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Abstract

The control of protein synthesis and the overall levels of various proteins in the cell is critical
for achieving homoeostasis. Regulation of protein levels can occur at the transcriptional
level, where the total number of messenger RNAs in the overall transcriptome are con-
trolled, or at the translational level, where interactions of proteins and ribosomes with the
messenger RNA determine protein translational efficiency. Although transcriptional control
of MRNA levels is the most commonly used regulatory control mechanism in cells, positive-
sense single-stranded RNA viruses often utilise translational control mechanisms to regu-
late their proteins in the host cell. Here | detail a computational method for stochastically
simulating protein synthesis on a dynamic messenger RNA using the Gillespie algorithm,
where the mRNA is allowed to co-translationally fold in response to ribosome movement.
Applying the model to the test case of the bacteriophage MS2 virus, | show that the models
ability to accurately reproduce experimental measurements of coat protein production and
translational repression of the viral RNA dependant RNA polymerase at high coat protein
concentrations. The computational techniques reported here open up the potential to exam-
ine the infection dynamics of a ssSRNA virus in a host cell at the level of the genomic RNA, as
well as examine general translation control mechanisms present in polycistronic mRNAs.

Author summary

The regulation of the proteome in the cell occurs via two main mechanisms, transcrip-
tional control of mRNA quantities in the cell, or via translational control, where ribosome
and protein interactions with the mRNA determine protein translational efficiency.
Examples of translational control often occur in positive-sense single-stranded RNA
viruses, where interactions with secondary structures in the viral mRNA regulate the levels
of viral proteins in the host cell. Understanding translational control on individual
mRNAs thus requires examining the dynamics of mRNA folding in response to ribosome
translocations. Here I describe a stochastic model based on the Gillespie algorithm which
is capable of simulating ribosome kinetics on dynamic mRNAs which co-translationally
fold with ribosome movements on the mRNA. The resulting model is applied to a case
study of the bacteriophage MS2, where mechanisms such as translational coupling and
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Introduction

The regulation of cellular processes, in particular protein synthesis and the composition of the
proteome, is a multi-factor process arising from complex feedback and regulatory systems in
the cell. In the simplest of terms, the regulation of the proteome occurs via two basic routes,
(1) at the transcriptional level, where the amount of protein in the cell can be controlled via the
overall amount of messenger RNA (mRNA) in the cell or (2) at the translational level, where
the amount of protein produced from a single mRNA is controlled via interactions of the
mRNA with other proteins and the ribosome itself. While the former control mechanism
requires understanding the process of transcription by RNA polymerase along with its regula-
tion and feedback mechanisms in order to predict its impact on protein levels in the cell, the
latter requires examining the structure of the mRNA and its co-translational folding in
response to ribosome movement.

Examples of translational control and regulation of protein synthesis via mRNA secondary
structure are frequently found in positive-sense single-stranded RNA ((+)ssRNA) viruses.
Since (+)ssRNA viruses lack a DNA stage to their infection cycle, they rely solely on the geno-
mic RNA, which acts directly as a messenger RNA in the cell, along with any sub-genomic
fragments produced, to regulate viral protein levels during the infection cycle. Translational
regulation of protein synthesis in these viruses has been noted to occur by mechanisms such
as: (1) ribosome interaction with secondary/tertiary structure of the mRNA (e.g. Internal Ribo-
somal Entry Sites—IRES [1]), (2) translational coupling, where the translation of downstream
genes are dependent on translation of upstream genes (e.g. bacteriophage MS2 [2]), or (3) via
interactions with viral and host proteins with mRNA which repress or promote translation
(e.g. translational repression in bacteriophage MS2 [2]), or promote frame-shifting events (+1
frame-shifting by viral 2A protein in cardiovirus [3]). In each of these examples, regulation of
protein synthesis occurs via interaction of viral proteins or host ribosomes with specific sec-
ondary structures in the mRNA, or is the result of structural re-modelling of the mRNA in
response to ribosome movement. Bacteriophage MS2 serves as an example of the latter case,
where the movement of the ribosome through the coat gene re-models the structure of the
viral mRNA by disrupting long distance RNA base-pairs [2, 4]. This results in the exposure of
the translation initiation region (TIR) of the downstream RNA dependant RNA polymerase
(RdRp) gene, allowing host ribosomes access to this gene which was previously hidden by the
secondary structure of the mRNA [2, 4].

In addition to (+)ssRNA viruses, there is some suggestion that bacterial DNA viruses, such
as bacteriophage P22, also use translational control and translational coupling mechanisms in
their mRNA to regulate the ratios of viral structural proteins required for the efficient produc-
tion of viral capsids. Although specific translational control mechanisms have yet to be eluci-
dated, the structural proteins for P22 are synthesised from a single 20kb polycistronic mnRNA
[4] which contains the genes for both scaffolding and capsid protein. Experiments from the
Teschke lab [5] have shown that sub-stoichiometric ratios of scaffolding/capsid protein are
required for efficient assembly of pro-capsids, hence suggesting some form of translational
control is present as both genes are expressed on a single mRNA.

Aside from viral systems, additional examples of translational control have also been
observed in bacteria, in particular the regulation of large ribosomal protein expression. For
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example, the IF3-L35-L20 polycistronic mRNA in E. coli is regulated both by translational cou-
pling and translational repression via negative feedback from L20 concentrations in the cell
[6]. Similar translational coupling and repression has also been observed in the L11-L1 mRNA
in E. coli [7]. In both of these examples, translational coupling between upstream and down-
stream genes insures a ratio of protein expression of 1:1, enforcing the required ratio of large
protein subunits for assembly of mature ribosomes [8]. Finally, while polycistronic mRNAs
are commonly observed in prokaryotic cells and (+)ssRNA viruses infecting Humans, animals,
and plants, recent work has highlighted examples of polycistronic mRNAs in mammalian
genes, where expression is controlled via IRES elements [9]. This suggests that translational
control is a universal phenomenon, with evidence for existence in both eukaryotic and pro-
karyotic mRNAs.

