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High-Order Cumulants Based Sparse Array Design

via Fractal Geometries—Part II: Robustness and

Mutual Coupling
Zixiang Yang, Qing Shen, Wei Liu, Senior Member, IEEE, Yonina C. Eldar, Fellow, IEEE, Wei Cui

Abstract—Array robustness and mutual coupling are two
important factors affecting the direction finding performance
of various array structures. These properties are not typically
analyzed in DOA estimation based on 2qth-order difference
co-arrays. In the first part of this work, we proposed fractal
arrays for exploiting the 2qth-order difference co-array (2qth-O-
Fractal). In this second part, we analyze robustness and mutual
coupling leakage of the 2qth-O-Fractal framework. We introduce
a robustness analysis tool, and derive a fragility upper bound on
the 2qth-O-Fractal as a function of the generator array fragility
and the fractal order. Our results show that the robustness of
2qth-O-Fractal can be improved by designing a robust generator
or increasing the fractal order. The mutual coupling leakage
of 2qth-O-Fractal is also shown to be upper bounded by that
of its generator array. Simulation results demonstrate that the
proposed 2qth-O-Fractal has superior performance over existing
structures exploiting the 2qth-order difference co-array, in the
presence of random sensor damage and mutual coupling effect.

Index Terms—Sparse array design, difference co-array, high-
order cumulants, fractal, direction of arrival estimation.

I. INTRODUCTION

Linear sparse arrays have the ability to resolve far more

uncorrelated sources than the number of their physical sensors

based on the second-order difference co-array concept [1]–[5].

Notable sparse array structures such as minimum redundancy

array (MRA) [6], nested array (NA) [2], and co-prime array

(CPA) [1], possess an O(N2)-long central uniform linear array

(ULA) segment in their second-order difference co-arrays,

where N is the number of physical sensors. By exploiting

the 2qth-order difference co-array (a virtual array arising from

vectorizing the 2qth-order cumulant matrix of the received

data), O(N2q) virtual sensors can be achieved by existing

structures known as the 2q-level nested array (2qL-NA) [5] and

simplified and enhanced 2q-level nested array (SE-2qL-NA)

[7] with N physical sensors, leading to significantly improved

identifiability compared with second-order difference co-array

based ones. Note that methods based on high-order cumulants

are applicable to non-Gaussian sources only [8]–[13].
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With continued development of sparse array design meth-

ods, various design criteria have been taken into consideration

in designing structures based on the second-order differ-

ence co-array, including large consecutive difference co-array,

closed-form sensor positions, hole-free difference co-array,

robustness and economy, and low mutual coupling [14]–[16].

However, flexible sparse array design incorporating multiple

criteria is still a challenging problem for high-order difference

co-array exploitation.

The recently proposed flexible fractal array based on the

second-order difference co-array (referred to as SO-Fractal)

has properties inherited from its simple generator array [14],

[15]. Inspired by SO-Fractal, fractal array design based on

2qth-order cumulants (2qth-O-Fractal) has been proposed in

Part I [17]. To the best of our knowledge, this is the first

attempt to consider multiple criteria simultaneously in sparse

array design exploiting high-order cumulants. In Part I [17], a

closed-form sensor position expression of the 2qth-O-Fractal,

generated via a joint across-order (across different cumulant

order q) and inner-order (within the same cumulant order

q) fractal framework, is derived. It is shown that a large

consecutive difference co-array (O(N2q) DOFs) can be ob-

tained, with the property of hole-free inheritance discussed for

q = 2. In this part, two other factors affecting the estimation

performance in practical applications, i.e., mutual coupling

effect and robustness to sensor failures, are analyzed. Mutual

coupling effect reflects the fact that the output of any array

sensors is affected in practice by its neighboring sensors [14].

Robustness represents the reliability of difference co-arrays of

sparse arrays when sensor loss occurs in practice [18].

Mutual coupling between sensors leads to array model

errors [19], [20], resulting in degradation in estimation per-

formance. It is therefore beneficial to include mutual coupling

level as a criterion in array design. Sparse arrays with dense

subarrays such as NA, have serious deterioration in resolution

and estimation performance [21] in the presence of severe

mutual coupling. A series of improved NA-like structures such

as super nested array (SNA) [20], [22], augmented nested

array (ANA) [23], and generalized nested array (GNA) [24]

have been proposed, reducing the number of sensor pairs with

short spacings while keeping a comparable number of DOFs.

Other CPA-like structures recently proposed include coprime

array with displaced subarrays (CADiS) [21], thinned coprime

array (TCA) [25], and padded coprime arrays (PCA) [26].

These sparse arrays are all designed to exploit the second-

order difference co-array. Mutual coupling has not yet been
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introduced to sparse array design based on the 2qth-order

difference co-array (q ≥ 2).

Robustness is another important property in practical ap-

plications [18], [27]–[31]. Sensor failures could occur ran-

domly and may cause significant performance loss [32]–[35].

Considering the possibility of physical sensor damage, the

robustness to sensor failures and stability of co-arrays have

been studied recently [18], [27], [28], [36], [37]. In terms

of avoiding changes (caused by physical sensor failures) in

the difference co-array, the essentialness attribution of each

sensor is adopted to evaluate the robustness of the array

geometry [18]. Possessing more essential sensors in the array

indicates that the virtual array is fragile or less robust when

sensor failure occurs. MRA, NA, and Cantor arrays [16] were

proven to be maximally economic with all sensors being

essential ones, while CPA has relatively superior robustness

[27], [38]. Towards the goal of designing more robust array

structures, robust MRA (RMRA) [39], composite singer array

(CSA) [40], and multiple-fold redundancy array (MFRA) [28],

[37] have been presented. Furthermore, a general framework

for robustness analysis based on the concept of importance

function was proposed in [41], where the importance function

characterizes the importance of the subarrays in a structure

subject to definable properties related to robustness. However,

all these studies focus on sparse arrays exploiting the second-

order difference co-arrays. Robustness of sparse arrays based

on high-order cumulants has not been analyzed.

In this paper, we focus on the robustness and mutual

coupling analysis of the proposed 2qth-O-Fractal from [17].

The commonly used tool for robustness analysis (based on the

second-order difference co-array) evaluates whether the loss of

a physical sensor damages the integrity of the difference co-

array [18]. There are N2q virtual sensors (including redundant

ones) in the 2qth-order difference co-array of an N -sensor

physical array. The extremely large number of virtual sensors

leads to difficulties in robustness analysis, and the integrity

of the entire 2qth-order difference co-array could be easily

damaged when sensor failure occurs. By extending the quasi-

essentialness in [28], we develop a suitable robustness analysis

tool for sparse arrays exploiting the 2qth-order difference co-

array. An importance function describing the change of the

consecutive 2qth-order difference co-arrays is employed since

this consecutive segment can be utilized by various DOA esti-

mation methods, especially subspace-based techniques which

are easy to implement. We prove that this importance function

belongs to the general robustness analysis framework sug-

gested in [41]. The generalized fragility is defined to evaluate

the robustness of arrays subject to the importance function.

Then, the inheritance similarity between the robustness of

the 2qth-O-Fractal and its generator array is confirmed with

an upper bound on generalized fragility derived. Finally, the

mutual coupling leakage of the proposed 2qth-O-Fractal is

developed, which is proved to be smaller than that of the

generator array.

The contributions of this part are summarized as follows:

1) We extend the idea of quasi-essentialness [28] to the

high-order case, and an importance function is presented for

robustness evaluation of sparse arrays based on the 2qth-order

difference co-array, where the central consecutive co-array

segment is taken as a metric to judge whether a sensor/subset

is essential or not.

2) The relationship between the robustness of 2qth-O-

Fractal and the generator array is derived, showing the inher-

itance similarity between them. After deriving a more precise

upper bound on the fragility of SO-Fractal in [14], the fragility

upper bound of the 2qth-O-Fractal is derived, which is related

to the fragility of the generator array and fractal order. We

show that, by designing a robust generator array and increasing

the fractal order, a more robust 2qth-O-Fractal can be obtained.

3) The coupling leakage of 2qth-O-Fractal is derived, which

is related to the generator, the fractal order r, and the cumulant

order q. It is proved that the coupling leakage of the proposed

2qth-O-Fractal is upper bounded by that of its generator array.

