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A B S T R A C T   

The Ediacaran Period (ca. 635–539 Ma) was an eventful interval in Earth history, during which a succession of 
biological and environmental changes, including episodic ocean oxygenation events (OOEs), paved the way for 
the Cambrian radiations of animal life. To better understand the evolution of ocean redox conditions and to 
estimate the extent of seafloor oxygenation during this period, we analysed molybdenum (Mo) isotope compo-
sitions and redox sensitive element (RSE) concentrations from a continuous, mid-slope section of the Doushantuo 
Formation (ca. 635–560 Ma) of the Nanhua Basin on the South China Craton. Alongside an updated compilation 
of published Mo isotope and RSE data, our new data show that three OOEs occurred within a generally anoxic 
Ediacaran ocean, with the last, particularly extensive event occurring during deposition of Doushantuo Member 
IV. Here we show how the global balance of redox-related Mo sinks shifted dynamically in response to these 
transient OOEs, which correlate well with the first appearance of Ediacaran fossil groups and so may have 
triggered or stimulated biotic innovations and radiations. Moreover, the spatial distribution of the Mo data from 
multiple sections supports episodic expansion of a euxinic wedge on the slopes of the Nanhua Basin, consistent 
with pyrite burial as a potential cause of the OOEs.   

1. Introduction 

The Ediacaran Period (~635–539 Ma) marks a turning point when 
several important evolutionary and environmental events occurred that 
set the stage for the subsequent progression towards the modern Earth 
system. This includes the appearance of complex multicellular eukary-
otes in the form of the Ediacaran biota (Narbonne 2005; Droser et al., 
2017), which reached its maximum diversity at around 560 Ma (Xiao 
and Laflamme, 2009). Most eukaryotes, especially the overwhelming 
majority of metazoans, require oxygen for various physiological pro-
cesses (Summons et al., 2006; Acquisti et al., 2006; Narbonne 2004; 
Canfield et al., 2007, Sperling et al., 2013). In line with this, the 
diversification of animals has been plausibly linked to a stepwise rise in 

oceanic (and possibly atmospheric) oxygenation during the late Edia-
caran Period (Canfield et al., 2007; Frei et al., 2009; Knoll, 2011; Lenton 
et al., 2014; Chen et al., 2015; Bowyer et al., 2017; Cole et al., 2020). 

It is commonly thought that ca. 1.5 billion years after the ‘Great 
Oxidation Event’ (GOE, around 2.3 Ga) (Holland, 2002; Canfield, 2005), 
there was a second significant increase in Earth surface oxygen levels 
(termed the ‘Neoproterozoic Oxygenation Event’, NOE) at ~ 0.8–0.5 Ga 
(Shields-Zhou and Och, 2011). Indeed, it has been suggested that the 
extent of global seafloor oxygenation during the NOE may have risen to 
near present levels (Zhang et al., 2019). In more detail, however, 
abundant evidence shows that Ediacaran ocean oxygenation events 
(OOEs) were only transient (Canfield et al., 2007; Sahoo et al., 2012, 
2016; Zhang et al., 2019; Xu et al., 2022), while ferruginous (Fe2+
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containing) or euxinic (sulphidic) anoxic environments (Canfield et al., 
2008; Li et al., 2010; Kurzweil et al., 2015; Wood et al., 2015; Zhang 
et al., 2018) continued to be widespread. Although enrichments of 
redox-sensitive element (RSE) on the South China Craton (particularly 
the Doushantuo Formation) imply that oceans were widely oxygenated 
following Marinoan glaciation (Sahoo et al., 2012, 2016), the oxygen-
ation level likely waxed and waned throughout the NOE interval (Fike 
et al., 2006; Canfield et al., 2008; McFadden et al., 2008; Kendall et al., 
2015; Sperling et al., 2015; Tostevin et al., 2019; Tostevin and Mills, 
2020; Wei et al., 2021). Furthermore, oceanic redox structure, especially 
around productive margins, may have been highly variable (Li et al., 
2015). Overall, the detailed timing and intensity of Ediacaran oxygen-
ation, as well as resultant changes in the marine redox landscape, remain 
unclear (Och and Shields-Zhou, 2012; Sperling et al., 2013; Lyons et al., 
2014; Och et al., 2016). Thus, further detailed studies utilising redox 
proxies that address local to more regional redox heterogeneity are 
required. 

Here, we present and interpret a local to potentially global redox 
proxy dataset, including Fe-speciation, RSEs, and Mo isotopes, from a 
newly discovered and dated mid-slope section named Xiajiaomeng West 
(XJMW), Guizhou Province, South China. Combined with data from 
previous studies on Ediacaran sections positioned at various water 
depths across the Nanhua Basin, these new data from the Doushantuo 
Formation provide supporting evidence for the occurrence of OOEs 
through the Ediacaran Period, and allow a detailed investigation of the 
temporal and spatial evolution of redox conditions on productive ocean 
margins during the Ediacaran Period. 

2. Background: geochemical proxies 

A sequential extraction procedure for acquiring the relative pro-
portion of iron mineral species in ancient sediments, iron speciation, is 
widely used to investigate the local to regional redox state of ocean 
basins (Poulton and Canfield, 2005; Poulton and Canfeld, 2011). The 
ratio of FeHR/FeT (FeHR, highly reactive iron, normalised to FeT, total 
iron) has been extensively calibrated as a tool to identify water column 
anoxia in ancient marine settings (Raiswell and Canfield, 1998; Raiswell 
et al., 2001; Poulton and Raiswell, 2002; Clarkson et al., 2014). FeHR/ 
FeT ratios below 0.22 suggest probable oxic water column conditions, 
while FeHR/FeT > 0.38 implies water column anoxia, with intermediate 
FeHR/FeT ratios considered equivocal (Poulton and Canfeld, 2011). For 
anoxic conditions, euxinia can be distinguished from ferruginous con-
ditions by considering the extent of the pyritisation of the highly reac-
tive iron pool (FePy/FeHR; Poulton et al., 2004; Poulton and Canfeld, 
2011). Recent work on the euxinic Lake Cadagno (Xiong et al., 2019) 
and euxinic Holocene sediments from the Eastern Mediterranean Sea 
(Benkovitz et al., 2020), combined with existing criteria (Anderson and 
Raiswell, 2004; März et al., 2008), suggest that FePy/FeHR < 0.6 provides 
strong support for ferruginous water column conditions, FePy/FeHR >

0.8 implies euxinic conditions, while ratios of 0.6–0.8 are considered 
equivocal and require additional evidence, such as trace metal concen-
trations and isotope compositions, to interpret the precise redox state of 
the water column (Poulton, 2021). 

Redox-sensitive element concentrations are used for tracing not only 
local but also global ocean redox states (Sahoo et al., 2012, 2016; 
Ostrander et al., 2019). Most RSEs are transferred to the ocean in the 
form of aqueous oxyanions derived from the oxidative weathering of 
RSE-bearing minerals (Dunk et al., 2002; Miller et al., 2011), while 
marine sediments represent the RSE sinks with variable RSE accumu-
lation rates governed largely by the redox condition of the local depo-
sitional environment. RSE contents in marine sediments beneath oxic 
waters generally approximate crustal values (Mo ~ 1.1 ppm, U ~ 1.7 
ppm, V ~ 98 ppm; Wedepohl, 1995) without authigenic enrichment, as 
most of the RSEs remain in dissolved form in oxic seawater, which today 
has Mo ~ 110 nM (Ho et al., 2018), U ~ 14 nM, and V ~ 40 nM (Morford 
and Emerson, 1999). The exception is authigenic Fe-Mn oxides, onto 

which RSEs, Mo and V in particular, may be sequestered via adsorption 
(Tribovillard et al., 2006). 