A detailed look at all of the above translational control mechanisms observed across bacte-
ria and viruses illustrate the importance of accounting for the secondary structure of the
mRNA, its interactions with proteins and ribosomes, and the co-translational folding of
mRNA in response to ribosome movement when making predictions on the amount of pro-
tein expressed from an mRNA containing multiple genes. Motivated by understanding the
regulatory control of mRNAs at the translational level, this paper details my development of a
kinetic model of the ribosome which incorporates co-translational folding of the mRNA in
response to ribosome movement. The new model reported here extends my previous stochas-
tic model for studying in vivo ribosome kinetics [10] through the incorporation of kinetic reac-
tions for the co-translational folding of the mRNA, along with additional reactions allowing
proteins to bind to the mRNA at specific structural sites. Since my previous model simulated
ribosome movements on full-length mRNAs with explicit nucleotide information, the level of
detail on the RNA structure in this model is also at the single nucleotide level, enabling detailed
questions to be probed theoretically. One such example is how nucleotide mutations to an
mRNA affect the expression of protein. Since my model accounts for the resulting changes to
mRNA dynamics that would occur from a mutation, it is able to examine such questions.
Moreover, while previous models have examined the role of RNA structure in the initiation
process and its effects on gene expression [11, 12], the RNA folding reactions considered in
my model here takes into account structural changes in the whole of the mRNA due to ribo-
some movement, allowing for a detailed examination of features such as translational coupling
and its impact on gene expression.

Using the bacteriophage MS2 system as an example, I demonstrate how my ribosome
model with co-translational folding is able to reproduce the experimentally observed transla-
tional coupling between viral coat protein and RdRp genes, as well as the observed transla-
tional repression of RARp that occurs as coat protein levels increase. I compare the predicted
protein expression with relative coat protein expression ratios that were measured experimen-
tally for a variety of phage mutants [13] and show that my model is in close agreement. Finally,
a comparison of the simulation results with these experimental measurements allows me to
determine estimates for several kinetic parameters for ribosome initiation, as well as the kinet-
ics of RNA folding.

Results
Stochastic model of ribosome kinetics on a dynamic mRNA

In my previous work [10], I developed a stochastic ribosome kinetics model which simulates
the total protein synthesis that occurs in an entire prokaryotic cell such as E. coli. While many
protein synthesis models typically examine the translational dynamics on a single mRNA of
interest, there are several advantages in taking into account the translational dynamics of the

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010870 January 23, 2023 3/20


https://doi.org/10.1371/journal.pcbi.1010870

PLOS COMPUTATIONAL BIOLOGY Translational control on dynamic mRNA

full transcriptome. First, it allows transcriptome dependent effects which may have down-
stream impacts on the translation of the gene of interest, such as tRNA usage, to be accounted
for. Second, it allows more accurate estimates of the free concentrations of various proteins
involved in the translational process, such as free Ef-Tu and free 30S and 50S subunits, to be
determined. For example, Ef-Tu forms a complex with Ef-Ts that is independent of the transla-
tional machinery but important for the re-charging process. Thus, the amount of Ef-Tu that is
free and available to bind to translating ribsomes depends on these re-charging reactions and
illustrates the importance of considering a holistic model of translation. While my previous
model accounts for the individual nucleotide sequence of each mRNA that is present in the
transcriptome of the cell, there is no mRNA structure, and each mRNA is treated as an
unstructured linear sequence. Furthermore, each mRNA is treated as monocistronic and there
is a single binding rate for the 30S binding to mRNA which is one of the main kinetic reactions
that governs the initiation rate of protein synthesis. Extending this model to take into account
the polycistronic nature of some mRNAs, as well as both the secondary structure of the mRNA
and its folding kinetics, requires incorporation of specific computational algorithms. Specifi-
cally, dynamic programming algorithms to predict the secondary structure of the mRNA [14],
as well as specialised data structures to efficiently store information on each ribosome position
on the mRNA along with the structural features of the mRNA that occur around bound ribo-
somes. Incorporation of such secondary structural features are important for identifying
downstream hairpins which are part of TIR regions or promote frame-shifting events. It
should be noted that pseudo-knots are not considered in the extended ribosome model as
these are difficult to predict using dynamic programming algorithms. However, there may be
scope to include simple pseudo-knots in the future.

Since secondary structure prediction algorithms typically require the pre-computation of
an O(n*) matrix containing the information on lowest energy structure on every RNA frag-
ment (i, j) with 4, j € [1, n], it is not yet practical to consider the structure of all possible
mRNAs in the transcriptome simultaneously. Instead, I consider the secondary structure and
corresponding dynamics for a single mRNA “type”, which could be present multiple times in
the transcriptome. This enables the dynamics of mRNA folding in response to ribosome
movements and protein binding to be studied for a single mRNA of interest (which I will refer
to as the dynamic mRNA) while the background of ribosome activity of cellular mRNAs
(which I will term background mRNAs) are treated as unstructured linear mRNAs as in my
previous model. Examples of mRNAs that could be studied are viral mRNAs, or alternatively
one could choose a specific gene operon of interest, e.g. the IF3-L35-L20 mRNA in E. coli, and
theoretically probe its translational control while in the background of ribosome activity on
other cellular mRNAs in the transcriptome.

In addition to incorporating the dynamics of mRNA folding in response to ribosome move-
ments, I have also included the ability of proteins, either present in the cell or produced from
the dynamic mRNA, to bind to secondary structural elements in the dynamic mRNA (either
hairpins or multi-loop helices). Moreover, TIRs in the dynamic mRNA are also identified in
the model based on the surrounding mRNA secondary structure. The 30S binding rate to the
TIR is then predicted following a slightly modified kinetic version of the Salis model [11] (see
Supporting information), which takes into account mRNA secondary structure around the
TIR and the time required for the mRNA to melt and expose the start codon. This feature
allows for polycistronic mRNAs to be considered, and for translational coupling, where
mRNA structure hides downstream ribosome binding sites, to be incorporated. It also allows
the consideration of dynamic changes to the initiation rate due to ribosomes or other proteins
altering the structure of the TIR. Borujeni and Salis have noted that such situations occur dur-
ing ribosomal drafting, where ribosome movement over the TIR prevents re-folding of the
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Fig 1. A model of ribosome kinetics on dynamic mRNAs. (A) The transcriptome in the model consists of two types of mRNAs: background mRNAs
which are considered as monocistronic with no secondary structure, and dynamic mRNAs which are polycistronic with secondary structure. Initiation
rates at potential start codons (green bars, with red bars indicating stop codons) can vary in dynamic mRNAs depending on the current structure
around the translation initiation region (TIR) while they are modelled as fixed in the background mRNAs. The movement of the ribosome during
elongation is illustrated. (B) The transcriptome is modelled using the framework of the stochastic model in [10], with added RNA folding reactions on

the dynamic mRNA.

https://doi.org/10.1371/journal.pcbi.1010870.g001

TIR, thereby allowing subsequent ribosomes easier access to the initiation site [15]. Fig 1 sum-

marises these features and shows how my previous stochastic model has been extended to
incorporate a dynamic mRNA. Fig 1A shows the two different types of mRNAs considered in
the extended model, while Fig 1B illustrates the general model used to simulate ribosome
kinetics on both structured and un-structured mRNAs. The individual reaction steps consid-
ered in the model cover all known kinetic steps of ribosome initiation, elongation, and termi-

nation. For example, the ribosome elongation step in the model encompasses 9 individual

kinetic steps covering concentration dependant recruitment of ternary complex, GTP hydroly-
sis, and EF-G dependant translocation of the ribosome. Such reaction steps have been also
been accounted for in similar models of translation [16], including the dependence on tRNA
concentrations [17]. Similar kinetic detail is also present in the model for the initiation and
recycling/termination stages, while the additional reactions involving re-charging of ternary
complex and GTP/GDP exchange on GTPases are also accounted for. For full details of the

individual kinetic steps see [10].

