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LCPFormer: Towards Effective 3D Point Cloud
Analysis via Local Context Propagation in

Transformers
Zhuoxu Huang*, Zhiyou Zhao*, Banghuai Li �, and Jungong Han, Member, IEEE,

Abstract—Transformer with its underlying attention mecha-
nism and the ability to capture long-range dependencies makes
it become a natural choice for unordered point cloud data.
However, local regions separated from the general sampling
architecture corrupt the structural information of the instances,
and the inherent relationships between adjacent local regions
lack exploration. In other words, the transformer only focuses
on the long-range dependence, while local structural information
is still crucial in a transformer-based 3D point cloud model. To
enable transformers to incorporate local structural information,
we proposed a straightforward solution based on the natural
structure of the point clouds to exploit the message passing
between neighboring local regions, thus making their repre-
sentations more comprehensive and discriminative. Concretely,
the proposed module, named Local Context Propagation (LCP),
is inserted between two transformer layers. It takes advantage
of the overlapping points of adjacent local regions (statistically
shown to be prevalent) as intermediaries, then re-weighs the
features of these shared points from different local regions before
passing them to the next layers. Finally, we design a flexible
LCPFormer architecture equipped with the LCP module, which
is applicable to several different tasks. Experimental results
demonstrate that our proposed LCPFormer outperforms various
transformer-based methods in benchmarks including 3D shape
classification and dense prediction tasks such as 3D object
detection and semantic segmentation. Code will be released for
reproduction.

Index Terms—3D vision, Point cloud learning, Transformer,
Context propagation

I. INTRODUCTION

INCREASING real-world applications, including robotics,

autonomous driving, and augmented reality, enhanced the

use of 3D point cloud data due to its precise distance percep-

tion and information capacity. However, unlike 2D images in

the form of regular pixel grids, it is challenging to effectively
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ingest features from 3D point clouds due to their sparsity and

unstructured nature.

separated sampling

sampling with LCP

(a)

(b)

overlaping area

:  massage passing between local regionsand

Fig. 1. (a) Separate local regions that lack whole structure information lead
to inaccurate detection boxes (blue boxes). (b) Using overlapping points as
intermediaries, our LCP module can pass information between neighboring
local regions (the left part) and produce more precise detection results (red
boxes).

Based on how point clouds are represented, existing feature

extraction methods can roughly be divided into three cate-

gories: projection-based, voxel-based and point-based meth-

ods. Projection-based methods [1]–[5] first project 3D point

clouds into a 2D plane and then treat them as pixel represen-

tations for processing. Voxel-based methods [6]–[13] usually

voxelize 3D point clouds into uniform grids and then apply

3D convolutional operations on the resulting volumetric repre-

sentations. These methods provide a fair solution for applying

convolution on unstructured 3D point clouds. However, voxel-

based methods cannot scale well to sparse 3D data because

of the cubical computation cost with the resolution and

both projection/voxel-based approaches suffer from inevitable

structural information loss resulting from the quantization

process. In contrast, point-based methods [14]–[19] directly

operate on raw point clouds to learn 3D representations. They

do not introduce explicit information loss resulting from the

voxelization or projection process and become increasingly

popular. But using simple multi-layer perceptions (MLP) as

the basic operator limits the learning capability of the network.

Transformers [20]–[25] are also adopted recently as point-

based methods in 3D point cloud processing after achieving

0000–0000/00$00.00 © 2023 IEEE
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a great success in solving various 2D vision tasks [26]–[32].

On the one hand, the transformer with its underlying multi-

head self-attention mechanism owns the property of permu-

tation invariance which is consistent with the characteristics

of point clouds. On the other hand, it is highly expressive

with the ability to capture long-range dependencies and ef-

fectively learn context-aware representations. They both make

the transformer a natural fit for 3D point clouds. However, the

absence of local information integration has been described

as an inherent deficiency of transformer networks [33]. While

several methods have implemented different transformer-based

models for 3D point clouds, the local structural information is

often disregarded. PCT [20] sends point clouds through an em-

bedding layer and directly applies attention to the entire set of

points to extract features. However, this implies the demands

on heavy memory and computation overheads. To reduce the

complexity, Point Transformer [22] first groups point clouds

into several local regions, followed by attention operations

in each local region independently. Consequently, each point

can receive information from every other point in the same

local region, thus capturing local structural patterns. However,

it still faces the problem arising from the separate local

regions sampling, which leads to the destruction of the instance

structure since the inherent relationship between neighboring

local regions lacks exploration. Although [21] goes a step

further to apply max-pooling on each local region and perform

the self-attention operation again on those pooled features

(named global transformer layer [21]), it still encounters the

same problem because the extra self-attention operation only

focuses on modeling the scene-level dependencies.

The aforementioned problems have been studied in 2D

scenes, and different solutions were proposed to transmit in-

formation amongst local windows [31], [33]. However, unlike

2D images, 3D point clouds are irregular, unordered, and

unstructured representations. The interactions between local

regions are also irregular in unstructured positions instead of

regular grid locations. Therefore, it is much more difficult in

3D scenes to model the interactions between local regions on

the fine-grained point level. To solve this problem, we take

an in-depth analysis of transformers in 3D point clouds and

propose to promote message passing among those neighboring

local regions that share the same points. In this way, each local

region can obtain more informative and discriminative features

to boost the ability of transformers. Based on this thought,

we propose an effective yet lightweight module, named Local

Context Propagation (LCP).

