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 10 

Abstract 11 

The latitudinal diversity gradient (LDG) is a prevalent feature of modern ecosystems across 12 

diverse clades1-4. Recognized for well over a century, the causal mechanisms for LDGs 13 

remain disputed, in part because numerous putative drivers simultaneously covary with 14 

latitude1,3,5. The past provides the opportunity to disentangle LDG mechanisms, because the 15 

relationships among biodiversity, latitude, and possible causal factors have varied over time6-16 
9. We quantify the emergence of the LDG in planktonic foraminifera at high spatio-temporal 17 

resolution over the last 40 million years, finding a modern-style gradient arose only 15 18 

million years ago. Spatial and temporal models suggest LDGs for planktonic foraminifera 19 

may be controlled by the physical structure of the water column. Steepening of the latitudinal 20 

temperature gradient over the last 15 Ma, associated with increased vertical temperature 21 

structure at low latitudes, may have enhanced niche partitioning and provided more 22 

opportunities for speciation equatorially. Supporting this hypothesis, we find higher rates of 23 

low latitude speciation steepened the diversity gradient, consistent with spatio-temporal 24 

patterns of depth partitioning by planktonic foraminifera. Extirpation of species from high 25 

latitudes also strengthened the LDG, but this effect tended to be weaker compared to 26 

speciation. Our results provide a step change in understanding the evolution of marine LDGs 27 

on long time scales.  28 

 29 

  30 
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The spatial structure of Earth’s biodiversity has the potential to provide important insight on 31 

evolutionary drivers. Today, species richness peaks at low latitudes in both marine10-12 and 32 

terrestrial1,4 systems across diverse taxonomic groups, referred to as the ‘latitudinal diversity 33 

gradient’ (LDG). Although first documented over 200 years ago, the causal mechanisms 34 

responsible for elevated low-latitude richness are still disputed1,3,4,13. 35 

LDGs derive from differential rates of speciation, extinction, local extirpation, and 36 

dispersal14,15, which themselves may be controlled by the dynamics of climate14,16-19, biotic 37 

interactions20-23, energy/primary production24,25, or available surface area26. Identifying which 38 

of these factors are key controls on rates of speciation, extinction, extirpation, and dispersal is 39 

difficult, because most are collinear with each other today5. However, the relationship 40 

between latitude and these hypothesized drivers has not been constant over Earth history, and 41 

thus intervals of the geological past can provide insight on how biodiversity is generated and 42 

maintained6,7,9.  43 

In marine systems, previous work has suggested that diversity gradients were present for tens 44 

of millions of years but varied in strength and shape4,6-9. However, limited fossil data has 45 

prevented detailed examination of the emergence of modern-day LDGs for more than short 46 

temporal intervals 27-29 or coarse spatio-temporal resolutions7,9,30, leaving key knowledge 47 

gaps31.  48 

Here we utilize our recent compilation of planktonic foraminifera32, a group of 49 

biomineralizing marine plankton, to study the establishment and maintenance of the modern-50 

style LDG at a previously unachieved spatio-temporal resolution. By examining spatial 51 

diversity patterns across 40 million years, we provide fundamental insight on the co-52 

evolution of the biosphere and geosphere and test key hypotheses on LDG drivers12,33,34.  53 

We quantified temporal patterns in LDGs using 464,963 unique species-by-locality-by-time 54 

records (Fig. 1A; Fig. S1-4). Records older than 40 Ma were excluded due to poor-quality 55 

low-latitude data for earlier time intervals. LDGs were constructed using five subsampling 56 

approaches that accounted for sampling biases (SI Methods, Fig. S5), all of which reveal 57 

significant changes in the spatial distribution of species over the last 40 Ma (Fig. 1B,C; Figs. 58 

S6-10). A modern-style LDG began to emerge gradually beginning ~34 million years ago, 59 

coincident with the transition from warmhouse to coolhouse conditions, but remained shallow 60 

until around ~15–10 million years ago, contemporaneous with an increase in global cooling35. 61 

Gradient (i.e., slope) estimates for richness steepened from virtually no gradient at 40 Ma 62 

(Fig. 1C) and were insensitive to methodological choice (Figs. S11-24, Table S1). This 63 

pattern supports previous suggestions that shallower diversity gradients occur during warmer, 64 

greenhouse intervals7,8,27.  65 

Modern-day diversity for planktonic foraminifera is richest at mid-latitudes, with a slight 66 

depression at the equator16,28. We fit linear and 2nd order polynomial models to each of our 16 67 

LDGs to test whether they are better characterized as unimodal or bimodal; data for the 68 

Northern and Southern Hemispheres were modelled together and individually (see SI 69 

‘Estimating LDG Gradients’). For all time periods other than the most recent (0–2.5 Ma), a 70 

linear model produced a better fit (Table S2). Peak richness for planktonic foraminifera 71 

occurred at higher latitudes from 40–20 Ma, but with generally flatter gradients, after which 72 

peak richness shifted to ~10° to 20° latitude, consistent with the diversity pattern observed 73 

today16,28 (Fig. 1B).  74 

To identify potential drivers of LDG changes over the last 40 Ma, we investigated the 75 

relationship between richness and climate both spatially within time bins and temporally 76 

across time bins. In the first approach, we modelled richness as a function of mean annual sea 77 
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surface salinity, mean annual mixed layer depth, mean annual thermocline extent, and mean 78 

annual sea surface temperature (SST) using spatial autoregressive models within each of the 79 

2.5 Ma time bins (Fig. S25-27). After correcting for multiple comparisons, only SST 80 

exhibited a consistent and strong positive relationship with richness over time (Fig. 2). This 81 

relationship persisted for at least the last 15 million years, and perhaps longer, but with 82 

confidence intervals that overlap zero. Results are insensitive to permutations of the data 83 

(Figs. S28-32). The temperature range of the thermocline is highly correlated with SST (Fig. 84 

S26) and therefore could not be included in the multivariate model. When thermocline 85 

temperature range was modelled separately, however, the strength of relationship was similar 86 

to that of SST (Fig. S33). No other variables exhibited such a relationship (Fig. S33). 87 

Richness was not linked to surface ocean area when species richness was modelled as a 88 

function of area within 15° latitudinal bins (Fig. S34).  89 

In the second model approach, we investigated the relationship between change in richness 90 

and change in climate variables at given locations on Earth. Change was examined over 2.5, 91 

5, 7.5., 10, and 12.5 million-year intervals of time (Fig. S35 & S36). SST change was the 92 

only significant predictor of change in richness across these five models, and results were 93 

robust to permutations of the data (Table S3). No relationship was found when thermocline 94 

temperature range was modelled separately (Table S4), but this could reflect the greater 95 

uncertainty in estimating temperatures at depth with paleoclimate models, especially in deep 96 

time.  97 

These results and previous work16,36,37 suggest species richness for planktonic foraminifera 98 

could be explained, at least in part, by steepening of the latitudinal temperature gradient and 99 

associated increase in vertical temperature structure at low latitudes35,38 over the last 15 Ma, 100 

the latter of which may have enhanced niche-partitioning-mediated speciation in the 101 

tropics39,40. To further test this hypothesis, we examined the degree to which species of 102 

planktonic foraminifera partition by depth within the water column over time and space. We 103 

found that low-latitude assemblages of species today are more evenly distributed vertically 104 

within the water column across the mixed layer, thermocline, and sub-thermocline than are 105 

assemblages at high latitudes (Fig. 3). However, assemblages exhibited greater evenness of 106 

depth habitats (mixed layer, thermocline, and sub-thermocline) across latitudes when the 107 

gradient was shallower millions of years ago. This pattern implies that warmer waters at high 108 

latitudes supported a broader range of vertical temperature habitats within the water column 109 

from 40–15 Ma, and that these assemblages collapsed as the high latitudes cooled.  110 

