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High-Order Cumulants Based Sparse Array Design

via Fractal Geometries—Part I: Structures and

DOFs
Zixiang Yang, Qing Shen, Wei Liu, Senior Member, IEEE, Yonina C. Eldar, Fellow, IEEE, Wei Cui

Abstract—Array structures based on the high-order difference
co-array concept provide a large number of degrees of freedom,
but are typically difficult to design under multiple optimality
criteria. In this paper, we present a joint across-order (across
different cumulant order q) and inner-order (within the same
cumulant order q) fractal framework to form a fractal array
based on the 2qth-order difference co-array (2qth-O-Fractal)
by recursively using a simple generator. We show that multiple
properties of interest, including large consecutive difference co-
array, closed-form sensor positions, hole-free difference co-array,
robustness to sensor failures, and resilience to mutual coupling,
are inherited from the generator under appropriate conditions.
Part I of the work focuses on array structures with a large
uniform or hole-free (higher-order) difference co-array. First, we
show that for an array of size N , O(N2q) consecutive co-array
lags can be provided by optimizing the generator. In addition, the
generated structure outperforms existing structures in terms of
the number of consecutive lags offered. Then, proof is provided
that under given requirements on the generator, the hole-free
property is inherited for q = 2, and O(N4) hole-free fourth-
order difference co-array lags can be achieved by the proposed
framework, which is larger than those of existing structures. Sim-
ulation results verify the superiority of the proposed framework
in terms of estimation accuracy and resolution capability. Part
II of this work focuses on the properties of array robustness and
mutual coupling.

Index Terms—Sparse array design, difference co-array, high-
order cumulants, fractal geometry, direction of arrival estimation.

I. INTRODUCTION

Array signal processing plays an important role in the fields

of radar, sonar, communications and radio astronomy [1]–[4],

where array geometry design is one of the core issues. Sparse

linear arrays with non-uniform inter-element spacings have the

ability to resolve more uncorrelated sources than the number of

physical sensors in direction of arrival (DOA) estimation [2],

[5], [6]. The virtual array constructed by using the second-

order [2], [7], or high-order statistics [8], [9], of the received

signals contributes to this capability. Due to this advantage, a
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series of array structure design criteria and methods have been

proposed over the past decade.

For second-order statistics based DOA estimation, the num-

ber of degrees of freedom (DOFs) is closely related to

the second-order difference co-array of the physical array.

Minimum redundancy array (MRA) [10] is a well-known

early structure, which pursues a large number of DOFs by

minimizing the number of redundant sensor positions. The

non-closed form expressions of sensor positions limit the

scalability of MRA, increasing the difficulty in large-scale

array design. Subsequently, nested array (NA) [2] and co-

prime array (CPA) [5] structures were studied extensively due

to their large difference co-arrays and closed-form expressions

of sensor positions. NA and CPA have triggered an upsurge

of follow-up works, which focus on further improving the

number of DOFs, such as augmented coprime array (ACA)

[11], improved nested array (INA) [12], enhanced nested

array (ENA) [13], and array based on the maximum element

spacing criterion (MISC) [14], [15]. In traditional subspace-

based methods [16], only information from the continuous

segment of the difference co-array is utilized, so that a hole-

free difference co-array is beneficial. Hole-filling strategies

were suggested to form new CPA-like array structures with

a hole-free difference co-array [17]–[20].

Due to the dense first-level subarray in NA [21], the estima-

tion performance of NA deteriorates sharply in the presence

of mutual coupling [22]. In order to reduce mutual coupling, a

series of improved structures have been proposed [21], [23]–

[26]. Most of these techniques keep the number of DOFs

provided unchanged or even improved [23], [24], [26]. On

the other hand, considering the possibility of physical sensor

damage, the robustness of sparse arrays and stability of co-

arrays have been discussed recently [27]–[29], while structures

with improved robustness are presented in [30]–[32].

Evidently, sparse array design has to address multiple con-

straints rather than a single criterion for achieving a large con-

secutive difference co-array, and appropriate balance among

various criteria is often needed. One solution is sparse array

design via fractal geometry [33] with inherent self-similarity

[34]–[36]. In [3], [37], the proposed fractal array inherits

a variety of properties from its simple generator, including

properties of large consecutive difference co-array, hole-free

difference co-array, robustness, and low coupling leakage,

leading to high flexibility in multi-criterion joint design.

The aforementioned works are all based on second-order

statistics leading to difference co-arrays. High-order cumulant-
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based methods have been extensively studied within the field

of DOA estimation [8], [38]–[45], offering increased virtual

array aperture, improved resolution capability, estimation ac-

curacy, and robustness against Gaussian noise [8], [40], [44],

compared with methods based on second-order statistics. Al-

though these techniques are not applicable to Gaussian sources

and have higher computational complexity, many real-world

signals are non-Gaussian [39]. Thus, methods based on high-

order cumulants have been employed in many applications

due to their advantages mentioned above. For example, these

methods are typical solutions to direction finding problems

in wireless communication systems [38], [44] and acoustic

systems [45], [46]. By vectorizing an arbitrary even order

(2q) cumulant matrix of the received data, a virtual array

model is obtained with its virtual sensor set defined as the

2qth-order difference co-array [8]. For an N -sensor array,

there are N2q virtual elements (including redundant ones)

in its 2qth-order difference co-array. However, the unique

co-array elements related to the DOFs rely on the physical

array geometry, raising the array design problem incorporating

different properties. A well-designed geometry should offer

O(N2q) DOFs that can be exploited by high-order cumulant-

based methods, which is far more than O(N2) when second-

order statistics based techniques are considered.

In [8], a 2q-level nested array (2qL-NA) providing O(N2q)
DOFs with N physical sensors is proposed, which is the

first structure designed based on the 2qth-order difference

co-array. By optimizing the redundant co-array lags in 2qL-

NA, a simplified and enhanced 2q-level nested array (SE-2qL-

NA) with increased DOFs was derived [9]. Only the criterion

of achieving large consecutive 2qth-order difference co-array

with closed-form expressions of sensor positions is adopted

in designing 2qL-NA and SE-2qL-NA. However, the mutual

coupling is relatively high due to the NA-like structure. A

number of sparse structures have been proposed specifically

for fourth-order (q = 2), including the expanding and shift

(EAS) array structure [47], sparse array with fourth-order

difference co-array enhancement based on a nested array

(SAFO-NA) [48], two level nested sparse array (2L-FO-NA)

[49], compressed nested array (CNA) [50], and generalized

CNA (GCNA) [51], where 2L-FO-NA, CNA, and GCNA offer

hole-free fourth-order difference co-arrays with O(N2) DOFs.

For E-FO-Cantor [52], the number of DOFs is increased

to O(N3.17) under the premise of satisfying the hole-free

property, shortening the gap toward O(N4) provided by 2qL-

NA (q = 2) and SE-2qL-NA (q = 2) without hole-free co-

arrays.

Compared with array structures exploiting the second-order

difference co-array, flexible sparse array design in the higher-

order case is much less investigated. Most existing works only

focus on the property of large DOFs. Sparse array design

incorporating multiple criteria based on the 2qth-order differ-

ence co-array is difficult due to the extremely large number

of co-array lags (N2q including redundancies) involved in the

optimization.

Inspired by the flexible fractal framework proposed in [3],

[37], we introduce commonly adopted criteria to sparse array

design based on the 2qth-order difference co-array, and present

a joint across-order (across different cumulant order q) and

inner-order (within the same cumulant order q, referred to

as fractal order r) fractal framework to form a fractal array

exploiting the 2qth-order difference co-array (2qth-O-Fractal).

Different from existing structures where only fractal factor

r for q = 1 (inner-order) is considered, both fractal factors

q and r are related to the designed array configurations

via fractal geometries, and are considered in the analysis.

In this proposed simple systematic framework, any sparse

linear structure can be treated as a generator, recursively

expanded to generate a large array for the 2qth-order difference

co-array exploitation with multiple properties inherited from

the generator. Therefore, by optimizing the generator array

according to given criteria, the associated 2qth-O-Fractal can

be easily obtained incorporating multiple properties of interest,

leading to a flexible framework for joint multi-criterion design.

Part I of this work is focused on the following contributions:

1) A joint across-order and inner-order fractal framework is

proposed to generate a fractal array based on the 2qth-order

difference co-array, leading to 2qth-O-Fractal whose properties

are inherited from its optimized generator. The properties of

interest include large consecutive difference co-array, closed-

form expression, hole-free difference co-array, robustness and

economy, and low mutual coupling.

2) The large consecutive difference co-array criterion is

considered, which was the main metric for array construction

based on the 2qth-order difference co-array in the past. In

contrast to existing structures exploiting the nested idea to

design higher level uniform linear subarrays with different

spacings [8], [9], the proposed 2qth-O-Fractal is sparser

with reduced redundancies and flexible configurations. By

inheriting the property of a large consecutive difference co-

array from its generator, we prove that 2qth-O-Fractal is

capable of providing uniform DOFs of Oc(CFN
2q) with a

larger coefficient CF compared with existing structures, and

improved performance in terms of resolution capability and

estimation accuracy can be achieved. Here Oc(CFN
2q) means

CFN
2q is asymptotically achieved when N tends to infinity.

It is also proved that for a large sensor number N , the ratio

of the number of uniform DOFs provided by 2qth-O-Fractal

to that provided by existing structures increases exponentially

with order q.

3) For q = 2, the requirement for the generator is given

to ensure the inheritance of hole-free property, leading to 4th-

O-Fractal with O(N4) DOFs provided by hole-free fourth-

order difference co-array, which is larger than that of existing

structures (O(N2) by 2L-FO-NA, CNA, and GCNA, and

O(N3.17) by E-FO-Cantor). A series of structures are then

given by choosing various types of generator arrays which are

proved to satisfy the mentioned requirement.