The LCP module is inserted between two transformer

layers such that the overall framework looks like a sandwich

structure. Specifically, when following the standard settings

in [15], [21] to adopt Farthest Point Sampling (FPS) and k-

Nearest Neighbors (kNN) to divide the whole point cloud

into different local regions, we find statistically that most

local regions tend to overlap with others. Based on this

natural structure of the point clouds, as shown in Fig.1(b),

those shared points in overlapping areas of the different local

regions can serve as the carrier to perform message passing

among neighboring local regions exactly. After getting the

point feature from the last transformer layer, we collect all

local regions that each shared point belongs to, then adopt

a lightweight network to generate an adaptive weight acting

on those regions. Finally, we update the feature of this point

by aggregating its corresponding features from different local

regions using the obtained weight. These features updated

by the LCP module will then pass to all the other points

in a local region with the self-attention mechanism in the

next transformer layer. This way allows us to propagate the

contexts between neighboring local regions successfully. It is

worth noting that the proposed LCP module also differs from

the message aggregation that happens between local regions

via indirect progressive processing of the larger region with

the bigger radius. Our LCP module enables direct message

passing between local regions that gives the network a direct

learning target and thus enhances the point-level features. In

more detail, the main difference between the direct/indirect

approach is that our method is applied before max-pooling

which is used during every radius change. Thus the message

between local regions is interacted before the max-pooling

aggregation to minimize information loss when using LCP,

which is critical due to the significant global nature of the

transformers.

Finally, based on the proposed LCP module, we design

a flexible architecture named LCPFormer. Equipped with

different numbers of the sandwich structures we mentioned

above, which we call LCPFormer Block (shown in Fig.3),

the LCPFormer is suitable for different 3D point cloud tasks.

In summary, the contributions of this work are three-fold:

• We delve deep into the transformer-based methods in 3D

point cloud analysis and propose a simple yet effective

module named LCP to promote message passing between

neighboring local regions.

• Based on our proposed LCP module, a transformer-based

backbone architecture is designed and can be applied for

various 3D perception tasks, including object detection,

semantic segmentation, and shape classification.

• Our proposed LCPFormer consistently outperforms dif-

ferent transformer-based methods in various 3D tasks

including 3D shape classification (93.6% overall accu-

racy on ModelNet40) and 3D object detection (63.2%

mAP@0.25 and 46.2% mAP@0.5 on SUN RGB-D) and

semantic segmentation (63.4% mIoU on SensatUrban;

70.2% mIoU in S3DIS Area 5).

II. RELATED WORK

A. Representation Learning for 3D Point Clouds.

Different from 2D images, 3D point clouds with their

disorder and sparsity make them extremely difficult to be

processed. Previous works mainly include feature extraction

by projection, voxelization, directly processing point clouds,

and the fusion of those.

Projection-based methods implement different projections

to view the 3D point clouds into regular representations on

2D planes. Then apply the 2D convolution network for the

features extraction. Methods including projecting points to the

perspective view, [1], the bird-eye view [3]–[5], the tangent

plane [34], and the use of multi-view fusion [2], [35]–[37]. For
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example, [1] hallucinates the 3D representation by taking full

advantage of complementary information in the perspective

view and the bird-eye view. [2] adopts a multi-view projection

strategy to effectively extract features for point cloud quality

assessment. Inevitably, lots of points collapsed thus causing the

geometric information loss during the projection. In addition,

network performance can be severely affected by the fact that

the 2D representation differs due to the occlusion in 3D point

clouds and different projection methods.

Voxel-based methods [13], [38], [39] is another solution

that converts 3D points into voxel grids and applies 3D

convolution to generate features. However, the 3D convolution

suffers from the cubical computation cost with the resolution

when applied directly on the voxel. Although some approaches

make good use of the sparsity of the point cloud with sparse

convolutions [8], [9], they can not combat the loss of structural

information during the quantification.

Point-based methods are proposed in order to prevent the

loss of geometric information caused by projection or vox-

elization. PointNet [14] processes the 3D point clouds directly

with point-wise multi-layer perceptions (MLP) and pooling,

while PointNet++ [15] further designs a hierarchical structure

by dividing the whole point cloud into separate local regions

using querying and grouping. Various structures are proposed

based on such models [16], [17], [40]–[42]. For example,

[43] produces produce more accurate voting centers for object

detection by modeling the relationship from neighboring clus-

ters. Alternatively, [44] PSNet proposes a fast data structuring

method to tackle the data structuring issue in point-based

methods. There are also other methods that combine both

point-wise and voxel-wise features in a local field [10], [45] or

a global field [46]–[48]. In addition, some of these approaches

propose using continuous convolution on the 3D point clouds

by the designed kernel structure. For example, PointConv [40]

design the convolution kernels as nonlinear functions related to

the distance between point coordinates. KPConv [16] further

proposes a deformable convolution whose weights are placed

in the Euclidean space by the kernel. In order to ingest the in-

depth geometric information of the point cloud, some methods

[49]–[52] propose creating graphs based on the coordinates

and geometry of the point clouds and then adapting the graph

convolutions on these point graphs. DGCNN [53] propose an

EdgeConv that can be dynamically updated in layers lever-

aging the properties of the diagram. PointWeb [54] explores

the interaction between points by dense connection. Our work

focuses on processing point clouds directly via transformers.

