - (28).

single-trial individual template is obtained by averaging multi-

ple training trails, i.e., χi =
1
Nt

∑Nt

j=1 χi,j ∈ R
Nc×Ns . SSVEP

signals can also be characterized by a series of artificial sine-

cosine waves, so the reference signal Yi ∈ R
2Nh×Ns is defined

as:

Yi =




sin(2πft)
cos(2πft)

...

sin(2πNhft)
cos(2πNhft)



, t = [1/Fs, 2/Fs, ..., Ns/Fs] (1)

where Nh is the number of harmonics, Fs represents the

sampling rate, and f is the visual stimulation frequency.

The spatial filter wi = [uT
i ,v

T
i , z

T
i ]

T ∈ R
2(Nc+Nh)×1

can be computed by maximizing the inter-trial covariance,

the covariance between training trials and individual template,

the covariance between training trials and artificial reference,

as well as the covariance between individual template and

artificial reference. Therefore, the covariance matrix C could

be represented as:

C =



C11 C12 C13

C21 C22 C23

C31 C32 C33


 (2)

where C11 is denoted as the inter-trial covariance:

C11 =

Nt∑

j,h=1,i ̸=h

cov(χi,j ,χi,h) ∈ R
Nc×Nc (3)

C12 and C21 refer to the covariance between the SSVEP

training trials and the individual template, which can be

represented as:

C12 = CT
21 =

Nt∑

j=1

cov(χi,j ,χi) ∈ R
Nc×Nc (4)

The similarity between the training trials and artificially con-

structed reference is also incorporated, which can be denoted

as :

C13 = CT
31 =

Nt∑

j=1

cov(χi,j ,Yi) ∈ R
Nc×2Nh (5)

C23 and C32 are the covariance between the individual tem-

plate and reference signal:

C23 = CT
32 = cov(χi,Yi) ∈ R

Nc×2Nh (6)

In addition, C22 and C33 are denoted as:

C22 = cov(χi,χi) ∈ R
Nc×Nc (7)

C33 = cov(Yi,Yi) ∈ R
2Nh×2Nh (8)

Therefore, the objective function is represented as wT
i Cwi.

The constraint is incorporated in above optimization prob-

lem, i.e., wT
i Qwi = 1, where covariance matrix Q is denoted

as follows:

Q = blkdiag(Q1,Q2,Q3) ∈ R
2Nh×2Nh (9)

where

Q1 = cov(χ̂i, χ̂i) ∈ R
Nc×Nc (10)

Q2 = cov(χi,χi) ∈ R
Nc×Nc (11)

Q3 = cov(Yi,Yi) ∈ R
2Nh×2Nh (12)

Therefore, the constrained optimization problem can be for-

mulated as:

ŵi = argmax
wi

wT
i Cwi

wT
i Qwi

(13)

The spatial filter ŵi = [ûT
i , v̂

T
i , ẑ

T
i ]

T is obtained as the

eigenvector of the matrix Q−1C corresponding to the largest

eigenvalue. The Nf spatial filters are concatenated to make

spatial filters ṽ = [v̂1, v̂2, ..., v̂Nf
]T ∈ R

Nf×Nc and z̃ =
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[ẑ1, ẑ2, ..., ẑNf
]T ∈ R

Nf×2Nh . Hereafter, the variable with

a right superscript n, (n = 1, 2, ..., Nsub) refers to the

fact that it is provided by the n-th source subject. Nsub

is the number of transferred source subjects. Therefore, the

two kinds of transferred templates, i.e., transferred individual

template In
i ∈ R

Nf×Ns and transferred reference template

Rn
i ∈ R

Nf×Ns , provided by n-th source subject can be

represented as:

In
i = ṽ × χi (14)

Rn
i = z̃ × Yi (15)

Let the variable with the double-dot superscript denote that

it is provided by the target subject. The transferred spatial

filters ŝij and t̂ij for the i-th stimulus and the j-th training

trial corresponding to the two kinds of transferred templates

can be calculated by solving the following formula:

ŝnij = argmin
sij

∥In
i − sTijχ̈ij∥

2

2
(16)

t̂nij = argmin
tij

∥Rn
i − tTijχ̈ij∥

2

2
(17)

ŝnij and t̂nij can be estimated via least-squares regression [29]:

ŝnij = (χ̈ijχ̈
T
ij)

−1
χ̈ijI

n
i
T

(18)

t̂nij = (χ̈ijχ̈
T
ij)