The following sections give a brief overview of the methods/algorithms used to; (1) incorpo-
rate co-translational folding (2) identify ribosome binding sites, and (3) include reactions for
protein binding to mRNA structures, using the mRNA from bacteriophage MS2 coat and
RNA dependant RNA polymerase (RdRp) genes as an example. Technical information on the
implementation of specific algorithms and data structures are discussed in detail in the sup-
porting information.

Incorporating mRNA secondary structure and co-translational RNA folding kinetics.
To incorporate the structure of the mRNA and its kinetics into my previous stochastic ribo-
some kinetics model [10], I have developed a specialised tree representation of the mRNA
structure that allows for (1) a finite set of folding transitions between mRNA states to be com-
puted efficiently and (2) for the kinetic rates of these folding transitions to be stored in a sepa-
rate binary tree. The set of mRNA states accessible in the model are obtained by computing
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locally optimal structures in fragments between nucleotides 7, j in the mRNA, similar to the
procedure in Geis et al [18]. The kinetic rates between these mRNA states are then determined
using a breadth-first-search path finding algorithm [19, 20] which identifies the path with low-
est energy barrier using Turner 99 rules for the base-pair energies [21]. This results in a co-
translational RNA folding algorithm where the state space for the mRNA is coarse-grained,
but kinetic rates are estimated from transition paths at single nucleotide resolution. Full details
of the computation of kinetic rates for folding trajectories from minimum energy barrier path-
ways, as well as how a finite set of folding transitions are constructed using the tree-representa-
tion of the mRNA can be found in the supporting information. Fig 2 shows an example of the
tree representation for a section of the bacteriophage MS2 mRNA encoding the coat protein. It
is important to note that, while the tree representation encodes the structure of the mRNA in a
coarse-grained manner allowing quick identification of local structures, the full secondary
structure of the mRNA is also stored and adjusted in response to folding reactions and ribo-
some movements.

Regarding the storage of the kinetic rates on a binary tree, this is important for the compu-
tational efficiency of the algorithm as it allows a single Gillespie step to be implemented in log-
arithmic time. Here, the binary tree enables one to find and choose a folding reaction to fire in
O(log,(m)) time, where m is the number of structural helices (either a hairpin or long-distance
interaction) present in the mRNA. In my previous ribosome kinetics model, the overall run
time for a single Gillespie step (the computational time to “fire” a reaction, update the reaction
list, and re-sum all of the reaction propensities) scaled with the number of mRNAs N as O
(log,(N)). Thus, the expected run time for a single Gillespie step on a set of N dynamic
mRNAs allowed to co-translationally fold is expected to be roughly O(log,(mN)). Comparing
run times with and without dynamic mRNAs, I have found that the computational cost of sim-
ulating dynamic mRNAs with lengths /1.5 to 3.5k nucleotides is roughly similar to that of my
previous ribosome kinetic model, which was able to simulate roughly 30 min of protein syn-
thesis that occurs in a cell in approximately 10 CPU hours.

Prediction of translation initiation regions and ribosome binding rates. To study pro-
karyotic ribosome initiation on a polycistronic mRNA, one requires the location of the appro-
priate translational initiation region (TIR) for the ribosome and corresponding start codon.
Moreover, in order to accurately estimate the protein expression, the kinetic rate of the 30S
ribosome subunit binding to the mRNA and initiating at the start codon are also required. On
the one hand, the information on start codon positions can be obtained from an analysis of
continuous coding regions in the mRNA that are not interrupted by stop codons. Using this
method, one can construct a fixed list of start positions and TIRs. However in reality, the pro-
karyotic ribosome knows none of this information and only operates by simply attempting to
bind to predominantly single-stranded regions of the mRNA [22, 23]. Thus, successful initia-
tion of the ribosome requires; (1) a favourable interaction with a start codon (AUG or GUG
preferably) in the mRNA with the 30S pre-initiation complex (30S:PIC) and (2) a predomi-
nantly single stranded region with relativity weak secondary structure to be available (i.e. free
of translating ribosomes and protein). Thus, TIRs can potentially be blocked by translating
ribosomes and/or by formation of strong secondary structure elements. Moreover, TIRs are
potentially dynamic in nature, being sequestered in secondary structure or exposed in
response to ribosome movements, protein binding, and mRNA folding. Thus, I have adopted
a more general algorithm for the prediction of TIRs as opposed to simple identification of
open reading frames using bio-informatics methods, in addition to allowing users to specify
specific fixed start codons in the computational code.

For the prediction of possible TIRs in the mRNA, and the corresponding kinetic binding
rate of the ribosome to the TIR, I use the following algorithm. For a deeper discussion of the
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Fig 2. Tree-representation of the bacteriophage MS2 coat protein gene. (A) The inset gives a coarse-grained cartoon diagram of the full-nucleotide
structure with explicit base-pairing, which is stored in the model. Bound ribosome is coloured yellow, with purple bases showing the location of the
ribosome P-site. (B) The coarse-grained representation of the mRNA structure is translated into the rooted tree data structure shown, where each
numbered node in the tree represents a coarse-grained helix in the cartoon diagram. Green arrows denote links to leaf nodes, while red arrows denote
links to root nodes. Links to the main root node 0 denoting the 5’ end of the mRNA are not shown for simplicity. Black arrows between nodes show
links in the linked list data structure which stores neighbour information for the tree.