This paper is organized as follows. Section II provides

basics about sparse array design, including signal model, high-

order difference co-array, and design criteria. The proposed

fractal array based on the 2qth-order difference co-array is

detailed in Section III, and the conditions of achieving large

consecutive difference co-array and hole-free property are

analyzed in Section IV. Comparisons and simulation results

are given in Section V, while conclusions are drawn in Section



3

VI.

II. PRELIMINARIES OF SPARSE ARRAY DESIGN

A. Signal Model

Consider K narrowband far-field sources impinging on a

linear array, and assumed to be non-Gaussian and independent

of each other. The set of K incident angles is represented by

θ = {θ1, θ2, · · · , θK}. The sensor position set of an arbitrary

linear array with N physical sensors is

A =
{
pn · d | n ∈ [1, N ]

}
, (1)

where pnd denotes the position of the n-th sensor, and d is

the unit spacing which is omitted hereafter for simplification.

The received signals from N sensors are stacked to form an

N × 1 signal vector x[i]. The array output model in discrete

version is expressed as

x[i] = A(θ)s[i] + n[i], (2)

where the steering matrix A(θ) is composed of K column

vectors whose k-th column vector a(θk) is the steering vector

of the k-th source

a(θk) =
[

e−j
2πp1d sin θk

λ , · · · , e−j
2πpNd sin θk

λ

]T

. (3)

The signal vector s[i] =
[
s1[i], s2[i], . . . , sK [i]

]T
with {·}T

being the transpose operator contains all source signals, and

n[i] represents Gaussian white noise.

B. The 2qth-Order Cumulant and Virtual Array

For a given structure, DOA estimation methods based on

the 2qth-order cumulants possess better identifiability than

second-order statistics based methods [8], [43], [44]. A larger

difference virtual array can be generated by vectorizing the

cumulant matrix [8].

The 2qth-order circular cumulants of the signal vector

x[i] can be arranged in an Nq × Nq cumulant matrix with

orientation u
(
u ∈ [0, q − 1]

)
, i.e. [9], [53],

C2q,x(u) =
∑K

k=1
c2q,sk

[

a(θk)
⊗u ⊗ a(θk)

∗⊗(q−u)
]

×
[

a(θk)
⊗u ⊗ a(θk)

∗⊗(q−u)
]H

+ σ2
n̄INq · δ(q − 1). (4)

Here, ⊗, {·}∗, {·}H , σ2
n̄, INq , and δ(·) denote the Kronecker

product, conjugate operator, conjugate transpose operator,

noise power, the Nq ×Nq identity matrix, and the Kronecker

delta function, respectively. The 2qth-order circular auto-

cumulant of the k-th source signal sk[i] is given as

c2q,sk = Cum
{
sk[i], . . . , sk[i]
︸ ︷︷ ︸

q times

,

q times
︷ ︸︸ ︷

s∗k[i], . . . , s
∗
k[i]

}
, (5)

where Cum{·} represents the cumulant operator, and the Nu×
1 vector a(θk)

⊗u is defined as

a(θk)
⊗u ≜ a(θk)⊗ a(θk)⊗ . . .⊗ a(θk), (6)

with the Kronecker product ⊗ utilized u− 1 times.

Vectorizing the cumulant matrix C2q,x(u) yields [8], [9]

z = vec{C2q,x(u)} = V(θ)p+ σ2
n̄iNq · δ(q − 1). (7)

In (7), a virtual array is generated by matrix vectorization,

where p = [c2q,s1 , c2q,s2 , · · · , c2q,sK ] is the equivalent signal

vector holding the 2qth-order auto-cumulants of K sources,

the column vector iNq = vec{INq}, and

V(θ) =
[
v(θ1),v(θ2), · · · ,v(θK)

]
(8)

is the equivalent steering matrix with

v(θk) =
[

a(θk)
⊗u ⊗ a(θk)

∗⊗(q−u)
]∗

⊗
[

a(θk)
⊗u ⊗ a(θk)

∗⊗(q−u)
]

. (9)

The array output model in (7) is a general single-snapshot

array model. The equivalent steering matrix V(θ) is the virtual

array manifold composed of virtual sensors located in the set

of the 2qth-order difference co-array, which is defined below.

As proved in [8], V(θ) is independent of the orientation u.

Existing spatial-smoothing MUSIC (SS-MUSIC) as well as

CS-based methods can be applied to this single-snapshot array

model in (7) directly for DOA estimation [8], [9].

Definition 1: The 2qth-order difference co-array [8], [9] for

a linear array A is defined as

D2q =
{∑q

k=1
µk −

∑2q

l=q+1
µl | µk, µl ∈ A

}

. (10)

For an N -sensor physical array, the number of difference

co-array lags in D2q is N2q including redundancies, implying

that N2q is an upper bound on the cardinality of D2q . No

array can have more than O(N2q) elements in its 2qth-order

difference co-array. It has been shown in [8], [9] that O(N2q)
co-array elements can be achieved for a specifically designed

sparse array, which is larger than O(N2) provided by the set

of the second-order difference co-array (q = 1).

C. Criteria for Sparse Array Design

The number of DOFs of a linear array A exploiting the

2qth-order difference co-array is the cardinality of D2q , i.e.,

|D2q| [8], [9]. Let U2q denote the central ULA segment of D2q .

The cardinality of U2q (|U2q|) is referred to as the number of

uniform DOFs (uDOFs) [23].

Definition 2: The central ULA segment [3], [27] of the

2qth-order difference co-array is the longest completely con-

tiguous ULA symmetric about 0 in D2q , that is,

U2q ≜ arg max
Ul(2q)⊆D2q

|Ul(2q)|,

Ul(2q) ≜ {−l, · · · ,−1, 0, 1, · · · , l}, (11)

where l is a non-negative integer.

In the commonly used subspace-based methods such as SS-

MUSIC [2], [8], [16], only the central ULA segment of the

difference co-array can be utilized [8]. Therefore, the number

of uDOFs generally has a great impact on the estimation

performance [8], [23], and it is usually adopted as a metric for

quantitative evaluation, comparison, and optimal design [9],

[21], [54]. Therefore, we introduce the criterion of forming a
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large consecutive difference co-array with high uDOFs in the

sparse array design.

Criterion 1 (Large consecutive difference co-array): The

number of uDOFs provided by the sparse array exploiting the

2qth-order difference co-array should be O(N2q), where N
is the number of physical sensors [2], [8], [9].

For the representation of the array structure, we prefer it to

be in closed form.

Criterion 2 (Closed-form sensor positions): A closed-form

expression of sensor positions is preferred for scalability

considerations [3], [37].

The hole-free property is also desired in sparse array design.

The co-array of a sparse array that satisfies the hole-free

property is a virtual ULA. Next, the definition of the hole-free

2qth-order difference co-array and the corresponding design

criterion are provided.

Definition 3: The 2qth-order difference co-array is defined

to be hole-free if D2q = U2q [3], [27].

Criterion 3 (Hole-free difference co-array): The cardinal-

ity of the central ULA segment reflects the number of sources

resolved by the subspace-based DOA methods such as SS-

MUSIC [3]. A sparse array having a hole-free difference co-

array is preferred, since all information from its difference co-

array can be utilized directly by subspace-based DOA methods

which are easy to implement, and thus CS-based algorithms

[21], [55]–[57] or co-array interpolation based techniques [58],

[59] with increased overall complexity can be avoided [3], [7],

[52].

In recent studies, considerations based on practical appli-

cations have received more attention. Typically, the mutual

coupling effect [21]–[23] and the influence of element loss

[27], [28] are analyzed in DOA estimation. These practical

factors prompt us to consider Criterion 4 (Robustness and

economy) and Criterion 5 (Low mutual coupling), which will

be introduced, discussed, and analyzed in the companion Part

II [60].

In array design based on second-order statistics, a balance is

achieved among multiple criteria. For example, super nested

array (SNA) [23], [24] is designed according to Criteria 1-

3 and Criterion 5; robust MRA (RMRA) [30] is designed

according to Criteria 1, 3, and 4; Cantor array [7] is designed

according to Criteria 2, 3, and 4. The recently proposed fractal

array inherits multiple properties from its simple generator

array, and thus it is a generalized flexible array construction

scheme via multi-criterion joint design [3].

In the design of sparse arrays exploiting 2qth-order differ-

ence co-arrays, only one or two criteria have been considered

in the literature. Two representative structures, i.e., 2qL-NA

[8] and SE-2qL-NA [9], are designed based on Criteria 1 and

2. In the special case of q = 2, several array configurations

including 2L-FO-NA [49], CNA [50], and GCNA [51] are

designed based on Criteria 2 and 3. Optimizing the sparse

array configuration with closed-form sensor positions and a

large hole-free difference co-array (Criteria 1-3) is a difficult

problem. The E-FO-Cantor [52] offers O(N3.17) hole-free

fourth-order difference co-array lags, which narrowing the gap

toward O(N4) claimed in Criterion 1 compared with existing

structures satisfying Criteria 2 and 3.

In the following, the fractal idea for sparse array design is

introduced based on higher-order statistics, and the popular

properties of the proposed structure (including the number

of uDOFs, potential hole-free difference co-array, robustness,

and mutual coupling effect) are analyzed, showing property

inheritance with the generator array and flexibility in joint

multi-criterion design. The new structure and discussions on

the number of uDOFs and hole-free property are presented in

this part, while the companion Part II focuses on the analysis

of array robustness and the mutual coupling effect [60].