By designing a generator array with low coupling leakage, the

mutual coupling effect on DOA estimation performance of the

2qth-O-Fractal can be reduced.

4) To the best of our knowledge, this is the first study

to consider robustness and mutual coupling in array design

exploiting high-order cumulants. The proposed 2qth-O-Fractal

can be generated by considering the criterion of either high

robustness or low mutual coupling. More importantly, 2qth-

O-Fractal can be flexibly designed with both low fragility and

small mutual coupling leakage, leading to better performance

than existing structures in the presence of random sensor

damage and mutual coupling effect.

The paper is organized as follows. Section II reviews

preliminaries of the 2qth-order difference co-array, structure

of the proposed 2qth-O-Fractal, and design criteria. The ro-

bustness analysis tool for sparse arrays exploiting the 2qth-

order difference co-array is presented in Section III. Array

robustness of the proposed structure is analyzed in Section

IV, while mutual coupling leakage is studied in Section V.

Examples and simulation results are provided in Section VI,

and conclusions are drawn in Section VII.

II. PRELIMINARIES

A. The 2qth-Order Difference Co-Array

Here we focus on narrowband far-field source signals that

are non-Gaussian and independent of each other [17]. By

vectorizing the 2qth-order cumulant matrix of the received

data, a virtual array model with manifold corresponding to

the 2qth-order difference co-array is obtained. The set of the

2qth-order difference co-array [5], [7], [42] of an N -sensor

array A is defined as

D2q =
{

q
∑

k=1

µk −
2q
∑

l=q+1

µl | µk, µl ∈ A

}

. (1)

More background information can be found in the companion

Part I [17].

Specifically, O(N2q) unique virtual sensors can be provided

by D2q for array structures such as 2qL-NA [5], SE-2qL-NA

[7], and the proposed 2qth-O-Fractal in Part I with specifically

selected generator array [17]. This implies that the number

of unique co-array lags cannot exceed O(N2) in case of

the second-order difference co-array (i.e., q = 1). In the
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commonly used subspace-based methods such as SS-MUSIC

[2], [5], [43], only the central ULA segment of the co-

array can be utilized for estimation [5]. Therefore, the central

ULA segment is taken as a metric in analyzing the sensor

essentialness in Section III.

B. SO-Fractal and 2qth-O-Fractal

Inspired by fractal array exploiting the second-order differ-

ence co-array (SO-Fractal) [14], [15], a new structure, i.e., the

fractal array based on the 2qth-order difference co-array (2qth-

O-Fractal) was proposed in the companion Part I [17]. Due to

the superiority in property inheritance from the generator array,

the array construction problem is translated into designing an

appropriate simple generator array with given requirements.

In this subsection, the structures of SO-Fractal and 2qth-O-

Fractal are reviewed briefly.

The SO-Fractal with a generator array G is expressed as

[14], [15]

F0 ≜ {0},
Fr+1 ≜

⋃

n∈G

(Fr + nMr) , r ∈ N
+, (2)

where M ≜ |U| with | · | returning the cardinality of the input

set, U is the longest central ULA segment in the second-order

difference co-array of G, and r is the fractal order belonging to

the set of positive integers N+. As proved in [14], the second-

order difference co-array of Fr (denoted by D2) contain

consecutive co-array lags in U2(Fr) = [−Mr−1
2 , Mr−1

2 ].
The 2qth-O-Fractal is proposed in the companion paper

(Part I [17]), aiming at forming a flexible sparse array structure

with inheritance similarity to the generator G. The 2qth-O-

Fractal is defined as follows [17].

Definition 1: The 2qth-O-Fractal E
2q
r =

⋃q
h=1 Er(h) con-

sists of q subarrays, i.e., Er(1),Er(2), · · · ,Er(q), where

Er(1) ≜
⋃

n∈Fr

(n · T1 +m1) = Fr, (3)

Er(2) ≜
⋃

n∈Er(1)

(n · T2 +m2) , (4)

...

Er(q) ≜
⋃

n∈Er(1)

(n · Tq +mq) . (5)

The original SO-Fractal is denoted by Fr. The expanding

factor Tq and the offset term mq are defined by recursive

expressions, given by

T0 = 0, T1 = 1,

Tq = Mr · Tq−1 + (Mr − 1) · Tq−2, q ≥ 2, (6)

m0 = 0, m1 = 0,

mq = −fr(j) · Tq + fr(i) · Tq−1 +mq−1, q ≥ 2, (7)

where (fr(i), fr(j)) ∈ E
2
r(1) = F

2
r is a pair of sensors satisfying

fr(i) − fr(j) = max(U2(Fr)) =
Mr−1

2 (see Lemma 1 in Part

I [17]). The expanding factor Tq is defined as the number

of guaranteed central ULA sensors in the 2(q − 1)th-order

difference co-array of the 2(q − 1)th-O-Fractal E
2(q−1)
r =

⋃q−1
h=1 Er(h), which is also the unit inter-element spacing of

the q-th subarray. The offset mq in (7) is constructed based

on the idea that a common physical sensor is shared by the

subarrays with adjacent indices, i.e., Er(q−1) and Er(q). The

above across-order fractal design ensures structural similarity

across cumulant order q (also considered as an across-order

fractal factor).

Within the pth-level subarray (1 ≤ p ≤ q), the variation of

sensor positions with the fractal order r (inner-order fractal

factor within the same cumulant order) can be expressed as

E0(p) = {mp} ,

Er(p) =
⋃

n∈Er(1)

(n · Tp +mp) (8)

=
⋃

u∈G

(

Er−1(1) · Tp + u · TpM
r−1 +mp

)

, r ∈ N
+,

where M ≜ |U| is the length of the central ULA segment

in the second-order difference co-array of the generator G.

An example is given in Fig. 1 to demonstrate the structure of

2qth-O-Fractal.

C. Sparse Array Design–Robustness and Mutual Coupling

In the companion paper (Part I [17]), five criteria of interest

are listed for sparse array design, i.e., 1: Large consecutive

difference co-array, 2: Closed-form sensor positions, 3: Hole-

free difference co-array, 4: Robustness and economy, and

5: Low mutual coupling. For 2qth-O-Fractal, the first three

criteria have been analyzed and discussed, verifying the su-

periority of the proposed framework in incorporating these

properties via optimizing the generator array. In this part, we

focus on the relevant properties of Criterion 4: Robustness

and economy and Criterion 5: Low mutual coupling of the

proposed framework, and their definitions are given below.

Criterion 4 (Robustness and economy): The difference co-

array structure of a sparse array is susceptible to sensor

failures, which are likely to occur in practical applications

[18]. When reliability is important, the sparse array structure

should be highly robust to sensor failures, implying that the

loss of elements has as little effect as possible on the gener-

ated co-array [27]. When the physical sensors are expensive,

maximally economic arrays are more attractive, ensuring that

each sensor is essential and indispensable with respect to the

co-array of interest [16], [27].

Criterion 5 (Low mutual coupling): In practice, any sensor

output is affected by its neighboring sensors. This electromag-

netic interaction phenomenon is called mutual coupling [14].

Mutual coupling has an adverse effect on DOA estimation

performance [19]–[21], and thus it is desirable to design sparse

arrays with low mutual coupling.

Previous works on robustness mainly focused on the second-

order difference co-array of a physical array (denoted by D2).

If the removal of a sensor results in a change in D2, this sensor

is considered as an essential one; otherwise, it is inessential

[18]. An example is given to illustrate the concept of essential

sensors in Fig. 2. However, the robustness analysis for sparse
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Generator

Fig. 1. An example of 2qth-O-Fractal with generator array G = {0, 1, 3}, fractal order r = 2, and cumulant order q = 2.
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(b)0 is removed

original array

1 is removed
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essential sensor to D!

 0  2  3

(c)

 0  1  3

(d)

inessential sensor to D! virtual sensor

 0  1  2

(e)

Physical Array D! 

Fig. 2. An illustration of the essentialness with respect to the second-order
difference co-array D2. The original array in (a) is a ULA with 4 physical
sensors. The removal of essential sensors causes a reduction in D2 (as shown
in (b), (e)), while the removal of inessential sensors does not (as shown in
(c), (d)).

arrays based on high-order cumulants has not been discussed,

where the substantially increased number of virtual senors in

the 2qth-order difference co-array results in extremely high

complexity in robustness analysis.