https://doi.org/10.1371/journal.pchi.1010870.g002

technical details of the algorithm, please see the Supporting information. First, the linear
sequence of the mRNA is examined for potential start codons (only AUG,GUG,CUG,UUG,
AUA,AUC,AUU are considered) and the optimal interaction of the 30S subunit with any
upstream Shine-Dalgarno sequence is estimated. This gives a list of potential TIRs, each with
a corresponding energy of interaction with the 30S subunit AGsgs.,ryva (see Supporting
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Fig 3. Model of ribosome binding kinetics to a translation initiation region. (A) Kinetic model of 30S:PIC binding to a TIR region of an mRNA via
standby and direct pathways. TIR regions are considered as being hairpin only regions, possibly flanked by multi-loop helices. k_r = 1/7,, is the kinetic
rate of TIR unfolding, while k7 is the binding rate of 30S:PIC to the mRNA via ribosome protein S1. (B) Apparent 30S:PIC binding rate to TIR region at
a cellular growth rate of 4 = 0.7 doublings per hour.

https://doi.org/10.1371/journal.pcbi.1010870.9003

information for details on how this energy is calculated). The list is pruned to remove overlap-
ping TIRs by keeping the TIR with lowest AG3¢s.,rna. This assumes that 30S subunits will
thermodynamically equilibrate on the lowest energy TIR in the region, which should be a
good approximation for standby sites. The resulting list then encompasses all potential non-
overlapping TIR sites in which the 30S subunit could bind and attempt to initiate translation
at and this list fulfils criterion (1) discussed above. Successful initiation at one of these TIRs
requires fulfilling criterion (2), i.e. that the TIR to be located in a region of the mRNA with
weak secondary structure. As the mRNA is to be considered dynamic, the calculation of the
kinetic binding rate of the 30S:PIC to the TIR must come in response to co-translational fold-
ing and/or melting of the mRNA. Van Duin and other colleagues have suggested that the 30S:
PIC binds to these weak regions via the small ribosome protein S1, which binds non-sequence
specifically to single-stranded RNA regions of 5-20 nucleotides [23, 24]. Thus I consider a
“weakly structured” region to be a hairpin only region of the mRNA, potentially flanked by
two multi-loop helices (c.f. Fig 3A), encompassing at least 20 single stranded nucleotides fol-
lowing analysis from Van Duin et al. [25]. While the model and computational code does
allow for initiation at non-canonical start codons differing from AUG by one nucleotide, it
should be noted that detailed experimental information on how the kinetic rates governing
508 recruitment are effected by non-canonical start codons is not currently available. Hence
the model is likely un-reliable in estimating initiation frequency at non-canonical starts at the
present time.

To calculate the kinetics of 30S:PIC binding to the TIR, I use the model illustrated in Fig 3A
(c.f. detailed Fig H in S1 Text). I assume that the ribosome first interacts non-sequence specifi-
cally with a weakly structured area of the mRNA via small ribosomal protein S1. If the TIR is
sequestered in secondary structure, the ribosome waits as a standby ribosome for the TIR to
unfold [24]. After unfolding of the TIR, the ribosome is free to engage with the start codon
and for the anti-SD section of the 16S rRNA to interact with any upstream Shine-Dalgarno
sequence present in the mRNA. Together, these sets of kinetic steps govern the apparent bind-
ing rate of the 30S:PIC to the TIR of the mRNA, along with the apparent off rate. One can
derive an explicit formula for the apparent on rate for 30S:PIC binding to the TIR region
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containing a standby site from a calculation for the mean-first-passage time, i.e. the average
time it takes for the 30S subunit to bind the TIR and engage with the start codon. From Fig 3A
(c.f. Fig Hin S1 Text) the mean-first-passage time for 30S binding to a start codon via the
standby site pathway (¢ ) is given by

1 K1 1

s — __|_;1_+_
on o1 k. k.,

k g4k +1;
rek g '

Here, the value of r, = k{[30S] is the rate of S1 binding to mRNA times the concentration of

free 30S:PIC subunits. Using k¢ [30S] ~ 1/7¢ along with the average time for TIR unfolding,

7, = 1/k_p we can estimate the apparent 30S binding rates as

ks — kllg
o 141, (kB[30S] 4 k2,)

(1)

where k¥ = 30uM's' and k? | = 10s™" are the best fit kinetic parameters for the on and off
rates of 30S:PIC subunit binding to the mRNA via ribosomal protein S1. The parameter [30S]
is the concentration of free 30S:PIC subunits in the cell while 7, is the TIR unfolding time. A
similar formula for the apparent off rate is derived in the supporting information. At a growth
rate of y = 0.7 doublings per hour, my kinetic ribosome model estimates that the free concen-
tration of 30S:PIC subunits is roughly 0.65 yM. This value is used to generate the plot in Fig
3B, which shows the apparent on rate of 30S:PIC binding via a standby site to the TIR region
as a function of TIR unfolding time ,,.

This model of initiation differs from that of Salis et al. [11] in that it incorporates the effect
of S1 binding and is kinetic rather than thermodynamic. One advantage of this is that, for
mRNA sequences which lack an SD sequence, the binding affinity and resulting off rate of the
30S subunit is controlled by the interaction of S1 with mRNA. Von Hippel and Draper [23]
have measured the association constant to be roughly K, = 3 x 10°M " which gives an interac-
tion energy of AGs; = —9.19 kcal/mol, and this is weaker then the expected interaction energy
of anti-SD sequence with a complementary SD (AGgp = —12.1 kcal/mol). Thus, this model
forces the binding affinity of 30S subunit to range between these two values, and the resulting
apparent kinetic off-rates for the 30S subunit can be easily parameterised to lie between ko €
[0.001, 10.0] per second, consistent with the order of magnitude for values of k,y measured by
Studer and Joseph [22], who measured 30S subunit binding to mRNAs with and without com-
plementary SD sequences. Their measurements give values for the two extremes, ko=
0.001s™" for sequences containing a full complementary SD sequence, and k,z=4s~' when the
SD sequence is not present. A full technical discussion and derivation of the kinetic rates can
be found in the supporting information.

Modelling the binding of proteins to structures in the mRNA. Modelling the binding of
protein to specific secondary structures in the mRNA is also accounted for in this model. Each
node in the tree corresponds to a helical region of the mRNA (either hairpin or multi-loop)
and the computational code allows one to model the binding of proteins to these helical sec-
tions of the mRNA. Proteins are allowed to bind at any helix, thus for the case of the MS2
mRNA, coat proteins will bind at any hairpin containing the correct binding motif, not just
the TR hairpin. This is important since MS2 is known to have additional coat protein binding
sites important for viral packaging and assembly. As the exact nucleotide and base-pairing
arrangement is also stored, a detailed sequence dependant binding profile for the protein is
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easily implemented in the model. Similarly, for proteins which bind single-stranded regions,
this can be modelled as binding to pairs of neighbouring nodes. I have incorporated specific
rules for binding of MS2 coat proteins, details of which can be found in the supporting
information.