If changes to the vertical structure of the water column facilitated the formation of a modern-111 

style LDG, we would expect higher rates of speciation at low latitudes coincident with the 112 

steepening of the diversity gradient, and higher rates of either extirpation and/or extinction at 113 

high latitudes. We quantified differential rates of speciation, extinction, extirpation, and 114 

dispersal in low versus high latitudes, defined as within or exclusive of 30° latitude.  115 

Low-latitude speciation began to exceed high latitude speciation after 30 Ma, suggesting the 116 

modern-style LDG is possibly driven by higher rates of low-latitude origination (Fig. 4; Fig. 117 

S37-43). These results are consistent with previous findings of higher speciation rates at low 118 

latitudes for planktonic foraminifera15,41,42. In addition to low-latitude speciation, local 119 

extirpation at high latitudes also contributed to a modern LDG, but tended to have a smaller 120 

effect size (Fig. 4; Figs. S37-S38, S40-43). In previous work, Yasuhara et al.29 found that the 121 

redistribution of species’ ranges, and not speciation, was important to LDG formation, but 122 

this was likely due to the short timescale of their study (i.e., last 3 Myrs).   123 

Steepening of the diversity gradient was not driven by extinction, because extinction was 124 

higher at low latitudes beginning ~20 Ma (Fig. 4; Figs. S37-S38, S40-43). This heightened 125 
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extinction dampened the effect of higher speciation in the tropics, but speciation still tended 126 

to outpace extinction, adding to richness. Similarly, dispersal from high to low latitudes did 127 

not contribute to the emergence of a modern-day LDG, as dispersal dynamics were reversed 128 

(i.e., occurred predominantly from low to high latitudes) from at least the last 10 Ma (Fig. 4; 129 

Figs. S37-S38, S40-43). Dispersal was usually rapid, with a mean wait time after speciation 130 

of 1.7 Ma (+/- 2 Ma).  131 

The relationship of temperature with richness was dampened for time periods older than 15 132 

Ma. This weakened relationship may reflect climate model inaccuracies that inflate with time, 133 

or the fact that richness and temperature do not vary significantly with latitude. In the latter 134 

scenario of limited temperature variation, sensitivity analyses suggest no relationship would 135 

be found between richness and temperature (Fig. S29). Scarcer data in deep time may also 136 

make a relationship with temperature more difficult to obtain (Fig. S30), but LDGs 137 

constructed with minimal data still return modern-style LDGs towards the present (Fig. S31). 138 

Excluding sites potentially subject to dissolution only served to strengthen patterns (Fig. 139 

S32).   140 

We were not able to test the relationship of richness with zooplankton biomass43 or nutrient 141 

availability44, because high-resolution spatial and temporal data for these variables at global 142 

scale do not exist for the last 40 Ma. However, the regions with highest foraminiferal 143 

richness, the nutrient-poor subtropical gyres45, are characterised by lowest population 144 

densities of planktonic foraminifera46. The subtropical gyres have been incredibly stable over 145 

10’s of millions of years47, and may have accumulated their high diversity due to both niche 146 

partitioning and reduced extirpation and extinction. It is possible that competition with 147 

diatoms or other groups, especially when interacting with seasonal food availability at high 148 

latitudes, also structure the LDG for planktonic foraminifera, but seasonality was found to 149 

correlate with SST and thermocline temperature range in many time bins and was therefore 150 

not included as a predictor in our models (Fig. S27).  151 

Taken together, our results suggest the modern-day LDG for planktonic foraminifera is 152 

controlled, at least in part, by high-latitude cooling that brought colder bottom waters to the 153 

tropics, increasing both latitudinal temperature gradients and vertical temperature gradients at 154 

low latitudes. The increased vertical temperature structure within the water column at low 155 

latitudes may have enhanced niche partitioning, providing more opportunity for speciation 156 

over the last 30–15 Ma16,36,37. The cooler high-latitude water also served to extirpate regional 157 

populations of species. Consistent with our hypothesis, the tropics today are richer than the 158 

tropics of the Eocene and Miocene, potentially due to a stronger vertical temperature 159 

structure that was weak-to-absent during these warmer time periods. Extreme warmth during 160 

the Eocene may have also exceeded species’ temperature tolerances equatorially, further 161 

depressing diversity, an effect that may occur more in the future as the tropics continue to 162 

warm33,48. Global diversity for planktonic foraminifera in the Eocene, however, was similar 163 

to planktonic foraminiferal diversity today, since species were distributed more evenly across 164 

latitudes 40 million years ago (Fig. 3). 165 

Our analyses suggest a role for water column structure in facilitating niche partitioning and 166 

therefore the emergence of the LDG in planktonic foraminifera. Other potential mechanisms 167 

that may have elevated low-latitude diversity include the total amount of suitable area 168 

vertically within the water column26, metabolic scaling42,49, or changes to the biological 169 

carbon pump that redistributed nutrients at depth and opened new niches as climate cooled 170 

over the last 15 Ma50,51. This latter mechanism of nutrient redistribution complements the 171 

vertical temperature-driven niche separation proposed here.   172 
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To conclude, the establishment of the modern LDG is consistent with a cooling climate that 173 

allowed for elevated speciation via niche partition at low latitudes, whilst restructuring 174 

distributions and removing niches at high latitudes. By resolving how spatial patterns of 175 

biodiversity have varied through deep time, we provide valuable information on hypothesised 176 

causes crucial for understanding how biodiversity is generated and maintained over 177 

geological timescales, beyond the scope of modern-day ecological studies.  178 

 179 
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 341 

Figure Captions  342 

Fig. 1. The emergence of a modern-day latitudinal diversity gradient in planktonic 343 

foraminifera over the last 40 Ma. (A) Data used to quantify LDGs. Points are colored by 344 

the age of the sample. Distributional maps rotated to paleo-positions for 2.5 Ma intervals are 345 

available in Fig. S1. (B) LDGs constructed using unique site-by-age richness estimates in 2.5 346 

Ma time bins (the midpoint age is shown). To generate curves, point-level data were binned 347 

by 15° latitude and richness estimated using the 75th percentile of the samples in each 348 

latitude-by-age bin. Results were robust to LDG construction method (Figs. S6-10) and show 349 

the modern-day LDG emerged only ~15 Ma. (C) Estimates of the gradient (i.e., slope) for 350 

