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Abstract—Scalability in disciplines is an important consid-
eration for multidisciplinary design optimization (MDO). Very
few benchmark problems for multi-objective MDO exist in the
literature, none of which are readily scalable. In this study, we
introduce a new scalable benchmark problem that extends an ex-
isting well-known multi-objective benchmark problem. We show
that scaling the number of disciplines in the problem, implying an
increasing number of decision variables, does produce substantive
changes in convergence ability. We also show that the accuracy of
the multidisciplinary analysis (MDA) solver has an impact on the
convergence ability of the multi-objective optimization algorithm,
which is particularly noticeable when moving from 7 to 14
disciplines. Modification of standard (non-MDO) multi-objective
benchmark problems is a promising approach to developing
scalable multi-objective MDO benchmarks.

Index Terms—multidisciplinary design optimization, multi-
objective optimization, benchmark problems, scalability

I. INTRODUCTION

Multidisciplinary design optimization (MDO) is a field of

research that deals with the optimization of systems involving

multiple disciplines, subsystems or components. Environmen-

tal, socio-economic, institutional and engineered systems are

commonly partitioned into smaller interacting subsystems that

may be connected in a variety of ways. The performance

of the overall system may differ from the performance of

the individual components due to their interactions. One of

the key challenges in MDO is to model these interactions

and, in addition, there might be a need to account for non-

comparable and conflicting criteria [1]. A typical example

is the design of an aircraft wing involving disciplines that

deal with the aerodynamics and structural integrity of the

aircraft [2]. Another example is a robotic fish where the

overall system has been decomposed into four disciplines,

namely hydrodynamics, propulsion, weight and equilibrium,

and energy [3].

A standard constrained single-objective optimization prob-

lem contains design variables, an objective function to be

either minimised or maximised, and for feasibility a candidate

design might need to satisfy one or more constraints. An MDO
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problem contains these characteristics and in addition the

behaviour of each component or discipline is modelled by the

use of discipline analysis. Each discipline analysis consists of

running a simulation model that represents some phenomena

associated with the given discipline, and the procedure often

consists of solving a set of equations (e.g. Navier-Stokes

equations in fluid mechanics). The outputs generated by one

discipline analysis might be required as an input to run

the simulation model of another discipline analysis. These

interactions between disciplines are modelled by the use of

linking variables (also known in the literature as coupling or

response variables).

For dealing with MDO problems there are several ap-

proaches in the literature, and these have been classified into

architectures by Martins and Lambe’s 2013 seminal survey

paper [4]. Depending on the strategy adopted, there might be

a need to create copies of the linking variables in order to

allow the discipline analysis to run in parallel—one example

is the Individual Discipline Feasible (IDF) architecture [5].

In such cases it might be required to enforce consistency

constraints to ensure that the values provided by the copies

are consistent with the outputs emanating from the discipline

analysis. In other approaches, the discipline analysis could

be run in a sequence to avoid the use of linking variable

copies—as is the case with the Multidisciplinary Feasible

(MDF) architecture [5].

Multi-objective problems (MOPs) are important in the field

of optimization because there is rarely only one objective to

optimize in real-world or synthetic problems. MOP bench-

marks are well-studied and there are already several test

suites, which include problems that are scalable in complexity,

objectives, design variables, and other factors. However, multi-

objectivity in MDO has not received the same amount of atten-

tion. There are no scalable multi-objective, multidisciplinary

benchmark problems in the existing literature and, as a result,

research in real-world MDO problems is limited.

This paper aims to discuss some of the issues arising

from scaling multi-objective MDO problems in the number

of disciplines by modifying the well-known ZDT test suite

based on the approach used by Tedford and Martins [6] for

single-objective problems. Although we only modify ZDT1

for brevity, the same principle could be applied to the other

problems in the ZDT test suite, and perhaps to other test suites



as well. The remainder of the paper is organised as follows.