From the perspective of array design, the mutual coupling

effect of different array structures can be evaluated by cou-

pling leakage, and can be reduced by increasing the distance

between adjacent sensors as much as possible. The definition

of mutual coupling matrix and coupling leakage will be given

in Section V.

III. ROBUSTNESS ANALYSIS TOOL

In order to analyze the array robustness from the high-order

difference co-array perspective effectively, in this section we

introduce necessary evaluation tools.

The traditional definition of essential sensor is to judge

whether a sensor failure destroys the integrity of the second-

order difference co-array [18], [27], [38], [44] or not. It can

be extended to the high-order case by checking whether the

integrity of the 2qth-order difference co-array is damaged by

the loss of a physical sensor. Due to the massively increased

number of virtual sensors (at most N2q including redundant

ones) in the 2qth-order difference co-array, it is difficult to

evaluate the essentialness of physical sensors via theoretical

analysis and numerical verification.

The concept of quasi-essential sensors presented in [28]

focuses on the integrity of the consecutive second-order dif-

ference co-array. In [41], a general analysis framework for

robustness was proposed, which allows one to customize the

importance function to form a generalized fragility metric

suitable for robustness analysis of sparse structures.

Commonly adopted subspace-based methods can only ex-

ploit the information provided by the consecutive difference

co-array segment. Since the consecutive segment can be easily

utilized by various DOA estimation techniques, focusing on

 1  2  4  8 16
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 3 24 25 30 31 32

... ... ...

 0  1  2  3 24 25 30
... ... ...

 0  1  2  3 24
... ...

 0  1  2  3 24

25 30

31 32

 2  4  8 16
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essential sensor to U4(A)

...
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...

 1  4  8 16

(c) ...
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...
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(d) ...
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...

 1  2  4 16

(e) ...
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...

 1  2  4  8

(f) ...

24

...

inessential sensor to U4(A) virtual sensor

 1  2  4  8 16

(g) ... ...

Physical Array A  U4(A) (non-negative part)

Fig. 3. An illustration of the essentialness with respect to the central ULA
segments U2q(A). The original array in (a) is 2qL-NA (q = 2) with 6 physical
sensors. The removal of essential sensors causes reduction in the central ULA
segment of the fourth-order difference co-array (as shown in (b)-(d) and (f)-
(g)), while the removal of inessential sensors does not (as shown in (e)).

the consecutive segment in the 2qth-order difference co-array

instead of the entire co-array is more important in practice.

Inspired by these works, we present the definition of essen-

tialness with respect to the consecutive 2qth-order difference

co-array segment as follows.

Definition 2: Consider the central ULA segment U2q(A)

guaranteed in the 2qth-order difference co-array D2q of array

A. For a subset As ⊆ A, the 2qth-order difference co-array

after removing As from available sensors’ collection (A\As)

is denoted by D2q(As). The sensor set As is |As|-essential with

respect to the central ULA segment if U2q(A) ̸⊆ D2q(As), while

|As|-inessential if U2q(A) ⊆ D2q(As).

In particular, if we set |As| = 1, then the above definition

becomes the evaluation of essentialness for each sensor with

respect to U2q(A). Furthermore, if we set q = 1, |As| = 1, and

assume D2q is hole-free (i.e., D2q = U2q(A)), then Definition

2 is equivalent to the conventional definition based on the

second-order difference co-array [44]. An example to explain

the concept of essentialness with respect to U2q(A) is shown

in Fig. 3.

We next define an importance function Ice and prove

that Ice meets the required properties under the robustness

analysis framework in Corollary 1, and thus Ice is appropriate

to evaluate array robustness.

Definition 3: Consider an array A with the central ULA

segment U2q(A) in its 2qth-order difference co-array D2q . The

importance function associated with U2q(A) is defined as

Ice(As) =

{

1, if As is |As|-essential for U2q(A),

0, otherwise.
(9)

In the following Corollary 1, we show that Ice satisfies the

required properties of the general framework for robustness

analysis suggested in [41], proving that it is a suitable tool to

quantify array robustness.
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Corollary 1: The importance function Ice satisfies the fol-

lowing required properties [41]:

• 0 ≤ Ice(As) ≤ 1 for all As ⊆ A.

• Ice(∅) = 0 and Ice(A) = 1.

• Ice is monotone which implies Ice(B1) ≤ Ice(B2) for

B1 ⊆ B2 ⊆ A.

Proof: First, according to Definition 3, Ice is either 0 or

1, so 0 ≤ Ice(As) ≤ 1 is obviously true.

Second, if As = ∅, we have U2q(A) ⊆ D2q(∅) = D2q and

thus Ice(∅) = 0. On the other hand, if As = A, we have

U2q(A) ̸⊆ D2q(A) = ∅ and Ice(A) = 1.

Third, if B1 ⊆ B2 ⊆ A, then, the subset A\B2 ⊆ A\B1,

leading to D2q(B2) ⊆ D2q(B1). Therefore, D2q(B2) is more

likely to no longer contain U2q(A), which implies Ice(B1) ≤
Ice(B2).

Based on the importance function Ice, the generalized 1-

fragility is defined as follows.

Definition 4: Consider an array A with the central ULA

segment U2q(A) in its 2qth-order difference co-array. The 1-

fragility F1(A,Ice) related to A and importance function Ice

is defined as

F1(A,Ice) ≜
∑

As⊆A,|As|=1

Ice(As)
(

|A|
1

)
=

Nce

|A| , (10)

where
(

|A|
1

)

is the binomial coefficient, and Nce denotes the

number of essential sensors with respect to U2q(A).

The definition of the maximally economic array in [16], [27]

can be extended to the scenario based on the essentialness with

respect to virtual ULA in the 2qth-order difference co-array

U2q(A) rather than the essentialness with respect to the entire

difference co-array.

Definition 5: Consider an array A with the central ULA

segment U2q(A) in its 2qth-order difference co-array. The array

A is maximally economic with respect to U2q(A) if all sensors

in A are essential for U2q(A). In other words, A is maximally

economic with respect to U2q(A) if F1(A,Ice) =
|A|
|A| = 1.

Based on the essentialness in Definition 2, the importance

function is introduced in Definition 3, which leads to the

quantitative robustness metric of 1-fragility in Definition 4.

Definition 5 is an example, explaining the relationship between

the maximally economic array and 1-fragility. The quantitative

metric 1-fragility will be used to analyze the robustness of

2qth-O-Fractal in Lemma 2 and Proposition 2 in the next

section.

IV. ROBUSTNESS ANALYSIS

In this section, robustness of the original SO-Fractal is first

analyzed in detail. Then, the tool presented in Section III is

utilized to analyze the robustness of the proposed 2qth-O-

Fractal, establishing the robustness relationship between the

2qth-O-Fractal and its generator array.

A. Robustness Analysis of the SO-Fractal

By analyzing the robustness of the SO-Fractal, we have the

following Lemma 1.

Lemma 1: For the original SO-Fractal with fractal order r+
1 defined in (2), i.e.,

Fr+1 =
⋃

n∈G

(Fr + nMr)

= {l + nMr | l ∈ Fr, n ∈ G} , (11)

the following properties are valid:

• If n1 ∈ G is inessential with respect to DG, then the

element l1 + n1M
r ∈ Fr+1 is inessential with respect to

Dr+1 for all l1 ∈ Fr.

• If l2 ∈ Fr is inessential with respect to Dr, then the

element l2 + n2M
r ∈ Fr+1 is inessential with respect to

Dr+1 for all n2 ∈ G.

Here DG and Dr+1 are the second-order difference co-array

of the generator array G and Fr+1, respectively.

Proof: The second-order difference co-array of Fr+1

can be represented by Dr+1 = Dr + Mr
DG. Assume that

n1 ∈ G is inessential with respect to DG, which implies

that the difference co-array DG of G\{n1} is the same as

DG. Therefore, the difference co-array Dr+1 of Fr+1 =
{l + nMr | l ∈ Fr, n ∈ G\{n1}} is identical to Dr+1, since

Dr+1 = Dr +Mr
DG = Dr +Mr

DG = Dr+1. Obviously, the

element l1 + n1M
r belongs to the set Fr+1\Fr+1, and thus

the element l1 + n1M
r is inessential with respect to Dr+1.

