
This is a repository copy of Advancing SDN from OpenFlow to P4: a survey.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/196664/

Version: Published Version

Article:

Liatifis, A. orcid.org/0000-0002-8514-6636, Sarigiannidis, P. orcid.org/0000-0001-6042-
0355, Argyriou, V. orcid.org/0000-0003-4679-8049 et al. (1 more author) (2023) Advancing
SDN from OpenFlow to P4: a survey. ACM Computing Surveys, 55 (9). pp. 1-37. ISSN 
0360-0300 

https://doi.org/10.1145/3556973

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



186

Advancing SDN from OpenFlow to P4: A Survey

ATHANASIOS LIATIFIS and PANAGIOTIS SARIGIANNIDIS, University of Western Macedonia,

Greece

VASILEIOS ARGYRIOU, Kingston University, United Kingdom

THOMAS LAGKAS, International Hellenic University, Greece

Software-defined Networking (SDN) marked the beginning of a new era in the field of networking by de-
coupling the control and forwarding processes through the OpenFlow protocol. The Next Generation SDN
is defined by Open Interfaces and full programmability of the data plane. P4 is a domain-specific language
that fulfills these requirements and has known wide adoption over recent years from Academia and Industry.
This work is an extensive survey of the P4 language covering domains of application, a detailed overview of
the language, and future directions.

CCS Concepts: • Networks→ Programmable networks;

Additional Key Words and Phrases: SDN, P4, Next Generation SDN, programmable networks

ACM Reference format:

Athanasios Liatifis, Panagiotis Sarigiannidis, Vasileios Argyriou, and Thomas Lagkas. 2023. Advancing SDN
from OpenFlow to P4: A Survey. ACM Comput. Surv. 55, 9, Article 186 (January 2023), 37 pages.
https://doi.org/10.1145/3556973

1 INTRODUCTION

Modern Computer Networks are characterized by a multitude of network devices (routers, fire-
walls, load-balancers, proxies, etc.) provided by numerous networking vendors. These devices op-
erate on proprietary software, offer limited configure abilities and require certain level of expertise.
On top of that it is difficult to enrich these devices with new features due to hardware limitations
and throughput constraints.
The advent of Software-defined Networking (SDN) paradigm has set the stage for a new

era in the networking industry and academia. The vision of SDN is to offer a fully programmable
software-driven network supporting custom and in-house solutions. Decoupling the control plane
(i.e., the control mechanisms of the network) from the data plane (i.e., the forwarding mechanisms
of the network) SDN has simplified and enabled a multitude of new possibilities. The SDN Con-
troller is a logically centralized entity that is taskedwith orchestrating the entire network following

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
Grant Agreement No. 957406 (TERMINET).
Authors’ addresses: A. Liatifis and P. Sarigiannidis, University of Western Macedonia, Karamanli & Ligeris, Kozani, Greece,
50100; emails: {aliatifis, psarigiannidis}@uowm.gr; V. Argyriou, Kingston University, London, United Kingdom, KT1 2EE;
email: vasileios.argyriou@kingston.ac.uk; T. Lagkas, International Hellenic University, Agios Loukas, Kavala Campus,
Greece, 65404; email: tlagkas@cs.ihu.gr.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
0360-0300/2023/01-ART186
https://doi.org/10.1145/3556973

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:2 A. Liatifis et al.

Table 1. Contributions of This Work

Survey Technologies

similar to P4

presented

Overview of the

P4 language

provided

Taxonomy of

research fields

that use P4

provided

Challenges and

limitations P4 faces

as a programming

language presented

In depth discussion

and future

directions presented

[32] No Partially No No No
[77] Yes Yes Partially No Yes
[162] Yes No No No No
[168] Yes Partially No No No
[59] No Yes Yes Yes Partially
[84] No Partially No No No
[79] No Yes Partially Yes Yes
This
work

Yes Yes Yes Yes Yes

the policies defined by the administrator. On top of the SDN controller, intelligent applications can
be developed that instruct the controller on how to operate the network forming an Application
plane. The SDN controller acts as an abstraction mechanism between these two planes using well
defined and documented Application Programming Interfaces (APIs).
To this day, though, the vision of SDN has yet to be fulfilled. OpenFlow [112], one of the most

widely used southbound communication protocols in today’s Software-defined network deploy-
ments, is far from realizing this vision [7]. P4 [14] is a Domain-specific Language (DSL) for
ProgrammableData Planes (PDPs) that has attracted the attention of the academia and industry
rapidly. This survey article aims to offer the reader an overview of the P4 language, by presenting
the language in-depth, its application in various fields of networking, and the deployment environ-
ments it is present in. Finally, it presents potential new areas of deployment and future directions.

1.1 Motivation

Numerous surveys related to SDN have been published over the years focusing on different aspects
of the SDN paradigm. Some aim to provide a comprehensive overview [88, 149, 162], others focus
more on the OpenFlow protocol [15, 96], one of the most widely deployed protocols found in SDN
environments, while some research involves other SDN solutions [12, 52]. All previous efforts
pay little attention to P4 despite the fact P4 has known great success in academia and industry.
References [32, 77, 84] give and overview of data plane programmability and refer to P4. Moreover,
Two survey works so far are dedicated to P4 [59, 79], though they are not complete. Both do not
include related technologies and differences over P4 and lack future directions. Vieira et al. [168]
present an extensive work focused on eBPF and XDP in a manner similar to our contribution. To
summarise our contribution Table 1 presents research related to our work.