III. FRACTAL ARRAYS BASED ON THE 2qTH-ORDER

DIFFERENCE CO-ARRAY

A. Fractal Array Based on the Difference Co-Array

Fractal arrays based on the difference co-array (also known

as the second-order difference co-array) with a generator array

G, referred to as SO-Fractal, are constructed as [3], [37]

F0 ≜ {0},

Fr+1 ≜
⋃

n∈G
(Fr + nMr) , r ∈ N

+, (12)

where M ≜ |U| and r is the fractal order belonging to the

set of positive integers N
+. Here U is the longest central

ULA segment in the second-order difference co-array of the

generator G, and | · | returns the cardinality of the input set. It

has been shown in [3] that the second-order difference co-array

of Fr contains consecutive lags in U2(Fr) = [−Mr−1
2 , Mr−1

2 ].
The connection between the maximum consecutive lag

max(U2(Fr)) and the physical sensors in Fr is a topic of in-

terest. Which pair of physical sensors produces max(U2(Fr))?
What is the relationship between this sensor pair and the

elements in the generator array G? The answers are given

in Lemma 1. Furthermore, as will be introduced in the next

subsection, Fr is part of the sparse array based on the 2qth-

order difference co-array generated from G, and this lemma

is beneficial for improvement of DOFs via sensor sharing

between adjacent subarrays under design.

Lemma 1: For the SO-Fractal Fr (r ≥ 1) generated from

G, the largest consecutive lag guaranteed in its second-order

difference co-array is constructed by

fr(i) − fr(j) = max(U2(Fr)) =
Mr−1

2 , (13)

and the sensor pair (fr(i), fr(j)) ∈ F
2
r can be expressed as

fr(i) =
∑r−1

k=0
giM

k, fr(j) =
∑r−1

k=0
gjM

k, r ∈ N
+, (14)

where the specific sensor pair (gi, gj) ∈ G
2 satisfying gi −

gj = max(U) = M−1
2 . Note that (gi, gj) is one potential

pair to produce the largest consecutive lag. In particular, if

the second-order difference co-array of G is hole-free, then

gi = max(G) and gj = min(G).
Proof: To begin, we prove that sensor positions fr(j) and

fr(i) in (14) are elements in Fr by mathematical induction.

For r = 1, one has (f1(i), f1(j)) = (gi, gj) ∈ G
2 and G = F1,

yielding f1(i) − f1(j) =
M−1

2 and (f1(i), f1(j)) ∈ F
2
1.

For r = k, assume that (fk(i), fk(j)) ∈ F
2
k. Then, for r =

k + 1, the definition of Fk+1 is

Fk+1 =
{
l + nMk | l ∈ Fk, n ∈ G

}
. (15)
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Since (fk(i), fk(j)) ∈ F
2
k and (gi, gj) ∈ G

2, one obtains

fk+1(i) = fk(i) + giM
k, fk+1(j) = fk(j) + gjM

k, and

(fk+1(i), fk+1(j)) ∈ F
2
k+1, which completes the induction. The

difference between fr(i) and fr(j) is

fr(i) − fr(j) =
∑r−1

k=0
(gi − gj)M

k

= M−1
2 · 1−Mr

1−M
= Mr−1

2 , (16)

where max(U2(Fr)) = Mr−1
2 is the largest consecutive lag

guaranteed in the difference co-array of Fr.

Several examples are given in Fig. 1 to demonstrate the SO-

Fractal structure and Lemma 1. The nested array {0, 1, 2, 5}
and expanded coprime array {0, 2, 3, 4, 6} are chosen as gen-

erators. The nested array provides a maximum consecutive

lag of 5 in its hole-free second-order difference co-array. The

expanded coprime array provides a maximum consecutive lag

of 4 and has holes in its virtual array. The SO-Fractal (r = 2)

is generated from the generators with M = |U| = 2·5+1 = 11
or M = 2 ·4+1 = 9. For the nested array without holes in its

second-order difference co-array, the maximum consecutive

lag 5 is obtained by the difference between the rightmost

sensor and the leftmost sensor, i.e., gi − gj = 5 − 0 =
max(U) = 5. As shown in Fig. 1(d), the largest virtual sensor

(in the consecutive difference co-array lags) provided by the

SO-Fractal generated from the nested array is obtained by

f2(i) − f2(j) =
∑1

k=0(gi − gj)M
k = 60. For the fractal array

generated by the expanded coprime array, it is similar to the

previous one, as verified in Fig. 1(h).

B. Fractal Array Exploiting 2qth-Order Difference Co-Array

We now introduce fractal arrays based on the 2qth-order

difference co-array, referred to as 2qth-O-Fractal.

Definition 4: The 2qth-O-Fractal E2q
r =

⋃q

l=1 Er(l) consists

of q subarrays, i.e., Er(1),Er(2), · · · ,Er(q), where

Er(1) ≜
⋃

n∈Fr

(n · T1 +m1) = Fr, (17)

Er(2) ≜
⋃

n∈Er(1)

(n · T2 +m2) , (18)

...

Er(q) ≜
⋃

n∈Er(1)

(n · Tq +mq) . (19)

The original SO-Fractal is denoted by Fr. The expanding

factor Tq and the offset term mq are defined by recursive

expressions, given by

T0 = 0, T1 = 1,

Tq = Mr · Tq−1 + (Mr − 1) · Tq−2, q ≥ 2, (20)

m0 = 0, m1 = 0,

mq = −fr(j) · Tq + fr(i) · Tq−1 +mq−1, q ≥ 2, (21)

where (fr(i), fr(j)) ∈ E
2
r(1) is a sensor pair satisfying (13).

The above across-order fractal design ensures structural sim-

ilarity across cumulant order q (also considered as an across-

order fractal factor). The sensor position set of the p-th level

subarray Er(p) (1 ≤ p ≤ q) with a fractal order r (inner-order

fractal factor within the same cumulant order) is recursively

defined as

E0(p) = {mp} ,

Er(p) =
⋃

n∈Er(1)

(n · Tp +mp) (22)

=
⋃

u∈G

(
Er−1(1) · Tp + u · TpM

r−1 +mp

)
, r ∈ N

+,

where M ≜ |U| is the length of the central ULA segment in

the second-order difference co-array of the generator G.

In 2qth-O-Fractal with q subarrays, the basic construction

idea is that the p-th subarray is designed by dilating the first

subarray with an expansion factor Tp (2 ≤ p ≤ q), followed

by a shift with an offset mp along the end-fire direction of

the linear array. By doing so, 1) self-similarity is guaranteed

among all subarrays; 2) a series of Tp (2 ≤ p ≤ q) is designed

to ensure a large consecutive 2qth-order difference co-array;

3) a series of specifically designed mp enlarges the number of

consecutive co-array lags by providing an additional virtual

ULA segment, and reduces the sensor number by sharing

one physical sensor between every two neighboring subarrays.

Therefore, the expanding factor Tp is defined as the unit inter-

element spacing of the p-th subarray, which is equal to the

number of central ULA sensors in the 2(p − 1)-th order

difference co-array of the 2(p − 1)th-O-Fractal E
2(p−1)
r =

⋃p−1
h=1 Er(h), leading to a large consecutive difference co-array

(see φ′
2 in the proof of Proposition 1). The offset mp in

(21) is constructed based on the idea that a common physical

sensor is shared by the subarrays with adjacent indices, i.e.,

Er(p−1) and Er(p), and an additional ULA set (see φ3 in the

proof of Proposition 1) can be obtained to increase uDOFs

by optimizing this relationship between mp and mp+1. As

a result, more uDOFs can be provided with a fixed number

of physical sensors. Detailed derivations of (20) and (21) are

given in the proof of Proposition 1.

Proposition 1: For the 2qth-O-Fractal E2q
r =

⋃q

l=1 Er(l), its

2qth-order difference co-array D2q has at least Tq+1 consecu-

tive co-array lags ranging from −
Tq+1−1

2 to
Tq+1−1

2 , expressed

as

D2q ⊇ U
′

2q =
[

−
Tq+1−1

2 ,
Tq+1−1

2

]

, q ≥ 1. (23)

Proof: See Appendix A.

Based on (21), we verify the sensor sharing strategy between

every two adjacent subarrays. For the p-th and (p − 1)-th
subarrays (2 ≤ p ≤ q) where

Er(p) = {n1 · Tp +mp | n1 ∈ Er(1)},

Er(p−1) = {n2 · Tp−1 +mp−1 | n2 ∈ Er(1)}, (24)

set n1 = fr(j), n2 = fr(i), and one gets

fr(j) · Tp +mp ∈ Er(p),

fr(i) · Tp−1 +mp−1 ∈ Er(p−1). (25)

According to (21), fr(j) · Tp + mp = fr(i) · Tp−1 + mp−1,

indicating that the sensor at fr(j) ·Tp+mp is shared by Er(p)

and Er(p−1). As mentioned earlier, sharing a sensor reduces

the number of physical sensors, and an additional ULA set (see
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Fig. 1. Examples of SO-Fractal arrays and their difference co-arrays (non-negative part only): (a) nested array (as generator), (b) the second-order difference
co-array of the nested array, (c) SO-Fractal (r = 2) generated from the nested array, (d) the second-order difference co-array of the SO-Fractal generated from
the nested array, (e) expanded coprime array (as generator), (f) the second-order difference co-array of the expanded coprime array, (g) SO-Fractal (r = 2)
generated from the expanded coprime array, (h) the second-order difference co-array of the SO-Fractal generated from the expanded coprime array.

φ3 in the proof of Proposition 1) can be obtained to increase

the number of consecutive co-array lags.