Under reducing marine states, the burial fluxes of many RSEs (e.g., 
Mo, U and V) exceed those in oxygenated settings by several orders of 
magnitude (Sahoo et al., 2012). Under anoxic (both sulphidic and fer-
ruginous) conditions, dissolved U may be efficiently deposited, 
following reduction from U(VI) to U(IV) (Tribovillard et al., 2012; 
Massey et al., 2014; Brüske et al., 2020). Similarly, under suboxic or 
anoxic conditions, pentavalent vanadate is reduced to tetravalent 
vanadyl susceptible to incorporation into organic matter (Breit and 
Wanty, 1991). Further reduction to insoluble trivalent V species is 
kinetically slow (Wanty and Goldhaber, 1992) and does not induce 
sedimentary V enrichment, even in the modern euxinic Framvaren 
Fjord, which has the highest marine H2S concentration of 8 mM (Scott 
et al., 2017). By contrast, Mo precipitation initiates due to thiolation by 
H2S, rather than reduction, and thiomolybdates are prone to further 
particle scavenging (Helz et al., 1996) or sulphide formation (Helz, 
2021). 

As RSE enrichments in anoxic marine sediments generally report 
dissolved RSE availabilities, they can be applied to trace ocean redox 
state (Scott et al., 2008; Tribovillard et al., 2006; Och and Shields-Zhou, 
2012). Both global and local factors affect the extent of RSE availabilities 
including, particularly, the content of these elements in the open ocean, 
as well as the connectivity of ocean basins to the open ocean (Algeo and 
Maynard, 2004; Lyons and Severmann, 2006). Basin restriction gener-
ally reduces the extent of RSE enrichments (Tribovillard et al., 2006; 
Lyons et al, 2009), which means that the upper limits of enrichments 
within an interval indicate the RSE availabilities within the least 
restricted basin, so that they do not only have local significance (Sahoo 
et al., 2012). Therefore, high RSE enrichments recorded in euxinic shales 
provide strong evidence for a broadly oxygenated ocean, since such 
enrichments in locally anoxic settings require high availability of RSE 
sourced from a largely oxygenated open ocean (Scott et al., 2008; Sahoo 
et al., 2012, 2016). 

Molybdenum (Mo) isotopes have developed into a strong palae-
oredox proxy for evaluating the spatial extent of different oceanic redox 
conditions, due to the redox controlled switches between different 
depositional mechanisms and ensuing changes in isotope fractionations 
(e.g., Anbar, 2004; Arnold et al., 2004; Kendall et al., 2017). In the 
modern oxygenated ocean, Mo scavenging by Fe-Mn oxides comprises a 
large portion of the global Mo sink. This process is slow, and Fe-Mn 
oxides are significantly enriched in the lighter Mo isotopes (Barling 
et al., 2001), which causes modern open ocean seawater (OSW) to be 
homogeneously enriched in the heavier Mo isotopes, with a δ98MoOSW 
composition of around + 2.34‰ (Nakagawa et al., 2012). 

Similarly, high δ98Mo values have been reported from sediments 
deposited during the early Cambrian (Chen et al., 2015), early Devonian 
(Dahl et al., 2010), and the Palaeocene–Eocene thermal maximum 
(Dickson et al., 2012), and are interpreted to reflect a modern-like extent 
of oxygenated seafloor. These interpretations are based on the obser-
vation that isotopic fractionations are commonly much smaller under 
suboxic through to anoxic conditions (Poulson Brucker et al., 2009). 
When the bottom waters are more reducing, or when organic burial and 
microbial sulphate reduction (MSR) rates are higher, the generation of 
dissolved sulphide results in conversion of molybdate to thiomolybdate 
species. Both theoretical calculations (Tossell, 2005) and experimental 
observations (Kerl et al., 2017; Hlohowskyj et al., 2021) indicate large 
isotopic fractionations between thiomolybdate species (MoOxS4− x

2− ). The 
products of higher degrees of thiolation tend to incorporate more of the 
lighter Mo isotopes and are more susceptible to scavenging by solid 
phases (Erickson and Helz, 2000). Therefore, incomplete removal of 
more sulphidised thiomolybdate species from seawater to the sediments 
can cause low δ98Mosed values. The δ98Mosed value approaches 
δ98MoOSW when H2S increases and removal of thiomolybdates becomes 
more quantitative. Therefore, when ocean anoxia expands, the 
δ98MoOSW value tends to decrease, as shown near the end of the Permian 
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Period (Zhang et al., 2021) and during the Late Cretaceous Ocean 
Anoxic Event (OAE) 2 (Goldberg et al., 2016; Dickson et al., 2021). 

3. Study sites and samples 

3.1. The Doushantuo Formation on the South China Craton 

The South China Craton consists of two blocks, Yangtze and 
Cathaysia, between which the Nanhua Basin developed as a failed intra- 
cratonic rift basin at ~ 820 Ma (Wang and Li, 2003). Ediacaran 

Fig. 1. (a) A reconstructed paleogeographic map of South China Craton during the deposition time of Doushantuo Formation, modified from Lu et al. (2013). (b) A 
3D paleogeographic reconstruction of the Nanhua Basin together with the depositional environment. The figure is modified from Zhu et al. (2019) and see the legend 
of color in the reference paper. 

L. Yuan et al.                                                                                                                                                                                                                                    



Precambrian Research 388 (2023) 107004

4

sedimentary successions, comprising the Doushantuo and Dengying 
formations, are well preserved over the Yangtze platform, with the un-
derlying Doushantuo Formation representing a considerably greater 
proportion of Ediacaran time (Condon et al., 2005). The Nanhua Basin 
comprises a large platform facies, a transition belt, and a basin facies, 
representing a shelf-to-basin transect from the northwest to the south-
east (Fig. 1a and 1b). The precise palaeobathymetric reconstructions of 
Zhu et al. (2003) have reflected that the shallow-water platform was 
characterised by multiple intra-shelf basins and carbonate barriers on its 
margins. The Doushantuo Formation was deposited on the south-eastern 
margin of the Yangtze platform with some connection to the open ocean 
(Jiang et al., 2011; Sahoo et al., 2012). It is underlain by the Nantuo 
Formation, which mainly comprises glacigenic diamictites deposited 
towards the end of the Cryogenian Period, and is overlain by the Den-
gying/Liuchapo formations that were deposited during the terminal part 
of the Ediacaran Period. 

The Doushantuo Formation in the Yangtze Gorges area has been 
commonly divided into four distinct lithological members (I − IV from 
base to top), which are likely correlative with sections of the same for-
mation name along the basin margin (McFadden et al., 2008; Jiang 
et al., 2011). Member I, a cap carbonate (dolostone), overlies the Nantuo 
diamictite and can be up to ~ 5 m thick in the Yangtze Gorges area. 
There is an ash bed just above the top of Member I in the Yangtze Gorges 
area which has been dated at 635.23 ± 0.57 Ma (Condon et al., 2005), 
with a 634.57 ± 0.88 Ma age from the uppermost Nantuo Formation 
(Zhou et al., 2019). These two ages are similar to ages from other well- 
known basal Ediacaran sections, including < 636.41 ± 0.45 Ma from 
Tasmania, Australia (Calver et al., 2013), <635.21 ± 0.59 Ma in 
northern Namibia (Prave et al., 2016), and > 632.3 ± 5.9 Ma in 
northwestern Canada (Rooney et al., 2015). The two ages from the South 
China Craton are almost indistinguishable within analytical error, and 
together they indicate that the boundary of Cryogenian–Ediacaran is at 
approximately 635 Ma (Xiao and Narbonne, 2020). 