An introduction to MDO architectures, with special focus on

the MDF approach, is provided in Section II. Section III

discusses existing multi-objective and multidisciplinary bench-

mark problems and test suites available in the literature. A

proposed multi-objective MDO problem with scalable number

of disciplines based on the ZDT1 test problem is described

in Section IV. The experimental setup used in this paper is

in Section V. The experimental results in Section VI includes

the effects of introducing varying number of disciplines to the

problem (Section VI-A), and the influence of solver accuracy

on convergence (Section VI-B). The paper concludes with a

discussion and future work in Section VII.

II. OVERVIEW OF MDO ARCHITECTURES

MDO architectures are well documented in the literature.

In [4] the authors have outlined various different architectures

and these were categorised as either monolithic or distributed.

In the monolithic approach a single optimization problem is

solved, whereas in the distributed approach the overall opti-

mization problem is partitioned into smaller subproblems each

containing its own subset of decision variables, constraints and

objectives. The focus of this paper is on the MDF monolithic

architecture where the optimization problem contains multiple

conflicting objectives.

We now describe a single-objective optimization problem

resulting from the MDF architecture. The problem contains

global, local and linking variables. If a variable is global it

means that it is accessible to all disciplines, while a local

variable is only accessible to one. The constraints (if any) can

also be either global or local, and the objective function is

assumed to be global. Linking variables are used to model the

interactions of the whole system and need to be exchanged

between the disciplines. In this sense, each linking variable

is supplied by a discipline as a response of the analysis con-

ducted in the disciplinary model for a given design decision.

Mathematically, the optimization problem is expressed as:

min f0(x,y(x,y), z)

w.r.t x, z

s.t. c0(x,y(x,y), z) ≥ 0

ci(x,y(x,yj ̸=i), z) ≥ 0 for i = 1, ..., N.

(1)

In Equation 1 the subscripts 0 and i are used to indicate if a

function or variable is either a global or local one, respectively.

For a total of N disciplines x is a vector that contains all local

variables, that is, x = (x1, . . . ,xN )T , and at the ith discipline

(i ∈ {1, . . . , N}) there are nxi
local variables given by the

vector xi = (xi,1, . . . , xi,nxi
)T . A total of nz global variables

are in the vector z = (z1, . . . , znz
)T . Similarly to x, the vector

y contains all linking variables per discipline, that is, y =
(y1, . . . ,yN )T , and at the ith discipline there are a total of nyi

linking variables given by the vector yi = (yi,1, . . . , yi,nyi
)T .

c0 and ci are both vectors representing the global and local

constraints, respectively, and f0 is the objective function.

One of the characteristics of the MDF architecture is that

each discipline is solved in turn, often by the use of the

Gauss–Seidel multidisciplinary analysis (MDA) procedure [7]

or by the use of Newton-based methods. This implies that the

different discipline analyses cannot be conducted in parallel

but it ensures consistency between the linking variables inputs

and outputs (this is particularly important if there are circular

dependencies between the disciplines as is the case in this

paper’s problem formulation). One of the drawbacks of this

architecture is that a full MDA needs to be conducted for

each candidate design, and the MDA needs to be run until

a consistent set of linking variables are found. Not having a

consistent set of linking variables after each analysis can have

an impact on the convergence of the optimization algorithm,

as demonstrated in this paper.

III. OVERVIEW OF MULTI-OBJECTIVE AND

MULTIDISCIPLINARY TEST PROBLEMS

A. MDO benchmarks

1) NASA test suite: The NASA test suite [8] was developed

by the Langley Research Centre in the 1990s and contains 14

test problems, some of which are still in use today. These

include the heart dipole problem, the combustion of propane

problem, the scalable problem, and others. Even though the

NASA test suite is considered an important base for the

development of MDO architectures and strategies, many of

the test problems are no longer available first-hand due to

lack of website maintenance, and the test suite is outdated

and does not reflect the state of MDO research today. This

means that some of the test problems can only be obtained

through secondary sources, some of which are expressed

using non-standard notation. Additionally, the problems in the

NASA test suite are single-objective and are scalable in the

number of decision variables and disciplines. Therefore, the

test suite is currently not suited for dealing with problems with

multiple conflicting objectives. The Golinski speed reducer,

one of the single-objective NASA test suite problems, has been

reformulated by transforming the objective function, as well

as the constraints, into multiple objectives [9].