C. Examples

We give an example to illustrate how a simple generator

is gradually expanded to a fractal array based on high-

order cumulants. A MRA {0, 1, 3} (see Fig. 2(a)) is cho-

sen as the generator, and its second-order difference co-

array is {−3,−2,−1, 0, 1, 2, 3} with M = 7. From (12),

the SO-Fractal F2 = E2(1) (see Fig. 2(c)) is generated

from G = {0, 1, 3} with the fractal order r = 2, and its

second-order difference co-array contains continuous virtual

sensors from −24 to 24. Therefore, the expanding factor

of the second-level subarray of the 4th-O-Fractal is T2 =
|{−24,−23, · · · , 23, 24}| = 72 · 1 + (72 − 1) · 0 = 49. By

setting the offset term m2 = −0 · 49 + 24 · 1 + 0 = 24, the

physical sensor at 24 is shared by the first subarray and the

second subarray as shown in Fig. 2(e).

IV. PROPERTIES OF 2qTH-O-FRACTAL

For the proposed 2qth-O-Fractal with closed-form sensor

positions, the 2qth-O-Fractal of large consecutive difference

co-array (Criterion 1) and hole-free difference co-array (Cri-

terion 3) are now discussed.

A. Analysis of Consecutive 2qth-Order Difference Co-Array

We first analyze the 2qth-order difference co-array of the

2qth-O-Fractal. Based on Proposition 1, and the following

corollary related to the consecutive co-array segment can be

derived.

Corollary 1: Consider a generator array G with L sensors

whose second-order difference co-array satisfies |U| = M =
O(L2). Let E2q

r = ∪q
l=1Er(l) denote the 2qth-O-Fractal with

N sensors created by G. The number of consecutive lags in

its 2qth-order difference co-array is

|U2q| = O(N2q), (26)

where N ≤ qLr − q + 1.

Proof: We first focus on the number of physical sensors

in 2qth-O-Fractal. According to Theorem 2 in [3], the number

of sensors in the first subarray Er(1) satisfies N1 ≤ Lr. As we

have seen, a common sensor is shared by every two adjacent

subarrays, and thus the number of sensors in 2qth-O-Fractal

becomes

N = qN1 − q + 1 ≤ qLr − q + 1. (27)

In addition, if the generator G has hole-free second-order

difference co-array, then N = qLr − q + 1 is achieved.

Next, we consider the number of consecutive lags pro-

vided by 2qth-O-Fractal. It is concluded in Proposition 1

that |U2q| ≥ Tq+1 (q ≥ 1). We use mathematical induc-

tion to prove that Tq+1 = Oc(ct(q)M
rq) (q ≥ 1) and

the coefficient of highest-order term (denoted by ct(q)) is

1. The notation Oc(g(N)) indicates g(N) can be achieved

asymptotically when N tends to infinity with the argument

g(N) as the highest-order term including coefficient, and

f(N) = Oc(g(N)) means limN→∞
f(N)
g(N) = 1.

For q = 1 and q = 2, it is obvious that T2 = Mr =
Oc(ct(1)M

r) with ct1 = 1 and T3 = M2r + Mr −
1 = Oc(ct(2)M

2r) with ct(2) = 1. Assume that Tk =
Oc(ct(k−1)M

r(k−1)) with ct(k−1) = 1 for q = k − 1 and

Tk+1 = Oc(ct(k)M
r(k)) with ct(k) = 1 for q = k. Then for

q = k + 1,

Tk+2 = Mr · Tk+1 + (Mr − 1) · Tk (28)

= Oc(ct(k)M
r(k+1) + ct(k−1)M

rk − ct(k−1)M
r(k−1)).

Extracting the highest-order term (with degree r(k + 1)) of

Tk+2, we obtain

Tk+2 = Oc(ct(k+1)M
r(k+1)) = Oc(M

r(k+1)). (29)

Therefore, we conclude that

Tq+1 = Oc(ct(q)M
rq), q ≥ 1

ct(q) = 1. (30)

Since M = O(L2) and N ≤ qLr − q + 1 = O(Lr), we

have

Mr = O(N2). (31)

Therefore, the number of consecutive 2qth-order difference

co-array lags provided by 2qth-O-Fractal satisfies

|U2q| ≥ Tq+1 = O(Mrq) = O(N2q). (32)

Since no array can have more than O(N2q) elements in its

2qth-order difference co-array according to Definition 1, we
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Fig. 2. An example for the process from a generator array to the 4th-O-Fractal, (a) generator array, (b) the second-order difference co-array of the generator
array (non-negative part only), (c) SO-Fractal with fractal order r = 2, (d) the second-order difference co-array of the SO-Fractal (non-negative part only),
(e) 4th-O-Fractal with fractal order r = 2, (f) the fourth-order difference co-array of the 4th-O-Fractal (which has holes and only the non-negative and
consecutive part is shown here).

have |U2q| ≤ O(N2q). In conclusion, |U2q| = O(N2q) is

derived, which completes the proof.

According to (32) in Corollary 1, O(N2q) uDOFs (con-

secutive 2qth-order difference co-array lags) can be provided

by the proposed 2qth-O-Fractal, which is significantly larger

than O(N2) provided by the original fractal array or other

structures exploiting the second-order difference co-array. Fur-

thermore, for an example with INA [12] as the generator, we

can prove that the associated 2qth-O-Fractal provides more

uDOFs than existing structures (SE-2qL-NA [9] and 2qL-NA

[8]) based on the 2qth-order difference co-array, as shown in

the following proposition. The INA with NG = N
′

1 +N
′

2 + 1
(NG > 5) physical sensors is defined as

G
′

= G
′

1 ∪G
′

2 ∪G
′

3, G
′

1 = [0, N
′

1 − 1],

G
′

2 = {n · (N
′

1 + 2) +N
′

1 | n ∈ [0, N
′

2 − 1]},

G
′

3 = {N
′

1N
′

2 +N
′

1 + 2N
′

2 − 1}, (33)

where
(
N

′

1, N
′

2

)
=

(
NG

2 − 1, NG

2

)
if NG is even, or

(
N

′

1, N
′

2

)
=

(
NG−1

2 − 1, NG+1
2

)
if NG is odd [12], [14].

Proposition 2: For the 2qth-O-Fractal E
2q
1 = ∪q

l=1(E1(l))

(q ≥ 2) generated by G
′

, the number of consecutive lags

provided by its 2qth-order difference co-array exceeds those

of SE-2qL-NA [9] and 2qL-NA [8] under the same number of

physical sensors.

Proof: Note that |E2q
1 | = qNG− q+1. For even NG, one

has |E2q
1 | = qNG− q+1 = 2q(N

′

1+1)− q+1. Then, for the

SE-2qL-NA with 2q(N
′

1 + 1)− q + 1 =
∑2q

m=1(Nm − 1) + 2
physical sensors, set (N1, · · · , Nq−1, Nq, · · · , N2q) = (N

′

1 +
2, · · · , N

′

1+2, N
′

1+1, · · · , N
′

1+1), which implies the optimal

allocation strategy is adopted and the number of consecutive

lags achieved is Lq = 2q(N
′

1+2)q−1(N
′

1+1)q+1+2q−1(N
′

1+
2)q−1(N

′

1 + 1)q−1 + 1. For the 2qth-O-Fractal, T2 = Mr =
2(N

′

1+1)2+4(N
′

1+1)−3 according to the number of DOFs

obtained by the second-order difference co-array of INA [12].

Next, we prove that Tq+1 > Lq is true for q ≥ 2 by

mathematical induction. For q = 2 and q = 3, one obtains

T3 − L2 = 2N
′

1(6N
′2
1 + 20N

′

1 + 11)− 2 > 0, (34)

T4 − L3 = 2N
′

1{N
′

1[4N
′

1(N
′

1(4N
′

1 + 27) + 61)

+ 199] + 44} − 10 > 0. (35)

Assume that Tk+1 > Lk and also Tk+2 > Lk+1 for q = k
and q = k + 1. Then, for q = k + 2,

Tk+3 − Lk+2 = MrTk+2 + (Mr − 1)Tk+1 − Lk+2

> MrLk+1 + (Mr − 1)Lk − Lk+2

= 2k[2N
′

1(N
′

1 + 2) + 3]{N
′

1[2N
′

1(N
′

1 + 3) + 5]− 1}

(N
′

1 + 1)k−1(N
′

1 + 2)k−1 + 4N
′

1(N
′

1 + 4) + 4 > 0, (36)

which completes the proof of Tq+1 > Lq (q ≥ 2 and NG is

even).

For odd NG, one has |E2q
1 | = qNG− q+1 = q(2N

′

1+3)−
q + 1, and T2 = Mr = (2N

′

1 + 3)2/2 + 2(2N
′

1 + 3) − 7/2
[12], [14]. Then, the sensors of SE-2qL-NA are allocated by

(N1, · · · , N2q−1, N2q) = (N
′

1+2, · · · , N
′

1+2, N
′

1+1) accord-

ing to the optimization strategy, and the number of consecutive

lags is Lq = 2q(N
′

1+2)2q−1(N
′

1+1)+2q−1(N
′

1+2)2q−2+1.

Similarly, one can prove Tq+1 > Lq for q ≥ 2 by mathematical

induction, and the details are omitted.

Due to Corollary 4 in [9], an optimized SE-2qL-NA always

provides more consecutive lags than any configurations of

2qL-NA with the same number of sensors with N2q > 2.

Therefore, the number of consecutive 2qth-order difference co-

array lags provided by the proposed 2qth-O-Fractal is greater

than those provided by SE-2qL-NA and 2qL-NA.