Similarly, if l2 ∈ Fr is inessential with respect to Dr,

then the difference co-array Dr of Fr\{l2} is the same as

Dr. Therefore, the difference co-array D
′

r+1 of F
′

r+1 =
{l + nMr | l ∈ Fr\{l2}, n ∈ G} is identical to Dr+1 since

D
′

r+1 = Dr + Mr
DG = Dr + Mr

DG = Dr+1. It is noted

that the element l2 + n2M
r belongs to the set Fr+1\F

′

r+1,

and thus the element l2 + n2M
r is inessential with respect to

Dr+1.

Based on inheritance property of inessential sensors proved

in Lemma 1, the fragility relationship between the SO-Fractal

and its generator array is given in the following proposition.

Proposition 1: Consider the SO-Fractal Fr generated from

generator G with hole-free second-order difference co-array.

The fragility of Fr and G satisfies

Fr ≤ F r
G, r ∈ N

+, (12)

with

Fr =
Ner

Nr
G

, FG =
NeG

NG
, (13)

where Fr and FG denote the fragility of Fr and G, respec-

tively, and Ner and NeG represent the number of essential

sensors in Fr and G, respectively. NG is the number of sensors

in G.

Proof: According to (13), (12) is equivalent to

Ner ≤ Nr
eG, r ∈ N

+. (14)

(14) can be proved by mathematical induction.

For r = 1, Ne1 = N1
eG since F1 = G. For r = k, assume

Nek ≤ Nk
eG. Then for r = k + 1, we focus on the inessential

sensors with respect to Dr+1. The sets of inessential sensors

in G with respect to DG and inessential sensors in Fk with
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respect to Dk are represented by Gin and Fk,in. According to

Lemma 1, the sensors in the following sets,

I1 = {l + nMr | l ∈ Fk, n ∈ Gin} ,
I2 = {l + nMr | l ∈ Fk,in, n ∈ G} , (15)

are all inessential sensors in Fk+1 with respect to Dk+1. Note

that I1 and I2 have an intersection

I3 = I1 ∩ I2 = {l + nMr | l ∈ Fk,in, n ∈ Gin} . (16)

Therefore, the number of inessential sensors in Fk+1 with

respect to Dk+1 (denoted by Nk+1) satisfies

Nk+1 ≥ |I1 ∪ I2| = |I1|+ |I2| − |I3|
= |Fk| · |Gin|+ |Fk,in| · |G| − |Fk,in| · |Gin|
= Nk

G · (NG −NeG) + (Nk
G −Nek) ·NeG. (17)

As a result, the number of essential sensors in Fk+1 with

respect to Dk+1 is

Ne(k+1) = Nk+1
G −Nk+1

≤ Nk+1
G −Nk

G · (NG −NeG)− (Nk
G −Nek) ·NeG

= Nek ·NeG. (18)

Finally, Ne(k+1) ≤ Nek · NeG ≤ Nk+1
eG is obtained, which

completes the proof.

Eq. (12) is an extension of Theorem 6 in [14], where Fr ≤
FG is proven. With assistance of the inheritance property of

inessential sensors given in Lemma 1, a more accurate upper

bound of fragility for each fractal order r, i.e., Fr ≤ F r
G

(r ∈ N
+ and 0 ≤ FG ≤ 1), is derived in Proposition 1,

which implies that a more robust SO-Fractal structure can be

obtained if a higher fractal order r is utilized.

The conclusion of Proposition 1 motivates us to explore

whether there is a similar conclusion for the robustness of

2qth-O-Fractal. To answer this, robustness of the proposed

2qth-O-Fractal is analyzed in the following subsection.

B. Robustness Analysis of the Proposed 2qth-O-Fractal

To simplify the robustness analysis of 2qth-O-Fractal, the

core composition (see Definition 6) is introduced.

Recall the definition of the 2qth-order difference co-

array of a sparse array A, which is D2q = {∑q
k=1 µk −

∑2q
l=q+1 µl | µk, µl ∈ A}. Denote A1, A2, · · · , and A2q

as subsets of A. The set obtained by restricting µp ∈ Ap

(p = 1, 2, . . . , 2q), i.e.,

Φ2q =
{

q
∑

k=1

µk −
2q
∑

l=q+1

µl | µ1 ∈ A1, . . . , µ2q ∈ A2q

}

,

is called a component of D2q . Since there are many options

for each Ap (1 ≤ p ≤ 2q), numerous components exist.

Definition 6: The core composition is a component of D2q ,

which can completely cover the central ULA segment U2q

guaranteed in D2q , i.e.,

D2q ⊇ Φ2q ⊇ U2q. (19)

With the assistance of the transitivity in (19), part of

inessential sensors in each subarray of 2qth-O-Fractal can be

identified, as shown in Lemma 2.

Lemma 2: Consider the 2qth-O-Fractal (q ≥ 1) E
2q
r =

⋃q
l=1 Er(l) generated from the generator array G with hole-

free second-order difference co-array. Here U2q(Er) denotes

the central ULA segment guaranteed in D2q (the 2qth-order

difference co-array of 2qth-O-Fractal). The sensors in I
2q
r =

⋃q
l=1 Ir(l) are all inessential with respect to U2q(Er), where

Ir(l) ≜
⋃

n∈Ir(1)

(n · Tl +ml) (20)

and Ir(1) is the set of inessential sensors in SO-Fractal for

q = 1. Tl and ml denote the expansion factor and offset term

of the l-th level subarray in 2qth-O-Fractal, determined by (6)

and (7), respectively.

Proof: See Appendix A.

Next, we derive the upper bound on fragility of 2qth-O-

Fractal. The relationship between the robustness of 2qth-O-

Fractal and its generator array in terms of the generalized 1-

fragility is demonstrated, reflecting the robustness inheritance

property of the 2qth-O-Fractal.

Proposition 2: Consider the 2qth-O-Fractal (q ≥ 1) E
2q
r =

⋃q
l=1 Er(l) generated from G with hole-free second-order

difference co-array. Then, the 1-fragility F1(E
2q
r ,Ice) related

to the sparse array E
2q
r and importance function Ice satisfies

F1(E
2q
r ,Ice) ≤

qF r
GN

r
G − q + 1

qNr
G − q + 1

≤ F r
G, r ∈ N

+. (21)

Note that q and r are cumulant order and fractal order,

respectively. The parameters NG and FG represent the number

of sensors in G and the fragility of G.

Proof: According to the definition of 1-fragility

F1(E
2q
r ,Ice) (see Definition 4), the essential sensors with re-

spect to U2q(Er) are analyzed. Here U2q(Er) denotes the central

ULA segment guaranteed in D2q (the 2qth-order difference co-

array of 2qth-O-Fractal).

The number of physical sensors in E
2q
r is N(q) = qNr

G −
q + 1, where NG is the number of physical sensors in G.

As proved in Lemma 2, the sensors in I
2q
r are all inessential,

and the number of inessential sensors satisfies

Nine(q) ≥ |I2qr | = q · |Ir(1)|. (22)

According to the proof of Proposition 1, the number of

inessential sensors in SO-Fractal holds

|Ir(1)| = Nr
G −Ner ≥ Nr

G −Nr
eG. (23)

Therefore, the number of essential sensors in 2qth-O-Fractal

satisfies

Nce(q) = N(q)−Nine(q)

≤ qNr
G − q + 1− q(Nr

G −Nr
eG)

= qNr
eG − q + 1. (24)
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TABLE I
EXAMPLES OF THE FRAGILITY

Structures

E
2q
r

Number of
Sensors

Generator
Array

Fragility

F1(E
2q
r ,Ice)

Upper Bound
F r
G

E2
1 10 G1 0.3 0.3

E2
2 100 G1 0.09 0.09

E2
3 1000 G1 0.027 0.027

E2
1 11 S1 0.27 0.27

E2
2 121 S1 0.03 0.0729

E2
3 1331 S1 0.006 0.0197

E2
1 4 L 0.5 0.5

E2
2 16 L 0.25 0.25

E2
3 64 L 0.125 0.125

E4
1 7 L 0.1429 0.5

E4
2 31 L 0.0323 0.25

E4
3 127 L 0.0079 0.125

Finally, according to Definition 4,

F1(E
2q
r ,Ice) =

Nce(q)

N(q)
≤ qNr

eG − q + 1

qNr
G − q + 1

=
qF r

GN
r
G − q + 1

qNr
G − q + 1

≤ qF r
GN

r
G − qF r

G + F r
G

qNr
G − q + 1

= F r
G, (25)

which completes the proof.