B. Transformers in 2D Vision.

Inspired by the great success of transformers in the natural

language processing field, people start to consider applying

transformers to vision tasks. [28] divides the image into inde-

pendent patches, and then reshapes each patch into a vector as

the input element of the transformer. Since then, transformer

structure has been successfully applied to computer vision,

and many improvements [26], [27], [29], [30], [32], [33],

[55]–[60] have been proposed. Some methods [31], [33],

[61], [62] further group images with non-overlapping windows

and apply transformers within each window separately, but

lack feature aggregation between each window. To deal with

this problem, [33] proposes shifted windows to dynamically

adjust the window position and can be used for multiple tasks

including semantic segmentation, object detection, and image

classification. [31] combines transformers and the HRNet

[63], borrowing the natural advantage of a 3 × 3 depth-wise

convolution to improve transformers, [31] is also compatible

with dense prediction tasks such as human pose estimation.

C. Transformers in 3D Point Clouds.

As a sequence-to-sequence structure, transformers com-

pletely ignore the input order and treat the position information

as a set of sequences [64], [65], revealing the possibility of

the application of transformers in the 3D field. Currently,

many transformer-based methods for 3D point clouds have

been proposed to improve the performance of PointNet++ [15].

Point Transformer [22] proposes a U-Net [66] structure with

self-attention layers constructed from vector attention [65].

This model can be used in both shape classification and object

part segmentation tasks in 3D point clouds. Similarly, [23]

also proposes a similar idea that uses the attention mechanism

and designs a SortNet to refine local features from different

sub-spaces. PCT [20] proposes to use an offset-attention with

implicit Laplace operators and normalization refinement for

transformer layers.

Pu-Transformer [67] is introduced for point cloud upsam-

pling that uses transformer structure to enhance point-wise and

channel-wise relations of the point feature.

For the detection task, Pointformer [21] designs an

attention-based feature extractor to serve as the backbone for

different object detection frameworks. [24] adopts PointNet++

as the backbone and proposes a Group-Free detector with

multi-head self-attention.

In this paper, we take an in-depth analysis of the drawbacks

of transformer-based approaches in 3D point clouds. We find

that separate local regions damage the structure of instances,

which restricts the ability of transformers to enhance the

feature representations. Thus, we design a simple yet effective

method to exploit the inherent relationship between local

regions.

III. METHOD

In this section, we first briefly revisit the general formulation

of the transformer and self-attention. Then we conduct an in-

depth analysis of transformers in 3D point clouds and propose

a lightweight yet effective module, named Local Context

Propagation Module (LCP). Lastly, based on this module,

we present our LCPFormer architecture for various 3D tasks

including shape classification, object detection, and semantic

segmentation.

A. Preliminary

We start by reviewing the commonly used multi-head self-

attention (MHSA) in transformers. Given a set of input fea-

tures F = {fi} and corresponding positions X = {xi}, the
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Fig. 2. Illustration of the Local Context Propagation module. Given a point shared by several local regions, an adaptive weight acting on those regions
is generated. The feature of this point is updated by aggregating its corresponding features from different local regions using the obtained weight. Thus
context information is propagated between neighboring local regions effectively. The mean and max operations are for weight generation when updating those
overlapping point features.

MHSA operation aggregates contents from all input elements

according to the computed attention weights. It can be formu-

lated as follows:

F ′ = PE(X) + F (1)

Qm = F ′WQ
m , Km = F ′WK

m , Vm = F ′WV
m (2)

Hm = σ(QmKT
m/

√
d)Vm (3)

O = Concat(H1, . . . , Hm)WO (4)

, where WQ
m ,WK

m ,WV
m are learnable projections of the mth

head for query, key, and value respectively. PE(·) is the

positional encoding function that projects input coordinates

to the same dimension as input features, to which they are

later added. σ denotes a normalization function Softmax, and

d is the feature dimension.

A transformer layer consists of a multi-head self-attention

(MHSA), and an element-wise feed-forward network (FFN)

with skip connections:

Y = MHSA(X,F ) + F (5)

O = Y + FFN(Y ) (6)

A vanilla transformer block usually contains several con-

secutive transformer layers mentioned above.

B. Rethinking Transformers in 3D Point Clouds

As we have discussed in Sec.I, the transformer [64], a

sequence-to-sequence structure, becomes a natural choice for

processing 3D point clouds due to its property of permutation

invariance and the ability to capture long-range dependencies.

Several current works [20], [21], [23] do apply transformers to

enhance the representation learning in 3D point clouds. [20]

directly applies the attention mechanism on the entire set of

points, which results in heavy memory consumption and huge

computational complexity. On the contrary, [22] groups all the

points into several local regions and self-attention is adopted

in each local region independently. Moreover, [21] first ap-

plies max-pooling on each local region, and an extra global

transformer is adopted to model scene-level dependencies on

those generated features.