LDGs over the last 40 Ma using the curves from (B). Gradients were insensitive to 351 

methodological approach (Figs. S11-24) and show a steepening of the gradient towards the 352 

present.   353 

Fig. 2. Spatial autoregressive model coefficients from analyses examining the 354 

relationship between richness and four environmental predictors within 2.5 Ma time 355 

bins. The midpoint age for each bin is shown. Environmental variables include mean annual 356 

sea surface temperature, the log of mean annual mixed layer depth, the width of the 357 

thermocline, and the log of mean annual salinity. Coefficients are black if significant at an α 358 

of 0.05 using the Bejamini & Hochberg (BH) correction for multiple comparisons. Results 359 

are shown for data that was latitudinally restricted (within 55° latitude) but are consistent 360 
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with models that include all latitudinal data (Fig. S28). Error bars represent 95% confidence 361 

intervals around the mean. 362 

Fig. 3. The dynamics of depth partitioning for planktonic foraminiferal assemblages 363 

across space and time. (A) We quantified evenness of depth habitat within each unique site-364 

by-age bin using Simpson’s index. This metric determines how evenly spread species are 365 

among the mixed layer, thermocline, and sub-thermocline for a given time and place within 366 

the water column. Mean evenness estimates were taken for each 2.5 Ma and 15° latitude bin. 367 

Analyses were performed only within 55° latitude, since data were limited at high latitudes 368 

earlier in the Cenozoic. (B) Mean evenness across latitudes for a given 2.5 Ma time bin, for 369 

low latitudes (defined as within 30°), high latitudes, and globally. Low-latitude assemblages 370 

of species today are more evenly distributed across the mixed layer, thermocline, and sub-371 

thermocline than are assemblages at high latitudes. However, assemblages exhibited greater 372 

evenness across latitudes when the gradient was shallower millions of years ago. Current 373 

knowledge of foraminiferal depth preferences only allowed for measurement of evenness 374 

across three depths, but our assumption is the thermocline and subthermocline are subdivided 375 

to contain multiple niches, with more niches present at low latitudes during the last 15 Ma, 376 

and more niches present at higher latitudes during warmer intervals. For the raw evenness 377 

data in each sample, see Fig. S44.  378 

Fig. 4. Macroevolutionary processes structuring LDGs over the last 40 Ma. Panels show 379 

the number of speciation, extinction, extirpation, and dispersal events in low-latitude 380 

(tropical) and high-latitude (temperate) regions. Dispersal quantified the number of species 381 

moving from the tropics to temperate regions and vice versa. The steepening of the gradient 382 

towards the recent coincides with enhanced rates of tropical speciation and with higher 383 

extirpation from temperate regions. Temperate and tropical regions were defined by 30° 384 

latitude for all time periods. Data show results for the approach including all site-by-age 385 

records. For proportional patterns, bootstrap subsampling analyses, and results excluding 386 

species present in both temperate and tropical regions within a given 2.5 Ma time bin, see 387 

Figs. S36-43.  388 

  389 

 390 

1. Methods  391 

1.1. Choice of taxon  392 

Planktonic foraminifera are a group of unicellular, bio-mineralising marine plankton that 393 

originated ~170 Ma in the Early to Middle Jurassic44. They are an important component of 394 

the plankton from the high latitudes to the equator in all ocean basins. Species of planktonic 395 

foraminifera occupy a range of ecological niches in the upper two kilometers of the open 396 

ocean: some live in the surface mixed-layer and host algal photo-symbionts, while others live 397 

within or below the thermocline and feed primarily on sinking phytodetritus44. 398 

Due to their global abundance and preservation potential, planktonic foraminifera have 399 

been demonstrated to have the best species-level fossil record of the last 66 million years52. 400 

The quality of this fossil record permits an exceptionally high-resolution view into past 401 

species distributions, ecologies, and life histories. Recent work compiling this information 402 

into the single, harmonized Triton database32 allows us to investigate the drivers and patterns 403 

of LDGs at greater fidelity than possible before. 404 

 405 

1.2. Description and preparation of the data 406 
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We quantified temporal patterns in LDGs using 464,963 unique species-by-locality-by-407 

age records from the Triton database32, which represents the single largest dataset for any 408 

fossil group. Data were curated for taxonomic consistency, and all ages were converted to the 409 

GTS 2020 timescale. Following Fenton et al32, occurrences significantly outside a species’ 410 

known age range were excluded, using a threshold of 2 Ma for the Neogene and 5 Ma for the 411 

Paleogene; such records are likely to be taxonomic misidentifications or the result of 412 

reworking. Spatial coordinates were rotated to their past position (paleo-coordinates) based 413 

on Matthews et al53. Spatial imprecision in coordinates may occur due to error in the paleo-414 

coordinate rotation plate model, and/or from ocean currents displacing foraminiferal tests as 415 

the dead organisms sank to the seafloor. However, neither source of error is likely to have 416 

large effects on the LDG patterns quantified herein, given the spatial resolution of our 417 

analyses (usually 15° latitude bins, or roughly 1500 km, see section 3.1). For example, for 418 

sites <1 km depth or for large foraminifera, the distance between where the organism died 419 

and where it settled is unlikely to be larger than ~100 km54,55. For depths of 2 km to 3.5 km, a 420 

maximum displacement of 100 to 400 km is reasonable56,57. We limited analyses to the last 421 

40 Ma because poor-quality data at low latitudes early in the Cenozoic made it challenging to 422 

accurately calculate richness for these early intervals. 423 

 424 

1.3. Quantifying temporal patterns for LDGs over 40 Ma 425 

We estimated LDGs using percentiles from point-occurrence data and by calculating 426 

central tendencies using three different subsampling methods, described below. All analyses 427 

used the R v. 4.1.3 computing environment58. 428 

 429 

1.3.1. Spatio-temporal bin selection  430 

LDGs were constructed by calculating richness within spatio-temporal bins. 431 

Numerous binning schemes were tested to evaluate the sensitivity of patterns to spatio-432 

temporal resolution. Eight temporal bin durations were tested, from 2.5 Ma to 20 Ma, in 2.5 433 

Ma increments. Temporal binning may inflate species counts59, and thus bin duration should 434 

be narrower than the average duration of species60. For the planktonic foraminiferal species 435 

studied here, median species’ duration was 5.96 Ma, suggesting bin durations longer than this 436 

will suffer from greater time averaging. We therefore focused analyses on the shortest 437 

temporal duration (2.5 Ma) but present results for other schemes (Figs. S7-9, S14). Longer 438 

temporal bins give steeper gradient estimates, but overall patterns remain consistent, as can 439 

be seen when rescaling richness in each time bin (Fig. S14). The spatial distribution of data at 440 

2.5 Ma resolution are shown in Figs. S1. 441 

We tested eight latitudinal bin resolutions, from 2.5° to 20°, in steps of 2.5°. We 442 

aimed to use the highest spatial bin resolution, whilst ensuring sufficient data to calculate 443 

LDGs within 2.5 Ma time bins. Therefore, to choose an ‘optimum’, we eliminated binning 444 

schemes that resulted in an empty set (no data) for latitudinal bins in any 2.5 Ma time bin. We 445 

further eliminated any binning scheme with insufficient data (defined here as 15 samples, 5 446 

sites, and 150 records) in at least five latitudinal bins for any time bin. This approach 447 

identified 15° latitude bins as the highest ‘ideal’ resolution for analyses.  448 

Analyses focused on a spatio-temporal resolution of 2.5 Ma and 15° latitude (Figs. 449 