Member II comprises interbedded black shale and dolostone with 
abundant chert nodules and pyrite. U-Pb zircon dating from about six 
meters from the base of this member gives an age of ~ 632 Ma (Condon 
et al., 2005). Member III is mainly composed of carbonates, largely 
ribbon-banded limestones and marls, with irregular chert bands and 
fewer shale layers. Member IV is dominated by organic-rich black shale, 
which is overlain by the Dengying/Liuchapo Formation. The end of 
Member IV deposition at the Jiuqunao (Jijiawan) section in the Yangtze 
Gorges area is dated by a zircon age of ~ 551 Ma from an ash layer, 
which was reported to be 1 m below the top of Member IV (Condon 
et al., 2005; Zhang et al., 2005). More recently, this has been re-dated to 
550.1 ± 0.6 Ma by Yang et al. (2021). In the Doushantuo Formation, 
biostratigraphic correlations can be made using fossil assemblages, 
including macroscopic carbonaceous compressions of multicellular 
algae, and acanthomorphic acritarchs (Xiao et al., 2004; Yuan et al., 
2011; Xiao et al., 2014; Qu et al., 2018; Ouyang et al., 2019). The 
overlying Dengying/Liuchapo Formation preserves biomineralising 
metazoan fossils, including the Shibantan and Gaojiashan biotas (Xiao 
et al., 2005; Cai et al., 2010; Chen et al., 2014). 

The upper part of the Doushantuo Formation (Members III and IV) 
records a large, negative carbon isotope excursion, called the ‘DOUsh-
antuo Negative Carbon isotope Excursion’ (DOUNCE) in South China 
(Lu et al., 2013). The top of Doushantuo Member IV marks the end of the 
DOUNCE (>~550 Ma; Yang et al., 2021) and this excursion is consid-
ered to be equivalent to the Shuram δ13C excursion in Oman (Fike et al., 
2006), the Wonoka δ13C excursion in southern Australia (Calver, 2000), 
and the Krol B δ13C excursion in northern India (Kaufman et al., 2006), 
all recorded from upper Ediacaran successions. Different models have 
been proposed to interpret extreme negative carbon isotope excursions, 
such as the remineralisation of a putative, large dissolved organic car-
bon pool (Rothman et al., 2003). However, Bristow and Kennedy (2008) 
pointed out that such an event would have exhausted ocean oxidant 
supply on a timescale of ~ 800 kyr, much shorter than the likely 

duration of the anomaly. This issue can potentially be resolved if surplus 
sulphate weathering coupled with pyrite burial replenished the requisite 
oxidant (Shields et al., 2019). Alternative models include authigenic 
carbonate deposition (Schrag et al., 2013; Laakso and Schrag 2020), 
while some argue for a local or diagenetic origin for the δ13C excursions 
(e.g., Busch et al., 2022). 

3.2. Studied section: Xiajiaomeng 

The XJMW section (26◦68′56′’N, 108◦33′82′’E) is located in Guizhou 
Province and is ~ 70 km to the southwest of the Wuhe section (Fig. 1; 
red number). The XJMW section incorporates the whole of the Doush-
antuo Formation, and the lithologies vary from carbonates and calcar-
eous dolomite to shales. In total, 45 samples were collected from an 
abandoned quarry with freshly exposed surface. Based on a lithological 
comparison with the four members of the Doushantuo Formation 
observed in the Yangtze Gorges area, the Doushantuo Formation at 
XJMW can be similarly divided into four members: Members I − IV. The 
dolomitic Member I sits above the Nantuo diamictite, and likely repre-
sents the “cap dolostone” in this section; Member II begins with the first 
chert bed. Its lower part is predominantly siliceous with some carbonate 
interbeds, becoming more shaly upwards, with cherty interbeds; Mem-
ber III is mostly carbonate with some chert bands; Member IV is domi-
nated by black shale or marl. Compared with Yangtze Gorges sections, 
the XJMW section appears to be relatively more enriched in silicate 
minerals as shown by elevated Al contents (Table 1 and Fig. S1) and was 
deposited in a middle slope environment in the Nanhua Basin (Fig. 1b). 

The overall thickness of the sampled section is approximately 38 m, 
having been shortened somewhat by tectonic shearing and low-grade, 
regional metamorphism. The only dating result for the slope sections 
is a zircon U-Pb age of 556.4 ± 0.7 (CA-ID-TIMS) from the lower part of 
the overlying Liuchapo Formation at the same XJMW section (Yang 
et al., 2021). This would be consistent with an age of ~ 560 Ma for the 
end of Doushantuo Member IV. (Yang et al., 2021). For the purpose of 
this study, we assume an age span of ~ 635 to ~ 560 Ma for the entire 
Doushantuo Formation and an approximately constant sedimentation 
rate (Table 1). There is a negative carbon isotope excursion found in 
Member III at the Xiajiaomeng section, and δ13C reaches as low as −
6.5‰ (Yang et al., 2021). 

4. Methodology 

All samples were crushed and ground into powder using a SIEBT-
ECHNIK TEMA tungsten carbide mill. RSE concentrations were acquired 
by X-ray fluorescence (XRF) on a Philips PW2400 Spectrometer (PAN-
alytical, Almelo, the Netherlands) at Royal Holloway University, Lon-
don, with representative reproducibilities (2SD) of Mo = 0.2 ppm, U =
0.4 ppm, and V = 2.4 ppm. Fe extractions were conducted at the Uni-
versity of Leeds following the methods outlined in Poulton and Canfield 
(2005) and Canfield et al. (1986). The concentrations of Fe in 
operationally-defined sequential leaches of unsulphidised Fe phases (see 
Poulton, 2021) were determined by atomic absorption spectroscopy, 
while the concentration of pyrite Fe was determined gravimetrically 
after precipitation as Ag2S. Replicate extractions gave a relative stan-
dard deviation of < 5 % for all steps, and accuracy was ensured using 
international Fe speciation standard, WHIT (Alcott et al., 2020). Total 
organic carbon (TOC) was obtained by the difference between total 
carbon before and after the removal of inorganic carbon (two 10 % (vol/ 
vol) HCl washes for 24 h). Samples were analysed on a FLASH EA 
elemental analyser at University College London, and replicate analyses 
gave a precision of ± 0.12 wt% (2SD). 

Mo purification and δ98Mo measurements were performed at Nanj-
ing University, China. For Mo isotope analysis, about 10–100 mg of 
powder containing ~ 50–200 ng Mo was digested with HNO3 and HF. A 
drop of 97Mo− 100Mo double spike containing the same amount of Mo 
was added to the mixture. The mixture was left on a hotplate (150 ◦C) 
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for ~ 72 h. The supernatant was separated and dried before being re- 
dissolved using HCl. The purification of Mo using BPHA resin follows 
the protocol of Li et al. (2014). Mo isotope compositions were measured 
on a Thermal Neptune Plus multi-collector ICP-MS. The measurement 
and mass bias correction by the double spike technique were carried out 
as described by Archer and Vance (2008). The Mo isotope data are re-
ported relative to the reference standard, NIST-SRM-3134 (δ98Mo =
+0.25‰; Nägler et al., 2014). The internal reproducibility of δ98Mo 
measurements was better than 0.1‰ (2SE, n = 30). 

To assess and compare the authigenic fractions of RSEs, enrichment 
factors (EFs) were calculated via the equation XEF = [(X/Al)sample / (X/ 
Al)UCC] (Tribovillard et al., 2006; Algeo and Tribovillard, 2009), where 
X (ppm) and Al (wt%) represent the contents of RSE X and Al, respec-
tively. Data are normalised against abundances of upper continental 
crust (UCC) outlined in McLennan (2001). In general, XEF > 3 corre-
sponds to a detectable authigenic enrichment, while XEF > 10 suggests a 
substantial enrichment (Algeo and Tribovillard, 2009). 

5. Results 

5.1. Redox conditions at the XJMW section 

For the XJMW section, all but two samples (XJMW33 and 39) had 

FeT contents above 0.5 wt%, which is considered to give a robust Fe 
speciation signal (Clarkson et al., 2014), and hence these samples were 
analysed for Fe speciation (Table 1). Almost all XJMW samples have 
FeHR/FeT ratios>0.38, suggesting deposition beneath a persistently 
anoxic water column. The only exception is sample XJMW41, which had 
an FeHR/FeT ratio of 0.28 in the equivocal anoxic zone. However, the 
RSE contents of this sample are similar to those of neighbouring samples 
above and below, indicating probable anoxia (Table 1; Fig. 2). For 
Member I, FePy/FeHR ratios for all samples were < 0.6, indicating that 
Member I was deposited under a ferruginous water column. For Member 
II, the lower part shows a ferruginous signature with FePy/FeHR < 0.6, 
while samples in the upper part lie mostly in the equivocal zone, with 
FePy/FeHR between 0.6 and 0.8, possibly fluctuating between ferrugi-
nous and euxinic conditions. The FePy/FeHR values of Member III range 
between 0.26 and 0.89, showing oscillating euxinic and ferruginous 
values. In Member IV, except for XJMW41 (Table 1), all samples have 
equivocal (0.6–0.8) or euxinic FePy/FeHR (>0.8) ratios. 