However, those methods omit the inherent relationships

between neighboring local regions. Separated local regions

damage the structure of instances and each local region

cannot perceive the local context information around itself,

which makes their features inferior for transformers to achieve

discriminative representations. Although the commonly-used

hierarchical architecture [15], [18], [22] can exploit neigh-

boring region relationships implicitly to some extent during

continuous sub-sampling, we argue that it is far from being

fully excavated. We propose to add connections across local

regions to exchange information between them and enhance

the modeling power. Thus, a novel module named Local

Context Propagation (LCP) is designed and the details can

be found in Sec.III-C.

The main difference between our method and other methods

lies in that the interaction occurs at the point level that

each point feature is updated instead of treating each local

region as a whole like [15], [18], [68] do, which enhances

the feature learning from a more fine-grained perspective.

Extensive experiments in Sec.IV can well prove the superiority

of this fine-grained design in transformers.

C. Local Context Propagation

As discussed in Sec.III-B, when directly applying the trans-

former to each local region independently, it lacks sufficient in-

formation exchange among regions. There are several attempts

at this issue in the image field. HRFormer [31] uses a 3 × 3
depth-wise convolution to merge features from separate local

windows and Swin Transformer [33] utilizes a shifted window

mechanism to implicitly achieve a similar goal. However, these

methods depend on the regular structure of 2D image grids

and there is no effective solution for 3D point clouds due to

their irregularity and disorder. To overcome this problem, we

propose a simple yet effective module, named Local Context

Propagation (LCP), to propagate context information between

neighboring local regions on the fine-grained point level.

Our method is based on a simple observation that when

dividing the whole point cloud into different local regions,

naturally there is overlap among them. Take the standard

settings in [15], [21] as example. Suppose there are N points
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Fig. 3. Overall architecture of our transformer feature extractor. The LCPFormer Block consists of a grouping layer, two self-attention layers (MHSA), a local
context propagation (LCP) module, and a max-pooling layer. The backbone network is constructed by multiple LCPFormer blocks and upsampling layers.
Our LCPFormer can be applied to different tasks including object detection, classification, and segmentation, according to the use of different heads.

in a 3D point cloud, we select N ′ = N/2 center points via

FPS algorithm and group neighbor points via kNN algorithm

(k = 16 in our experiments), thus we obtain k × N ′ = 8N
points in total. According to our statistics, most of the N
points are grouped multiple times repeatedly. Consequently,

those shared points can serve as suitable carriers to conduct

message passing between local regions to make feature repre-

sentations more informative and discriminative. Fig.1 (b) can

well illustrate our motivation.

Briefly speaking, LCP works by updating point features in

overlapping areas of different regions. As discussed above,

most of the points are shared by several local regions, thus

the whole point cloud features can be effectively updated.

Given a point xi, we denote the local regions it belongs to as

{G1, . . . , Gm}. After the transformer is independently applied

to those regions, for each local region Gj , the point xi should

have a corresponding feature in it, and we denote it as f j
i . We

update the feature of xi by using the weighted sum of those

corresponding features:

f ′

i =
∑

j

wjf
j
i j = 0, . . . ,m (7)

where wj denotes the normalized weight for region Gj . In

this way, we successfully achieve the purpose of context

information propagation between local regions.

The detailed structure of LCP can be found in Fig.2. As-

suming that the whole point cloud contains N points grouped

into M local regions, we can denote the input of LCP as

Fin ∈ R
M×K×C , where K is the number of points in each

local region and C is the feature dimension of each point. To

extract an effective representation for each local region, we

choose to concatenate the outputs from two pooling operators:

max-pooling and average-pooling on the learned point-wise

features following [69]. The motivation behind this design

is that max-pooling tends to extract the specific important

features while average-pooling can involve the surrounding

context. Both are important for effective point cloud analysis.

Representations A ∈ R
M×2C for M local regions are obtained

and sent through a 1× 1 convolution to generate an adaptive

weight matrix W ∈ R
M×C , which is normalized using

Softmax. This process can be formulated as:

A = MaxPool(Fin)⊕AvgPool(Fin) (8)

W = Softmax(Conv(A)) (9)

The weight matrix W is applied in Eq.7 to update the

feature of each point and we thus obtain the final output

Fout ∈ R
N×C .

The parameter number and computational complexity of the

proposed LCP module are negligible as shown in the ablation

study of module efficiency in Sec.IV-E

D. LCPFormer

Based on the LCP module, we propose our LCPFormer to

effectively extract features from point clouds. As shown in

Fig.3, the LCPFormer is composed of multiple transformer

blocks (colored in blue) and upsampling layers (colored in

green). We adopt the upsampling layer in PointNet++ [15] and

skip connections are used to enhance the upsampled features.
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TABLE I
PERFORMANCE COMPARISONS WITH PREVIOUS METHODS ON SUN RGB-D [70] TEST SET.