S2-4), which was sufficiently sensitive to return the known, modern-day LDG with an 450 

equatorial dip (Fig. 1B)16,28. Estimates of the LDG using other spatial binning schemes 451 

produced similar results (Fig. S7-S9), and latitudinal resolution did not have a strong 452 

influence on gradient estimates (Fig. S15).  453 

 454 

1.3.2. Point-occurrence method for LDGs 455 
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LDGs were quantified using unique site-by-age richness estimates within each 2.5 Ma 456 

time bin. Analyses excluded samples where the aim of the study was to identify selected 457 

species only, or where preservation was marked as poor (<10% of the data).  458 

To generate LDG curves, point-level data were binned by 15° latitude. Richness was 459 

estimated using the 75th percentile of the samples in each latitude-by-age bin. Changes in the 460 

LDG through time were not affected by choice of percentile (Fig. S6 & S12). Percentiles 461 

were used to estimate LDGs because planktonic foraminiferal assemblages are more likely to 462 

be characterized by low richness due to dissolution or incomplete community counts, rather 463 

than high richness from time averaging, particularly given the short temporal bins used here. 464 

Furthermore, modern diversity patterns are characterized by the most diverse sites in a given 465 

latitude; for example, in many clades, the tropics today house both very low and very high 466 

species richness dependent on the location and environment61.  467 

 468 

1.3.3. Subsampling method for LDGs 469 

To test whether point-level LDG patterns remained consistent when accounting for 470 

variation in data quantity, we estimated LDGs using three subsampling approaches. For each 471 

latitude-by-age combination, 1000 subsamples were drawn at random with replacement and 472 

the number of unique species counted. The mean of the 1000 subsamples served as the 473 

richness estimate for that latitude-by-age bin, with associated 95% confidence intervals. 474 

Three different subsampling methods were employed: (i) by site, (ii) by sample, and 475 

(iii) by record (Fig. S5). The ‘by site’ method divided the dataset based on locality (or site) 476 

and selected a set number of sites for a given latitude-by-age bin. Richness was calculated 477 

from all species at the selected sites within that bin, irrespective of their exact age. We varied 478 

the number of sites selected from 3 to 20 (n = 3, 5, 10, 15, and 20). We focused on five sites 479 

because it allowed for the maximum number of spatio-temporal bins and produced narrower 480 

confidence intervals than when subsampling using three sites, but results were broadly 481 

insensitive to site number (Fig. S9 & S18).  482 

The ‘by sample’ method of subsampling divided the dataset based on both locality 483 

and age and selected a set number of unique site-by-age samples from a given latitude-by-age 484 

bin. Each sample therefore represents the foraminiferal assemblage alive at a given time. The 485 

richness was calculated from unique species in the selected assemblages. We varied the 486 

number of samples selected from 10 to 50 in increments of 5. We selected 15 samples based 487 

on the trade-off between maximum number of samples and narrowest confidence intervals 488 

(Fig. S7 & S19).  489 

The ‘by record’ method of subsampling divided the dataset based on locality, age, and 490 

species and selected a set number of unique species records from any site or age within a 491 

given latitude-by-age bin. Each record represented one row in the Triton dataset. The richness 492 

was calculated as the number of unique species within the selected records. We selected from 493 

100 to 500 records in intervals of 50. We focused on 150 records, but results were broadly 494 

insensitive to record number (Fig. S8 & S20).  495 

In contrast to point-level LDG construction, we did not exclude data where the aim of 496 

the study was to identify selected species, and where preservation was marked as poor, 497 

because subsampling does not assume any one sample is representative. Comparisons of 498 

point-level and subsampled LDG estimates show similar patterns (Fig. S10 & S23-S24), 499 

although subsampling tended to suggest higher average species richness. Higher richness in 500 

subsampled LDGs may reflect the influence of spatio-temporal averaging, which can inflate 501 

richness estimates. Alternatively or additionally, incomplete sampling or dissolution might 502 

lower richness in the point level estimates.  503 

 504 

1.3.4. Estimating LDG gradients 505 
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The strength (or gradient) of LDGs was estimated using a linear model of richness as 506 

a function of latitude. For point-level data, richness estimates from the same site and time bin 507 

were characterized by the 50th, 60th, 75th, and 90th percentiles to avoid pseudo-replication. We 508 

focused on patterns using the 75th percentile, but results were insensitive to percentile choice 509 

(Figs. S6, S12, S13). To ensure gradient estimates were comparable over time, we calculated 510 

gradients only within 55° latitude, since older time periods were characterized by sparse 511 

high-latitude data. However, results were insensitive to latitudinal extent (Fig. S11). 512 

Gradients were estimated individually for the Northern and Southern Hemispheres, 513 

and for both hemispheres combined using absolute latitude. We tested whether a model with 514 

separate slopes for each hemisphere provided a significantly better fit to data than a combined 515 

model using AICc. For most time periods (n=11 of 16), a model that used data from both 516 

hemispheres was preferred over a model with separate gradients (Table S1). Combining the 517 

two hemispheres increases the data on which a gradient is calculated.  518 

We calculated gradients on rescaled richness to investigate the influence of variation 519 

in richness through time on gradient estimates (Fig. S11-S13). Richness was rescaled by 520 

setting maximum richness within a time bin to one. Rescaling affected the steepness of the 521 

latitudinal gradient but allowed for more direct comparisons of LDG shape across time. 522 

LDGs with peak richness in equatorial regions will have a steeper rescaled gradient than 523 

gradients where peak richness is in the mid-latitudes.   524 

We compared gradients estimated from point-level LDGs to gradients estimated from 525 

subsampled LDGs. Gradients were calculated for each subsampling iteration and every 526 

latitude-by-age bin combination (Fig. S16), from which we derived mean and 95% 527 

confidence intervals (Figs. S14-S15, S18-S21). Using the median instead of the mean 528 

produced almost identical results (Fig. S17). Latitude-by-time bin resolution influenced 529 

gradient estimates but did not mask overall patterns (Figs. S14 & S15). Choice of age bin 530 

exaggerated latitudinal differences because broader age bins tended to result in more time 531 

averaging, but overall patterns were similar (Fig. S14). Similarly, choice of subsampling 532 

method had little effect, although the use of sites tended to produce broader confidence 533 

intervals (Figs. S21, S23 & S24). The amount of subsampling affected the steepness of the 534 

gradient, but not the overall shape, and rescaling removed this effect (Figs. S18-20). Visual 535 

inspection of gradients suggested the slopes of the Northern and Southern Hemisphere, for all 536 

time periods, were mirrored (Fig. S16).   537 

Finally, we calculated and compared gradients from raw richness tallied directly from 538 

species counts in each latitude-by-age bin (Fig. S22), finding similar overall patterns to the 539 

subsampled and point-level gradients. 540 

 541 

1.3.5. Estimating bimodality  542 

Shallow gradients may indicate minimal differences in richness across latitudes or may 543 

indicate that bimodality was more pronounced during these times. To distinguish between 544 

these two possibilities, we compared a linear model with a second order polynomial model 545 

using AICc (Table S2).  546 

 547 

1.4. Identifying LDG drivers over the last 40 Ma 548 

1.4.1. Diversity dataset 549 

We investigated possible LDG drivers over the last 40 Ma by coupling atmosphere-550 

ocean generalized circulation models (AOGCMs) to point-level richness estimates within 2.5 551 