In Proposition 2, we prove that the number of uDOFs pro-

vided by 2qth-O-Fractal with INA (NG > 5) as the generator

array exceeds those of SE-2qL-NA and 2qL-NA, where the

number of physical sensors covers a wide range including both

small and large numbers. However, the asymptotic number

of uDOFs when N tends to infinity and its relationship with

q are of great interest, which depends on the coefficient of

the highest-order term. Assume that Oc(CFN
2q) uDOFs can

be provided by the 2qth-O-Fractal. To further compare the

coefficient CF with those of existing structures and explore

its relationship with cumulant order q, Proposition 3 is given

below. The IMISC structure with 6 subarrays based on the

second-order difference co-array is chosen as the generator
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array, and its sensor position set is defined as [15]

GIM = GIM1 ∪GIM2 ∪GIM3 ∪GIM4 ∪GIM5 ∪GIM6, (37)

GIM1 = {2g1 | g1 ∈ [0, NM

4 − 1]},

GIM2 = {g2 +
NM

2 − 1 | g2 ∈ [0, 1]},

GIM3 = {NM−2
2 g3 +NM − 2 | g3 ∈ [0, NM

4 − 2]},

GIM4 = {NMg4 +
N2

M+6NM

8 | g4 ∈ [0, NG −NM − 1]},

GIM5 = {NM+2
2 g5 +NMNG −

7N2
M−2NM−8

8 |

g5 ∈ [0, NM

4 − 2]},

GIM6 = {2g6 +NMNG −
3N2

M+2NM−4
4 | g6 ∈ [0, NM

4 − 1]},

where NG > 9 is the sensor number, and NM = 4
⌊
NG+2

6

⌋
.

Proposition 3: The number of consecutive co-array lags

Tq+1 provided by 2qth-O-Fractal with generator GIM is given

by

Tq+1 = Oc(CFN
2q) = Oc(

2q

q2q3q
N2q), q ≥ 1, (38)

where N is the physical sensor number. Consider 2qL-NA

[8] and SE-2qL-NA [9] with the same sensor number. The

number of consecutive co-array lags in 2qL-NA and SE-2qL-

NA is denoted as Lq = Oc(CLN
2q) and Sq = Oc(CSN

2q),
respectively. We have

lim
N→+∞

Tq+1

Lq

=
CF

CL

=
8q

2 · 3q
> 1, q ≥ 2, (39)

lim
N→+∞

Tq+1

Sq

=
CF

CS

=
4q

3q
> 1, q ≥ 2. (40)

Proof: In Corollary 1, we have proven that Tq+1 =
Oc(ct(q)M

rq) (q ≥ 1) and the coefficient of the highest-order

term ct(q) = 1.

Choosing IMISC as the generator, the parameter Mr of the

2qth-O-Fractal E2q
r for r = 1 satisfies

Mr =
2N2

G

3
−

2NG

3
+ ct0, (41)

where ct0 is a constant with [15]

ct0 =







−1, mod (NG, 6) = 3 or 4,
5
3 , mod (NG, 6) = 2 or 5,
3, mod (NG, 6) = 0 or 1.

(42)

According to NG = N+q−1
q

and (41), we obtain

Mr =
2N2

3q2
+N

(
2

3q
−

4

3q2

)

+
2

3q2
−

2

3q
+ ct0. (43)

Combining (30) and (43) leads to

Tq+1 = Oc(ct(q)M
rq) = Oc(

2q

3qq2q
N2q) = Oc(CFN

2q).

(44)

For 2qL-NA and SE-2qL-NA, the sensor number of the i-th
subarray is Ni =

Nt+2q−1
2q . Ni follows the optimal allocation

strategy achieving maximum number of consecutive co-array

lags without constraining Ni to be an integer [8], [9]. As a

result, the number of consecutive lags in 2qL-NA and SE-2qL-

NA is respectively [8], [9]

Lq = 22−2q
(

N+2q−1
q

)2q−1 (
N+2q−1

2q + 1
)

− 1, q ≥ 2,

(45)

Sq = 2−q
(

N+2q−1
q

)2q

+ 21−q
(

N+2q−1
q

)2q−2

+ 1, q ≥ 2.

(46)

Focusing on the coefficient of the highest-order term (i.e.,

N2q), we obtain

Lq = Oc(CLN
2q) = Oc(

1

22q−1q2q
N2q), (47)

Sq = Oc(CSN
2q) = Oc(

1

2qq2q
N2q). (48)

Combining (47), (48) and (44), it can be derived that

lim
N→+∞

Tq+1

Lq

=
CF

CL

=
8q

2 · 3q
> 1, q ≥ 2, (49)

lim
N→+∞

Tq+1

Sq

=
CF

CS

=
4q

3q
> 1, q ≥ 2. (50)

Therefore, CF > CL and CF > CS . For a large sensor

number N , the number of consecutive co-array lags provided

by the proposed structure is approximately 8q

2·3q times that

of 2qL-NA and 4q

3q times that of SE-2qL-NA. The ratio of

uDOFs number provided by 2qth-O-Fractal to that provided

by existing structures increases exponentially with cumulant

order q.

Recently, a tight upper bound κ4(N) on the number of

DOFs for q = 2 was derived in [61], given by

κ4(N) =
N4

4
−

N3

2
+

7N2

4
−

3N

2
+ 1 = Oc(

N4

4
), (51)

where the notation Oc(g(N)) indicates g(N) can be achieved

asymptotically when N tends to infinity with the argument

g(N) as the highest-order term including coefficient, and

f(N) = Oc(g(N)) means limN→∞
f(N)
g(N) = 1. For a suffi-

ciently large N , we have limN→∞ κ4(N) = N4

4 .

Derivation of a tight upper bound on the number of DOFs

for any q is a challenging problem due to the extremely large

number of co-array elements (more complicated cases similar

to those in [61] should be considered) and also space limit.

In Proposition 3, we focus on the coefficient of highest-order

term, indicating that the asymptotic number of uDOFs of the

proposed structure is larger than those of existing structures

when the number of sensors N tends to infinity. Therefore,

we study the asymptotic upper bound on the number of DOFs

when N tends to infinity instead to further verify the results

in Proposition 3, and this bound can also be considered as a

loose upper bound on the number of uDOFs.

Recall the definition of the 2qth-order difference co-array,

i.e., D2q =
{∑q

k=1 µk −
∑2q

l=q+1 µl | µk, µl ∈ A
}

.
(
N
q

)
=

N !
q!(N−q)! returns the number of combinations of choosing q
distinct elements from N , with N ! being the factorial of N .

Similar to the analysis in [61] and [43], only for the case

where µ1, µ2, · · · , µ2q are all distinct, the number of virtual

elements associated reaches O(N2q). For all other cases, the
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highest-order is smaller than 2q. By picking q non-ordered

distinct numbers from N physical sensors to form
∑q

k=1 µk,

followed by picking another q non-ordered distinct numbers

from the rest N − q sensors to generate −
∑2q

l=q+1 µl, the

number of combinations is

F2q =

(
N

q

)

·

(
N − q

q

)

=
N !

q!q!(N − 2q)!
= Oc(

N2q

q!q!
).

(52)

Therefore, when N tends to infinity, the number of DOFs

(unique difference co-array elements) should be smaller than

Oc(
N2q

q!q! ), with N2q

q!q! being the asymptotic upper bound. Simply,

we have

Cub(2q) =
1

q!q!
≥

1

qqqq
=

1

q2q
. (53)

Let CF , CL, and CS represent the coefficients of the

highest-order term N2q of the number of uDOFs provided

by 2qth-O-Fractal, 2qL-NA, and SE-2qL-NA, respectively. As

proved in Proposition 3, we have

CF =
2q

3qq2q
, CL =

1

22q−1q2q
, CS =

1

2qq2q
. (54)

All of them are smaller than Cub(2q) (the coefficient of the

upper bound). Furthermore, the asymptotic upper bound N2q

q!q!
indicates that it decreases rapidly with the increase of q,

clarifying potential margin for further improvement.

B. Discussion on the Hole-Free Property for q = 2

Optimizing the sparse array configuration with a large

and also hole-free difference co-array (Criteria 1 and 3)

is a difficult problem. For q > 2, the hole-free property

has not been considered in the literature to the best of our

knowledge. The hole-free property requires that the largest

element q[max(A)−min(A)] in the 2qth-order difference co-

array (according to Definition 1) must belong to the central

virtual ULA segment. This requirement is in conflict with the

criterion of achieving a large consecutive difference co-array.

In previous works, the array structures designed for the

2qth-order cumulants only achieve hole-free in the case of

q = 2, and provide O(N3.17) DOFs at most. Several sparse

arrays providing hole-free fourth-order difference co-array

include 2L-FO-NA [49], CNA [50], GCNA [51], and E-FO-

Cantor [52]. These structures are not flexible, and the other

criteria are not considered in the design process. Therefore,

we focus on the most common special case of q = 2, and

consider the selection of the generator array based on which

the generated 4th-O-Fractal provides hole-free fourth-order

difference co-array.

The hole-free property of the generator G is inherited

by the corresponding SO-Fractal for q = 1 [37]. However,

the generator G has a hole-free second-order difference co-

array, which is not a sufficient condition for 4th-O-Fractal to

achieve a hole-free fourth-order difference co-array. A stronger

constraint on G is required to ensure the hole-free property

for q = 2. Before discussing this constraint in Proposition 4,

Lemma 2 is introduced first.

Lemma 2: Consider a generator array G with hole-free sum

co-array S and second-order difference co-array D. The sum

co-array Sr of the associated Fr has |Sr| = Mr consecutive

lags with

Sr =
[
2(Mr−1)min(G)

M−1 , Mr + 2(Mr−1)min(G)
M−1 − 1

]

.