2) Other benchmark problems: MDO problems that are

not associated with any test suite include the Sellar problem

[10], which was developed as a 2-discipline, single-objective

problem, often used for testing different architectures and

optimization algorithms. Each discipline contains one equation

within its MDA, as well as constraints on the linking variables.

The Sellar problem has been extensively discussed within

the MDO literature, although finds little use beyond basic

architecture testing due to its small size and simplicity. Other

problems such as those presented in [11] and solved in [12]

are more applicable to distributed architectures.

3) Use of MDO in real-world problems: There are many

instances of MDO architectures and strategies being used in

real-world or industrial problems. Aerospace design problems

have especially been subject to an MDO approach, although

MDO has also been used for other applications such as back-

hoes [13], robotic fish [3], automotive vehicles [14], building



envelope design [15], and others. While these problems could

be adapted into MDO benchmarks, it is common to find

that the MDA equations are unavailable (e.g. due to use of

proprietary software).

B. MOP benchmarks

MOP benchmarks contain two or more objectives to be

optimized at once and are a point of interest for optimization

researchers because of the complexities involved in algorithm

design, the role of the decision maker, and other aspects. As

a result, many MOP benchmark problems and test suites have

been developed for use in research and algorithm testing.

1) BBOB: The Bi-objective Black Box optimization Bench-

marking (BBOB-biobj) test suite [16], implemented in the

Comparing Continuous Optimizers (COCO) platform [17],

contains 55 test problems with differing properties, such as

problem conditioning, separability, modality, problem struc-

ture control, and scalability in the number of design variables.

In addition there are parameters that transform the decision

variables (e.g. by the use of rotation transformations).

2) ZDT problems: The ZDT problems [18] are named

after their creators, Zitzler, Deb and Thiele. These consist

of 6 benchmark problems with two objective functions and

a scalable number of design variables. The problems are

composed of some combination of building block functions

which differ slightly depending on the problem at hand. The

relationships between the design variables are easy to handle

due to their summative nature (i.e. see the ‘g(•)’ functions for

each problem).

3) DTLZ and WFG problems: The Deb-Thiele-Laumanns-

Zitzler (DTLZ) [19] test suite presents a more difficult chal-

lenge to optimization engines. Similarly to ZDT, an auxiliary

equation g(•) ≥ 0 is used to integrate a larger number of

design variables into the problem by multiplying it with the

first M − 1 design variables. The main difference between

the ZDT and DTLZ problems is that the DTLZ problems

demonstrate scalability in objectives.

The Walking Fish Group (WFG) [20] problems are designed

to introduce other properties into multi-objective benchmarks.

These properties are multi-modality, bias and separability in

parameters, and features of the Pareto front such as deception,

degeneracy, and shape. These problems consist of ‘building

blocks’, like the ZDT and DTLZ test problems, that centre

around transformations of design variables and the Pareto

front. The design variables undergo several transformation,

each one focused on a particular property, making the prob-

lems easy to customise where necessary.

4) Other MOPs: In addition to the named test suites

above, there are many alternative multi-objective benchmark

problems that may be useful for more limited purposes. These

include problems such as Fleming and Fonseca’s 2-objective

problem [21], the Schaffer functions [22], Van Velduizen’s test

suite [23], and so on.