Ma time bins. To avoid pseudo-replication, a single, mean richness estimate was calculated 552 

for each climatic grid cell.  553 

 554 

1.4.2. Paleoclimate simulations 555 
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To explore whether paleoclimate influenced the biogeographic distribution of 556 

planktonic foraminifera, we utilized a newly updated version of a state-of-the-art paleo-557 

general circulation model.  558 

 559 

1.4.2.1. Paleoclimate model 560 

Paleoclimate model simulations were carried out using a recent version of the UK 561 

Met Office coupled Atmosphere-Ocean General Circulation Model (AOGCM), HadCM3, or 562 

HadCM3L-M2.1D following the nomenclature of 62. HadCM3L-M2.1D has a model 563 

resolution of 3.75° longitude × 2.5° latitude in the atmosphere and ocean (~250 km grid 564 

squares in the tropics), with 19 hybrid levels in the atmosphere and 20 vertical levels in the 565 

ocean. Equations were solved on the Arakawa B-grid. As is common in all climate models, 566 

sub-grid scale processes, such as cloud, convection, and oceanic eddies, were parameterized 567 

because they cannot be resolved at the scales required (usually meters to several kilometers) 568 

of the model resolution.  569 

Due to scarce spatiotemporal data recording land-surface vegetation and soil 570 

characteristics in deep time, we used modern-day vegetation expressions for broadleaf trees, 571 

deciduous trees, shrubs, C3 and C4 grasses (five in total), and a globally-uniform distribution 572 

of medium loam soil characteristics in the model land surface scheme (MOSES 2.1)63. The 573 

land surface scheme also included evaporation from sub-grid scale lakes, which were 574 

prescribed as a lake fraction in each grid box at the start of the simulation.  We used a version 575 

of the model that included the dynamical vegetation model, TRIFFID (Top-Down 576 

Representation of Interactive Foliage and Flora Including Dynamics). TRIFFID predicts the 577 

distribution and properties of global vegetation based on plant functional types (PFTs) in the 578 

form of fractional coverage (and thus PFT co-existence) within a grid-cell, based on 579 

competition equations using the climate tolerance of five plant functional types.  580 

The model included a further update that modified cloud condensation nuclei density 581 

and cloud droplet effective radius, following recent work64,65. This modification raised 582 

temperatures at high latitudes, without significantly changing tropical temperatures, which 583 

reduced the pole-to-equator temperature gradient in line with proxy observations. This update 584 

was found to work under hot, cool, and icehouse conditions, as well as under pre-industrial 585 

boundary conditions, making it appropriate for use across modern and deep time.  586 

The ocean model was based on the model of Cox et al.66 and is a full primitive equation with 587 

a three-dimensional model of the ocean. A second-order numerical scheme was used along 588 

with centred advection to remove nonlinear instabilities. Flux adjustments—such as artificial 589 

heat and salinity adjustments in the ocean component model67 to prevent them from drifting 590 

to unrealistic values—were not required in this model, which is a crucial feature for long 591 

paleoclimate simulations68. Sea-ice was calculated on a zero-layer model; partial sea ice 592 

coverage was possible, with a consistent salinity assumed for ice.  593 

Each simulation was initialised from an equilibrated pre-industrial state in the 594 

atmosphere and ocean. Surface vegetation was uniformly set as shrub everywhere and 595 

allowed to evolve via TRIFFID based on the evolution of the local climate.  596 

The HadCM3 family of models has contributed extensively to the Coupled Model 597 

Intercomparison Project (CMIP 1-5) experiments and the Paleoclimate Modelling 598 

Intercomparison Project (PMIP 1-4), and has demonstrated skill at reproducing the modern-599 

day climate62 and paleoclimate in an array of experiments69-71. Paleoclimate experiments 600 

require hundreds of years to reach a near-surface equilibrium state but substantially longer 601 

(many thousands of years) for the deep ocean68,69; even longer is required for true climate 602 

equilibrium, due to the long period of adjustment of ocean circulation to applied forcings. 603 

Lower resolution models are less computational expensive, allowing fully equilibrated 604 
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simulations of deep time climate, which would not be possible with higher resolution, more 605 

complex models.  606 

 607 

1.4.2.2. Snapshot simulations, specific boundary conditions and spin-up 608 

We ran nine ‘snapshot’ simulations over the last 40 Ma of the Cenozoic, with each 609 

simulation having time-specific boundary conditions. Paleogeographic digital elevation 610 

models (DEMs) were produced by the EarthByte group as part of the PALEOMAP project72. 611 

Each stage and time-specific DEM were interpolated from a 1°x1° grid onto the HadCM3L 612 

3.75°x2.5° grid. Similarly, land ice was transformed onto the model grid assuming a simple 613 

parabolic shape to estimate ice sheet height (m). ‘Realistic’ pCO2 concentrations for each 614 

simulation were based on Foster et al.73. Time-specific solar luminosity for each simulation 615 

was based on Gough74. All other boundary conditions, such as orbital parameters, volcanic 616 

aerosol concentrations, etc., were held constant at pre-industrial values.  617 

To ensure each simulation had fully adjusted to the boundary conditions, we followed 618 

a 3-stage spin-up protocol so that each simulation was fully equilibrated: i) The globally and 619 

volume-integrated annual mean ocean temperature trend was less than 1°C per 1000 years; ii) 620 

trends in surface air temperature were less than 0.3°C per 1000 years; and iii) net energy 621 

balance at the top of the atmosphere, averaged over a 100-year period at the end of the 622 

simulation, was less than 0.25/W m2. In general, these simulations were run for over 9,000 623 

model years to ensure full Earth system equilibrium. Climate means were produced from the 624 

last 100 years of each simulation.  625 

 626 

1.4.2.3. Spatiotemporal interpolation techniques 627 

Using the climatic snapshot simulations, we interpolated model data and boundary 628 

conditions over the last 40 Ma. First, the DEM (bathymetry & topography) was interpolated 629 

linearly between each pair of snapshot simulations at 0.5 million-year-increments onto a 630 

1°x1° longitude by latitude grid. Each increment was time weighted between the two 631 

snapshot simulations using the DEMs. The land-sea mask was generated for each newly 632 

generated DEM, where any grid box above 0 m was taken as land and any grid box below 0 633 

m as ocean. Isolated ocean points were removed if six of the surrounding grid boxes were 634 

land, with the corresponding topography set as the mean of the surrounding grid boxes.  635 

The snapshot model data (e.g., sea surface temperature, sea surface salinity) was 636 

interpolated using bicubic remapping for each variable onto the interpolated land-sea mask. 637 

Environmental parameter fields (e.g., sea surface temperature, salinity) were extrapolated to 638 

fill in grid boxes that were newly created using Poisson's equation (elliptic partial differential 639 

equation) over the input domain.  640 

 641 

1.4.2.4. Paleo-climate model uncertainties 642 

Global-scale biodiversity data requires global-scale environmental datasets, such as 643 

sea surface temperature. Global proxy databases with large spatiotemporal coverage are 644 

available for past time periods, but proxy evidence is limited deeper in time and increasingly 645 

less well-constrained, necessitating the use of paleoclimate models to provide these global 646 

datasets. However, simulating paleoclimate is challenging. This challenge stems, in part, 647 

from the many parameters that may be unconstrained for deeper time observations. 648 

Uncertainties can be partitioned into two main sources: i) boundary condition uncertainty, 649 

and ii) model uncertainty. 650 

i) Boundary conditions are spatiotemporally varying parameters that are required by 651 

climate models, but which cannot be calculated internally by the model and instead need to 652 

be provided by the user. The most important boundary conditions for the model used here 653 
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are: (a) paleogeographic reconstructions, (b) ice sheet height and extent, (c) solar luminosity, 654 