−1
χ̈ijR

n
i
T

(19)

The final transferred spatial filters Ŝn
i and T̂ n

i provided by

n-th source subject can be obtained by averaging all training

trials. Suppose that X refers to the test data from the target

subject, the two correlation coefficients can be calculated as:

rn,1i = corr((Ŝn
i )

TX, In
i ) (20)

rn,2i = corr((T̂ n
i )

TX,Rn
i ) (21)

According to the distance between the source subject and

the target subject, weights will be assigned to correlation

coefficients corresponding to different source subjects. For i-
th stimulus and n-th source subject, the distance is measured

by the correlation coefficient between the spatially filtered

training trials of the target subject and the corresponding

transferred template:

dn,1i =

Nt∑

j=1

corr((Ŝn
i )

T χ̈ij , I
n
i ) (22)

dn,2i =

Nt∑

j=1

corr((T̂ n
i )

T χ̈ij ,R
n
i ) (23)

Therefore, the weights also called contribution scores are

represented as:

pn,1i =
dn,1i∑Nsub

h=1 dh,1i

(24)

pn,2i =
dn,2i∑Nsub

h=1 dh,2i

(25)
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Fig. 3. The average accuracy and ITR obtained by SSCOR, TRCA, and the
proposed method at different time windows on (a) Dataset I and (b) Dataset
II. The error bars represent standard error of mean (SEM). The asterisks
indicate significant difference between the three methods obtained by one-
way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001,
∗ ∗ ∗∗: p<0.0001).

Therefore, for i-th stimulus frequency, the correlation vector

ρi is denoted as follows:

ρi =




ρ
(1)
i

ρ
(2)
i

ρ
(3)
i

ρ
(4)
i



=




∑Nsub

n=1 pn,1i corr((Ŝn
i )

TX, In
i )

∑Nsub

n=1 pn,2i corr((T̂ n
i )

TX,Rn
i )

corr(¨̂uT
i X, ¨̂vT

i χ̈i)

corr(¨̂uT
i X, ¨̂zT

i Yi)




(26)

The above correlation coefficients are employed to construct

the final feature for target recognition:

βi =

4∑

l=1

sign(ρ
(l)
i )(ρ

(l)
i )2 (27)

Therefore, the frequency of test trial can be determined by the

following formula:

f = argmax
fi

βi, i = 1, 2, ..., Nf (28)

The framework of the proposed cross-subject transfer learning

method was shown in Fig. 2.

III. RESULTS

A. Performance Evaluation

Average classification accuracy and information transfer

rates (ITR) are two widely used indicators to evaluate the

performance of SSVEP-based BCIs. ITR (bits/min) can be

calculated as follows:

ITR =

(
log2 Nf + P log2 P + (1− P ) log2

[
1− P

Nf − 1

])
×
60

T
(29)

where P is the accuracy of target identification, and T is the

average time for a selection, including gaze shifting time (0.5
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s) and gaze time. Fig. 3 shows the average accuracy and

ITR for the proposed method and comparing methods. The

sampling rates are different in the two datasets, thus different

data lengths were used to keep the number of samples without

decimals. The data lengths ranged from 0.2 s to 1 s with an

interval of 0.2 s for Dataset I and 0.25 s to 1 s with an interval

of 0.25 s for Dataset II. The accuracy and ITR were obtained

via a leave-one-out cross-validation, where five or four blocks

were used for training and a left-one block was used for

testing on Dataset I and II. For the proposed method, source

subjects are selected randomly for transfer. In order to get a

general performance of the proposed method, each process was

conducted ten times for Dataset I and five times for Dataset II.

The different numbers of repeat times depend on the size of the

two datasets being different. The averaged results were shown

for performance evaluation. The number of source subjects

is five for both datasets. The reason was clarified in Section

III.B. It is obvious that the proposed method can achieve

higher accuracy and ITR than TRCA/SSCOR with different

time windows (TWs) on two datasets. One-way repeated-

measures ANOVA was conducted to explore the similarity of

classification performance among the methods on two datasets.

The statistical analysis results show that there are significant

differences among these methods on accuracy and ITR with

each data length.

Fig. 4 shows the probability density of classification ac-

curacy for three methods on (a) Dataset I and (b) Dataset

II via violin plots. The plots analyzed SSVEP signals with

different data lengths. The violin plot focuses on illustrating

the distribution of quantitative data in a visually intuitive way.