5.2. RSE concentrations at the XJMW section 

As shown in Fig. 2 and Table 1, the different measured redox sensi-
tive elements (Mo, U, and V) show roughly the same trend. Based on 
elevated RSE concentrations, three distinct intervals of enrichment can 

Table 1 
Geochemical data for Doushantuo Formation at the XJMW section.  

Unit Sample Height (m) Age (Ma) δ98Mo (‰) TOC (%) Al (%) Mo (ppm) U (ppm) V (ppm) FeHR/FeT FePy/FeHR 

Member I XJMW1 0 635   0.07  7.54 0.3 2.8 66 0.61  0.39 
Member I XJMW2 0.5 634   0.04  3.47 0.4 2.5 43 0.83  0.12 
Member I XJMW3 1.4 633   0.06  1.43 0.9 1.5 13 0.93  0.04 
Member II XJMW4 3 632   0.35  3.06 0.4 7.1 1199 0.88  0.05 
Member II XJMW5 3.6 631   0.05  3.24 1.0 6.2 413 0.94  0.12 
Member II XJMW6 4.6 629  0.234  0.21  8.57 15 14 315 0.77  0.5 
Member II XJMW7 5.6 627  0.368  0.73  7.44 11 7.9 250 0.87  0.44 
Member II XJMW8 6.6 625   0.04  3.63 1.7 5.3 189 0.9  0.24 
Member II XJMW9 8.3 621   0.25  1.46 0.3 3.0 66 0.93  0.07 
Member II XJMW10 9.3 619   0.12  8.76 0.1 6.3 162 0.72  0.6 
Member II XJMW11 11.3 615   0.04  1.38 0.3 0.8 58 0.91  0.11 
Member II XJMW12 12.3 613   0.11  7.42 0.8 1.5 85 0.84  0.75 
Member II XJMW13 14 609   0.09  5.24 0.8 1.2 54 0.81  0.63 
Member II XJMW14 15 607  − 0.388  1.69  7.19 1.3 2.2 99 0.88  0.76 
Member II XJMW15 16.4 604   0.13  6.77 0.9 1.6 76 0.52  0.54 
Member II XJMW16 17.4 602  0.672  1.50  7.82 1.2 2.4 95 0.78  0.69 
Member II XJMW17 18.4 600  0.692  0.00  8.03 1.7 2.8 104 0.54  0.44 
Member II XJMW18 20.4 596  0.253  1.33  6.42 2.3 3.5 95 0.85  0.79 
Member II XJMW19 20.8 595   0.80  5.14 2.1 3.0 69 0.91  0.59 
Member II XJMW20 21.1 595  0.434  2.42  7.68 3.6 5.4 105 0.96  0.77 
Member II XJMW21 22.7 591  0.205  1.47  7.17 1.8 3.1 98 0.91  0.78 
Member II XJMW22 22.8 591  0.309   5.26 1.6 1.4 74 0.96  0.76 
Member II XJMW23 23.6 590   0.54  5.14 0.9 2.9 75 0.82  0.72 
Member III XJMW24 24.6 588   0.45  1.94 0.5 1.2 27 0.92  0.38 
Member III XJMW25 26.1 584  0.569  3.45  7.40 9.2 8.8 169 1  0.78 
Member III XJMW26 26.3 584  0.644  2.24  6.86 5.5 6.5 160 0.95  0.85 
Member III XJMW27 26.7 583   0.59  0.74 1.1 0.9 21 0.98  0.26 
Member III XJMW28 27 583  1.386  4.13  5.74 5.6 11 141 0.85  0.81 
Member III XJMW29 27.5 582   2.35  1.88 2.1 1.8 37 0.96  0.45 
Member III XJMW30 27.8 581  1.148  3.05  6.54 11 5.9 106 0.87  0.88 
Member III XJMW31 28.3 580  0.270  0.04  5.46 2.4 3.9 88 0.94  0.78 
Member III XJMW32 29.1 578  0.228  0.33  4.41 2.9 2.3 59 0.94  0.89 
Member III XJMW33 30.1 576   0.05  0.51 0.6 1.7 52   
Member III XJMW34 30.9 575   0.24  1.82 1.0 3.9 150 0.73  0.51 
Member III XJMW35 31 574   0.11  1.83 0.6 7.8 153 1  0.37 
Member III XJMW36 32.5 571   0.03  2.38 1.1 3.7 397 0.92  0.62 
Member IV XJMW37 33 570  0.640  0.37  6.68 312 48 910 0.89  0.88 
Member IV XJMW38 35 566  1.349  0.09  2.36 6.4 9.2 324 0.99  0.75 
Member IV XJMW39 37 562  0.857  0.30  0.83 94 21 115   
Member IV XJMW40 37.1 562  1.393  1.54  2.32 34 6.0 128 1  0.85 
Member IV XJMW45 37.2 562  0.805  5.96  2.68 31 21 128 1  0.63 
Member IV XJMW41 37.5 561  1.821  6.19  4.82 66 19 140 0.28  0.77 
Member IV XJMW42 37.65 561  1.722  6.60  5.34 58 19 136 0.99  0.69 
Member IV XJMW43 37.8 560  1.549  7.32  5.07 56 24 140 1  0.71 
Member IV XJMW44 38 560  1.443  7.58  4.86 51 18 133 0.96  0.74  

L. Yuan et al.                                                                                                                                                                                                                                    



Precambrian Research 388 (2023) 107004

6

be identified (Fig. 2): Interval A: basal Member II, Interval B: basal 
Member III, and Interval C: Member IV. The occurrence of these three 
RSE-enriched intervals is approximately consistent with previous studies 
of other sections across the basin transect (Kendall et al., 2015; Sahoo 
et al., 2016; Ostrander et al., 2019; Ye et al., 2020). 

The first high RSE interval (Fig. 2; Table 1) occurs in basal Member II 
(Mo = 0.4–15 ppm, U = 3–15 ppm, V = 100–1200 ppm). MoEF, UEF, and 
VEF ranges are 1–9, 3–7, and 3–30, respectively. This interval is followed 
by a progressive shift to lower RSE concentrations from 7 − 25 m at the 
section (Mo = 2–4 ppm, U = 3–5 ppm, V = 80–120 ppm), with con-
centrations that are similar to crustal values (Mo = 1–2 ppm, U = 2–4 
ppm, V = 120–140 ppm). At the base of Member III (Fig. 2; Interval B), 
RSE concentrations increase again, with Mo contents varying between 1 
and 11 ppm (MoEF = 4–9), U between 1 and 11 ppm (UEF = 2–6), and V 
between 21 and 160 ppm (VEF = 1–2). Above this interval, RSE con-
centrations again decrease to near crustal levels. Finally, there is a third 
large shift in RSE concentrations in Member IV (Interval C), whereby 
this interval records the highest Mo and U concentrations (Mo = 6–312 
ppm, U = 6–48 ppm), while V concentrations are also elevated 
(115–910 ppm). EFs for these RSEs are also elevated during this interval 
(MoEF = 14–597, UEF = 7–72, VEF = 2–10). 