Computational simulation of translational control in MS2

To demonstrate the types of translational control problems that can be examined with the
ribosome kinetics model reported here, I examine a well studied problem of translational con-
trol in a viral mRNA, that of the translational coupling/repression mechanism in bacterio-
phage MS2. The purpose of this example study is to show that, by inputting only the sequence
and initial secondary structure of bacteriophage MS2 mRNA into the model, the program is
able to reproduce the translational control mechanism observed experimentally based on the
folding response of the viral mRNA to ribosome movements. Thus the program is set-up to
explore the protein expression and dynamics of a general mRNA, as long as a secondary struc-
ture has been either obtained experimentally or predicted computationally.

Fig 4A shows the start and stop codon locations relative to the secondary structure in a sec-
tion of the bacteriophage MS2 mRNA, between nucleotides 1284 to 3569 in the wild-type
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Fig 4. The translational coupling and repression mechanisms in bacteriophage MS2 mRNA. (A) Secondary structure cartoon of the bacteriophage
MS?2 coat and RdRp genes determined by phylogenetic analysis and enzymatic probing. (B) Translational repression of the RdRp gene occurs after
synthesis of sufficient coat protein, which then binds to the translational repression (TR) hairpin that contains the start codon for the RdRp gene,
blocking further ribosome initiations at this gene. (C) Diagram showing the translational coupling between the coat protein and RARP genes. Synthesis
of coat gene by the ribosome opens up a secondary TIR for the RdRp gene after melting of mRNA structure, allowing ribosome initiation at the RdRp
start codon. Re-folding of the mRNA after translation of the coat gene hides the TIR for the RdRp gene.

https://doi.org/10.1371/journal.pcbi.1010870.9004
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sequence that encompasses the coat, lysis, and RdRp genes. The secondary structure of the
entire MS2 mRNA has been determined using a combination of phylogenetic analysis com-
bined with enzymatic probing [26, 27], and a cartoon diagram of the secondary structure is
shown around the coat gene region. Fig 4B and Fig 4C illustrate the translational repression
and coupling mechanisms of MS2, both of which have been determined from a variety of
experimental studies over the past 30+ years [13, 24]. The translational coupling mechanism is
illustrated in Fig 4C, where synthesis of RdRp is dependent (i.e. coupled) to expression of the
upstream coat gene. The coat protein provides negative feedback to the expression of the
RdRp gene, repressing ribosome binding to the TIR of the RdRp gene (c.f. Fig 4B).

Simulations of protein synthesis in the bacteriophage MS2 polycistronic mRNA were per-
formed assuming a bacterial growth rate of y = 0.7 doublings per hour. At this growth rate, it
is estimated that there are roughly 7500 active ribosomes in the E. coli cell, corresponding to a
concentration of 12.5uM [28]. Specific concentrations of the various other proteins, tRNAs,
etc. that are required by the ribosome can be computed from the ribosome concentration and
the tables in the supporting information in [10] or this work. The predictions from the model
are compared with experimental measurements done by Van Duin and colleagues on coat pro-
tein expression in bacteriophage MS2 [13]. It should be noted that these experiments were per-
formed on a temperature sensitive plasmid where protein induction is triggered by raising the
ambient temperature of the culture to 42° C. Thus, thermodynamic energies and unfolding
rates for the RNA folding reactions where computed using Turner 99 energy parameters at
T =42°C [21]. Currently, it is unknown how the increase in temperature would effect the
kinetic rates for ribosome elongation. Since E. coli grows relatively similarly at 42°C as it does
at 37°C where the kinetic parameters are taken from, I assume ribosome kinetic rates can be
considered roughly unaltered by the temperature change. It would be potentially possible to
scale the kinetic rates, following the method in Rudorf et al. [29]. However, this would require
a measurement of one of the kinetic rates for ribosome kinetics at 42°C which is currently
unavailable.

Modelling the effects of mRNA mutations on coat protein synthesis. Since the
extended ribosome kinetic model takes into account the full nucleotide sequence of the MS2
mRNA along with its secondary structure, I can use it to examine how specific mutations to
the mRNA result in subsequent changes in the levels of coat protein produced and derive
kinetic parameters from experimental measurements of coat protein synthesis [13]. The pre-
dominate RNA structure which controls the overall coat protein synthesis rate is the 27 nucle-
otide coat hairpin (c.f. Fig 5A), which contains both the start codon and partial GGAG Shine-
Dalgarno sequence. Van Duin and De Smit [13] have previously performed experimental mea-
surements of the relative levels of coat protein produced for various coat hairpin mutants com-
pared with the wild-type sequence. They found that the amount of coat protein produced was
predominately determined by the free energy of the hairpin, and that destabilising the hairpin
did not increase protein yields over that of the wild-type. This suggests that the coat gene is sat-
urated, and that ribosomes binding to the TIR of the MS2 coat gene are not slowed by the time
for the coat hairpin to melt. Assuming that the rate limiting step of protein expression is the
rate of ribosome binding to the TIR (Eq 1), then a theoretical protein expression formula can
be assumed to follow,

A A
1+71,B 1+ Cehrc’

(2)

where A, B, and C = B/kg are constants to be determined. The constant A represents the maxi-
mal synthesis rate for the coat gene in the absence of any secondary structure in the TIR. The
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Fig 5. Coat protein expression in bacteriophage MS2 for different hairpin mutants. (A) Cartoon diagram of the secondary structure for the MS2
coat gene. Start codons for the various phage genes are indicated with a green bar, while stop codons are indicated with a red bar. The nucleotide
sequence of the hairpin encompassing the coat gene start codon (dashed box in cartoon) is shown to the right. Mutants are labelled following [13].