The thick black line in the middle represents the median value,

and the black lines on either side represent the interquartile

range (25% and 75% percentiles). The wider regions of the

violin plot denote values that appear more frequently. As

shown in Fig. 4(a) and Fig. 4(b), the violin plots provided by

the proposed method (i.e., the pink) generally present higher

median values and more concentrated distributions. Therefore,

the experimental results indicate that, the proposed method can

achieve a more stable and superb classification performance

on various subjects compared with TRCA and SSCOR.

Fig. 5 as an example, shows the accuracy comparison be-

tween the proposed method, TRCA, and SSCOR for different

target subjects. The source subjects were randomly selected,

and the indexes are [7 12 18 19 33] in this case. The remaining

thirty subjects were used as target subjects for performance

comparisons. The experiment result shows that the proposed

method achieves higher SSVEP classification accuracy for

almost all target subjects.

Fig. 6 illustrates the feature values of forty stimuli provided

by the proposed method and TRCA for an example target

subject (S17) with 0.6 s data length. Compared with SSCOR,

the performance gap between TRCA and the proposed method

is closer, so we further compared these two methods. The

feature values of the proposed method were calculated via

(27). Each sub-figure represents a test trial, and the sub-title

represents the accurate recognition result. The first four trials

were selected and amplified for better viewing details. For each

test trial, forty feature values were calculated, and the stimulus
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Fig. 7. Heatmaps of the classification accuracy of three methods with different
number of training blocks on (a) Dataset I and (b) Dataset II.

TABLE I
ACCURACY COMPARISON AMONG THREE METHODS WITH DIFFERENT

NUMBERS OF TRAINING BLOCKS

Methods

Accuracy with different number of training blocks

Dataset I Dataset II

3 4 5 2 3 4

SSCOR 45.15 50.37 51.83 52.31 64.31 70.72

TRCA 52.23 59.52 63.69 51.85 74.31 76.11

Proposed 65.81 68.38 70.89 80.74 87.22 88.11

P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

corresponding to the largest value was determined as the target

via (28). The blue and orange circles represent the decisions

of the proposed method and TRCA. The hollow circles turned

to solid circles as the decisions were accurate. Obviously, the

proposed method provided more accurate recognition results.

Besides, for those trials where both methods provide correct

results, the proposed method shows more distinctive and

apparent feature values, such as 2, 6, 8, 14, and 16-th stimuli.

It indicates the effectiveness of the proposed feature vector

construction strategy in (26).

B. The Effect of Parameters

1) The Number of Training Blocks: An important purpose

of the proposed method is to reduce the need for individual

training data. The proposed method should classify SSVEP

responses with sufficient accuracy even with a reduced number

of individual training data blocks. Fig. 7 uses heat maps to

show the SSVEP classification accuracy comparison between
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Fig. 8. Barchart of the classification accuracy of three methods with different
number of electrodes on (a) Dataset I and (b) Dataset II. The error bars
represent SEM. The asterisks indicate significant difference between the three
methods obtained by one-way repeated-measures ANOVA (∗: p<0.05, ∗∗:
p<0.01, ∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).
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Fig. 9. Bar chart of the classification accuracy with different number of
source subjects on (a) Dataset I and (b) Dataset II. The error bars represent
SEM. The asterisks indicate a significant difference between the there methods
obtained by one-way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01,
∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).

TRCA, SSCOR, and the proposed method with various num-

bers of training blocks on (a) Dataset I and (b) Dataset II. The

heat map acts as a graphical representation of data, displaying

values by color in two dimensions. It provides a more visual

path to describe numeric values. In the heat map, the x-

axis refers to the classification method with a corresponding

number of training blocks, and the y-axis indicates the subject

index. The accuracy of the target subjects is provided here.

The number range of training blocks is [3, 5] for Dataset I

and [2, 4] for Dataset II. The heat maps visualize the highest

classification accuracy and lowest accuracy using colors on a

scale from light to dark. As shown in Fig. 7(a) and Fig. 7(b),

the proposed method generally provides the squares with the

lightest color regardless of the number of training blocks.

Besides, with the increasing training data scale, the squares

generally turn lighter.

Table. I shows the numerical classification accuracy of

three methods and corresponding one-way repeated-measures

ANOVA analysis results. The results revealed that there was a

statistically significant difference (i.e., P < 0.0001) between

the compared methods with all numbers of training blocks

for Dataset I and Dataset II. In conclusion, this table further

demonstrates the effectiveness of the proposed method by

providing more quantitative evidence.