IV. PROPOSED MULTI-OBJECTIVE MDO PROBLEM WITH

SCALABLE NUMBER OF DISCIPLINES

For clarity, we will first establish a separate notation for the
design variables in the problem. The decision vector is w =
(w1, . . . , wnv

)T , and the original ZDT1 problem is expressed
as:

min f1(w), f2(w)

f1(w) = w1

f2(w) = g(w)h(f1(w), g(w))

g(w) = 1 +
9

nv − 1

(

nv
∑

i=2

wi

)

h(f1(w), g(w)) = 1−

√

f1(w)

g(w)

(2)

where nv is the number of decision variables, and 0 ≤ wi ≤
1 for all i = 1, . . . , nv . The Pareto optimal solution set for the
ZDT1 problem is given by

f2(w) = 1−
√

f1(w). (3)

The ZDT1 problem is used here to explore scalability in

disciplines within certain bounds. These bounds are dictated

by the user of the benchmark via the chosen number of

variables nv , number of design and linking variables for

each discipline, and the total number of disciplines. In this

study, each discipline must contain at least one local variable

and one linking variable, and there must be at least one

global variable. However, some considerations first must be

established to illustrate the constraints of the problem. The

original ZDT1 problem contains nv design variables, and all

design variables except the first, w1, are separable in the

g(w) function (Equation 2). This means that we can exchange

values within this function freely, without worrying about

the effect of variable sequencing on either the disciplinary

analyses or the objective functions, as long as w1 remains

the same. Extending this problem via the nv variable allows

the number of design variables to have no upper bound. As a

result, it is simple to exchange both linking, global and local

design variables for the design variables in the original ZDT1

problem by simply summing all global (excluding z1), local

and linking variables in the g(x,y, z) function. Additionally,

there is no possibility for interactions between same-discipline

local and linking variables that would prevent the optimizer

from converging. The optimization problem is given in (4) and

the MDA equations are given in (5).

min f1(z), f2(x,y, z)

f1(z) = z1

f2(x,y, z) = g(x,y, z)h(f1(z), g(x,y, z))

g(x,y, z) = 1 +
9

nv





nz
∑

i=2

zi +
N
∑

i=1

nxi
∑

j=1

xi,j +
N
∑

i=1

nyi
∑

j=1

yi,j





h(f1(z), g(x,y, z)) = 1−

√

f1(z)

g(x,y, z)
(4)



s.t. 0 ≤ zi ≤ 1, i = 1, . . . , nz

0 ≤ xi,j ≤ 1, i = 1, . . . , N and j = 1, . . . , nxi

0 ≤ yi,j ≤ 1, i = 1, . . . , N and j = 1, . . . , nyi

N
∑

i=1

nxi
+

N
∑

i=1

nyi + nz = nv + 1

where

yi(xi,yj , z) = −D−1

i (Aixi + Ciz−Biyj), and j = i− 1. (5)

Following the approach in [6], the MDA consists of a system

of linear equations, and solving them determines the value

of the linking variables for each discipline. The inputs to

these equations are the local design variables, global design

variables, and the linking variables obtained from the other

disciplines. Weights equations A, B, C and D are used to cus-

tomise the equations for each discipline and have dimensions

nxi
×nyi

, nyj
×nyi

, nz×nyi
and nyi

×nyi
respectively. Matrix

D must be invertible, and in this paper is an identity matrix.

Matrices A, B and C are randomly generated, with values

varying between 1 and 11. The rows of these weights matrices

are then normalised to sum to 1 by using Equation 6 for some

generalised matrix M , where M̄ is the non-normalised version

of the weights matrices. A and C are concatenated, then the

rows of this matrix are multiplied by 2 to enforce the bound

constraints on the linking variables within the MDA equations.

M =
M̄i,j

sum(row(M̄))
(6)

While it is possible to include the linking variables from

more than one discipline, for simplicity, a circular relationship

between the preceding disciplines has been adopted.

D1 y1
D2 D3y2

D6 y5
D5 D4y4

y3y6

Fig. 1: An example of the linking relationships in a 6-

discipline system, where Di represents the subsystem number.

Figure 1 is given as diagrammatic example of the disci-

plinary relationships used in Equation 5, for a six-discipline

problem. This was chosen because it is easily scalable for all

design and linking variables, as well as number of disciplines,

and guarantees convergence.