Methods Reference Backbone mAP@IoU0.25 mAP@IoU0.5

H3DNet [71] ECCV 2020 4×PointNet++ 60.1 39.0
MLCVNet [72] CVPR 2020 PointNet++ 59.8 -
HGNet [73] CVPR 2020 GU-Net 61.6 -
3DETR [74] ICCV 2021 - 58.0 30.3
3DETR-m [74] ICCV 2021 - 59.1 32.7
T3D [43] TCSVT 2021 PointNet++ 60.1 -
EQ-Net [75] CVPR 2022 EQ-PointNet++ 60.5 38.5

VoteNet [18] ICCV 2019 PointNet++ 59.1 35.8
Pointformer + VoteNet [21] CVPR 2021 Pointformer 61.1 36.9
LCPFormer+ VoteNet N/A w/ LCP 61.4 39.6

Group-Free [24] ICCV 2021 PointNet++ 62.8 44.4
LCPFormer N/A w/o LCP 62.7 43.3
LCPFormer N/A w/ LCP 63.2 46.2

Each LCPFormer Block comprises a grouping layer, two self-

attention layers, and an LCP module in the middle.

The grouping layer groups the whole point cloud {fi, xi}
into different local regions {G1, G2, . . . , GM}, where M is the

number of regions and fi, xi are of size C and d respectively.

It first samples center points via FPS and for each center j, a

group Gj = {fij , xij} of size K × (d+C) is constructed by

gathering K points within a local neighborhood using kNN or

BallQuery [15].

The following self-attention layer performs self-attention

within each local region independently to capture local fea-

tures. Then, our LCP module is introduced to enhance feature

interaction between neighboring local regions. Another self-

attention layer is adopted for further feature optimization

based on the LCP module outputs. Lastly, a common max-

pooling operation is used to abstract a single C ′-dimension

representation for each local region, and the final output is in

the shape of M × C ′.

Network Architecture. It is worth noting that the number

of local regions, the number of self-attention layers in each

block, and the number of LCPFormer Blocks may vary in

different tasks. It is reasonable as different tasks share differ-

ent characteristics. We construct our LCPFormer architecture

utilizing the proposed LCP module and applying it to various

3D point cloud applications. For each task, we choose different

hyper-parameters and slightly modify the basic architecture for

better adaptation.

1) 3D Object Detection: The backbone network for 3D ob-

ject detection contains 4 LCPFormer blocks and 2 upsampling

layers. The whole input point cloud is downsampled to 2048,

1024, 512, and 256 points with an increasing receptive radius

of 0.2, 0.4, 0.8, and 1.2 respectively by the LCPFormer blocks,

and then upsampled to 1024 points by the next two upsampling

layers. In the grouping layer of each LCPFormer Block,

k = 16 points are grouped for each local region to achieve a

balance between computational complexity and performance.

Without loss of generality, we adopt the LCPFormer to replace

the PointNet++ backbone in the original Group-Free [24]

model and adopt the detection head structure of Group-Free to

produce the final detections. To further prove the effectiveness

of our method, we also adopt the LCPFormer to replace

the backbone in the original VoteNet [18] model for a fair

comparison.

2) 3D Classification: The backbone network for shape clas-

sification is composed of 4 consecutive LCPFormer Blocks,

each with one self-attention layer and one LCP module. The

number of points is downsampled from 1024 and kept to

256 in all 4 blocks thus all points are selected during FPS

operation. The k of kNN is set to 16, 12, 8, and 8 in four

blocks for multi-scale feature generation.

For better comparison, we build our backbone with similar

capacity and adopt the same classification head as PCT [20].

Comparison results can be found in the ablation study of

module efficiency in Sec.IV-E.

3) 3D Semantic Segmentation: We build a UNet-like net-

work [66] using 4 LCPFormer blocks and 4 upsampling

layers in the backbone for the semantic segmentation task

since it requires point-wise features for dense prediction.

A simple softmax segmentation head is adopted to output

class probabilities from the extracted features. The input point

number is set to 4096 and further downsampled to 1024, 512,

and 256 points, respectively. We then upsample it gradually

to 4096 points with four upsampling layers. The k of kNN is

set as 16.

IV. EXPERIMENTS

We apply our LCPFormer to various 3D tasks including

3D shape classification, 3D object detection, and semantic

segmentation on the most widely-used benchmarks. Please see

Appendix for further benchmarks details.

A. 3D Object Detection

SUN RGB-D [70]. We evaluate our method for 3D object

detection on the commonly used SUN RGB-D dataset [70].

SUN RGB-D [70] is an indoor point cloud dataset for multiple

scene understanding tasks. It contains ∼10K RGB-D images

densely annotated with over 58K 3D bounding boxes in 37

different categories.

Our training settings mostly follow [24]. We employ an

AdamW optimizer with an initial learning rate of 0.0003 and a

weight decay of 0.0005. We train the network for 600 epochs
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TABLE II
PERFORMANCE COMPARISONS WITH PREVIOUS METHODS ON

MODELNET40 DATASET. Note that we do not use normal vectors as the

extra inputs or other special tricks as well. * MEANS WE REPORT THE BEST

RESULTS AMONG PUBLIC CODEBASES AND OUR OWN REPRODUCTION.
†WE BUILD OUR LCPFORMER ON THE BASIS OF THE PCT WITH THE

EXTRA LCP MODULE.