2) The Number of Channels: We further investigated how

the number of electrodes affects the performance of the

proposed method and the compared methods. Fig. 8 shows the

classification accuracy results for (a) Dataset I and (b) Dataset

II. As the number of channels increases, the recognition

accuracy generally increases for all methods. As indicated in

Fig. 8(a) and Fig. 8(b), the proposed method always provides

the highest classification accuracy with a different number of

channels ranging from five to nine for each dataset. Besides,

the statistical analysis results show that there is a significant

difference between the three methods.

3) The Number of Source Subject: Fig. 9 shows how

the number of source subjects affects the performance of

methods on (a) Dataset I and (b) Dataset II. The classification

accuracy in Fig. 9(a) and Fig. 9(b) is calculated by the target

subjects, which does not include source subjects. Therefore,

to make the comparison more reasonable, TRCA and SSCOR

also show various accuracy values for a different number of

source subjects. As the number of source targets increases,

the recognition performance of the proposed method gener-
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Fig. 10. Barchart of the classification accuracy and ITR of three methods with
a different number of sub-band. The error bars represent SEM. The asterisks
indicate significant differences between the three methods obtained by one-
way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001,
∗ ∗ ∗∗: p<0.0001).

ally improves slightly and then decreases. The highest value

typically occurs at five, so the number of source targets is set

at that in the analysis. The figure also shows that the number

of source targets does not have a significant effect on the

performance of the proposed method, making this parameter

choice representative and reasonable. The [31] also has the

same setting for the same publicly available dataset.

C. Filter-Bank Analysis

Filter-bank analysis was used to further compare the recog-

nition performance of the proposed method and other methods

in this study. The filter-bank technology decomposes the

SSVEP signals into Nb sub-band to investigate the information

embedded in the harmonic components [39]. The cut-off

frequency range was set between b× 8 Hz and 90 Hz for the

b-th sub-band, where b = 1, 2, ..., Nb refers to the sub-band

component number. The feature βb
i was extracted from b-th

sub-band signals and then a weighted summation was obtained

from all sub-bands as: Λi =
∑Nb

b=1(b
−1.25 + 0.25) · βb

i [32].

The target frequency can be recognized by the formula:

f = argmax
fi

Λi, i = 1, 2, ..., Nf (30)

Fig. 10 shows the classification performance comparison

of the proposed method and other methods with different

numbers of sub-band on (a) Dataset I and (b) Dataset II.

The proposed method provided the highest accuracy and ITRs

for all data lengths. One-way repeated-measures ANOVA was

conducted to further compare these methods. The statistical

analysis results indicate that there are significant differences

among the three methods in terms of accuracy and ITRs in

each dataset.



8

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Time window length (s)

A
c
c
u

ra
c
y

(1
0
0
%

)
MSCCA TDCA Proposed method

✱✱✱✱ ✱✱✱✱ ✱✱✱✱ ✱✱✱✱ ✱✱

0.2 0.4 0.6 0.8 1
0

50

100

150

200

Time window length (s)

IT
R

(b
it

s
/m

in
)

✱✱✱✱ ✱✱✱✱ ✱✱✱✱ ✱✱✱✱ ✱✱✱

(a) Dataset I

0.25 0.5 0.75 1
0

20

40

60

80

100

Time window length (s)

A
c
c
u

ra
c
y

(1
0
0
%

)

✱✱✱✱ ✱✱✱✱ ✱✱✱✱ ✱✱✱✱

0.25 0.5 0.75 1
0

50

100

150

Time window length (s)

IT
R

(b
it

s
/m

in
)

✱✱✱✱ ✱✱✱✱ ✱✱✱✱ ✱✱✱✱

(b) Dataset II

Fig. 11. The average accuracy and ITR obtained by MSCCA, TDCA and
the proposed method at different time windows. The error bars represent
SEM. The asterisks indicate significant difference between the three methods
obtained by one-way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01,
∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).

D. Performance comparison with data augmentation methods

In this study, the proposed method incorporates SSVEP data

from the source subject to effectively improve the recognition

performance for the target subject. In other words, the data

in the target domain was augmented via auxiliary data from

the source domain. In this subsection, the proposed method

was further compared with two data augmentation methods,

including multi-stimulus eCCA (MSCCA) [40] and task-

discriminant component analysis (TDCA) [41]. The number

of channels and training blocks are set to nine and five for

all methods. For TDCA, the number of subspaces and the

number of delayed points are eight and one, respectively. In

accord with the comparison shown in Fig. 11, the proposed

method achieved the highest accuracy and ITRs among all

compared methods with almost data lengths. A one-way

repeated-measures ANOVA revealed that there was a statis-

tically significant difference between the compared methods.