V. EXPERIMENTAL SETUP

The experiments were undertaken using the OpenMDAO

[24] and PyOptSparse [25] packages in Python. The MDF ar-

chitecture was used to frame the problem. The non-dominated

sorting genetic algorithm 2 (NSGA-II) algorithm [26] has

been used to solve the optimization problem in (4). We used

the default settings suggested by the pyOptSparse software1,

1pyOptSparse provides an implementation of NSGA-II and the default
settings are shown in https://mdolab-pyoptsparse.readthedocs-hosted.com/en/
latest/optimizers/NSGA2.html.

that is, a population size of 100, crossover and mutation

probabilities set to 60% and 20%, respectively. Based on

initial experiments we have observed good convergence after

100 generations, and we have set this as the termination

criterion. Two solvers were used in the MDA routines—a

Newton nonlinear solver with an iteration limit of 1000 and

no relaxation factor, and a direct solver. Both were provided

by the OpenMDAO python package. For the purposes of

statistical significance, each experiment was run 21 times, and

the run with the median inverted generational distance (IGD)

was chosen for analysis.

In this paper, the total number of design and linking

variables are modified to maintain similarity in subsystem

size across all disciplines. In this case study, each discipline

contains 5 linking variables. These values are specified in

Table I. For the sake of simplicity, the number of linking

and local design variables in each discipline is the same,

i.e. nxi
= nyi

. The initial values for the design variables

were randomly generated values between 0 and 1. These

values are used to initialise the solver-optimizer cycle in

OpenMDAO. The processed A, B and C matrices as used

in these investigations are available in the project’s GitHub

repository. 2.

TABLE I: Experimental setup for the modified ZDT1 problem.

Number of Number of Number of local Total

disciplines global variables & linking variables variables per

per sub-problem problem

N nz nxi
,nyi

nv + 1
2 10 5, 5 30
7 10 5, 5 80
14 10 5, 5 150

To evaluate the quality of solutions sets, we use the follow-

ing indicators:

1) Hypervolume metric: used to measure both the conver-

gence towards and diversity across the Pareto front. The

metric quantifies the volume defined by the boundary

between the obtained solution set at each generation, and

a reference point. The reference point is set to (1.0, 7.0)
for all runs. To determine the hypervolume we use a

dimension-sweep algorithm [27].

2) Convergence of the variables (global, linking and de-

cision variables): the Tchebychev scalarisation metric,

defined by argmini maxj αjf
i
j , is used to select the

solution from amongst the available alternatives across

the Pareto front. α is set to 0.5 in order to target a point

in the middle of the Pareto-optimal front.

3) Differences between the empirical attainment functions

(EAF) [28] when comparing two algorithms across

multiple runs. This metric provides visual information

of where an algorithm has done better than the other

across the Pareto front.
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Fig. 2: Influence of the number of disciplines on the convergence of the optimizer. The non-dominated solutions obtained at

the end of the optimization run, for a total of 21 runs, are compared by using the empirical attainment function. For each

subfigure, the plot in the left highlights the differences in favour of case 1, and the plot in the right highlights the differences

in favour of case 2. The colour level encodes the magnitude of the observed differences. The lines in the left, centre and right

correspond to the best, median and worst attainment surfaces, respectively. In (d) the approximation to the true Pareto-optimal

front is measured by the hypervolume metric (the higher the better). The shaded region is the standard deviation across runs.

VI. EXPERIMENTAL RESULTS

A. An increase in the number of disciplines has a deteriorating

impact on the convergence of the optimization algorithm

In this section, we study the effect of scaling the number

of disciplines, and therefore also the number of variables, in

the convergence of the optimization algorithm when applied

to problem (4). The obtained results in Figure 2 show that the

convergence deteriorates with an increase in the number of

disciplines from 2 to 14, in that:

1) The differences between the EAFs is shown in Fig-

ures 2a, 2b, 2c, and the magnitude of the EAFs dif-

ferences clearly favours the problems with fewer disci-

plines.

2) The hypervolume metric captured along the generations

in Figure 2d shows that the lower the number of dis-

ciplines, the faster the convergence, and also that the

variance across runs remain stable with an increase in

the number of disciplines.