Proof: Proved by mathematical induction. For r = 0, one

has F0 = {0} and S0 = {0} = [0,M0 − 1], while for r = 1,

F1 = G and S1 = S = [2min(G), 2max(G)]. Since D is hole-

free and |D| = M , one has M = 2max(G) − 2min(G) + 1
and S1 = [2min(G),M + 2min(G)− 1]. For r = k, assume

Sk =
[ 2(Mk−1)min(G)

M−1 , Mk + 2(Mk−1)min(G)
M−1 − 1

]
. (55)

Then, for r = k + 1,

Sk+1 = {µ1 + µ2 | µ1, µ2 ∈ Fk+1}

= {s+ u ·Mk + (t+ v ·Mk) | s, t ∈ Fk, u, v ∈ G}

= {(s+ t) + (u+ v) ·Mk | s, t ∈ Fk, u, v ∈ G}

= {p+ q ·Mk | p ∈ Sk, q ∈ S1}. (56)

According to Sk with |Sk| = Mk in (55), Sk+1 is hole-free

and

Sk+1 =
[ 2(Mk+1−1)min(G)

M−1 ,Mk+1 + 2(Mk+1−1)min(G)
M−1 − 1

]
,

which completes the proof.

Proposition 4: A sufficient condition for the 4th-O-Fractal

E
4
r to possess a hole-free fourth-order difference co-array D4

is that the associated generator array G has hole-free second-

order difference co-array D and sum co-array S. In this case,

D4 can be expressed as

D4 =
[
1−M2r,M2r − 1

]
. (57)

Proof: From Proposition 1, one has

D4 ⊇ φ4 =
[
−T3−1

2 , T3−1
2

]
=

[

−M2r+Mr−2
2 , M2r+Mr−2

2

]

.

Based on the given G, construct a set φ5 ⊆ D4, given by

φ5 = {(µ1 − µ2)− (µ3 − µ4)|µ1, µ4 ∈ Er(2), µ2, µ3 ∈ Er(1)}

= {(µ1 + µ4)− (µ2 + µ3)|µ1, µ4 ∈ Er(2), µ2, µ3 ∈ Er(1)}

= {(s+ t) · T2 − (u+ v) + 2m2 | s, t, v, u ∈ Fr}

= {(s+ t) ·Mr − (u+ v) + 2m2 | s, t, v, u ∈ Fr}

= {p ·Mr − q + 2m2 | p, q ∈ Sr}. (58)

According to Lemma 2, one obtains

φ5 =
[

2m2 +
2(M2r−2Mr+1)min(G)

M−1 −Mr + 1,

2m2 +
2(M2r−2Mr+1)min(G)

M−1 +M2r −Mr
]

.

The offset term m2 is

m2 = −fr(j) ·M
r + fr(i) = (gi − gjM

r) · Mr−1
M−1 . (59)

Since G has hole-free second-order difference co-array, gi =
max(G) = min(G)+ M−1

2 and gj = min(G). Then, 2m2 can

be represented as Mr − 1− 2(M2r−2Mr+1)min(G)
M−1 , and thus

φ5 = [0,M2r − 1]. (60)
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Similarly,

φ6 = {(µ1 − µ2)− (µ3 − µ4)|µ1, µ4 ∈ Er(1), µ2, µ3 ∈ Er(2)}

= [1−M2r, 0] ⊆ D4. (61)

Note that the self-differences within subarrays are included in

the set of cross-differences between subarrays, and therefore

D4 = φ4∪φ5∪φ6. The longest central ULA in D4 is φ4∪φ5∪
φ6. As a result, the 4th-O-Fractal E4

r has hole-free fourth-order

difference co-array with

D4 = [1−M2r,M2r − 1], (62)

and the number of consecutive lags in the fourth-order differ-

ence co-array is |D4| = 2M2r − 1.

According to Proposition 4, to ensure the hole-free property

of G is inherited by the 4th-O-Fractal, both the second-order

difference and sum co-arrays of G should be hole-free. The

selection of an appropriate generator is a challenging problem.

For example, the notable NA has contiguous second-order

difference co-array, but its sum co-array has holes.

C. Examples of Appropriate Generator Arrays

We present several array structures meeting the mentioned

constraint on the generator, including ULA, postage stamp

bases [62], [63] extracted from number theory, general sym-

metric array [30], [64], and concatenated NA [64]. By choos-

ing a proper generator, 4th-O-Fractal with N physical sensors

can provide O(N4) hole-free fourth-order difference co-array

lags.

1) ULA: For a ULA, obviously its sum and difference co-

arrays are hole-free, satisfying Proposition 4.

2) Extremal restricted additive 2-bases: The extremal re-

stricted additive 2-bases comes from the postage stamp prob-

lem in number theory [62], [63], [65], [66].

For an extremal restricted additive 2-bases Ak = {0 < a1 <
a2 < · · · < ak}, every integer in [0, 2ak] is the sum of two

elements in Ak [63], [66]. By regarding Ak as the set of sensor

positions, its sum co-array SA ≜ {µ1 + µ2 | µ ∈ Ak} is

hole-free. The algorithms in [63], [66] effectively reduce the

feasible region for search and obtain Ak for 1 ≤ k ≤ 47.

Furthermore, for each k, there is at least one Ak that is

symmetric, i.e., Ak = ak − Ak [63], [66]. According to the

definition of the extremal restricted additive 2-bases and the

following proposition, the symmetric Ak (k ≤ 47) provided

in [63], [66] can be employed as the generator.

Proposition 5: Consider an integer set Ak = {a0 < a1 <
· · · < ak} representing the sensor positions of a symmetric

array, where Ak = a0+ak−Ak. If the sum co-array (denoted

by SA) of Ak is hole-free, then its second-order difference

co-array DA is also hole-free, and vice versa.

Proof: Due to the symmetric property of Ak, the second-

order difference co-array of Ak is

DA = {µ1 − µ2 | µ1, µ2 ∈ Ak}

= {µ1 − (a0 + ak − µ3) | µ1, µ3 ∈ Ak}

= {µ1 + µ3 − a0 − ak | µ1, µ3 ∈ Ak}. (63)

If the sum co-array SA is hole-free, we simply have SA =
[2a0, 2ak], and the following can be derived:

DA = {µ1 + µ3 − a0 − ak | µ1, µ3 ∈ Ak} (64)

= {µ4 − a0 − ak | µ4 ∈ SA} = [a0 − ak, ak − a0].

As a result, the second-order difference co-array DA is also

hole-free.

Next, we consider the case where the second-order differ-

ence co-array DA is hole-free. Since DA = [a0 − ak, ak − a0]
is hole-free, we obtain

SA = {µ5 + a0 + ak − µ6 | µ5, µ6 ∈ Ak}

= {µ7 + a0 + ak | µ7 ∈ DA} = [2a0, 2ak], (65)

which means that the sum co-array SA is also hole-free.

The symmetric extremal restricted additive 2-bases Ak is a

possible generator to ensure that hole-free property is inherited

by the associated 4th-O-Fractal E4
r . Moreover, the definition of

extremal restricted additive 2-bases implies that its redundancy

is low. Utilizing this class of arrays as a generator leads to a

large number of DOFs.

3) General symmetric array: Any linear array with hole-

free second-order difference co-array is able to form a general

symmetric array according to Definition 5.

Definition 5: The symmetric array Asym is constructed from

an original array A1 with Asym ≜ A1 ∪ A2, where A2 ≜

{max(A1) + min(A1) − µ | µ ∈ A1} is the reversed version

of the original array A1 [30].

Proposition 6: Denote the second-order difference (sum)

co-array of Asym and A1 as Dsym (Ssym) and D1 (S1), re-

spectively. If D1 (S1) is hole-free, then Dsym (Ssym) is also

hole-free.

Proof: Since the maximum and minimum values in Asym

and A1 are the same, if D1 is hole-free, Dsym ⊆ D1. According

to the definition, we have Asym ⊇ A1 and Dsym ⊇ D1. There-

fore, A1 and Asym share the same second-order difference co-

array with Dsym = D1, which means Dsym is also hole-free.

Similarly, if S1 is hole-free, Ssym is also hole-free, which

completes the proof.

According to Proposition 5 and Proposition 6, the general

symmetric array satisfies the condition given in Proposition 4.

Symmetric structures of this type greatly expand the optional

range of generators, and the proposed 4th-O-Fractal offers

hole-free fourth-order difference co-array with O(N4) DOFs.

Based on Propositions 4, 5, and 6, we have the following

Corollary 2.

Corollary 2: Consider A1 having hole-free second-order

difference co-array with O(N2
1 ) DOFs, where N1 = |A1|. The

symmetric array Asym is constructed from A1. By setting the

generator G = Asym, the generated N -sensor 4th-O-Fractal has

hole-free fourth-order difference co-array with O(N4) DOFs.

Proof: The number of sensors in Asym (Definition 5) is

not greater than 2N1 − 2, since the maximum and minimum

elements are shared by A1 and A2 at least. The number of

DOFs provided by the second-order difference co-array of

Asym is Msym = O(N2
1 ) = O(N2

2 ), where N2 represents the

number of sensors in Asym. By choosing the array generator

G = Asym, the 4th-O-Fractal containing N ≤ 2Nr
2 −1 sensors
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has hole-free fourth-order difference co-array with |D4| DOFs

achieved. Since both the sum and difference co-arrays of G are

hole-free, one has M = 2max(G)− 2min(G)+1 = O(N2
2 ),

and |D4| = 2M2r − 1 = O(N4r
2 ) = O(N4) according to

Proposition 4.