The evaluation results further demonstrated the effectiveness

and feasibility of the proposed method in SSVEP recognition

of the BCI system.

IV. DISCUSSION

A. Model’s Performance

Almost recognition methods in SSVEP-based BCI fields

built spatial filters via considering the relationship between

the EEG signal and the artificial reference or the individual

template, e.g., CCA and IT-CCA [12] or the relation across

training trials, e.g., TRCA and SSCOR [19], [20]. In this

study, the spatial filter was trained with multiple similarity

constraints. Specifically, maximizing the reproducibility across

trials could extract task-related components [20], but it may

also bring task-related noise [42]. It is reasonable to remove

noise and extract more SSVEP-related features by incorpo-

rating the covariance maximization between the training trial

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Time window length (s)

A
c

c
u

ra
c

y
(1

0
0

%
)

Proposed methodWithout TL
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.2 0.4 0.6 0.8 1
0

50

100

150

200

Time window length (s)

IT
R

(b
it

s
/m

in
)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a) Dataset I

0.25 0.5 0.75 1
0

20

40

60

80

100

Time window length (s)

A
c

c
u

ra
c

y
(1

0
0

%
)

11 1 1 1 1

0.25 0.5 0.75 1
0

30

60

90

120

Time window length (s)

IT
R

(b
it

s
/m

in
)

11 1 11 11

(b) Dataset II

Fig. 12. Performance comparison between the proposed method and the
method without transfer learning at different time windows on (a) Dataset
I and (b) Dataset II. The error bars represent SEM. The asterisks indicate
significant difference between the two methods obtained by paired t-test. (∗:
p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).

and the individual template, between the training trial and the

artificial reference, as well as between two templates. As a

cross-subject scheme, the transferred template and transferred

spatial filter are used to boost the SSVEP detection perfor-

mance for target subject. As shown in Fig. 3, the accuracy of

the proposed method is 7.19% higher than that of TRCA and

19.05% higher than that of SSCOR on Dataset I with 0.6 s

long data length. Besides, the proposed inter-subject transfer

learning scheme does not require massive amounts of training

data from the target subject and still achieves superior SSVEP

classification performance. As shown in Fig. 7(a), the accuracy

of TRCA with five training trials (i.e., 63.69%) is close to the

accuracy of the proposed method with only three training trials

(i.e., 65.81%) on Dataset I.

B. Feature Vector Construction

In this study, the feature vector (26) includes four types of

correlation coefficients, two of which come from the source

subjects and the other two from the target subject. We further

explored the difference in classification accuracy and ITR be-

tween this design and feature vector information only provided

by the target subject. Fig. 12 shows the comparison results

on (a) Dataset I and (b) Dataset II. The proposed method

shows better SSVEP recognition performance compared with

the method without transfer learning. Paired t-test was used to

measure the similarity of these methods. The statistical results

show that there are significant differences in accuracy or ITR

between two methods at each data length on two datasets.

It means that transferred information from source subjects is

beneficial to improving the SSVEP recognition performance

of the target subject.

C. Future Work

The proposed method designed transferred templates and

transferred spatial filters for enhancing the target subject’s
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classification performance. The temporal knowledge included

in the source subjects is not considered. The temporal in-

formation hidden in the SSVEP signals may also contribute

to improving the recognition effectiveness of a SSVEP-based

BCI system. Future work will thus explore the spatio-temporal

filtering method to transfer knowledge across subjects.

V. CONCLUSION

In this study, a cross-subject transfer learning scheme was

proposed for enhancing SSVEP classification performance.

The spatial filter was first trained via multiple covariance

maximization. The relationships between training trials, the

individual template and artificial reference were properly con-

sidered in the spatial filter training process. The spatial filters

were then applied to the aforementioned templates to con-

struct two new transferred templates, on which the transferred

spatial filter can be obtained accordingly. The contribution

scores of different source subjects to the feature vector were

calculated by their distances from the target subject. Finally,

a four-dimensional feature vector was constructed for each

stimulus to achieve SSVEP recognition. The effectiveness and

feasibility of the proposed method were demonstrated via

experimental evaluation on a publicly available dataset and

a self-collected dataset.
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