Methods Reference mAcc(%) OA(%)

3DShapeNets [76] CVPR 2015 77.3 84.7
VoxNet [38] IROS 2015 83.0 85.9
Subvolume [36] CVPR 2016 86.0 89.2
PointNet [14] CVPR 2017 86.2 89.2
A-SCN [77] CVPR 2018 - 89.8
MVCNN [35] ICCV 2015 - 90.1
SO-Net [78] CVPR 2018 - 90.9
Point Transformer∗

1
[22] ICCV 2021 - 91.7

Kd-Net [79] ICCV 2017 - 91.8
PointNet++ [15] NeurIPS 2017 - 91.9
PointGrid [48] CVPR 2018 - 92.0
SpecGCN [80] ECCV 2018 - 92.1
Point-PlaneNet [81] DSP 2020 90.5 92.1
PCNN [82] TOG 2018 - 92.3
PointWeb [54] CVPR 2019 89.4 92.3
SpiderCNN [83] ECCV 2018 - 92.4
PointCNN [84] NeurIPS 2018 88.1 92.5
PointConv [40] CVPR 2019 - 92.5
A-CNN [85] CVPR 2019 - 92.6
P2Sequence [86] AAAI 2019 - 92.6
Point Transformer2 [23] Access 2021 - 92.8
KPConv [16] ICCV 2019 - 92.9
DGCNN [53] TOG 2019 90.2 92.9
RS-CNN [87] CVPR 2019 - 92.9
PointANSL [88] CVPR 2020 - 92.9
InterpCNN [89] ICCV 2019 - 93.0
DRNet [90] WACV 2021 - 93.1
EQ-Net [75] CVPR 2022 - 93.2
PSNet [44] T-CSVT 2022 - 93.3
RSMix [91] CVPR 2021 - 93.5
PatchFormer [92] CVPR 2022 - 93.5
PCT (w/o LCP)† [20] CVM 2021 90.0 93.2

LCPFormer - 90.7 93.6

and decrease the learning rate by 10× at epochs 420, 480, and

540. To augment the training data, we adopt random flips in the

horizontal direction, random rotations between [−5◦, 5◦], and

random scaling by [0.9, 1.1]. Following a standard evaluation

protocol, we adopt the mean Average Precision (mAP) under

IoU thresholds 0.25 and 0.5 as evaluation metrics, and results

of the 10 most common categories are reported.

Results on SUN RGB-D are shown in Tab.I. When adopting

our LCPFormer as the backbone of VoteNet [18], results show

that our method makes a 2.3% mAP@0.25 improvement and

further outperform the Pointformer [21] by 0.3% mAP@0.25.

Moreover, when adopting our LCPFormer as the backbone of

Group-Free [24], our LCPFormer achieves 63.2% mAP@0.25

and 46.2% mAP@0.5, outperforming the Group-Free by 1.8%

mAP@0.5 and 0.4% mAP@0.25. The comparison between

the last two rows validates the effectiveness of our LCP mod-

ule and is consistent with our analysis that context propagation

between local regions is helpful for accurate detection results

in Fig.1.

B. Point Cloud Shape Classification

ModelNet40 [76]. We benchmark our 3D shape classifica-

tion network on the widely used point cloud shape classifica-

tion dataset ModelNet40 [76]. It contains over 10,000 CAD

models in 40 categories.

We follow the basic data split as well as the data augmenta-

tion in [20]. During training, a random anisotropic scaling be-

tween [0.67, 1.5] and a random translation between [−0.2, 0.2]

are used successively. We set the input point number to 1024,

and train the network for 250 epochs with the SGD optimizer.

The initial learning rate is set to 0.0008 and decays after every

epoch using the CosineAnnealing strategy. Following most of

the previous works, we report two common metrics i.e. OA

(Overall Accuracy) and mAcc (mean of class-wise accuracy)

for evaluation.

Results on ModelNet40 are detail in Tab.II. LCPFormer

outperforms the PCT with 93.6% in OA and 90.7% in mAcc.

Note that we do not use normal vectors as extra inputs in our

experiment.

C. 3D Semantic Segmentation

SensatUrban [94] & S3DIS [93]. We then evaluate our

method for 3D semantic segmentation on both indoor and

outdoor senses with two large-scale point cloud datasets.

SensatUrban [94] is a photogrammetric point cloud dataset that

contains over 100 million richly annotated points. It is labeled

into 13 categories, including large objects e.g. buildings and

ground, and extremely small objects in an urban scene e.g.

bikes and paths. S3DIS [93] is an indoor 3D RGB point clouds

dataset that contains six areas of three buildings. All points are

labeled with their semantic ground truth from 13 categories

including board, bookcase, chair, ceiling, beam, etc.

We train the network for 100 epochs with the AdamW

optimizer. The initial learning rate is set to 0.001 and decays

after every epoch using the CosineAnnealing strategy. We

employ the mean Intersection over Union (mIoU) as the basic

evaluation metric and also report the Overall Accuracy (OA)

and per-class IoU scores respectively.

Results for S3DIS are shown in Tab.III. Following a

common protocol [15], we evaluate the presented approach

with Area 5 withheld during training and used for testing. Our

method achieved 70.2% mIoU, 76.5 mAcc% and 90.1% OA.

We also test our method on a challenging urban scale segmen-

tation dataset SensatUrban [94] and achieved promising results

with about 5.8% mIoU overall improvements compared with

the previous best method KPConv [16]. Full results for Sen-

satUrban are presented in Tab.IV, our proposed method also

has great potential when it comes to fine-grained categories.