5.3. Mo isotope compositions at the XJMW section 

The 24 samples from the Doushantuo Formation at the XJMW section 
show mostly positive δ98Mo values, up to + 1.82‰ (Fig. 2; Table 1), with 
only one negative value (− 0.39‰) in Member II. Mo isotope composi-
tions are elevated during the three RSE-enriched intervals. In Interval A, 
two samples from the lowermost Member II have relatively low δ98Mo 
values (+0.23‰ and + 0.37‰, respectively). Between Interval A and 
Interval B, the δ98Mo data show a limited range except for one negative 
value. The δ98Mo values increase progressively upsection towards 
Member IV, with the δ98Mo value showing up to + 1.39‰ in Interval B. 
Moving to Interval C, the δ98Mo values show a range of + 0.64 to +
1.82‰, averaging + 1.29 ± 0.42‰ (1SD). Throughout the XJMW sec-
tion, the TOC trend generally covaries with the Mo isotopic data. One 

important finding is that δ98Mo values continue to rise through Member 
IV (Fig. 2), while the basal Member IV sample has a relatively low δ98Mo 
value (+0.64‰) and the highest Mo concentration (312 ppm) in the 
XJMW section. 

6. Discussion 

6.1. Three oceanic oxygenation events 

Based on our data, three potential oxygenation intervals at the 
XJMW section (Fig. 2; Interval A: basal Member II, ~630 Ma, Interval B: 
mid Member III, ~580 Ma, and Interval C: Member IV ~ 570 Ma) are 
identified, based on elevated RSE concentrations and enrichment fac-
tors, TOC concentrations and δ98Mo values. As mentioned above, the 
accumulation rates of RSE in reducing environments exceed those in 
oxic environments (Sahoo, et al., 2012), and with a greater extent of 
global oxygenation, greater enrichment of RSEs will occur in fewer 
locally anoxic settings. Therefore, the RSE enrichments of these three 
episodes suggest widespread OOEs within the investigated late Edia-
caran interval. We estimate that each OOE spanned an approximate 
maximum interval of ~ 8–10 million years (Table 1), and that dynamic 
redox variability through the stratigraphy likely regulated sedimentary 
RSE concentrations. The RSE concentrations shift to lower values be-
tween OOEs, which most likely suggests a switch back to more reducing 
oceanic conditions, in agreement with the interpretation for the Wuhe 
section by Sahoo et al. (2012, 2016). In general, the timing of these three 
OOEs generally concurs with that found in previous studies from other 
slope sections (see Sahoo et al., 2012, 2016; Kendall et al., 2015; 
Ostrander et al., 2019; Xu et al., 2022). Based on the Fe speciation data, 
most samples from the Doushantuo Formation at the XJMW section were 
deposited under anoxic conditions, which in detail was mostly ferrugi-
nous with episodic euxinia. Since Mo, U and V exhibit their own 
different characteristic responses to redox conditions encountered in the 
water column and during early diagenesis (Morford et al., 2005), 
changes in their concentrations during any particular OOE may not 
necessarily covary (Fig. 2). 

Fig. 2. Geochemical profiles for the XJMW section (Table 1), together with the stratigraphic column. The blue intervals signify high RSE enrichments (roughly RSEEF 
> 10), Mo isotopic compositions and TOC contents (Interval A, B and C). (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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In Interval A, a slight [Mo] and [U] increase is observed, despite Fe 
speciation evidence for ferruginous conditions (Fig. 2). This may reflect 
changes in the local depositional environment, including openness of the 
paleo-basin (Algeo and Lyons, 2006) and bulk sedimentation rate 
(Hardisty et al., 2018). Vanadium shows the highest value at the base of 
Interval A, while U is only moderately enriched, and Mo is lower than 
the average upper crustal value. Vanadium enrichment begins under 
higher Eh conditions (Nielsen, 2020) than U and Mo, and shows high 
affinity with organic matter, which is consistent with the relatively low 
FePy/FeHR and high TOC. 

In Interval B, Mo concentrations are<11 ppm (Fig. 2), and such low 
concentrations only occur in modern non-euxinic environments where 
sulphide is restricted to porewaters (Scott and Lyons, 2012). However, 
FePy/FeHR ratios suggest that redox conditions fluctuated between fer-
ruginous and euxinic conditions (Fig. 2). Therefore, availability of Mo 
may have been restricted due to a less oxygenated open ocean. 

In Interval C, FePy/FeHR data strongly indicate euxinic conditions 
(Fig. 2), which is similar to Interval B. However, significantly higher RSE 
concentrations and high TOC contents (>7.5 wt%), with values com-
parable to those found in Phanerozoic euxinic shales deposited during, 
or following, periods of global ocean oxygenation (Och and Shields- 
Zhou, 2012), highlights the potential magnitude of this particular 
global OOE. 

Samples between OOEs have low MoEF and UEF values (Fig. 3a), 
which is consistent with low concentrations of Mo and U in a less 
oxygenated ocean (Algeo and Tribovillard, 2009). The Mo and U 
enrichment factors observed in Intervals A and B plot close to, or below, 
the modern seawater value, but in Interval C range between those for 
modern open seawater and those for euxinic basins in good connection 
with the open ocean (Fig. 3a). The high enrichment of RSEs observed in 

Doushantuo Member IV (Interval C) could have been caused by a local 
Fe-Mn oxide shuttle and a global-scale OOE (Ostrander et al., 2019). 

Furthermore, changes in the degree of connection with the open 
ocean can also affect Mo abundance in basinal seawater and sediments 
(Algeo and Lyons, 2006). Due to basin restriction, the modern Black Sea 
has low deep-water Mo concentrations (~7 nM; Nägler et al., 2011), 
compared with the modern open ocean (~110 nM; Ho et al., 2018). By 
analogy, low RSE concentrations from Ediacaran successions in the 
Yangtze Gorges area are suggested to indicate basin restriction, as the 
Yangtze Gorges sections were deposited in a proximal intra-shelf lagoon 
(Jiang et al., 2011; Och et al., 2016). The low RSE concentrations (close 
to crustal values) between OOEs can only be inferred to be due to a less 
well-oxygenated global ocean if strong basin restriction can be ruled out. 
In this context, the XJMW section was located in a distal slope setting 
which may have been better connected to the open ocean before depo-
sition of Doushantuo Member IV. Therefore, our data may potentially be 
explained by both oxygenation and basin restriction (see section 6.3). 
Below we constrain the extent of oxygenation further by exploring Mo 
isotope systematics. 

6.2. Mo isotopes and Mo concentration systematics 

The Mo isotope composition of marine sediments has the potential to 
record the global extent of euxinia when sequestration of the aqueous 
molybdate anion, following conversion of molybdate to thiomolybdate 
species, is near-quantitative. Normally, this process requires relatively 
high [H2S]aq, low pH (Helz, 2021), and possibly basin restriction (Algeo 
and Lyons, 2006). Such a combination of conditions may not commonly 
occur, and so it is commonly assumed that δ98Mo values of organic rich 
sediments (δ98MoORS) from anoxic basins (e.g., Nanhua Basin) represent 

Fig. 3. (a) MoEF versus UEF for samples from the XJMW section. (b) (c) (d) Compiled MoEF/UEF ratios from Doushantuo Members II, III and IV, in slope parts of the 
Nanhua Basin. Upper slope data include the Rongxi section from Ostrander et al. (2019) and the Daotuo section from Ye et al. (2020). Middle slope data comprise the 
Taoying section from Ostrander et al. (2019) and the Xiajiaomeng West section from this study. Lower slope data involve the Wuhe and the Yuanjia sections from 
Ostrander et al. (2019). Solid blue lines are equivalent to multiples of the Mo/U molar ratio of modern seawater (×0.3, ×1, and × 3). Redox condition (suboxic: blue; 
anoxic: green; euxinic: yellow and arrows show the transitions) and particulate shuttle fields are modified from Algeo and Tribovillard (2009). The “particulate 
shuttle” is linked to Fe-Mn redox cycling within the water column. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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a lower estimate for δ98MoOSW (Arnold et al., 2004; Neubert et al., 
2008). In general, a high, maximal δ98MoORS value, as the estimate for 
δ98MoOSW, is taken to reflect a well-oxygenated ocean, while conversely, 
a low value implies extensive ocean anoxia, especially for sediments 
deposited under euxinic conditions (Arnold et al., 2004; Kendall et al., 
2017). Due to mass balance considerations, δ98MoORS anomalies lower 
than the crustal composition (~+0.35 to + 0.6‰; Willbold and Elliott, 
2017) must deviate from δ98MoOSW. Lower δ98MoORS values than coeval 
δ98MoOSW could be driven by two processes: Fe-Mn (oxyhydr)oxide 
shuttling (Scholz et al., 2013, 2017) or non-quantitative removal of Mo 
as thiomolybdate species under weakly sulphidic conditions (Tossell, 
2005; Kerl et al., 2017; Hlohowskyj et al., 2021). In this study, the lower 
δ98MoORS values likely record non-quantitative drawdown of molybdate 
from the water column, which is supported by lower FePy/FeHR ratios for 
these samples (Table 1). 