4) Concatenated NA: Concatenated NA is proposed in

active sensing applications exploiting sum co-arrays [64]. It

is defined as follows.

Definition 6: The sensor position set of a concatenated NA

is defined as CN1,N2
≜ C1∪C2∪C3, where C1 = [0, N1−1],

C2 = {µ·(N1+1)+N1 | µ ∈ [0, N2−1]}, C3 = {µ+N2(N1+
1) | µ ∈ [0, N1 − 1]}, N1 and N2 are non-negative integers.

We discuss the number of DOFs by giving the following

corollary, which is related to Proposition 4.

Corollary 3: If the generator is chosen as G = CN1,N2
,

the associated 4th-O-Fractal with N sensors has a hole-free

fourth-order difference co-array with O(N4) DOFs achieved.

Proof: The number of sensors in the generator is L =
|G| = |CN1,N2

|, and N ≤ 2Lr − 1. According to [64], both

the sum and difference co-arrays are hole-free, and the number

of DOFs offered by the second-order difference co-array of

CN1,N2
is Mcn = O(L2). Therefore, M = Mcn = O(L2),

and |D4| = 2M2r − 1 = O(L4r) = O(N4) according to

Proposition 4.

We have shown that for the special case of q = 2, Criteria

1-3 can be satisfied. Other generalized properties in Criteria

4-5 will be discussed in the companion paper of Part II [60].

V. COMPARISONS AND SIMULATION RESULTS

In this section, the superiority of the proposed design

is verified in terms of estimation accuracy and resolution

capability compared with existing structures.

A. Comparisons with Existing Structures Having Large 2qth-

Order Difference Co-Array

Two existing array structures, i.e., 2qL-NA [8] and SE-2qL-

NA [9], are designed to pursue large 2qth-order difference

co-array. The number of achievable consecutive 2qth-order

difference co-array lags are compared in Table I.

We first focus on the property of large consecutive differ-

ence co-array. MRA [10], ENA [13], INA [12], and IMISC

[15], containing high uDOFs in their second-order difference

co-arrays, are chosen as generators, and the properties of

large consecutive difference co-array and closed-form sensor

positions (Criteria 1 and 2) can be inherited by their associated

2qth-O-Fractal. For q = 2 and q = 3, specific examples with

details of generators, number of sensors, and fractal orders,

etc., are listed in Tables II and III. Obviously, significantly

increased consecutive co-array lags (equivalent to the uniform

DOFs) have been achieved by our proposed structure 2qth-O-

Fractal compared with existing structures.

In the previous Proposition 2, we theoretically proved that

the 2qth-O-Fractal with INA as a generator can provide more

consecutive lags than existing structures with the same number

of sensors, which is consistent with the results in Tables II and

III. Proposition 3 is verified in Fig. 3, where IMISC is the

generator for the 2qth-O-Fractal. The number of consecutive

TABLE I
COMPARISON OF THE CONSECUTIVE LAGS FOR DIFFERENT ARRAY

STRUCTURES BASED ON THE 2qTH-ORDER (q ≥ 2) DIFFERENCE CO-ARRAY

Array
Structures

Number of Physical
Sensors∗

Number of
Consecutive Lags

2qL-NA N =
∑2q

m=1
(Nm − 1) + 1 Lq = Oc(

1

22q−1q2q
N2q)†

SE-2qL-NA N =
∑2q

m=1
(Nm − 1) + 2 Sq = Oc(

1

2qq2q
N2q)†

2qth-O-Fractal N = qN1 − q + 1
Tq+1 = Oc(Mrq)‡,

can reach Oc(
2
q

3qq2q
N2q)†

∗ N is the total number of physical sensors, while Nm denotes the sensor
number in the m-th subarray.

† See the proof of Proposition 3.
‡ Proved in (30). M and r denote the length of longest central ULA segment

in the second-order difference co-array of the generator and the fractal order,
respectively.

TABLE II
EXAMPLES OF DIFFERENT STRUCTURES FOR q = 2

Array
Structures

(N1, . . . , N2q)
or N1

Number of
Sensors

Number of
Consecutive Lags

4L-NA (3, 2, 2, 3) 7 95
SE-4L-NA (3, 2, 2, 2) 7 109

4th-O-Fractal 1 4 7 181
4th-O-Fractal 2 4 7 181

4L-NA (3, 3, 3, 3) 9 215
SE-4L-NA (3, 3, 3, 2) 9 235

4th-O-Fractal 3 5 9 305
4th-O-Fractal 4 5 9 379

4L-NA (9, 8, 8, 9) 31 11519
SE-4L-NA (9, 8, 8, 8) 31 18577

4th-O-Fractal 5 16 31 28729
4th-O-Fractal 6 16 31 21169
4th-O-Fractal 7 16 31 24805
4th-O-Fractal 8 16 31 25439

Array
Structures

Type of
Generator

Generator
G

r and
M

4th-O-Fractal 1 MRA {0, 1, 4, 6} 1 and 13
4th-O-Fractal 2 ENA {1, 2, 5, 7} 1 and 13
4th-O-Fractal 3 ENA {1, 2, 3, 6, 9} 1 and 17
4th-O-Fractal 4 INA/MRA {0, 1, 4, 7, 9} 1 and 19
4th-O-Fractal 5 MRA {0, 1, 4, 6} 2 and 13
4th-O-Fractal 6 ENA G1

† 1 and 145
4th-O-Fractal 7 INA G2

‡ 1 and 157
4th-O-Fractal 8 IMISC G3

∗ 1 and 159

† G1 = {1, 2, 3, 4, 5, 6, 7, 8, 17, 25, 33, 41, 49, 57, 65, 73}.
‡ G2 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 25, 34, 43, 52, 61, 70, 78}.
∗ G3 = {0, 2, 4, 5, 6, 10, 15, 27, 39, 51, 63, 70, 77, 79, 81, 83}.

co-array lags with respect to the sensor number for q = 2 is

shown in Fig. 3(a), while the number of consecutive co-array

lags versus the cumulant order q is given in Fig. 3(b). It can

be seen clearly that the proposed 2qth-O-Fractal always offers

the largest number of consecutive lags among all structures.

B. Simulation Results for Structures with Large 2qth-Order

Difference Co-Array

Next, DOA estimation performance for structures with large

2qth-order difference co-array is evaluated. 2qth-O-Fractal,

2qL-NA, and SE-2qL-NA with N = 7 physical sensors and

q = 2 as listed in Table II are considered (here 2qth-O-Fractal

refers to 4th-O-Fractal 2 in Table II). The SS-MUSIC method

[8] is employed for DOA estimation.

For the first set of simulations, the maximum number of

resolvable sources of different array structures is studied.
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TABLE III
EXAMPLES OF DIFFERENT STRUCTURES FOR q = 3

Array
Structures

(N1, . . . , N2q)
or N1

Number of
Sensors

Number of
Consecutive Lags

6L-NA (2, 2, 2, 2, 2, 2) 7 191
SE-6L-NA (2, 2, 2, 2, 2, 1) 7 321

6th-O-Fractal 1 3 7 427

6L-NA (5, 5, 5, 5, 5, 5) 25 37499
SE-6L-NA (5, 5, 5, 5, 5, 4) 25 102501

6th-O-Fractal 2 9 25 122353
6th-O-Fractal 3 9 25 137751
6th-O-Fractal 4 9 25 172315

Array
Structures

Type of
Generator

Generator
G

r and
M

6th-O-Fractal 1 MRA {0, 1, 3} 1 and 7
6th-O-Fractal 2 MRA {0, 1, 3} 2 and 7
6th-O-Fractal 3 ENA G4

† 1 and 51
6th-O-Fractal 4 INA G5

‡ 1 and 55

† G4 = {1, 2, 3, 4, 5, 11, 16, 21, 26}.
‡ G5 = {0, 1, 2, 3, 8, 13, 18, 23, 27}.
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Fig. 3. Comparison of the number of consecutive co-array lags.

Here 45 sources are uniformly distributed between −60◦

and 60◦. The input SNR and the number of snapshots are

20 dB and 500000, respectively. To evaluate the number of

distinguishable sources, a large number of snapshots is used

to calculate the fourth-order cumulant matrix [9]. The DOA

estimation results for q = 2 are shown in Fig. 4, where it is

obvious that only the 2qth-O-Fractal is capable of resolving all

the 45 sources successfully. In addition, based on the second-

order difference co-array (q = 1), the optimized MRA with 7
physical sensors provides 35 consecutive co-array lags, which

is smaller than those offered by high-order cumulants based

7-sensor arrays listed in Tables II and III. As shown in Fig.

5, MRA can only resolve up to 17 sources (equal to half

of its number of consecutive co-array lags minus one). The

identifiability of high-order cumulants based method is much

better than that of second-order statistics based approach with

a fixed sensor number.

The second set of simulations is focused on estimation

accuracy. There are 10 independent sources uniformly dis-

tributed from −60◦ to 60◦. Fig. 6(a) gives the root mean square

error (RMSE) results with respect to input SNR, where the

number of snapshots is fixed at 10000. As the SNR increases,

the RMSE for each array structure decreases with that of

the proposed 2qth-O-Fractal (q = 2) being the best. The

estimation performance versus the number of snapshots is
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Fig. 4. DOA estimation results of different array structures. Results of (a)
2qL-NA (q = 2), (b) SE-2qL-NA (q = 2), and (c) 2qth-O-Fractal (q = 2).
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Fig. 5. DOA estimation results of MRA based on the second-order difference
co-array.

shown in Fig. 6(b) with the input SNR being 20 dB. Similarly,

the RMSE of each structure decreases with the increase of the

snapshot number, and the best performance is achieved by the

proposed 2qth-O-Fractal (q = 2).