For instance, LCPFormer reaches 57.0% mIoU on bridge

category and 46.3% mIoU on rail category while the scores

of PointNet [14] remain 0.0% mIoU on both. Similar results

are also reflected in the traffic category and path category,

where our method makes a 29.8% mIoU and 49.2% mIoU

improvement respectively compared with PointNet [14].

Our proposed LCPFormer with the LCP module remedies

the information loss of instances caused by separate local

regions in common transformer-based methods [21], [22] via
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TABLE III
PERFORMANCE COMPARISONS WITH PREVIOUS METHODS ON S3DIS [93] AND SENSATURBAN [94] test SET. SENSATURBAN RESULTS ARE REPORTED

FROM THE OFFICIAL LEADERBOARD OF THE URBAN3D ICCV21 CHALLENGE. * MEANS WE REPORT THE BEST RESULTS AMONG PUBLIC CODEBASES

AND OUR OWN REPRODUCTION.

S3DIS SensatUrban

Method mIoU(%) mAcc(%) OA(%) mAcc(%) OA(%)

PointNet [14] 41.1 23.7 - 23.7 80.8
PointNet++ [15] - - - 32.9 84.3
TragenConv [34] 52.8 62.2 82.5 33.3 77.0
SPGraph [49] 58.0 66.5 86.4 37.3 85.3
SparseConv [8] - - - 42.7 88.7
LocalTransformer [95] 64.1 71.9 87.6 - -
KPConv [16] 67.1 72.8 - 57.6 93.2
RandLA-Net [17] 62.4 71.4 87.2 52.7 89.8
PatchFormer [92] 68.1 - - - -
PSNet [44] 62.9 - 87.8 - -
DenseKPNET [96] 68.9 - 90.8 - -
Point Transformer∗

1
[22] 70.0 76.8 90.4 - -

LCPFormer w/o LCP 69.3 75.2 90.2 61.7 93.0

LCPFormer w/ LCP 70.2 76.8 90.8 63.4 93.5

TABLE IV
PERFORMANCE COMPARISONS WITH EXISTING SOTA METHODS ON SENSATURBAN [94] test SET. OVERALL ACCURACY (OA), MEAN IOU (MIOU), AND

PER-CLASS IOU SCORES ARE REPORTED FROM THE LEADERBOARD OF SENSATURBAN.
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PointNet [14] 80.8 23.7 68.0 89.5 80.0 0.0 0.0 4.0 0.0 31.6 0.0 35.1 0.0 0.0 0.0
PointNet++ [15] 84.3 32.9 72.5 94.2 84.8 2.7 2.1 25.8 0.0 31.5 11.4 38.8 7.1 0.0 56.9
TragenConv [34] 77.0 33.3 71.5 91.4 75.9 35.2 0.0 45.3 0.0 26.7 19.2 67.6 0.0 0.0 0.0
SPGraph [49] 85.3 37.3 69.9 94.6 88.9 32.8 12.6 15.8 15.5 30.6 23.0 56.4 0.5 0.0 44.2
SparseConv [8] 88.7 42.7 74.1 97.9 94.2 63.3 7.5 24.2 0.0 30.1 34.0 74.4 0.0 0.0 54.8
KPConv [16] 93.2 57.6 87.1 98.9 95.3 74.4 28.7 41.4 0.0 56.0 54.4 85.7 40.4 0.0 86.3

RandLA-Net [17] 89.8 52.7 80.1 98.1 91.6 48.9 40.8 51.6 0.0 56.7 33.2 80.1 32.6 0.0 71.3

LCPFormer 93.5 63.4 86.5 98.3 96.0 55.8 57.0 50.6 46.3 61.4 51.5 85.2 49.2 0.0 86.2

local context propagation among neighboring regions. In this

way, it can achieve more informative and discriminative repre-

sentations to recognize the whole structure of an instance very

well, thereby reducing classification errors and contributing to

its excellent performance on semantic segmentation tasks.

D. Visualization Analysis

To evaluate the impact of our proposed LCPFormer more

intuitively, we randomly sample several point cloud scenes to

visualize their output results. We choose both SensatUrban

and SUN RGB-D datasets for a broader comparison. The

visualization results are shown in Fig.4 and Fig.5.

Results shown in Fig.4 compare our detection results with

the ground-truth label. Similar outcomes can also be found

in Fig.5 that strongly support our motivation, which is the

separated sampling in the local region causes the destruction of

the instance information and our proposed LCP can effectively

improve the point cloud feature with a more informative

and discriminative representation. As we can see from the

second and fourth rows, some instances were incorrectly seg-

mented. Conversely, the LCPFormer successfully maintained

the integrity of the instances and classify most of the points

correctly.

E. Ablation Study

In this section, we conduct extensive ablation experiments to

verify our method, including the effectiveness of the proposed

LCP module, and the impact of different design choices on

the transformer backbone. All experiments are trained and

evaluated on the SUN RGB-D [70] dataset.

Effects of each component. We validate the effectiveness

of the proposed LCPFormer and the LCP module on the

detection task. In addition to presenting the difference between

our point level LCP and the natural message aggregation

from the receptive field changes during downsampling, we

also implement a global transformer layer to replace our LCP

module just as [21] does for a fair comparison. Detailed results

are shown in Tab.V.