2github.com/vj2Sheffield/SSCI MDO test problems

Figure 3 shows the convergence of the global, local and

linking variables along the optimization run. This is shown

separately for the two-discipline, seven-discipline and 14-

discipline problem in Figures 3a, 3b and 3c. In the two-

discipline problem, it can be seen that all variables except z1
converge towards 0 by the 100th generation, while the global

variable z1 converges towards 0.08. In the seven discipline

problem, the linking variables convergence towards 0, but have

a much shallower curve than in the two discipline problem.

The local variables also deviate further from 0 than they did

in the two discipline problem. z1 converges towards 0.08,

and the global variables approach 0 as they did in the two

discipline problem. In the fourteen discipline problem, many

of the variables have failed to settle by the 100th generation,

with the linking variable values varying between 0 and 0.1 by

the end of the run. The local variables values vary between

0 and 0.6 by the end of the run, and the global variables

between 0 and 0.3. z1 converges towards 0.3. It is clear that

as the number of disciplines increases, it takes longer for the

optimization algorithm to converge towards the optima.
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Fig. 3: Monitoring the convergence of the decision variables along generations. In each subplot, convergence is shown for (a)

global design variables, (b) local design variables, and (c) linking variables.

B. The MDA solver accuracy has a higher impact on the

convergence with an increase in the number of disciplines

In this section we study the impact that the accuracy of the

MDA solver can have on the convergence of the optimization

algorithm. In the previous section the maximum number of

iterations for the Newton method, used to solve the MDA,

was set to 1000. In here it is set to only 2. The obtained

results are shown in Figure 4 and indicate that the convergence

deteriorates with an increase in the number of disciplines,

as captured by the differences of the empirical attainment

functions (EAFs). The deterioration in terms of performance

is particularly visible for the 14-discipline case as shown

in Figure 4c, but can be negligible for cases with a lower

number of disciplines, as is the case with 2 and 7 disciplines

(Figures 4a and 4b, respectively).

This result is expected given that as more disciplines are

involved in the MDA, the bigger is the system of equations that

needs to be solved. As the number of equations increases, the

MDA solver is likely to require a higher number of iterations

to ensure good convergence. We have shown that if the MDA

solver lacks convergence, it can have an impact on the ability

of the multi-objective optimization algorithm to find a good

approximation to the Pareto-optimal front.

VII. SUMMARY AND FUTURE WORK

In this paper, we have proposed an MDO formulation based

on the ZDT1 test problem, scalable in the number of disci-

plines, design variables and linking variables. This approach

can be applied to other ZDT problems with ease by modifying

the input variables of the objectives and g(•) functions, and

introducing linking variables. However, the ZDT test problems
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Fig. 4: Influence of the MDA solver accuracy on the optimizer’s convergence. The maximum number of iterations used by

the Newton’s method to solve the MDA has been set to 1000 and 2, corresponding respectively to high accuracy and low

accuracy. The non-dominated solutions obtained at the end of the optimization run, for a total of 21 runs, are compared by

using the empirical attainment function. For each subfigure, the plot in the left highlights the differences in favour of case 1,

and the plot in the right highlights the differences in favour of case 2. The colour level encodes the magnitude of the observed

differences. The lines in the left, centre and right correspond to the best, median and worst attainment surfaces, respectively.

are not scalable in the number of objectives, and may lack the

complexity found in other test problems that better resemble

real-world problems (e.g. the WFG test suite). Nevertheless,

this study provides a good starting point by showing how to

construct a simple bi-objective scalable MDO problem, which

has allowed us to investigate the impact of two fundamental

issues inherent to the MDO architectures from a previously

unexplored multi-objective context.

In future work we will consider alternative MDO architec-

tures to MDF, such as the distributed approaches (e.g. col-

laborative optimization and analytical target cascading) [4].

While these formulations tend to result in higher compu-

tational time and worse convergence properties, they offer

important real-world features such as design variable privacy

and increased disciplinary autonomy. Other test suites that

could be converted into MDO formulations are the WFG and

BBOB problems. Future work will also include investigating

the performance of multi-objective optimization algorithms

other than NSGA-II, and how suitable these are when applied

to different MDO architectures.
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