(e) orbital configuration, and (e) greenhouse gas concentrations.  655 

 656 

(a) A large source of uncertainty arises from paleogeographic reconstruction. DEMs, 657 

constrained by paleo-databases, provide topography, bathymetry, and land-sea 658 

concentration. These DEMs are crucial for determining local, regional, and global 659 

atmospheric and ocean circulation, and therefore the climate in the model. The deeper 660 

in time, the less proxy data is available, which results in greater uncertainty in these 661 

reconstructions. However, our understanding of plate tectonics, spreading ridges, 662 

weathering rates, and basinal deposition allows for accurate first-order approximation 663 

of deep-time paleogeography, especially over the last 40 Ma. The largest uncertainties 664 

usually result from the height and depth of topographic and bathymetric surfaces and 665 

their spatial coverage because of proxy uncertainty, e.g.75.  666 

(b) Ice sheets (and associated sea-level height) can have a large impact on regional 667 

climate and global climate, primarily due to changes in land surface area, planetary 668 

albedo, and modification to ocean and atmospheric circulation. Currently, most 669 

paleoclimate models prescribe the height and extent of ice sheets based on proxy 670 

evidence.  671 

(c) Solar luminosity, which is the amount of energy received by a planetary body from its 672 

parent star, is fairly well known. Gough (1981)74 approximated the amount of energy 673 

based on a simple model using the age of the parent star. Apart from the first 0.2 Gyr 674 

of Earth history, this approximation is shown to agree well with observations76. 675 

(d) Orbital configuration (the eccentricity, obliquity, and precession of the planet’s orbit 676 

around its parent star and rotation on its own axis) can have a substantial impact on 677 

the seasonal and latitudinal climate signal, which, in turn, can lead to significant 678 

changes in climate state (glacial to interglacial cycles). These effects are due to ice 679 

sheet formation and associated changes in global atmospheric and oceanic response. 680 

For deep-time simulations, a modern orbital configuration is often imposed. There are 681 

several reasons for this. First, chronological uncertainty in proxies that are used in 682 

model comparison will cover many orbital cycles, which may result in the proxy 683 

being more representative of a mean orbital state (akin to the modern day). Second, 684 

using a modern configuration makes it easier to understand how different a deep-time 685 

climate is compared to the modern climate. Orbital variation will have its largest 686 

impact on climate where ice sheets can grow, which is partly reflective of the amount 687 

of pCO2 in the atmosphere and associated global temperature.  688 

(e) Greenhouse gas concentrations, and more specifically pCO2 concentrations, are 689 

variable through the geologic past. Proxy type, age, techniques, and calibration 690 

uncertainty when converting to a pCO2 estimate, as well as the number of records 691 

through the geologic past, can make constraining a deep time pCO2 concentration 692 

problematic73. Furthermore, although a combination of multiple proxy sources can 693 

improve the robustness of the estimated pCO2 estimates, it may prove problematic in 694 

situations where the errors are combined to produce a mean pCO2 estimate. Time 695 

averaging is also an issue. Although paleogeography changes on geological 696 

timescales, pCO2 concentrations can vary on hundreds to million-year timescales. 697 

Here we were only interested in the long-term background signal (millions of years), 698 

with scatter around the mean, typically ~400ppm73.  699 

 700 

ii) Although all globally available paleoclimate models use the same well-known 701 

equations to simulate the large-scale behavior of the atmosphere and ocean, results from 702 

different models can vary, in particular at the local and regional scale. This variation is due to 703 



 16

the complexity of each model, resolution dependencies, spin-up and the applied initial state, 704 

and parameterizations used to approximate processes such as cloud formation that cannot be 705 

explicitly resolved at the grid-scale of all current paleoclimate models. In an ideal world, such 706 

paleoclimate simulations would be run by multiple paleoclimate modelling groups, as is done 707 

in the Climate Model Intercomparison Project (CMIP) for near-future climate change studies. 708 

Unfortunately, such paleo-climate comparisons are not currently possible; for instance, these 709 

simulations took over two years to complete on a high-performance supercomputer, and few 710 

paleoclimate modelling groups have the capability to set up such deep time simulations. 711 

However, confidence in the robustness of our results can be obtained by the fact that: (a) the 712 

HadCM3 family of models, although 20 years older than many contemporaries, still 713 

compares reasonably well with models form the previous IPCC Coupled CMIP fifth 714 

assessment models62. (b) HadCM3L-M2.1D has seen continued development62. Here we use 715 

an updated version of the model that solves a persistent problem in the majority of 716 

paleoclimate models known as the ‘cold pole paradox’, where simulated higher latitude 717 

temperatures were previously much cooler than suggested by proxy-observations. (c) These 718 

simulations have been run for over 9000 model years. Paleoclimate simulations usually are 719 

run for only a couple of thousands of years due to computational costs. However, it can take 720 

upwards of 5,000 years to allow a model simulation to equilibrate to all the applied model 721 

forcings, especially for the deep ocean, and, as such, for global ocean circulation to be fully 722 

representative of the deep-time period. (d) Although model uncertainty is important to 723 

constrain, it has been shown that scenario uncertainty (i.e., the applied boundary conditions) 724 

is a larger source of error, at least for future climate simulations77.  725 

 726 

1.4.3. Climate drivers  727 

1.4.3.1. Environmental constraints on planktonic foraminifera 728 

We investigated nine environmental variables previously posited to constrain the 729 

distributions of planktonic foraminifera44, including mean annual sea surface temperature, 730 

seasonal variation in sea surface temperature, mean annual mixed layer depth, seasonality of 731 

the mixed layer depth, mean annual sea surface salinity, seasonality of sea surface salinity, 732 

the width of the thermocline, the temperature range within the mixed layer, and the 733 

temperature range within the thermocline (Fig. S25-S27).  734 

Sea surface temperature. Surface temperature estimates were calculated at 5 m 735 

water depth. Temperatures within the water column were highly correlated with surface 736 

temperatures and therefore not included in model comparisons. Temperature seasonality was 737 

estimated as the standard deviation of monthly variations. HadCM3 estimates potential 738 

temperatures (i.e., removing the effect of pressure). Planktonic foraminifera are more likely 739 

to respond to actual temperature, but the difference between potential and actual temperature 740 

is small (< than 1°C at 1000 m) and thus we did not correct for this effect.  741 

Surface salinity. Surface salinity was calculated at 5 m water depth. Salinity deeper 742 

in the water column was highly correlated with surface salinity and therefore not included in 743 

model comparisons. Seasonality in salinity was estimated as the standard deviation of the 744 

monthly variations. Extremes of salinity, whether high or low, may exceed planktonic 745 

foraminiferal species’ tolerances, whose salinity optimum sits around 35 PSU44. Therefore, 746 

the expected relationship with salinity is thought to be polynomial on the original scale. 747 

However, we have insufficient data to model polynomials for many of the time intervals, and 748 

thus to model the effect of salinity, we calculated the absolute difference from this optimal 749 

salinity value. By using an absolute difference from the optimum, we converted the 750 

relationship to approximately linear, with high richness close to the optimum and low 751 

richness at the extremes.  752 
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Water column structure. We estimated annual mean width of the mixed layer, 753 

seasonal variation in mixed layer depth, and annual mean width of the thermocline. The 754 

mixed layer refers to the top of the water column, where environmental conditions are 755 

relatively homogeneous and stable due to mixing. Mixed layer depth was derived from 756 