C. Comparisons of Robustness

Proposition 1 and Proposition 2 are demonstrated through

robustness comparisons of different array structures.

In [14], two generator arrays

G1 = {0, 1, 3, 5, 11, 13, 17, 18, 19, 20}, (26)

S1 = {0, 1, 2, 4, 7, 10, 13, 16, 18, 19, 20}, (27)

with good properties are employed, and the fragilities of the

SO-Fractal arrays generated by them with fractal order r =
2 and r = 3 are analyzed. Using the same structures, their

respective fragility upper bounds are calculated, as shown in

Table I. From the top half of the table, it is clear that the

relationship Fr ≤ F r
G is satisfied.

Next, the proposed fractal arrays based on different cu-

mulants order q are considered in comparison, and L =
{0, 1, 2, 3} is chosen as the generator with two inessential

sensors at 1 and 2. As shown in the lower part of Table

I, the fragility relationship F1(E
2q
r ,Ice) ≤ F r

G holds true

consistently.

Proposition 1 and Proposition 2 present a direct relationship

between the robustness of 2qth-O-Fractal and the generator

G, reflecting the transitivity of the array robustness provided

by the fractal method. The fractal method leads to struc-

tures exploiting high-order difference co-array with an upper

bounded fragility. This is beneficial to array design with high

robustness to sensor failures since heavy searches or case-

by-case discussions on array potential configurations can be

avoided. Proposition 2 provides a simple way to construct a

robust large array by designing a robust generator array G

and increasing the fractal order r. In addition, the difference

co-array redundancies increase with the fractal order, resulting

in reduced number of uDOFs with respect to the number of

physical sensors [14].

V. MUTUAL COUPLING IN 2qTH-O-FRACTAL

Considering Criterion 5 (Low mutual coupling) in sparse

array design, in the presence of mutual coupling, the original

array signal model is usually modified to

x[i] = CmA(θ)s[i] + n[i], (28)

where Cm is a mutual coupling matrix that can be obtained

from electromagnetic experiments [20]. The element ⟨Cm⟩ij
at the i-th row and the j-th column in Cm represents the

mutual coupling coefficient between the i-th and j-th sensors.

The mutual coupling matrix is related to various factors such

as antenna type, polarization, source directions, and applica-

tion environment [45]–[47]. A simplified and widely adopted

mutual coupling model in the literature [20], [24], [25], [48],

[49] is employed, with a typical choice of ⟨Cm⟩ij as

⟨Cm⟩ij =
{

c|pi−pj |, |pi − pj | ≤ B,

0, otherwise,
i, j ∈ [1, N ] (29)

where pi, pj are sensor positions of array A, and ck is

the mutual coupling coefficient in the case that two sensors

are k-separated (|pi − pj | = k). The coefficients satisfy

c0 = 1 > |c1| > |c2| > · · · > |cB | > 0 = cB+1.

The magnitude of the mutual coupling coefficient is inversely

proportional to sensor separations [20], [50]. In addition, the

magnitude of the mutual coupling coefficient decreases rapidly

with the increase of sensor separation, and a few non-zero

coefficients are sufficient to describe the signal model [20],

[24]. Specifically to (29), ck = 0 for k > B implies that

the impact of k-separated mutual coupling can be ignored for

k > B, where B is referred to as the coupling limit.

Coupling leakage is adopted to quantify the mutual coupling

impact. Conceptually, the smaller the coupling leakage is, the

less the mutual coupling is [20].

Definition 7: The coupling leakage of an arbitrary array is

defined as [20]

L ≜
||Cm − diag(Cm)||F

||Cm||F
, (30)

where ||·||F represents the Frobenius norm, and diag(·) returns

a diagonal matrix with the diagonal vector of the input matrix

being its diagonal elements.

For existing sparse arrays based on high-order cumulants,

the physical sensor spacings of the posterior subarrays are

usually designed to be much larger than that of the anterior

subarray to achieve large DOFs. Consider 2qL-NA (q = 2) [5]

as an example, where the spacings between adjacent sensors

in four subarrays are 1 for the first subarray, N1 for the

second subarray, N1N2 for the third subarray, and N1N2N3

for the fourth subarray, respectively. This design idea reduces

the overall mutual coupling leakage since the mutual coupling

effect between the sensors in posterior subarrays can almost

be ignored due to their large spacings.

In the following proposition, the connection between the

coupling leakage of the 2qth-O-Fractal and its generator array

is derived.
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Proposition 3: Consider a generator array G with hole-free

second-order difference co-array and a mutual coupling matrix

C. The coupling limit B satisfies both B < max(G) and B+
max(G) < M [14]. The 2qth-O-Fractal E

2q
r = ∪q

l=1(Er(l))
(r ≥ 1, q ≥ 1) is generated from G. The coupling leakage

LE(q) of E2q
r is

LE(q) =

√

Nr−1
G L2

G||C||2F
Nr−1

G ||C||2F + (q − 1)(Nr
G − 1)

≤ LG, (31)

where NG denotes the number of physical sensors in G, and

LG is the coupling leakage of the generator G.

Proof: See Appendix B.

VI. COMPARISONS WITH OTHER STRUCTURES

In this section, comparisons for sparse arrays designed for

high-order difference co-array exploitation from the perspec-

tives of robustness and mutual coupling leakage are presented.

The discussions are based on the assumption of non-Gaussian

sources.

A. Joint Comparisons of Robustness and Mutual Coupling

The two properties, i.e., robustness and mutual coupling, are

first considered jointly, and a feasible region is formed in the

two-dimensional plane as shown in Fig. 4. Array structures

falling into this feasible region meet the requirements that the

fragility value is smaller than 0.3 and the coupling leakage

is lower than 1
3 [14]. The selection of the feasible region

is a trade-off between robustness and mutual coupling, and

depends on requirements of practical applications.

The proposed 2qth-O-Fractal inherits the mentioned proper-

ties from its generator. If the selected generator with hole-free

second-order difference co-array falls into the feasible region,

i.e.,

FG ≤ 0.3, LG ≤ 1

3
, (32)

the generated 2qth-O-Fractal E
2q
r = ∪q

l=1(Er(l)) is also in

the feasible region with arbitrary cumulant order q and fractal

order r with

F1(E
2q
r ,Ice) ≤ F r

G ≤ 0.3, LE(q) ≤ LG ≤ 1

3
, (33)

as proved in Proposition 2 and Proposition 3.

Specific examples are given to illustrate the advantages of

fractal arrays in the joint design of robustness and mutual

coupling. Two simple generator arrays G1 and S1 (see (26)

and (27)) within the feasible region (as shown in Table I) are

employed, and the 2qth-O-Fractal (q = 2 and r = 1) generated

from G1 is

E
4
1(G1) = ∪2

l=1(E1(l)) = {0, 1, 3, 5, 11, 13, 17, 18, 19, 20,
61, 143, 225, 471, 553, 717, 758, 799, 840}. (34)

The fragility and coupling leakage of E
4
1(G1) are 0.21 and

0.23, respectively, both falling into the feasible region.

The 2qth-O-Fractal (q = 2 and r = 1) generated from S1 is

E
4
1(S1) = ∪2

l=1(E1(l)) = {0, 1, 2, 4, 7, 10, 13, 16, 18, 19, 20,
61, 102, 184, 307, 430, 553, 676, 758, 799, 840}, (35)
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(0.30, 0.033) SO-Fractal from R"

(0.45, 0.0091)

Fig. 4. Comparison of the array fragility and coupling leakage for various
sparse configurations.

with its fragility and coupling leakage being 0.14 and 0.23,

respectively, all within the feasible region.

Two existing sparse arrays exploiting high-order difference

co-array, 2qL-NA and SE-2qL-NA (q = 2), are considered,

and their physical apertures are constrained to be approxi-

mately the same as that of E
4
1(G1) or E

4
1(S1). The sensor

allocation strategy for 2qL-NA (q = 2) with 18 sensors is

(6, 5, 5, 5) [5], and (5, 5, 4, 4) for SE-2qL-NA (q = 2) with

16 sensors [7]. For 2qL-NA (q = 2), the fragility is 0.78 and

the coupling leakage is 0.25, while the fragility and coupling

leakage of SE-2qL-NA (q = 2) are 0.88 and 0.24, respectively.