In the modern ocean, an Fe-Mn oxide shuttle for Mo drawdown has 
been proposed to operate in open-marine upwelling margins (e.g., Cal-
ifornia continental borderland, Peruvian margin and Namibian margin) 
and semi-restricted basins (e.g., Cariaco Basin, Baltic Sea Deeps, and 
multiple fjords), raising sedimentary MoEF/UEF ratios above those of 
seawater (Algeo and Tribovillard, 2009; Goldberg et al., 2012; Scholz 
et al., 2013, 2017; see Fig. 3). Bulk δ98MoORS values may therefore be 
controlled by the relative degree to which Fe-Mn (oxyhydr)oxides 
preferentially adsorb isotopically light Mo (Goldberg et al., 2009; 2012). 

At the XJMW section, low δ98MoORS values tend to occur between the 
OOEs for samples where Fe speciation data are in the equivocal zone 
(FePy/FeHR of 0.6–0.8), but Mo concentrations are low, suggesting a 
widespread anoxic ocean (Fig. 2). The low δ98MoORS values for the two 
ferruginous samples in Interval A, lowermost Member II, can only be 
regarded as lower estimates of δ98MoOSW, due to probable incomplete 
conversion of molybdate to tetrathiomolybdate (Goldberg et al., 2009; 
Brüske et al., 2020). In Interval B, a few euxinic samples (XJMW28 and 
30) have higher δ98Mo values but low Mo concentrations (Table 1 and 
Fig. 2). This may imply relatively expanded ocean oxygenation. Shoal-
ing of the chemocline or regression may have promoted quantitative 
removal of Mo and minimum Mo isotope fractionation. 

The highest δ98Mo values (up to + 1.8‰) occur in Interval C, 
Member IV, suggesting widespread ocean oxygenation prior to 560 Ma 
(Fig. 2). These high δ98Mo values generally co-occur with high RSE 
concentrations, which is consistent with deposition in a locally euxinic 
basin connected to an oxygenated global ocean. Interestingly, the sam-
ple with the highest Mo and U, and with very high V concentrations at 
the base of Interval C, has a relatively low δ98Mo value. This could 
potentially suggest a sudden rise in the size of RSE reservoirs and non- 
quantitative removal of Mo from coeval seawater as the basin was 
transitioning to a euxinic state, as shown by the FePy/FeHR data (Fig. 2). 
After that, all the RSE contents decline dramatically before increasing 
again as δ98Mo gradually reaches its peak (>+1.8‰), remaining high 
(~+1.5‰) thereafter. 

6.3. Implications for basin restriction 

It has been debated whether the Nanhua Basin maintained a 
continuous connection with the open ocean during the Ediacaran Period 
(Sahoo et al., 2012, 2016; Wu et al., 2021; Jin et al., 2021). The study by 
Ostrander et al. (2019) summarised the use of RSE concentrations and 
δ98Mo values as indicators of a non-restricted or restricted basin. 

In the modern day, relatively low Mo contents but high δ98Mosed 
values occur in the Black Sea (Neubert et al., 2008) and euxinic basins of 
Kyllaren fjord (Noordmann et al., 2015), and Lake Rogoznica (Bura- 
Nakić et al., 2018). These basins capture the coeval δ98MoOSW, as 
minimized exchange of Mo from the ocean into these settings promotes 
near-quantitative removal of Mo to the sediments. As discussed previ-
ously, our data from the XJMW section show that the Nanhua Basin was 
more likely connected to the open ocean at the time of Member IV 
deposition, when two major transitions may have occurred. Firstly, the 

immediate increase in [Mo], [U] and [V] at the start of Member IV 
deposition may have been caused by transgression or shoaling of the 
chemocline. Transgression has been proposed by Och et al. (2016), 
during which a sulphidic wedge was postulated to extend over the 
platform due to sea-level rise. Secondly, redox conditions in the water 
column at XJMW changed from equivocal (FePy/FeHR = 0.62) to more 
demonstrably euxinic (FePy/FeHR = 0.88) (Table 1) at the start of In-
terval C (prior to the Member III/Member IV boundary), suggesting the 
probable progressive development of more intense euxinia. This would 
explain the initial rapid quantitative removal of RSEs from the water 
column, leading to high RSE values in sample XJMW37 (Table 1). 
However, this sample has a low δ98Mo value (+0.64‰) suggesting 
incomplete Mo drawdown from the water column. Immediately above 
this sample, [Mo] decreases while δ98Mo increases (Fig. 2), suggesting 
sustained highly euxinic conditions with limited connectivity to the 
global ocean. This is similar to the modern Black Sea deep water-mass 
scenario (the “basin reservoir effect”; Tribovillard et al., 2008). 
Increased and stable [Mo] and [U] at and after sample XJMW39, 
coupled with high δ98Mo, suggests that at least some connection was 
regained with the open ocean. 

To better understand the basin restriction, we have compiled 
MoEF–UEF data from the slope part of the Nanhua Basin. Fig. 3 shows 
data for slope sections, consisting of our data and published data, 
interpreted using the MoEF/UEF model proposed by Algeo and Tribo-
villard (2009). In general, the consistent covariation in Mo and U 
enrichment factors between OOEs likely indicates the occurrence of 
regionally euxinic bottom waters and unrestricted exchange between 
the local environment and the open ocean during each OOE (Fig. 3a). 
Member II (Fig. 3b) data show the greatest scatter, with data from the 
upper slope commonly falling into the particulate shuttle area, consis-
tent with ferruginous conditions. Apart from a cluster of data from 
middle-slope sections that indicate some level of possible restriction 
(some MoEF/UEF values below 0.3 × SW in the Taoying section), most 
other sections appear to have been connected to the open ocean, with 
evidence for euxinia in some of the middle and lower slope sections. 
Member III (Fig. 3c) data show that a sulphidic wedge moved upslope, 
appearing in the upper and middle slope sections, with most samples 
falling in the unrestricted-marine area. For Member IV (Fig. 3d), the 
majority of data indicate open ocean conditions, with most of the MoEF/ 
UEF ratios consistently close to or exceeding the 1 × SW line. This is also 
consistent with the MoEF–UEF data from intra-shelf sections (Kendall 
et al., 2015), indicating locally euxinic bottom waters and unrestricted 
exchange between the local basin and the open ocean (Algeo and Tri-
bovillard, 2009). 

Although the basin possibly became semi-restricted during this stage 
due to the seaward presence of a submerged upland (Yeasmin et al., 
2017), similar average Mo/TOC values of Member IV ORM (23 ppm/wt 
%) to those for the weakly restricted Cariaco Basin (25 ppm/wt%) 
(Algeo and Lyons 2006; Kendall et al., 2015), as well as high MoEF/UEF 
values, suggest that water exchange between the local intra-shelf basin 
and open ocean was not severely restricted. Mo/TOC data from Member 
IV at the XJMW section show that high δ98Mo values only occur when 
Mo/TOC values are relatively low, indicating that the local basin 
became progressively more restricted after the deposition of sample 
XJMW 37 (~570 Ma; Table 1). 