HadCM3L output, which used a Kraus-Turner78 bulk mixed layer approach that calculated a 757 

balance between the energy available for mixing the water column and the introduction of 758 

buoyancy at the ocean surface. For more detail, see Foreman79.  759 

The thermocline is the section of the water column below the mixed layer where 760 

temperature changes rapidly with depth. Below the thermocline, temperature is relatively 761 

stable. On a rescaled temperature profile (where the temperature and depth axes are rescaled 762 

from 0 to 1), the base of the thermocline was calculated as the point where the gradient 763 

steepens past a -1:1 line using a loess function in the base R stats package58. We chose a span 764 

α = 0.4 based on sensitivity analyses: if the span is too large, the regression will be over-765 

smoothed, whereas if the span is too small, large variance will result.   766 

Water column temperature structure. We calculated the mean temperature range 767 

within the mixed layer and thermocline based on their identified boundaries, described above. 768 

The temperature range within the thermocline and mixed layer provided a proxy for the 769 

diversity of temperature niches at depth within the water column.  770 

Maps for the environmental variables can be found in Fig. S25.   771 

 772 

1.4.3.2. Variable selection  773 

The interpolated AOGCM data provided mean global estimates for each of the nine 774 

variables at 2.5 Ma intervals. Shallow-water grid cells (water depth < 200m) were excluded 775 

for each time bin, based on a Scotese bathymetry model72. Removing shallow-water cells 776 

excluded coastal environments where planktonic foraminifera communities may be limited 777 

by environmental conditions 44. Variables were centred and rescaled within each 2.5 Ma time 778 

bin to better interpret the intercept terms and to ensure similar units for regression 779 

coefficients. 780 

The environmental variables were highly collinear with each other in most time 781 

periods (Fig. S26). We tested for multicollinearity within each of the 2.5 Ma time bins using 782 

variance inflation factors (VIFs). Analyses relied on the ‘vif’ function in the HH R package v. 783 

3.1-4780. To include the same set of environmental predictors across the 16 time bin models, 784 

we limited analyses to those variables with VIFs < 2 in each time interval, following81. The 785 

final variable set included mean sea surface temperature, mean annual mixed layer depth, 786 

mean annual sea surface salinity, and width of the thermocline. Mean thermocline 787 

temperature range was also considered of interest, but was too strongly correlated with mean 788 

sea surface temperature to be included in the same models (i.e., the mean R2 for a model 789 

between these two variables is 0.886 across time bins).  790 

We assessed the relationship of these four variables with richness using both 791 

multivariate and univariate models (Figs. S28-S33). For univariate analyses, we included 792 

thermocline temperature range alongside the other four predictors (Fig. S33). Before 793 

modelling, mixed layer depth (mean and seasonality) and salinity (mean and seasonality) 794 

were log transformed to correct for non-linearity.  795 

 796 

1.4.4. Model building and calibration 797 

1.4.4.1. Identifying LDG drivers within time intervals 798 

We modelled the relationship between richness and the four selected environmental 799 

predictors within each 2.5 Ma time bin using spatial autoregressive models. Models were fit 800 

using the errorsarlm function in the spatialreg R package v.1.2-382. We adjusted significance 801 

levels (α of 0.05) to account for multiple comparisons by applying the Bejamini & Hochberg 802 
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(BH) correction83. The optimum neighborhood distance was calculated for each time period, 803 

between 500 km and the distance where autocorrelation becomes non-significant, following 804 
84 using AIC. Models were checked for heteroscedasticity. We restricted analyses to within 805 

55° latitude, because older time periods lacked data at high latitudes. Using all latitudinal 806 

data, rather than limiting analysis to within 55° latitude, produced similar results (Fig. S28). 807 

 808 

1.4.4.2. Model exploration and sensitivity analyses  809 

We explored the effects of sampling and preservation on within-age-bin model 810 

results. Sampling in the fossil record varies over time, with older time bins typically 811 

characterized by fewer data points. Data loss can potentially mask relationships between the 812 

predictors and species richness (Fig. 2). We therefore explored whether the results held when 813 

fewer data points were used for within-age-bin models. Specifically, in each time bin, data 814 

were subsampled to include the same number of data points as the most data-poor time bin 815 

(n=49, for 37.5–40 Ma), iterated 100 times. To summarize these results, we used the mean 816 

coefficient and standard error from the 100 subsampling iterations for each time bin. Model 817 

results removed any statistically significant relationship between temperature and richness, 818 

even for more recent time periods, but coefficients were similar (Fig. S30). Importantly, 819 

modern-day LDGs constructed from the more limited data show similar patterns to those 820 

constructed on the full dataset (Fig. S31).  821 

 Dissolution increases with water depth as the carbonate ion concentration and calcite 822 

saturation state decrease. Dissolution can artificially reduce richness at a particular site and 823 

time as a function of ocean basin depth and the species present, because certain species are 824 

more susceptible to dissolution44. The differential impact of dissolution may obscure the 825 

relationship between environmental variables and species richness. We assessed the potential 826 

effect of dissolution on model results by excluding samples with species richness in the 827 

lowest 25th percentile, based on 15° latitude and 2.5 Ma age bins. Model results suggested 828 

similar relationships and patterns (Fig. S32). 829 

 The warmer, greenhouse conditions on Earth ~40 Ma ago limited temperature 830 

variability across latitudes. Reduced temperature variation may obscure any relationship of 831 

temperature with species richness. We therefore tested whether a relationship between 832 

temperature and richness can be detected in more recent time bins, when analyses were 833 

limited to the range of temperatures characteristic of warmer times. We identified the time 834 

bin with the smallest temperature range (35–37.5 Ma time bin, with a temperature range from 835 

15.25–33.38°C) and restricted analyses for the other time bins to this temperature range. 836 

Using this approach resulted in some time bins having an even narrower temperature range, 837 

since time bins towards the present do not have temperatures reaching 33°C.  838 

When a narrow temperature range was used, the relationship between temperature and 839 

richness was lost for most time bins, aside from the most recent (Fig. S29). Limiting analyses 840 

to a narrower temperature range suggested that no relationship exists between temperature 841 

and species richness, even for more recent time bins. Thus, the absence of a relationship 842 

between richness and temperature for deeper time bins may reflect the narrower temperature 843 

range, which itself elevated species richness across latitudes.  844 

 845 

1.4.4.3. Identifying LDG drivers through time  846 

In addition to investigating the relationship between potential environmental drivers 847 

and richness within time bins spatially, we examined the degree to which change in 848 

environmental variables drives change in richness at given sites. To compare shorter- and 849 

longer-term trends, differences were calculated using a range of temporal gaps (from 2.5 Ma 850 

to 12.5 Ma, in 2.5 Ma steps). For each temporal gap, we modelled the change in species 851 

richness as a linear function of the change in the selected environmental variables. Only a 852 
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subset of the data used for spatial, within-time analyses could be used for the across-time 853 

analyses: to be included, sites were required to have pairs of samples with the requisite time 854 

gap (Fig. S35-36). Analyses with longer time gaps had fewer data points (Table S3).  855 