The above-mentioned arrays are drawn on a two-

dimensional plane in Fig. 4. It is clear that the 2qth-O-Fractal

arrays inherit the properties of their generators, and they are

located in the feasible region with even smaller fragility and

coupling leakage achieved. However, 2qL-NA and SE-2qL-

NA are not located in the feasible region since fragility and

mutual coupling are not considered in their design.

Additionally, only one criterion (either low fragility or low

mutual coupling) might be of interest in specific applications.

If low fragility is more important, a highly robust fractal

array with its fragility as low as 0.024 can be obtained

by choosing ULA (R1 = [0, 20]) as the generator array.

To achieve low mutual coupling, fractal array with coupling

leakage of only 0.15 can be generated from MRA (R2 =
{0, 1, 4, 10, 16, 18, 21, 23}). These generators and correspond-

ing 2qth-O-Fractal arrays (q = 2 and r = 1) are also shown

in Fig. 4.

The generators G1, S1, R1, and R2 are all designed based on

the second-order difference co-array, and we have also added

the SO-Fractal (r = 2) corresponding to the four generator

arrays in Fig. 4 for comparison. Here for r = 1, the associated

SO-Fractal is the same as its generator. Under the constraint of

comparable number of uDOFs, the number of physical sensors

of SO-Fractal based on the second-order difference co-array is

far more than that of the 2qth-O-Fractal exploiting the 2qth-

order difference co-array, e.g., 100 sensors is required for

SO-Fractal from G1 to achieve a similar number of uDOFs

compared with the 19-sensor 2qth-O-Fractal from G1. This

is consistent with the conclusion in Part I [17] that sparse

arrays designed for high-order cumulants exploitation offer
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many more DOFs (O(N2q) with N physical sensors) than

those based on second-order difference co-arrays (O(N2)).
Furthermore, as shown in Fig. 4, the coupling leakage of 2qth-

O-Fractal is always smaller than that of its generator, while

SO-Fractal shares the same leakage level as the generator

array. The upper bound of fragility decreases with the increase

of the fractal order r (see Proposition 1 and Proposition 2).

For the same order r = 1, SO-Fractal (r = 1) is the same as

the generator, and its fragility is larger than that of the 2qth-

O-Fractal (q = 2 and r = 1). For r = 2 and r = 3, similar

conclusion can be drawn from Table I that smaller fragility is

achieved by 2qth-O-Fractal compared with SO-Fractal based

on the same generator.

B. Influence of Sensor Damage and Mutual Coupling

For the three arrays 2qL-NA, SE-2qL-NA, and 2qth-O-

Fractal generated from G1 (q = 2 and r = 1), sensor damage

and mutual coupling are introduced in simulations to show

their influence on DOA estimation. As given in Section VI-A,

18-sensor 2qL-NA (q = 2) with (6, 5, 5, 5) [5], 16-sensor SE-

2qL-NA (q = 2) with (5, 5, 4, 4) [7], and the 19-sensor 2qth-

O-Fractal (q = 2 and r = 1) generated from G1 are included

for comparison. Under the aperture constraint, these structures

provide comparable numbers of consecutive lags (1799 for

2qL-NA, 1651 for SE-2qL-NA, and 1721 for 2qth-O-Fractal).

For the influence of sensor damage, the input SNR and the

number of snapshots are fixed at 10 dB and 4000, respectively.

The SS-MUSIC method is applied to the virtual array output

model for DOA estimation [5]. A total of 20 sources are uni-

formly distributed from −60◦ to 60◦, and the damage to each

sensor is independent. In different simulations, we assume

that the sensor failure probability of each sensor is 10−3,

10−2.75, 10−2.5, 10−2.25, 10−2, 10−1.75, 10−1.5, 10−1.25,

10−1, and 10−0.75, respectively. The root mean square error

(RMSE) results of all sources are obtained through Monte

Carlo simulations of 500 trials, as shown in Fig. 5, where it

is clear that the proposed fractal array has better estimation

accuracy compared with the other two structures due to its

lower fragility, and a better performance can still be achieved

for a high sensor failure probability of 10−1.25.

The total estimation error for all sources in each trial is

also calculated, and a trial with a total error larger than 10
degrees is regarded as a failed detection. Fig. 6 shows the

probability of successful detection for each structure under

different sensor failure probabilities. It is clear that there exists

substantial performance degradation for 2qL-NA and SE-2qL-

NA with the increase of the sensor failure probability, while

the degradation for 2qth-O-Fractal is much smaller.

Mutual coupling influence on DOA estimation performance

is then examined. Similar to the coupling coefficients adopted

in [14], [20], [25], [51], we set c1 = |c1|ejπ/3 and ck =
c1/k · e−j(k−1)π/8 for k ∈ [2, B], while B = 20. The

input SNR and the number of snapshots are 10 dB and

4000, respectively, and the SS-MUSIC method is employed to

estimate the DOAs of 20 sources uniformly distributed from

−60◦ to 60◦. The RMSE of different array structures with

respect to |c1| (ranging from 0 to 0.45 with a step size of
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Fig. 5. RMSE with respect to varied probability of sensor failure.
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of sensor failure.

0.05) are shown in Fig. 7. Similarly, the 2qth-O-Fractal (q = 2
and r = 1) achieves the best performance among all structures

due to its lower coupling leakage. While the 2qth-O-Fractal

(q = 2 and r = 1) achieves a good estimation performance for

a strong |c1| = 0.3, the others have clearly failed. According

to the probability of successful detection versus the coupling

coefficient (Fig. 8), the detection probability of the proposed

2qth-O-Fractal (q = 2 and r = 1) is higher than that of

the other two structures consistently. Similar results showing

that the proposed structure performs better in the presence

of mutual coupling can still be obtained in simulations with

changed coupling coefficient phases.

DOA estimation performance is studied to verify the impact

of sensor damage and mutual coupling in resolving multiple

sources. The input SNR and the number of snapshots are set as

10 dB and 5000, respectively. Consider 33 sources uniformly

distributed from −60◦ to 60◦. In Fig. 9(a)-(c), all the sparse

array structures can distinguish the 33 sources successfully.
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Fig. 7. RMSE with respect to varied mutual coupling coefficient.
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However, if the sensor at 3 is broken for all structures, only

the proposed 2qth-O-Fractal is capable of resolving all the

sources as shown in Fig. 9(f), while the others can not (Figs.

9(d) and 9(e)).

Next, the resolution ability under mutual coupling is exam-

ined. There are 30 sources uniformly distributed from −60◦

to 60◦. DOA estimation results are given in Fig. 10, where

all 30 sources are resolved successfully by the three structures

without the mutual coupling effect, as shown in Fig. 10(a)-

(c). By introducing mutual coupling with |c1| = 0.3, only the

proposed 2qth-O-Fractal is able to resolve all sources as can

be seen in Fig. 10(f).

Finally, we set the working frequency as 2 GHz, and planar

spiral antennas with a radius of 17 mm (the antenna model

is shown in Fig. 11(a)) are employed in electromagnetic

simulations. By establishing models of three array structures

involved with a unit spacing d = λ
3 to ensure severe coupling

effect, the mutual coupling matrices are calculated using HFSS

(High Frequency Structure Simulator), an electromagnetic

simulation software. With mutual coupling matrices matched

to the electromagnetic model, the DOA estimation results of

the three structures are shown in Fig. 11. Obviously, only

the proposed 2qth-O-Fractal is capable of resolving all the

9 sources, which again verifies the superior performance of

the proposed structure against mutual coupling.

VII. CONCLUSION

Following our proposed fractal framework exploiting the

2qth-order difference co-arrays in Part I [17], here the relation-

ship between array robustness/mutual coupling of the proposed

2qth-O-Fractal and its generator array was analyzed. After

introducing an evaluation tool suitable for robustness analysis

of array structures based on the high-order difference co-array,

the fragility upper bound of 2qth-O-Fractal was derived as a

function of the fragility of the generator array and the fractal

order. Apart from increasing the fractal order, designing a

robust generator array is another effective way to improve

array robustness. It has been shown that, the mutual coupling

leakage of 2qth-O-Fractal is upper bounded by that of the

generator array, and reduced mutual coupling is expected if a

generator array with low mutual coupling leakage is selected.