(B) Best fit linear line of the experimental measurements from [13] to Eq 4. (C) Predicted MS2 coat protein synthesis rates are calculated from 30 min of
ribosome kinetics at a growth rate of 4 = 0.7 doublings per hour using hairpin unfolding times ranging from 7, = 0.01 to 7,, = 10 seconds (black dots).
The best fit of the data to the theoretical protein expression curve (Eq 2) is represented by the black line. (D) Fit of experimental relative coat protein
expression data (red dots) to the theoretical expression curve (Eq 2).

https://doi.org/10.1371/journal.pcbi.1010870.9005

factor B represents the kinetic rate of hairpin unfolding when protein expression is half of the
maximum value, while C is obtained from B via the relation

e PAGE

= 3
Tu kF ) ( )

which estimates the hairpin unfolding time from the kinetic rate of hairpin folding, kr, and the
thermodynamic free energy of the hairpin AGg. It is important to note that both the A and B
coefficients in Eq 2 will be dependant on the full translational dynamics of the cell, i.e. concen-
tration of ribosome subunits, ternary complex, growth rate, codon bias of the mRNA (as noted
in [16]) etc. Although there are some experimental measurements of hairpin folding kinetics
[30], in general there is limited information for estimating values of kr for general RNA hair-
pins. However, the experimental data from Van Duin and De Smit on the relative expression
of coat protein for a variety of hairpin variants [13] allows the fitting of the kr parameter

using my model. Reformulating Eq 2 in terms of the coat protein expression relative to the
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Table 1. Predicted and measured relative coat protein expression in bacteriophage MS2 for different coat hairpin mutants. The relative coat protein expression (Eg)
of hairpin mutants are shown relative to the peak protein expression. Measured values of Ey are obtained from [13], while theoretical values are from Eq 2. The hairpin
unfolding times 7, = e #*%/kp are estimated using a hairpin folding rate of ky = 1.36 x 10°%™" and = 1.59 mol/kcal. Hairpin AGy values are calculated using Turner 99
energy parameters at T = 315K (42°C) [21].

Mutant AGg T, E (min™") Eg (Measured) Er (Theory)
18 -6.63 0.0291 27.672 0.800 0.960
wt -7.93 0.2319 21.739 1.000 0.755
11 -9.49 2.8005 5.853 0.200 0.203
5 -10.27 9.7305 1.969 0.040 0.068
17 -10.50 14.0485 1.393 0.030 0.048
20 -10.52 14.5044 1.351 0.060 0.046
22 -11.81 113.781 0.179 0.003 0.006
23 -12.20 212.090 0.097 0.002 0.003
15 -12.85 598.787 0.034 0.001 0.001

https://doi.org/10.1371/journal.pcbi.1010870.t001

maximum i.e. E = E/A and taking the natural logarithm one obtains

(1) =mn() - pac. (4)

Fig 5B shows the experimental data from Van Duin and De Smit [13] for the hairpin

variants with <100% relative coat protein expression. Assuming m = = 1/k,T = 1.59 mol/
keal for T =315 K (42°C), the best fit line to the data (y = mx+ b) gives an intercept of b = In
(B/kg) = —13.8. Simulating a variety of hairpin melting times through explicit variation of 7, in
the stochastic ribosome model, I obtain the expression curve shown in Fig 5C, which can be
fitted to Eq 2 to give best fit values of A = 28.8 min™" and B = 1.40 sec". This allows me to use
the experimental data to obtain an estimate for kg for the coat hairpin of kx = 1.36 x 10° sec™.
Using this value of kg, one can obtain the expected unfolding times 7, for the various hairpin
mutants and the wild-type coat hairpin (Table 1).

Table 1 summarises the experimental data from [13] for mutants which have relative
expression less then 1. The theoretical expression curve obtained from the stochastic simula-
tions in Fig 5C is overlaid with the experimental data from Van duin (red dots) in Fig 5D as a
log/log plot with maximum theoretical coat protein synthesis rate of 28.8 proteins per minute.
As can be seen, the theoretical curve gives a good fit to the experimental data. One possible
explanation for the differences observed is that at high concentrations of coat protein, it may
be difficult to accurately measure relative coat protein concentration using a western blot as
was done in [13]. Since error bars were not reported in [13], the extent to which the theoretical
expression curve falls within the experimental variance is unknown. However as a further
check, one can compare the estimates for hairpin unfolding times in Table 1, which are
implied by the experimental data, with the theoretically predicted hairpin unfolding times for
the wild-type hairpin using the RNA kinetics folding program KFOLD [31]. The KFOLD cal-
culation of the mean first passage time for unfolding (7, = 0.18 sec) is in close agreement with
the estimate from the experimental fit in Table 1 (z, = 0.23 sec).

Modelling translational repression and coupling. In addition to examining how nucleo-
tide mutations to the mRNA can alter the stability of the TIR and subsequent protein synthesis
rates, my model can also examine the phenomenon of translational coupling and translational
repression. The translational coupling observed in bacteriophage MS2 is between the coat and
RdRp genes, illustrated in Fig 4C, where synthesis of the RARp gene is dependant on synthesis
of the coat protein. As levels of coat protein accumulate in the cell, coat protein binds to the
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Fig 6. Synthesis rates for Coat and RdRp proteins in Bacteriophage MS2. (A) Temporal dynamics of coat protein and RdRp synthesis from
bacteriophage MS2 mRNA in a bacterial cell over 30 minutes. Red dashed line corresponds to the initial synthesis rate of RARp before coat protein
binding to the TR stem-loop (c.f. Fig 4A) suppresses further synthesis. (B) Maximal Coat and RdRp synthesis rates from bacteriophage MS2 mRNA as a
function of coat hairpin unfolding time. The curve is computed by varying 7, explicitly in the program, with dots representing the results from
simulations with specific mutant sequences. Blue dashed line shows the ratio of RARp to Coat protein synthesis rates.

https://doi.org/10.1371/journal.pcbi.1010870.9006

TR stem-loop (c.f. Fig 4A and Fig 4B), repressing translation of the RARp gene by ribosomes.
Using the detailed rules for coat protein binding kinetics to TR hairpin (see supplementary
information) incorporated into the model, I have simulated 30 min of protein synthesis for the
RdRp and coat proteins in a cell growing at y = 0.7 doublings per hour. Fig 6A shows the
resulting numbers of coat and RdRp proteins in the cell.

The maximal synthesis rate of RARp closely follows that of coat protein, before binding of
coat protein to the TR stem loop suppresses further synthesis. Fig L in S1 Text illustrates a
snapshot of the ribosome density and mRNA secondary structure both before translational
repression of RARp by coat protein and after. As can be seen in Fig L, the mRNA structure of
the RARp domain re-folds after translational repression and only the coat gene is saturated
with translating ribosomes. Since the RARp gene is coupled to the coat protein, one can exam-
ine how RdRp synthesis is affected by ribosome initiations on the coat gene (or equivalently
the coat hairpin melting time). Interestingly, a plot of the maximum RdRp synthesis rate ver-
sus the coat hairpin unfolding time, 7,, reveals that RARp synthesis is maximised for coat hair-
pins with unfolding times ranging between 0.2 and 2 seconds (c.f. Fig 6B). Moreover, as coat
hairpin unfolding times increase, the RdRp/Coat synthesis ratio (blue dashed line Fig 6B)
increases to a maximum of around 3. Since coat and RdRp TIRs are separated by approxi-
mately 420 nucleotides, this ratio corresponds to the number of ribosomes that are able to load
onto the RdRp start codon (approximately 3-4) within the time it takes for a ribosome to finish
translating the coat gene and the RdRp TIR is once again sequestered into RNA secondary
structure. This demonstrates the importance of taking into account the melting of RNA struc-
ture and exposure of downstream TIRs, as well as translation time of the ribosome on the
upstream gene when predicting protein synthesis rates for translationally coupled genes.