We ran both multivariate and univariate models; for the latter, we included analysis of 856 

thermocline temperature range (Table S4). Richness was estimated as the mean richness for 857 

each site within each 2.5 Ma time bin. Analyses used values for the environmental variables 858 

on their original scale, rather than rescaled values. Because separate models were run for 859 

different time gaps, we adjusted significance values (α of 0.05) following the Bejamini & 860 

Hochberg (BH) correction83. Results were insensitive to latitudinal extent (Table S3 & S4).  861 

 862 

1.4.5. The effect of ocean area on species richness 863 

Open ocean area has been hypothesized to drive the LDG, because area is found to 864 

correlate positively with species richness today26. To test whether this relationship holds 865 

through time for planktonic foraminifera, we modelled richness as a function of open ocean 866 

area within 15° latitude and 2.5 Ma time bins (Fig. S34). Open ocean area was defined as the 867 

area of grid cells with depths > 200 m based on the Scotese bathymetry models72. We 868 

quantified area using the areaPolygon function in the geosphere R package85.  869 

 870 

1.5. Depth partitioning across space and time  871 

Species of planktonic foraminifera live at different depths in the water column, down to 872 

about two kilometers44. Depth preferences for fossil species can be estimated using the 873 

isotopic signature of their shells and are usually divided into mixed layer, thermocline, and 874 

sub-thermocline dwellers52. We investigated how the depth structure of planktonic 875 

foraminiferal assemblages changed across space and time. For each unique site and time bin, 876 

we partitioned species by three depth categories (mixed layer, thermocline, and sub-877 

thermocline dwellers). We classified the single species inferred to occur across multiple 878 

depths (Chiloguembelina ototara) as a mixed layer dweller, since it possessed photo-879 

symbionts.  880 

We quantified evenness of depth habitat within each unique site-by-age with Simpson’s 881 

index using the diversity function in the vegan R package v.2.5-786. This metric determined 882 

how evenly spread species are among the three depths for a given time and place. That is, 883 

highly even assemblages would have roughly equal numbers of species in each depth class, 884 

whereas uneven assemblages would vary more in species count by depth class. We excluded 885 

sites most likely to be subject to dissolution, defined as those that fell in the lowest 25th 886 

percentile of species richness for a given site and time. The mean of these evenness estimates 887 

was taken for each 2.5 Ma and 15° latitude bin (Fig. S44). Analyses were performed only 888 

within 55° latitude, given the sparse data at high latitudes earlier in the Cenozoic (Fig. 3).  889 

Current knowledge of foraminiferal depth preferences only allowed for measurement of 890 

evenness across three depths over the last 40 million years. Our assumption, however, is that 891 

the thermocline and subthermocline are subdivided to contain multiple thermal niches, with 892 

more niches available during warmer conditions earlier in the Cenozoic across latitudes, and 893 

more niches available at low latitudes during the last 15–10 Ma. The mixed layer is unlikely 894 

to be as subdivided, given conditions within are more homogenous.  895 

 896 

1.6. Speciation, extinction, and dispersal dynamics 897 

To determine the macroevolutionary processes structuring LDGs, we quantified spatial 898 

patterns of speciation, extinction, extirpation, and dispersal in planktonic foraminifera over 899 

the last 40 Ma. Specifically, we investigated whether species originated and went extinct in 900 

tropical or temperate regions, whether they dispersed primarily into or out of these regions, 901 

and whether they were extirpated (went regionally extinct) at higher rates in one region over 902 
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the other (Fig. 4, Fig. S37-40). Since our focus is on latitudinal patterns, not climatic patterns, 903 

we defined the separation between tropical and temperate regions as 30° for all time periods. 904 

We selected 30° because modern-day richness for planktonic foraminifera peaks in the 905 

subtropics; present-day richness quantified using the typical cut-off of 23° would result in 906 

similar diversity in these regions.  907 

We used two approaches to quantify macroevolutionary dynamics. In the first approach 908 

(Fig. S37), we considered all site-by-age records, including those outside of 55° latitude. 909 

Speciation was considered to have occurred in the region of first occurrence for a species 910 

(Fig. S39). Similarly, extinction was considered to have occurred in the region of last 911 

occurrence for a species. That is, even if a species was present in both temperate and tropical 912 

regions within a 2.5 Ma time bin, the species was counted as going extinct in the tropics if 913 

that region held the last occurrence. Extirpation was documented in the time bin when the 914 

species last disappeared from a region (either temperate or tropics) but persisted in the other 915 

region. In this way, each species had, at most, one extirpation. Dispersal dynamics were 916 

identified by documenting how long it took a species after origination to appear in a region 917 

different from where it originated; for example, if a species originated in the tropics, we 918 

assessed whether the species ever left the tropics, and, if so, how long it took the species to 919 

move to the temperate region. Species that originated and moved within a 2.5 Ma time bin 920 

were counted towards both metrics in that time bin. Raw counts (Fig. S37), proportions (Fig. 921 

S37), and per capita rates (Fig. S40) were calculated.   922 

In the second approach (Fig. S38), we excluded species present in both temperate and 923 

tropical regions within a given 2.5 Ma time bin. These species do not contribute to the 924 

development of the LDG. Thus, by focusing only on species present in one region, we can 925 

more clearly distinguish the processes contributing to LDG formation. For these analyses, we 926 

counted a speciation as the region of first occurrence for a species, but only if the species did 927 

not expand its range to another region in the same time bin. Extinction was recorded in the 928 

region where the species was last observed, but only if the species was found uniquely in that 929 

region. Extirpation occurred when a species was present in both regions but was lost from 930 

one region. Thus, extirpation could occur numerous times for each species over time, unlike 931 

in the previous approach. Dispersal was counted when a species moved from one region to 932 

another. For example, when a species was found only in the tropical region in one time bin, to 933 

when it was found only in the temperate region in another time bin. The two approaches 934 

produced congruent conclusions, which is that low-latitude speciation and high-latitude 935 

regional extirpation, contributed to the steepening of the diversity gradient over the last 40 936 

Ma.  937 

Incomplete sampling may affect the location of first and last appearance for taxa in the 938 

fossil record. Although it is unlikely that geographic error in the first and last appearances 939 

would be sufficient to mask true patterns given the broad geographic bins used here, we 940 

employed a bootstrap resampling protocol to test this assumption. Each species was 941 

subsampled down to 75% of available records across its lifetime, and the evolutionary 942 

metrics (speciation, extinction, extirpation, dispersal) re-calculated for each time bin. This 943 

subsampling process was repeated 100 times, such that 100 temperate and 100 tropical 944 

estimates were returned for each metric (speciation, extinction, extirpation, and dispersal) in 945 

each time bin. Our goal was to assess how sampling may affect understanding of the location 946 

of first and last appearance and dispersal patterns for species. The estimates, however, 947 

remained broadly consistent across bootstrap replicates (Figs. S41-43), most likely because 948 

planktonic foraminifera are densely sampled with high spatio-temporal resolution—arguably 949 

the best of any fossil group52. Planktonic foraminifera are employed extensively for 950 

biostratigraphy and have been subject to considerable taxonomic revision, resulting in well-951 
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established stratigraphic ranges87; accordingly, the geographic locations of first and last 952 

occurrences in Triton that correlate with these datums are robust.  953 

 954 
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