Simulations demonstrated that, 2qth-O-Fractal with both small

fragility and low mutual coupling leakage can be flexibly gen-

erated, and better performance can be achieved than 2qL-NA

and SE-2qL-NA in the presence of random sensor damage and

mutual coupling effect. Furthermore, it has also been shown

that, compared with the SO-Fractal structure exploiting the

second-order difference co-array, smaller fragility and lower

mutual coupling leakage can be achieved by the proposed

2qth-O-Fractal generated from the same generator and fractal

order.

Combining the results in Part I and Part II, we conclude

that the proposed framework provides an effective approach to

sparse array design with several important properties inherited

from its prototype generator array. By optimizing the gener-

ator array according to given criteria (i.e., large consecutive

difference co-array, hole-free difference co-array, closed-form

sensor positions, robustness and economy, and low mutual

coupling), the associated 2qth-O-Fractal can be easily obtained

incorporating multiple properties of interest.

APPENDIX A

PROOF OF LEMMA 2

We prove the lemma by mathematical induction.

For q = 1, the 2qth-O-Fractal E
2q
r becomes the original

SO-Fractal, so the sensors in I
2q
r = Ir(1) are all inessential.

For q = p, provided that the sensors in I
2p
r =

⋃p
l=1 Ir(l)

are all inessential with respect to U2p(Er), for q = p + 1, the

criterion for judging a sensor e as an inessential sensor with

respect to U2p+2(Er) (Definition 2) is

D2p+2(e) ⊇ U2p+2(Er), (36)

D2p+2(e) =
{

p+1
∑

k=1

(µ2k − µ2k−1) | µ ∈ E
2p+2
r \{e}

}

, (37)

where D2p+2(e) is the (2p+ 2)th-order difference co-array of

E
2p+2
r after removing the sensor e.

Since the composition of D2p+2(e) is extremely compli-

cated, the core composition Φ2p+2 in Definition 6 is introduced

to assist the analysis.

If a sensor e is removed during the construction of the core

composition Φ2p+2, it will lead to a new composition Φ2p+2(e)

that may be partially defective. Since D2p+2 ⊇ Φ2p+2,

D2p+2(e) ⊇ Φ2p+2(e) always holds. If Φ2p+2(e) can still com-

pletely contain U2p+2(Er), then according to the transitivity,

one can derive

D2p+2(e) ⊇ Φ2p+2(e) ⊇ U2p+2(Er), (38)

which means that sensor e is an inessential sensor. Next, we

use the ideas outlined above to prove the sensors in I
2p+2
r =

⋃p+1
l=1 Ir(l) are all inessential with respect to U2p+2(Er).

First, a suitable core composition Φ2p+2 is found in deriving

the closed-form number of uDOFs guaranteed by the 2qth-O-

Fractal (Proposition 1 in Part I [17]). It consists of three parts,
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Fig. 9. DOA estimation results of different array structures with/without sensor damage. Results of (a) 2qL-NA (q = 2), (b) SE-2qL-NA (q = 2), (c)
2qth-O-Fractal (q = 2 and r = 1), (d) 2qL-NA (q = 2) without sensor at 3, (e) SE-2qL-NA (q = 2) without sensor at 3, (f) 2qth-O-Fractal (q = 2 and
r = 1) without sensor at 3.
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Fig. 10. DOA estimation results of different array structures with/without mutual coupling. Results of (a) 2qL-NA (q = 2) without mutual coupling, (b)
SE-2qL-NA (q = 2) without mutual coupling, (c) 2qth-O-Fractal (q = 2 and r = 1) without mutual coupling, (d) 2qL-NA (q = 2) with the coupling
coefficient |c1| = 0.3, (e) SE-2qL-NA (q = 2) with the coupling coefficient |c1| = 0.3, (f) 2qth-O-Fractal (q = 2 and r = 1) with the coupling coefficient
|c1| = 0.3.

(a) Planar spiral antenna model.

-90 -60 -30 0 30 60 90

 : degree

10
-3

10
-2

10
-1

10
0

N
o
rm

a
liz

e
d
 S

p
e
c
tr

u
m

(b) 2qL-NA.

-90 -60 -30 0 30 60 90

 : degree

10
-3

10
-2

10
-1

10
0

N
o
rm

a
liz

e
d
 S

p
e
c
tr

u
m

(c) SE-2qL-NA.
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(d) 2qth-O-Fractal.

Fig. 11. Planar spiral antenna model and DOA estimation results of different
array structures with severe mutual coupling.

expressed as

Φ2p+2 = Φ
′

2p+2 ∪ Φ
′′

2p+2 ∪ Φ
′′′

2p+2, (39)

Φ
′

2p+2 =
{

(µ2p+2 − µ2p+1) +
∑p

k=1
(µ2k − µ2k−1) |

µ2p+1, µ2p+2 ∈ Er(p+1), µ1, µ2, · · · , µ2p ∈ E
2p
r

}

,

Φ
′′

2p+2 =
{

(µ2p+2 − µ2p+1) +
∑p

k=1
(µ2k − µ2k−1) |

µ2p+2 = fr(i)Tp+1 +mp+1, µ2p+1 = fr(j)Tp +mp,

µ1, µ2, · · · , µ2p ∈ E
2p
r

}

,

Φ
′′′

2p+2 =
{

(µ2p+1 − µ2p+2) +
∑p

k=1
(µ2k − µ2k−1) |

µ2p+2 = fr(i)Tp+1 +mp+1, µ2p+1 = fr(j)Tp +mp,

µ1, µ2, · · · , µ2p ∈ E
2p
r

}

.

Then, the following results related to the three parts in the core

combination Φ2p+2 can be derived, which are (Proposition 1
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in Part I [17])

Φ
′

2p+2 ⊇
[

−Tp+1M
r−1

2 ,
Tp+1M

r−1
2

]

,

Φ
′′

2p+2 ⊇
[

Tp+1(M
r−2)+Tp(M

r−1)+1
2 ,

Tp+1M
r+Tp(M

r−1)−1
2

]

,

Φ
′′′

2p+2 ⊇
[

− Tp+1M
r+Tp(M

r−1)−1
2 ,−Tp+1(M

r−2)+Tp(M
r−1)+1

2

]

,

and one has

Φ2p+2 = Φ
′

2p+2 ∪ Φ
′′

2p+2 ∪ Φ
′′′

2p+2 ⊇ U2p+2(Er). (40)

Next, the elements in I
2p+2
r are divided into two parts,

i.e., Ir(p+1) and I
2p
r =

⋃p
l=1 Ir(l), and their essentialness is

discussed separately. Note that the sensors in Ir(p+1) belong

to the (p+1)-th subarray Er(p+1) of E2p+2
r , while Ir(p) ⊆ E

2p
r .

Since the second-order difference co-array of the generator ar-

ray is hole-free, the second-order difference co-array (denoted

by D2) of SO-Fractal Er(1) is also hole-free with D2 = U2(Er).

Therefore, the largest consecutive lag in D2 is

max(Er(1))−min(Er(1)) =
Mr − 1

2
, (41)

which implies fr(i) = max(Er(1)) and fr(j) = min(Er(1)).

According to Lemma 2 of [18], the leftmost element

(min(Er(1))) and the rightmost element (max(Er(1))) are both

essential to D2, leading to fr(i)Tp+1 + mp+1 /∈ I
2p+2
r and

fr(j)Tp +mp /∈ I
2p+2
r .

If a sensor ei1 ∈ Ir(p+1) is removed in constructing the core

composition Φ2p+2, Φ2p+2(ei1) is obtained with

Φ2p+2(ei1) = Φ
′

2p+2(ei1) ∪ Φ
′′

2p+2(ei1) ∪ Φ
′′′

2p+2(ei1), (42)

Φ
′

2p+2(ei1) =
{

(µ2p+2 − µ2p+1) +
∑p

k=1
(µ2k − µ2k−1) |

µ2p+1, µ2p+2 ∈ Er(p+1)\{ei1}, µ1, · · · , µ2p ∈ E
2p
r

}

,

Φ
′′

2p+2(ei1) = Φ
′′

2p+2, Φ
′′′

2p+2(ei1) = Φ
′′′

2p+2.