6.4. The spatial distribution of Mo data across the Nanhua basin 

The MoEF/UEF compilation data for slope settings suggest episodic 
expansion and movement of a euxinic wedge across the slope of the 
Nanhua Basin. To investigate the spatial extent of redox conditions 
further, we next present a δ98Mo and [Mo] compilation across the 
Nanhua Basin. Six sections are placed in a proposed basinal recon-
struction of the Nanhua Basin after Lu et al. (2013) in Fig. 4, of which the 
Jiulongwan section is an intra-shelf section, located in the Yangtze 
Gorges area (Fig. 1), and the other 5 sections are slope sections discussed 
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above. 
For Member II (with Interval A at its base), data from the middle-to- 

lower slope sections (Taoying, Wuhe, and Yuanjia) correlate well 
(Fig. 4), as these sections were all deposited on the SE-facing slopes of 
the Nanhua Basin. All three sections evidence greater drawdown of Mo 
(up to ~ 180 ppm), indicating euxinic bottom waters. By contrast, the 
upper and middle slope sections (Rongxi and XJMW) have only slightly 
elevated [Mo]. Similarly, published Mo concentrations for Member II on 
the Yangtze platform are not particularly high (Och et al. 2016; Zhu 
et al. 2018). The Fe speciation data for slope sections show variations 
between oxic, ferruginous and euxinic bottom waters (Sahoo et al., 
2012, 2016; Ostrander et al., 2019). A few samples at the Yuanjia section 
have high δ98Mo values and [Mo], which may be due to highly sulphidic 
conditions in this area. Negative δ98Mo excursions with high Mo con-
centrations found in these deeper sections may have been the result of a 
deepening of the local chemocline, resulting in the establishment of an 
Fe-Mn oxide shuttle and drawdown of Mo to the sediments (Ostrander 
et al., 2019). This effect, being particularly pronounced during OOEs, 
suggests fluctuations between oxic and euxinic bottom waters 
(Ostrander et al., 2019). However, the most negative δ98Mo values in 
Member II at the Taoying section co-occur with low [Mo], which may be 
due to a large negative Mo isotope fractionation under weakly sulphidic 
conditions. 

For Member III (Interval B), only limited data exist for these sections, 
likely due to its carbonate-rich lithology. A similar pattern of δ98Mo 
evolution is observed in the middle slope XJMW and Taoying sections, 
but the possibly deeper Wuhe section has more negative δ98Mo values. 
High δ98Mo values (XJMW section: up to ~+1.4‰) and high Mo con-
centrations (Taoying section: up to 76 ppm) are found in the middle 
slope of the basin. However, as carbonate is a relatively untested and 
potentially ambiguous material for Mo isotope study (Kendall, et al., 

2017), alternative proxies are needed. The δ238U data (around − 0.2‰) 
of carbonate from different cratons, including the South China craton, 
suggest a global oceanic oxygenation event (Zhang et al., 2019). 

For Member IV (Interval C), the Jiulongwan, Rongxi and Wuhe 
sections start with negative δ98Mo values and high Mo concentrations in 
the lower part, but near modern seawater δ98Mo values higher in the 
section. The XJMW section does not exhibit negative δ98Mo values, but 
follows a similar trend to those sections. The Taoying section has very 
low [Mo] and only one reported δ98Mo value, as samples were all 
deposited under ferruginous conditions. At Wuhe section, the samples 
with high Mo concentrations mostly have negative δ98Mo values. Some 
studies proposed that the late Ediacaran marine redox state was highly 
heterogeneous (Li et al., 2015; Och et al., 2016), accompanied by 
negative δ98Mo values and substantial enrichment in Mo at the Yangtze 
Gorges sections (Kendall et al., 2015). We suggest that the bottom wa-
ters in the intra-shelf basin at the start of Member IV deposition (Jiu-
longwan: [Mo] = 663 ppm) were euxinic, and that a euxinic wedge 
extended to the outer slopes (Rongxi: [Mo] = 95 ppm and XJMW: [Mo] 
= 312 ppm). As the rapid increase of [Mo] occurs at the base of Member 
IV in intra shelf, upper, middle and lower slope portions of the basin, 
transgression (maximum flooding of the Shuram transgression; Busch 
et al., 2022) likely occurred at the beginning of Doushantuo Member IV 
deposition (~570 Ma). The accompanying deepening of the chemocline 
may have supplied an extra source of light Mo isotopes through reduc-
tive dissolution of Fe-Mn oxides (Ostrander et al., 2019). 

At the top of Member IV, the Jiulongwan section on the Yangtze 
platform retains relatively high Mo concentrations (>100 ppm), and 
δ98Mo exceeds 2‰ (Fig. 4). A peak in δ98Mo values can be correlated 
with the upper slope sections, Rongxi (~+1.3‰) and XJMW (~+1.8‰), 
with all [Mo] higher than 20 ppm (Interval C; Fig. 4). The FePy/FeHR 
ratios of Jiulongwan Member IV are all above 0.8 (Kendall et al., 2015), 

Fig. 4. The spatial distribution of Mo data across the Nanhua Basin together with litho-stratigraphic logs. The bottom figure shows the basinal reconstruction of the 
Yangtze Platform (cross-section view). The data for the Jiulongwan section are from Kendall et al. (2015). The XJMW section data are from this study. Rongxi, 
Taoying, Yuanjia and Wuhe section data are from Sahoo et al. (2012, 2016) and Ostrander et al. (2019). The lithological logs of these sections are based on the 
descriptions in the mentioned papers. Intervals A, B, and C indicate the proposed OOEs. 
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while ratios fluctuate at Rongxi and XJMW. This suggests that the Jiu-
longwan section records δ98Mo closest to that of the late Ediacaran open 
ocean. The maximum value for this section (+2‰) is close to modern 
seawater (~+2.34‰), indicating widespread global ocean oxygenation, 
which is also supported by the mean δ238U value of 0.24 ± 0.16‰ for the 
ORM from Member IV in the Yangtze Gorges region (Kendall et al. 
2015). 

Overall, our data and the compiled data suggest that the redox 
evolution of the Nanhua Basin can be summarized as follows: Interval A 
in Member II portrays a partially restricted basin with euxinic bottom 
water and RSE enrichments, indicating global oceanic oxygenation; In-
terval B in Member III presents a euxinic wedge on the mid-slope, with 
higher δ98Mo (~+1.4‰) at XJMW and δ238U values indicating 
oxygenation; Member IV (Interval C) is characterized by euxinic bottom 
waters in the intra-shelf basin, fluctuating euxinia on upper to mid- 
slopes, with later peak δ98Mo (~+2‰) and δ238U values indicating 
global oceanic oxygenation close to modern ocean levels. 

6.5. Temporal trends in ocean oxygenation: A molybdenum perspective 

To place our data in a broader context, we compiled δ98Mo and [Mo] 
data from the Ediacaran to early Cambrian, which includes data mainly 
from South China, Canada, and Czech Republic (Fig. 5). Between 635 
Ma and ~ 620 Ma, Mo concentrations exhibit a spike (>170 ppm), with 
δ98Mo values showing large variations (from − 2.24 to + 1.47‰). This 
may document the earliest widespread ocean oxygenation in the wake of 
the Marinoan glaciation (Sahoo et al., 2012). The negative δ98Mo data 
are all from the lower Member II of the Doushantuo Formation at 
different sections (Ostrander et al., 2019). As explained above, the very 
negative δ98Mo values with relatively high Mo concentrations may have 
been the result of changes in the position of the local chemocline and in 
global sea level (Ostrander et al., 2019). It is possible that during this 
time, ocean oxygenation was enhanced locally, stimulating operation of 
the Fe-Mn oxide Mo shuttle. 