C. Comparisons of Structures Satisfying Hole-Free Property

Comparisons of array structures with the hole-free fourth-

order difference co-arrays are presented next. Representative

hole-free structures include 2L-FO-NA [49], CNA [50], and

GCNA [51]. However, their fourth-order difference co-arrays

only provide O(N2) DOFs with N physical sensors. As

discussed in Section IV-B, when the concatenated NA is

chosen as the generator, O(N4) DOFs can be achieved by

the associated 4th-O-Fractal with hole-free co-array.

Fig. 7 shows the number of consecutive co-array lags

versus the number of physical sensors N of 2L-FO-NA,

CNA, GCNA, and 4th-O-Fractal (with concatenated NA as the

generator array). The 4th-O-Fractal always achieves the largest

number of consecutive co-array lags among all structures

for N ≥ 15. In addition, examples are given in Table IV

for comparison, where the 4th-O-Fractal provides 1457 and

4049 consecutive lags for N = 15 and N = 21, which is

superior to other structures. Note that 4th-O-Fractal in Table

IV specifically refers to fractal array satisfying the sufficient

condition in Proposition 4.

D. Simulation Results for Structures Satisfying Hole-Free

Property

4th-O-Fractal (refers to 4th-O-Fractal 9), 2L-FO-NA, CNA,

and GCNA with N = 15 physical sensors (as listed in

Table IV) are involved in estimation performance comparison

using the SS-MUSIC method [8]. The maximum number of
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Fig. 6. Estimation performance of different structures with holes in their
difference co-arrays.
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for different array structures satisfying the hole-free property (q = 2).

resolvable sources is tested. There are 52 sources uniformly

distributed from −60◦ to 60◦, and the input SNR and the

number of snapshots are set as 20 dB and 50000, respectively.

The DOA estimation results are shown in Fig. 8, where

only the 4th-O-Fractal is capable of resolving all 52 sources

successfully.

Then, consider 16 sources uniformly distributed between

−60◦ and 60◦. The RMSE versus the input SNR are shown

in Fig. 9(a) with the number of snapshots fixed at 1000, while

the RMSE versus the number of snapshots are given in Fig.

9(b) with the input SNR equal to 20 dB. Clearly, the proposed

4th-O-Fractal with hole-free fourth-order difference co-array

outperforms other existing structures.

VI. CONCLUSION

Based on the 2qth-order difference co-array, sparse array de-

sign via fractal geometries was studied, and a simple but effec-

tive systematic fractal framework was proposed. By optimizing

the generator according to given requirements, a fractal array

exploiting the 2qth-order difference co-array, referred to as

2qth-O-Fractal, was generated recursively with its properties of

interest inherited from the generator, showing high flexibility

in sparse array design satisfying multiple criteria. Specifically,

theoretical support was given to ensure that, O(N2q) DOFs

can be achieved by the proposed framework if the generator

has O(N2) second-order difference co-array lags. We also

showed that O(N4) hole-free fourth-order difference co-array

TABLE IV
COMPARISONS OF DIFFERENT ARRAY STRUCTURES SATISFYING

HOLE-FREE PROPERTY (q = 2)

Array
Structures

Hole-Free
Co-Arrays

Number of

Sensors*
Number of

Consecutive Lags

2L-FO-NA Yes N1 +N2 16N1N2 − 8N2 + 1
CNA Yes N1 +N2 MCN

†

GCNA Yes N1 +N2 MGCN
‡

4th-O-Fractal Yes 2N1 − 1 2M2r − 1

Array
Structures

Number of
Sensors

(N1, N2) or
N1

Number of
Consecutive Lags

2L-FO-NA 15 (8, 7) 841
CNA 15 (8, 7) 1201

GCNA 15 (8, 7) 1349
4th-O-Fractal 9 15 8 1457

2L-FO-NA 21 (11, 10) 1681
CNA 21 (11, 10) 2665

GCNA 21 (11, 10) 2885
4th-O-Fractal 10 21 11 4049

Array
Structures

Type of
Generator

Generator
G

Fractal Order
r and M

4th-O-Fractal 9 Concatenated NA C2,4 1 and 27
4th-O-Fractal 10 Concatenated NA C3,5 1 and 45

* Nm denotes the sensor number in the m-th subarray.
† MCN = 32N1N2 − 32N1 − 56N2 + 57.
‡ MGCN = 32N1N2 − 8N1 − 56N2 + 13.
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Fig. 8. DOA estimation results of different array structures satisfying hole-
free property. Results of (a) 2L-FO-NA, (b) CNA, (c) GCNA, and (d) Proposed
structure.

lags can be achieved for q = 2 if the sum and difference

co-arrays of the generator are hole-free. Simulation results

demonstrated that by employing an optimized array as the gen-

erator, the associated fractal array generated by the proposed

framework offers larger DOFs than existing structures, with

better performance achieved in terms of estimation accuracy

and resolution capability.

Properties of robustness and mutual coupling of the pro-

posed framework are analyzed in the companion Part II

[60]. In future work, it is interesting to further investigate
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Fig. 9. RMSE results of different array structures satisfying hole-free
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the theoretical performance analysis of estimation methods

based on high-order difference co-arrays, especially for the

underdetermined case.

APPENDIX A

PROOF OF PROPOSITION 1

We prove the proposition by mathematical induction. For

q = 1, it can be easily obtained by the recursive expres-

sion (20) that T2 = Mr. According to Theorem 1 in [3],

the second-order difference co-array of SO-Fractal satisfies

D2 ⊇ U
′

2 =
[
−T2−1

2 , T2−1
2

]
.

For q = p, assume that the 2pth-order difference co-array

of 2pth-O-Fractal satisfies

D2p ⊇ U
′

2p =
[

−
Tp+1−1

2 ,
Tp+1−1

2

]

. (66)

Then, for q = p+ 1, the (2p+ 2)th-order difference co-array

of (2p+ 2)th-O-Fractal is denoted by

D2p+2 =
{ p
∑

k=0

(µ2k+2 − µ2k+1) | µk ∈ E
2p+2
r

}

=
{

(µ2p+2 − µ2p+1)−

p−1
∑

k=0

(µ2k+2 − µ2k+1) | µk ∈ E
2p+2
r

}

⊇
{

(µ2p+2 − µ2p+1)− s | µk ∈ E
2p+2
r , s ∈ D2p

}

. (67)

According to (66), denote φ1 = {(µ1 − µ2) − µ3 | µ1, µ2 ∈
E
2p+2
r , µ3 ∈ U

′

2p} satisfying φ1 ⊆ D2p+2. Construct two sets

φ2 ⊆ φ1 ⊆ D2p+2 and φ3 ⊆ φ1 ⊆ D2p+2, defined as

φ2 =
{

(µ1 − µ2)− µ3 | µ1, µ2 ∈ Er(p+1), µ3 ∈ U
′

2p

}

=
{
(µ4 − µ5) · Tp+1 − µ3 | µ4, µ5 ∈ Er(1), µ3 ∈ U

′

2p

}

=
{
µ6 · Tp+1 − µ3 | µ6 ∈ D2, µ3 ∈ U

′

2p

}

⊇ φ′
2 =

{
µ6 · Tp+1 − µ3 | µ6 ∈ U

′

2, µ3 ∈ U
′

2p

}

=
[

−
Tp+1M

r−1
2 ,

Tp+1M
r−1

2

]

, (68)

φ3 =
{
(µ1 − µ2)− µ3 | µ1 = fr(i)Tp+1 +mp+1,

µ2 = fr(j)Tp +mp, µ3 ∈ U
′

2p

}
(69)

=
{
(fr(i)Tp+1 +mp+1 − fr(j)Tp −mp)− µ3 | µ3 ∈ U

′

2p

}
.

Substituting (21) into (69) and using Lemma 1, one obtains

φ3 =
{

(fr(i) − fr(j))(Tp+1 + Tp)− µ3 | µ3 ∈ U
′

2p

}

=
{

(Mr − 1)
Tp+1+Tp

2 − µ3 | µ3 ∈ U
′

2p

}

(70)

=
[
Tp+1(M

r−2)+Tp(M
r−1)+1

2 ,
Tp+1M

r+Tp(M
r−1)−1

2

]

.

The upper bound of the set φ′
2 is always greater than the lower

bound of φ3 since

(Tp+1M
r − 1)−

[
Tp+1(M

r − 2) + Tp(M
r − 1) + 1

]

= 2Tp+1 − TpM
r + Tp − 2,

= TpM
r + 2Tp−1(M

r − 1) + Tp − 2 > 0, (71)

where (20) is substituted to obtain the final result at the last

step. Therefore, the union of φ′
2 and φ3 is

φ′
2 ∪ φ3 =

[

−
Tp+1M

r−1
2 ,

Tp+1M
r+Tp(M

r−1)−1
2

]

. (72)

Due to the symmetric property of difference co-arrays, and the

relationships φ′
2 ⊆ φ2 ⊆ D2p+2 and φ3 ⊆ D2p+2, one has

D2p+2 ⊇
[

−
Tp+1M

r+Tp(M
r−1)−1

2 ,
Tp+1M

r+Tp(M
r−1)−1

2

]

.

(73)

From (20),

Tp+2 = Tp+1M
r + Tp(M

r − 1). (74)

Finally, (73) is simplified to

D2p+2 ⊇
[

−
Tp+2−1

2 ,
Tp+2−1

2

]

= U
′

2p+2, (75)

which completes the proof.
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