Discussion

In this work, I have demonstrated a new stochastic simulation tool for modelling ribosome
kinetics on dynamic mRNAs. This computational tool allows for the effects of mRNA folding
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and interactions of the mRNA with proteins to be taken into account, allowing temporal pro-
tein expression profiles and feedback mechanisms at the translational level to be studied theo-
retically. Application of the model to the example system of bacteriophage MS2, a (+)ssRNA
virus which infects E. Coli, shows that the model is able to recapitulate the coat protein synthe-
sis ratios of different coat hairpin mutants which were measured experimentally by Van Duin
and De Smit [13]. Although Van Duin and De Smit have previously described a thermody-
namic equilibrium model of coat protein expression based on hairpin AGr values, my work
here extends this work to obtain theoretical estimates for the kinetic parameters for ribosome
binding to the TIR, along with kinetic parameters for hairpin folding, while creating a general
model for examination of translational coupling and repression in mRNAs. I have demon-
strated that my kinetic model for 30S binding to the TIR is able to predict the relative coat pro-
tein expression, which depends on the relative stability of the local RNA fold of the coat-
hairpin, for a variety of hairpin mutants that is consistent with Ref. [13].

In addition, my model has been able to make several predictions for the behaviour of
RdRp synthesis (c.f. Fig 6) as the thermodynamic stability of the coat hairpin (AGp) is
altered. Interestingly, it suggests that weaker coat hairpins reduce RdRp synthesis rates, due
to ribosomal queuing at the coat gene stop codon which blocks ribosome access to the RARp
TIR. This effect results in a gradual ~15% decrease in the synthesis rates for RdRp as coat
protein synthesis becomes a maximum for weaker coat hairpins corresponding to shorter
unfolding times (c.f. left hand side of Fig 6B). Previous models of translational coupling [32]
predict that high expression of up-stream genes are expected to result in a plateau in the
expression of downstream translationally coupled genes, which is in contrast to this observa-
tion here. While Tian and Salis did note that ribosomal queuing was a potential issue for
blocking ribosome initiations on downstream genes, my model suggests that the effect is
more pronounced then expected. Moreover, this reduced expression of RARp for weaker
hairpins may explain why mutational studies of MS2 coat hairpin [33] show that both
weaker and stronger coat hairpins than the wild-type coat hairpin were selected against. One
explanation from the model is that coat hairpins with wild-type stability optimise both coat
and RdRp synthesis and prevent queuing ribosomes from blocking access to the RdRp TIR.
This is consistent with evolutionary experiments which show weaker coat hairpins result in
decreased viral plaque formation [33]. These observations made by the model of RdRp
expression depend on the global fold and overall expression of the coat gene, as the expres-
sion of RdRp is translationally coupled to the coat gene. Thus, new experiments will be
required to validate these results and the overall RNA co-translational folding predictions
made by the model.

However, while Tian and Salis developed a translational coupling model which accounts
for both de novo ribosome initiation and re-initiation, at the moment my model only accounts
for de novo ribosome binding. Green and colleagues [34] have noted that translational cou-
pling is still observed in E. Coli mutants which are unable to express recycling factor, suggest-
ing that de novo ribosome binding is the main source of translation initiation in coupled
genes. It should be noted however, that translational re-initiation is still a phenomenon that
requires proper consideration. For example, it is believed that ribosome initiation at the bacte-
riophage MS2 lysis gene is triggered by ribosomal scanning and re-initiation after synthesis of
the coat gene [35]. Despite these shortcomings, the computational techniques developed here
to model the dynamic response to mRNA structure and protein synthesis levels as the ribo-
some melts mRNA structures can provide the synthetic biology and ribosome communities an
important tool for examining translational coupling and translational repression in both syn-
thetic and natural mRNAs. In particular, it may be a useful tool for examining the regulation
of (+)ssRNA viral infection dynamics in a cell.
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Methods
Model parameterisation

The kinetic rates used in the model are identical to those from my previous ribosome model
[10], with the exception of the initiation rates for 30S PIC binding and standby site formation.
Specific adjustments are discussed in the supporting information. Similarly, the protein abun-
dances for Ef-Tu, Ef-Ts, etc. are identical to those found in [10], with the exception of the
tRNAs, which were optimised to match codon bias present in E. coli K12 strain MG1655 (see
supporting information for details of the optimisation procedure). In addition, RF1 and RF2
concentrations were also slightly adjusted to reproduce experimentally observed tRNA mis-
reading rates [36]. The transcriptome for the background of cellular mRNAs constructed
using authentic mRNAs from E. coli K12 strain MG1655 following the procedure listed in sup-
porting information. Software used in the simulations can be downloaded from http://www-
users.york.ac.uk/ ~ecd502/ or from Github at edykeman/ribofold.