Following the first OOE occurrence, an interval of generally variable 
δ98Mo and low Mo concentrations (close to crustal value, 2–4 ppm) 
between ~ 620 Ma and ~ 580 Ma possibly indicates a return to a small 

Fig. 5. A temporal record of δ98Mo and [Mo] based on this study and published data. Blue intervals indicate the three OOEs that occurred during the Ediacaran to 
Cambrian periods. In the time scale, the two snowflakes mark the major glaciations (Marinoan and Gaskiers). ‘This study’ indicates the newly obtained data from the 
XJMW section. ‘Compilation’ refers to updated Mo data compilation after Chen et al. (2015) and additional data source include Wen et al., 2015; Kendall et al., 2015; 
Kurzweil et al., 2015; Cheng et al., 2017; Sahoo et al., 2016; Zhu et al., 2018; Ostrander et al., 2019; Ye et al., 2020. The age model has been updated based Rooney 
et al. (2020), Yang et al. (2021), Bowyer et al. (2022) and a constant sedimentation rate model is used to calculate the ages of compiled data. Two dashed lines mark 
the average modern seawater δ98Mo value (+2.34‰) and the riverine input (+0.7‰). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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oceanic Mo reservoir, with most samples deposited under variable local 
redox conditions (mainly ferruginous), as indicated by published Fe 
speciation data (Johnston et al., 2013). As previously discussed for the 
OOEs in our section, at ~ 580 Ma (Interval B; Fig. 2), δ98Mo values 
exceeded the river input value (+0.7‰), and Mo concentrations show 
modest enrichment, which is also consistent with Chen et al. (2015). 
Sahoo et al. (2016) compiled other RSE (U, V, Re and Cr) data that all 
show substantial enrichment at this time. 

In the late Ediacaran, between ~ 570 Ma and ~ 560 Ma, δ98Mo 
values reach >+2‰ (approaching modern seawater) for the first time in 
Earth’s history, and Mo concentrations rise to the highest value (>600 
ppm) (Fig. 5), as recorded for the Member III/Member IV boundary at 
Wuhe section (Ostrander et al., 2019) and Member IV at Jiulongwan 
section (Kendall et al., 2015). The sudden rise in [Mo] indicates that the 
Shuram excursion may have coincided with an increase in the size of the 
oceanic Mo reservoir, which is also consistent with the rise in sulphate 
reservoir during this time (Shi et al., 2018). Our data from the XJMW 
section confirm the δ98Mo spike in Member IV, and Mo enrichment is 
significant (>300 ppm) throughout Member IV, which indicates a pulse 
of ocean oxygenation close to modern levels in the late Ediacaran. 

Generally, these late Ediacaran OOEs may help explain the diversi-
fication of multicellular organisms, especially animals. The first 
appearance of the soft-bodied deep-water Ediacaran macrobiota in 
Newfoundland, now dated to between 574 and 564 Ma (Matthews et al., 
2021), can be linked with a deep-ocean oxygenation event after ~ 580 
Ma (Canfield et al., 2007). The global OOE recorded by Doushantuo 
Member IV black shale is coincident with the appearance of the Wenghui 
biota, the Miaohe biota, and the White Sea assemblage between ~ 570 
Ma and 550 Ma (Zhang et al., 2019; Rooney et al., 2020; Yang et al., 
2021). The more diversified shallow-water Ediacaran assemblages, 
including the earliest bilaterians and calcifiers, appeared between 558 
Ma and 539 Ma (Bengtson and Zhao, 1992; Narbonne et al., 2009; 
Johnston et al., 2012; Warren et al., 2012; Xiao et al., 2021). All of these 
Ediacaran biota appeared above Interval B, which is consistent with 
generally more expansive oxygenation indicated by the compiled Mo 
data. It is therefore likely that the OOEs played an important role in 
stimulating and accelerating the diversification of metazoans, as more 
complex food webs and larger animals require higher oxygen levels 
(Knoll and Carroll, 1999). 

In terms of how the OOEs came about, it has been suggested that 
these oxygenation events were driven by high nutrient input from 
increased terrestrial weathering (Lyons et al., 2014). Major trans-
gressions happened at least twice during Doushantuo Formation depo-
sition (Member I, and Member III to IV) as mentioned before, potentially 
bringing more nutrients into the Ediacaran ocean. Furthermore, the 
study by Shields et al. (2019) proposed that pyrite burial drove Edia-
caran oxygenations, sustained by an elevated nutrient flux and the 
weathering of evaporite sulphate minerals. Neoproterozoic seawater 
87Sr/86Sr isotope also shows a peak (~0.7087) at ~ 560 Ma (Chen et al., 
2022; Cox et al., 2016; Zhou et al., 2020), indicating increased weath-
ering input, which is consistent with these and other suggestions of a 
nutrient driver for both the oxygenation events and coeval biotic 
radiations. 

However, this increase in Mo values was not unidirectional. A return 
to less oxygenated deep ocean conditions from ~ 550 Ma to ~ 530 Ma is 
marked by lower δ98Mo values and Mo concentrations (Fig. 5), although 
the occurrence of OOEs became more frequent after the end of the 
Ediacaran Period, based on Mo enrichments (~540 Ma, ~530 Ma, and 
~ 520 Ma). At ~ 521 Ma, δ98Mo reached modern seawater values of 
~+2.3‰ in multiple South China sections, corresponding to widespread 
ocean oxygenation, likely triggering radiations of aerobic bilaterians 
(Chen et al., 2015). 

7. Conclusions 

In order to explore oxygenation events and redox conditions in the 

Ediacaran ocean, we measured redox-sensitive element (RSE) abun-
dances and Mo isotope compositions for the Doushantuo Formation at 
the Xiajiaomeng West (XJMW) section on the Nanhua Basin slope. By 
comparing these new data to previously published data, our main 
findings are as follows:  

(1) Our data from the newly discovered XJMW section shows that 
three OOEs occurred during the Ediacaran Period (~630 Ma, 
~580 Ma and ~ 570 Ma), on the basis of high RSE concentrations 
paired with elevated δ98Mo values. Importantly, the last OOE 
points to an extensively oxygenated ocean at ~ 570 Ma. The 
findings are generally consistent with other RSE studies (e.g., 
Scott et al., 2008; Sahoo et al., 2016), and is supported by U 
isotope data from South China, Siberia, USA (Zhang et al., 2019) 
and Namibia (Tostevin et al., 2019), and by Cr isotope data from 
the Wuhe section (Xu et al., 2022). The low RSE concentrations 
(close to crustal values) between OOEs indicate periodic re- 
development of extensive ocean anoxia.  

(2) The Nanhua Basin generally had a good connection to the open 
ocean. Two transgressions (Member I, and Member III to IV) are 
supported by our compiled data (Figs. 4 and 5). However, the 
Yangtze Gorges area may have gradually become more restricted, 
with limited connection to the open ocean, due to possible 
regression towards the end of Member IV deposition. This may 
explain a decrease in RSE concentrations coupled with higher 
δ98Mo values. Additionally, shoaling of the chemocline could be 
another possible interpretation.  

(3) Fe speciation data indicate that almost all of the Doushantuo 
Formation was deposited beneath an anoxic water column, fluc-
tuating between ferruginous and euxinic conditions. Most Mem-
ber IV samples were deposited under euxinic conditions, with 
some indication of a transient oxic episode.  

(4) A compilation of δ98Mo and [Mo] data reveals that ocean 
oxygenation waxed and waned during the late Neoproterozoic. 
Our new data and updated compilation show that δ98Mo values 
approached the modern value at around ~ 570 Ma, pointing to a 
widespread oxygenated ocean at that time. The three proposed 
OOEs occurred in otherwise anoxic Ediacaran oceans, with 
dynamically shifting euxinic wedges on the slopes of the Nanhua 
Basin evidenced from a spatial comparison between different 
sections. The increased frequency of OOEs after the end of the 
Ediacaran Period (~540 Ma, ~530 Ma, and ~ 520 Ma) may have 
stimulated biotic innovations and radiations. 
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Kurzweil, F., Drost, K., Pašava, J., Wille, M., Taubald, H., Schoeckle, D., Schoenberg, R., 
2015. Coupled sulfur, iron and molybdenum isotope data from black shales of the 
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