Since

Φ
′

2p+2(ei1) ⊇
{

(µ2p+2 − µ2p+1) + µ
′ | µ2p+1, µ2p+2

∈ Er(p+1)\{ei1}, µ
′ ∈ U2p(Er)

}

=
{

µ
′′

Tp+1 + µ
′ | µ′′ ∈ D2, µ

′ ∈ U2p(Er)

}

=
[

−Tp+1M
r−1

2 ,
Tp+1M

r−1
2

]

, (43)

then, D2p+2(ei1) ⊇ Φ2p+2(ei1) ⊇ U2p+2(Er) can be derived,

which implies that any sensor ei1 ∈ Ir(p+1) is inessential with

respect to U2p+2(Er).

If a sensor ei2 ∈ I
2p
r is removed in constructing Φ2p+2,

Φ2p+2(ei2) is obtained by

Φ2p+2(ei2) = Φ
′

2p+2(ei2) ∪ Φ
′′

2p+2(ei2) ∪ Φ
′′′

2p+2(ei2), (44)

Φ
′

2p+2(ei2) =
{

(µ2p+2 − µ2p+1) +
∑p

k=1
(µ2k − µ2k−1) |

µ2p+1, µ2p+2 ∈ Er(p+1), µ1, · · · , µ2p ∈ E
2p
r \{ei2}

}

,

Φ
′′

2p+2(ei2) =
{

(µ2p+2 − µ2p+1) +
∑p

k=1
(µ2k − µ2k−1) |

µ2p+2 = fr(i)Tp+1 +mp+1, µ2p+1 = fr(j)Tp +mp,

µ1, µ2, · · · , µ2p ∈ E
2p
r \{ei2}

}

,

Φ
′′′

2p+2(ei2) =
{

(µ2p+1 − µ2p+2) +
∑p

k=1
(µ2k − µ2k−1) |

µ2p+2 = fr(i)Tp+1 +mp+1, µ2p+1 = fr(j)Tp +mp,

µ1, µ2, · · · , µ2p ∈ E
2p
r \{ei2}

}

.

According to the assumption that all sensors in I
2p
r =

⋃p
l=1 Ir(l) are all inessential with respect to U2p(Er), one has

{

p
∑

k=1

(µ2k − µ2k−1) | µ1, · · · , µ2p ∈ E
2p
r \{ei2}

}

⊇ U2p(Er).

Therefore,

Φ
′

2p+2(ei2) ⊇
{

(µ2p+2 − µ2p+1) + µ
′ | µ2p+1, µ2p+2

∈ Er(p+1), µ
′ ∈ U2p(Er)

}

,

Φ
′′

2p+2(ei2) ⊇
{

(µ2p+2 − µ2p+1) + µ
′ | µ2p+2 = fr(i)Tp+1+

mp+1, µ2p+1 = fr(j)Tp +mp, µ
′ ∈ U2p(Er)

}

,

Φ
′′′

2p+2(ei2) ⊇
{

(µ2p+1 − µ2p+2) + µ
′ | µ2p+2 = fr(i)Tp+1+

mp+1, µ2p+1 = fr(j)Tp +mp, µ
′ ∈ U2p(Er)

}

,

and D2p+2(ei2) ⊇ Φ2p+2(ei2) ⊇ U2p+2(Er), which implies any

sensor ei2 ∈ I
2p
r is inessential to U2p+2(Er).

This completes the proof that all sensors in I
2q
r are inessen-

tial with respect to U2q(Er).

APPENDIX B

PROOF OF PROPOSITION 3

First, since there is always a shared sensor between adjacent

subarrays of the 2qth-O-Fractal, it is necessary to clarify the

position of the shared sensors in order to analyze the mutual

coupling effect. Due to the property of hole-free second-order

difference co-array of G, we obtain fr(j) = min(Er(1)) and

fr(i) = max(Er(1)). The position of the sensor shared by

subarrays Er(p+1) and Er(p) is

fr(j) · Tp+1 +mp+1 = min(Er(1))Tp+1 +mp+1

= min(Er(p+1)) = fr(i) · Tp +mp

= max(Er(1))Tp +mp = max(Er(p)).

As a result, the leftmost element of the subarray Er(p+1) (p ≥
1) is also the rightmost element of the anterior subarray Er(p).

Next, we analyze the N(q)×N(q) mutual coupling matrix

Cm of the 2qth-O-Fractal E2q
r . According to (29), ⟨Cm⟩ij at
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the i-th row and j-th column of Cm is related to the interval

between the i-th sensor ei and the j-th sensor ej in E
2q
r . All

possible values of ei and ej are discussed as follows.

• If ei ∈ Er(1) and ej ∈ Er(1), this case is similar to

that discussed in Theorem 7 of [14], and then ⟨Cm⟩ij =
⟨CE1⟩ij , with the Nr

G ×Nr
G matrix CE1 being

CE1 =













C 0 · · · 0

0 C
. . .

...
...

. . .
. . . 0

0 · · · 0 C













. (45)

• If ei ∈ Er(1) and ej ∈ ∪q
l=3(Er(l)) ∪ Er(2)\min(Er(2)),

then,

|ei − ej | = ej − ei

≥ min(Er(2)\min(Er(2)))−max(Er(1))

= min(Er(2)\min(Er(2)))−min(Er(2))

≥ T2 = Mr > B. (46)

• If ei ∈ Er(p)\min(Er(p)) and ej ∈ Er(p)\min(Er(p))
(p ≥ 2), then |ei − ej | satisfies

|ei − ej | ≥ Tp ≥ T2 > B. (47)

• If ei ∈ Er(p)\min(Er(p)) and ej ∈ ∪q
l=p+2(Er(l)) ∪

Er(p+1)\min(Er(p+1)) (p ≥ 2), the interval between ei
and ej holds

|ei − ej | = ej − ei

≥ min(Er(p+1)\min(Er(p+1)))−max(Er(p))

= min(Er(p+1)\min(Er(p+1)))−min(Er(p+1))

≥ Tp+1 > T2 > B. (48)

• If ei ∈ Er(p)\min(Er(p)) , ej ∈ ∪p−1
l=1 (Er(l)) and p ≥ 2,

the following can be derived

|ei − ej | = ei − ej

≥ min(Er(p)\min(Er(p)))−max(Er(p−1))

= min(Er(p)\min(Er(p)))−min(Er(p))

≥ Tp ≥ T2 > B. (49)

Due to the self-similarity of the proposed structure, the

coupling coefficients between physical sensors within each

subarray form a block diagonal matrix. Based on the above

discussions, the spacing between any sensors from different

subarrays (after stripping the shared sensor) is greater than

the coupling limit B, and thus the corresponding coupling

coefficient is 0. Therefore, according to (45) to (49), the block

diagonal form of Cm can be derived as

Cm =













CE1 0 · · · 0

0 CE2
. . .

...
...

. . .
. . . 0

0 · · · 0 CEq













(50)

where CEp (p ∈ [2, q]) with the size of (Nr
G − 1)× (Nr

G − 1)
is expressed as

CEp =













1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1













. (51)

Substituting (50) into the definition of coupling leakage

yields

LE(q) =
||Cm − diag(Cm)||F

||Cm||F

=

√

||CE1 − diag(CE1)||2F
||CE1||2F + (q − 1)(Nr

G − 1)
. (52)

Since (Theorem 7 in [14])

||CE1 − diag(CE1)||F
||CE1||F

= LG,

||CE1 − diag(CE1)||F = ||IN ′ ⊗ (C− diag(C))||F
=

√
N ′||C− diag(C)||F ,

||CE1||F = ||IN ′ ⊗C||F
=

√
N ′||C||F , (53)

with N ′ = Nr−1
G , one can derive

LE(q) =

√

||CE1 − diag(CE1)||2F
||CE1||2F + (q − 1)(Nr

G − 1)

=

√

Nr−1
G L2

G||C||2F
Nr−1

G ||C||2F + (q − 1)(Nr
G − 1)

≤
√

Nr−1
G L2

G||C||2F
Nr−1

G ||C||2F
= LG, (54)

which completes the proof.
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