TABLE V
ABLATION STUDY ON APPLYING DIFFERENT BACKBONES WITH

GROUP-FREE BASELINE.

Backbone LCP GTL mAP@IoU0.25 mAP@IoU0.5

PointNet++ % % 62.8 42.3

LCPFormer % % 62.7 43.3

LCPFormer ! % 63.2 46.2

LCPFormer % ! 61.2 43.9
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GT Ours

Fig. 4. Visualization of detection results on SUN RGB-D dataset. Left:
Ground truth. Right: Our LCPFormer results.

The first row denotes the PointNet++ baseline. We can find

that if we discard the LCP module from our LCPFormer,

the simple transformer-based method can achieve comparable

performance with the baseline. However, if our proposed LCP

module is adopted, it can accomplish a significant performance

improvement, especially in the mAP@0.5 metric, which has

about 3.9% mAP gains. This result keeps consistent with

our discussion in Sec.III-C and Sec.IV-A. The LCP module

helps transformers to achieve more accurate bounding boxes.

In contrast, as shown in the last row in Tab.V, the implemented

global transformer layer (GTL) actually damages the perfor-

mance to some extent as it omits the inherent relationship

between neighboring local regions.

Ablation of the number of neighbor points. Since our

method highly relies on overlapping points and the number of

neighbor points k naturally determines the degree of overlap to

a large extent. Tab.VI shows the influence of different neighbor

point number k. Within a certain range (k ≤ 16), increasing

more points to enhance the structural information in the local

area brings more gains for the model performance. But when

these neighboring regions go too far (k ≥ 32), it brings

excessive noise with more irrelevant points, which weakens

the accuracy of the network to a certain extent. Similar results

can also be found in [22]. We adopt k = 16 as the default

setting in our experiments for a balance between performance

and computational cost.

TABLE VI
COMPARISONS BETWEEN DIFFERENT k VALUES IN KNN.

k mAP@IoU0.25 mAP@IoU0.5

4 56.92 37.53
8 59.48 41.37
16 62.70 43.34
32 61.52 44.22

Ablation of the transformer backbone architecture. To

deeper validate our transformer architecture, we conduct an

ablation study on the number of LCPFormer blocks and the

number of MHSA layers in each block. The results are sum-

marized in Tab.VII and Tab.VIII. It is obvious that insufficient

parameters will inevitably weaken the capacity of the network,

but deeper models (block number = 5 or attention layer =

3) bring more parameters and unnecessary learning burdens,

which makes the model extremely difficult to train.

TABLE VII
ABLATION STUDY ON THE NUMBER OF LCPFORMER BLOCKS.

Blocks mAP@IoU0.25 mAP@IoU0.5

3 61.36 42.80
4 62.70 43.34

5 61.12 42.17

TABLE VIII
ABLATION STUDY ON THE NUMBER OF ATTENTION LAYERS.

Attention Layers mAP@IoU0.25 mAP@IoU0.5

1 61.16 43.66
2 62.70 43.34
3 62.08 43.81

Module efficiency analysis. Eq.7-9 summarize our pro-

posed LCP module. To further validate the efficiency of

our LCP module, we compare our method with two famous

transformer-based methods for the 3D shape classification task

and the results are shown in Tab.IX. Common metrics includ-

ing GFLOPs, model parameters, and latency are used. All the

experiments are conducted on a single NVIDIA GeForce RTX

2080Ti.

TABLE IX
EFFICIENCY COMPARISONS WITH PREVIOUS METHODS ON MODELNET40

[76].

Method GFLOPs Params Latency OA

Point Transformer 147.2 9.58M 18.7ms 91.7
PCT 17.4 2.94M 14.6ms 93.2

LCPFormer 17.6 3.04M 14.9ms 93.6

Note that our LCPFormer for the 3D shape classification

task is designed on the basis of the PCT [20] structure as

described in Sec.III-D. The only difference between them is
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RandLA-Net

RandLA-Net

LCPFormer(Ours)
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Fig. 5. Visualization of segmentation results on SensatUrban dataset. We randomly sample several point cloud scenes to visualize their output results. A
current state-of-the-art method is selected for a more intuitive comparison. The different results of our LCPFormer and RandLA-Net are highlighted in white
boxes.

the extra LCP module in the LCPFormer. The comparison be-

tween PCT [20] and LCPFormer shows that our LCP module

is lightweight enough yet effective. It achieves a considerable

improvement of 0.4% OA on the ModelNet40 dataset with a

negligible amount of parameters and inference time.

V. CONCLUSION

This work explores the natural fit of the transformer in

3D point cloud perception and focuses on the destruction

of the instance information caused by separate local regions.

We present a novel and effective message exchange module

named Local Context Propagation (LCP). Unlike the previous

methods, our LCPFormer is tailored for irregular point clouds

and enhances the inherent relationship among the neighboring

local regions via local context propagation. Finally, our pro-

posed method achieves considerable improvement compared

with various transformer-based methods in multiple 3D tasks

including shape classification, and dense prediction tasks such

as object detection and semantic segmentation. As a sequence-

to-sequence structure, transformers show great potential for

sets embedded in the geometric space like point clouds. In

future work, we would like to further explore the versatility of

our work and implement it to even more datasets for different

3D tasks such as 3D pose estimation, 3D point cloud matching,

etc.
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