Supporting information

S1 Text. Supplementary information. Fig A: Tree representation of the secondary struc-
ture of the bacteriophage MS2 coat gene. Secondary structural elements (hairpins and multi-
loop helices) are labelled 1-15, with 0 used to label the exterior loop. The tree representation of
the secondary structure is shown in the upper left, with each node of the tree representing one
of the helix elements, i.e. a hairpin or multi-loop helix. Black arrows indicate a linked list
pointing to the 5’ and 3’ neighbours of each structural element. Green arrows point to leaf
nodes, the 5> most helix element in a multi-loop, while red arrows point to root nodes, i.e. the
multi-loop helix which closes the multi-loop that the node is apart of. Fig B: Tree representa-
tion of the secondary structure of the bacteriophage MS2 coat gene with bound ribosome.
Secondary structural elements (hairpins and multi-loop helices) and ribosomes bound to the
mRNA are labelled 1-15, with 0 used to label the exterior loop. Yellow nucleotides indicate the
footprint of the 70S ribosome while purple nucleotides indicate the location of the ribosome
P-site. The tree representation of the secondary structure is shown in the upper left, with each
node of the tree representing either a helix element or bound ribosome. Links between nodes
(black,green and red arrows) follow the same rules as in Fig A. Fig C: Example of how a local
hairpin RNA folding transition is constructed. The bacteriophage MS2 coat gene and its tree
representation are given with each node in the tree representing either a helix or ribosome.
The yellow shaded nucleotides give the ribosome footprint on the mRNA while the purple
nucleotides denote the location of the P-site. The blue nucleotides colour the nucleotides
which make up the window fragment. This window is extracted and the lowest energy RNA
fold computed. The window fragment is replaced with the lowest energy fold to construct the
new RNA fold, and the folding transition rate (kg) is computed using a breadth-first-search
barrier prediction algorithm. Fig D: Construction of folding windows. (a) Example of how
folding windows are constructed for a simple RNA structure consisting of three hairpins and
no multi-loops. Here N,, = 2 and two folding windows are constructed for each node in the
tree. Red and green arrows depict how sections of the RNA are extracted for each window
(example for node 0 shown). (b) Example of folding window construction on the same RNA
structure as in (a), but with N,, = 4. For this setting and RNA fold, all possible window frag-
ments will be considered. Fig E: Construction of folding windows with N,, = 4 for an RNA
containing multi-loops. (a) Example of how folding windows are constructed for the exterior
loop (region 0). Folding windows are not allowed to contain a multi-loop, ribosome, or protein
bound RNA structure, hence folding window 4 is empty for node 0. (b) Example how folding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010870 January 23, 2023 16/20


http://www-users.york.ac.uk/x223C;ecd502/
http://www-users.york.ac.uk/x223C;ecd502/
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010870.s001
https://doi.org/10.1371/journal.pcbi.1010870

PLOS COMPUTATIONAL BIOLOGY Translational control on dynamic mRNA

windows are constructed for the multi-loop (region 3). Folding windows follow the same con-
struction procedure as for the exterior loop. Fig F: An RNA Transition Pathway Between
Two Secondary Structures The secondary structural states that the RNA transitions through
are denoted by S, and the kinetic rates for moving forward or backward along the path are
given by k" and k; , respectively. Fig G: Pseudo-code for various RNA path finding algo-
rithms (a) Greedypath. Pseudo-code for the prediction of the optimal RNA transition path
using the greedy method of Voss [37]. (b) Findpath. Pseudo-code for the prediction of the
optimal RNA transition path using the breadth-first search method of Flamm [19]. (c) Find-
path-mfp. Pseudo-code for the prediction of the optimal RNA transition path using the
breadth-first search method of Flamm [19], but with paths selected according to those having
the lowest mean first passage times. Fig H: Kinetic model of 30S:PIC binding to mRNA to
form the 30S Initiation Complex. The initial binding of 30S:PIC to mRNA with rate k7 pro-
ceeds via recognition of ribosomal protein S1 (yellow dot) followed by recognition of the
Shine-Dalgarno sequence and start codon. The model includes two pathways to formation of
the 30S:IC: (1) the standby pathway, where the 30S:PIC first binds to a weakly structured area
of the mRNA and waits until RNA unfolding presents the start codon, and (2) a pathway in
which the 30S:PIC binds to unstructured RNA. Fig I: Energy profile of 30S:PIC binding to
mRNA. (A) The binding of the 30S:PIC subunit to mRNA can take place via two pathways,
one which depends on structured mRNA where 30S:PIC binds via a standby site (State 2) and
a second, where mRNA is mostly unstructured and the 30S:PIC skips a standby state. (B)
Model of the energy profile of 30S:PIC interaction with the mRNA. In states 2 and 3, the 30S
subunit is modelled as interacting with mRNA predominately via ribosome protein S1 (yellow
dot), where in state 4, the interaction is directly with the start codon (green bar = start,red

bar = stop) and any Shine-Dalgarno sequence present in the mRNA. Fig J: Apparent kinetic
rates of 30S:PIC binding to mRNA. (A) Plot of Equation 16 for varying TIR melting times.
The free concentration of 30S:PIC was set to 0.69 uM, following the predicted estimates from
my Ribosome model [10] at a growth rate of y = 0.7 doublings per hour. (B) Plot of Equation
17 for varying strength of the interaction between the Shine-Dalgarno sequence with rRNA
(AG,) using values k*, = 10 s ' and AGg; = —9.19 keal/mol with Ax = AG, — AGg;. Fig K: The
three families of RNA hairpins which bind bacteriophage MS2 coat protein. (A) The TR,
F6, and F7 hairpin variants which have been shown to bind MS2 coat protein. Sequence pref-
erences are denoted in the figure with N = any nucleotide, Y = Pyrimidine, R = Purine. (B)
Affinity matrix estimated from stop flow kinetic assays on binding of MS2 coat protein to the
TR hairpin [38]. The matrix can be used to estimate the change in binding affinity that results
from sequence or structural changes. Fig L: Snapshots of MS2 mRNA secondary structure of
the coat and RdRp genes during translation. (A) Secondary structure of MS2 mRNA at low
coat protein concentrations when both the coat and RdRp genes are being actively translated
by ribosomes. Yellow nucleotides indicate the footprint of ribosomes while purple nucleotides
indicate the location of the ribosome P-site. Important secondary structures (coat hairpin, TR
stem-loop, RARp Stop Hairpin) are labelled. Numbers indicate nucleotide number in the MS2
viral RNA. (B) Secondary structure of MS2 mRNA at high coat protein concentrations when
only the coat gene is being actively translated by ribosomes. The structure of the RdRp gene
has re-formed long-distance interactions and has no actively translating ribosomes, while the
coat gene has three ribosomes in active translation. Table A: Numbers of various tRNAs per
cell and their codon recognition. Data for the number of tRNAs at different growth rates
have been adjusted to match the codon biases of the mRNAs from E. coli K12 (strain MG1655
—uniprot accession code U00096). The total tRNA at each growth rate have been normalised
to overall expected total tRNA concentrations discussed in Bremer [28]. Table B: Predicted
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and measured tRNA™* misreading frequencies. The misreading frequency by tRNA™"* per
10000 reads at various near-cognate codons is given. Experimental measurements are obtained
from [36] and are compared with the model at different growth rates. Table C: Mean first pas-
sage times for MS2 coat hairpin unfolding. The mean first passage times (7) are calculated
using two different methods (1) a calculation using 5000 simulations of KFOLD, (column
KFOLD in table) and (2) a calculation using the breadth-first search algorithm in Fig G(c) (col-
umn BFS in table). Temperatures are in degrees Celsius while mean first passage times are in
seconds.

(PDF)
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