1.2 Contribution of This Work

The contribution of this work can be summarised as followed:

• we present various data plane programming solutions,
• we present the P4 programming language, a domain-specific language for expressing data
plane behavior,
• we provide a taxonomy of various fields of networking where P4 is actively used,
• we present the challenges P4 as a programming language faces,
• we provide future directions related to new domains of applications and to P4 as a program-
ming language.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:3

1.3 Methodology, Bibliography, and Article Structure

The bibliographic search consisted of three phases: Phase 1 included the bibliography search using
popular search engines for researchers, specifically Google Scholar and Scopus. Phase 2 consisted
of abstract reading and evaluation of each scientific paper. During this process, more than half of
our database was eliminated and the output result summed to a total of 320 manuscripts. Finally,
Phase 3 included an exhaustive reading of the literature and its grouping in research fields. The
result is a collection of 150 scientific manuscripts that are included in this survey work.
We begin by giving a background on network programmability in Section 2. We present the

events that lead to the design of solutions such as P4. We also provide a list of solutions similar
to P4 in the same section. The supplementary material presents the P4 programming language, a
domain-specific language for programmable data planes. An outline of the language is given in
this section. In Section 3 the networking domains where P4 is used is presented. We tried our best
to provide the reader with a taxonomy that is meaningful, highlights the benefits P4 offers, and
has low repetition of information. Section 4 research related to P4 as a programming language is
presented. As a programming language P4 incorporates both the benefits and concerns of a pro-
gramming language. An analysis of our findings is discussed in Section 6 and future directions are
presented. Finally, Section 7 includes some final words regarding P4 language and programmable
networks.

2 PROGRAMMABLE NETWORKS

2.1 Evolution of Networks

The first computer networks were simple when compared to modern deployments. Emphasis was
given to the ability of each network element to work independently for long time frames due to
little inter-connectivity and high failure rates, introducing complex protocols and management
techniques. The rapid onset of Cloud technologies lead to highly interconnected networks for fast
connectivity, though fundamentally networks remained the same.
The first generation of SDN decoupled the data plane and the control plane, and moved the

control plane in a logically centralized entity called the controller. The controller is responsible for
the overall management of the underlying network. Additionally, the communication between the
data plane and the control plane uses a well-defined API. One such API, and the most associated
term to SDN, is the Openflow protocol.
TheOpenFlow protocol is a southboundAPI used for communication between the controller and

the data plane devices. It defines a series of messages in which the controller can enforce a desired
policy to the network. The main limitation of OpenFlow is the fixed set of header fields supported.
Each new version of the protocol should first be approved by theOpen Networking Foundation

(ONF) and then be implemented by hardware manufactures. Although more flexibility is available
to the network operator in contrast to traditional networking, it is still limited by a fixed set of
features of the OpenFlow protocol. Lately progress regarding OpenFlow has stopped in favor of
the P4 project [134].
The next generation SDN introduces several new features and possibilities. First, hardware in-

dependence sets the stage for a common abstraction layer. The hardware details do not inter-
vene with the desired functionality of the switch. Additionally, the programmability now fol-
lows a top-down approach, where the operator specifies the desired behavior and the network
is responsible for implementing it without requiring detailed instructions on how to. Instead
of closed and proprietary solutions, Next Generation SDN (NG-SDN) embraces open inter-
faces and whitebox hardware. Figure 1 depicts a visual representation of the differences between
networking.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:4 A. Liatifis et al.

Fig. 1. Evolution of networks: left image

depicts a traditional networking element,

middle image depicts an OpenFlow-

based network element and right image

depicts a P4-based networking element.

Fig. 2. Domains of application.

Table 2. Data Plane Programming Solutions

P4 eBPF/XDP DPDK POF ODP Click PX
Abstraction level High Low Low Low High High High
Loops Not allowed Allowed Allowed Not allowed Unknown Allowed Not Allowed
Pipeline forwarding Match-Action N/A N/A Match-Action Match N/A Match-Action
Syntax C-like C restricted C restricted N/A C restricted C++ C++

2.2 DataPlane DSLs

In this subsection, we provide a list of Data Plane programming solutions. These solutions offer
similar capabilities to P4 but also luck a few. We avoided including derivatives of these solutions,
since the main contribution of this survey is the P4 language and not the available Data Plane
programming solutions. Table 2 illustrates frameworks and DSLs for data plane programming.

Click [86] was one of the first programmable data plane solutions. It is a modular toolkit for
building routers. The user builds the router by connecting several basic components, called ele-
ments, in a graph structure. The connections between the components indicate the processing
pipeline of a packet.
Protocol Oblivious Forwarding (POF) [157] first appeared in 2013 with the intention of a

protocol-agnostic data plane. A POF switch understands no protocol format. Instead, the parsing
process of a packet is directed by the controller through <offset, length> keys, and match+action
tables. Packet manipulation is possible through bitwise operations and simple mathematical in-
structions. Furthermore, a POF switch can keep track of flow status through the flow metadata, a
data structure that is associated with each network flow where various information can be stored.
Additionally, POF allows sharing of common instructions on match+action tables, thus achieving
more efficient memory utilization. Counters are also present in POF and offer functionality similar
to their OpenFlow counterparts with the distinction that these counters are shared resources that
can be allocated to flows by the network developer as they see fit.
Data Plane Development Kit (DPDK) [36] was initially developed by Intel but has since

moved under the umbrella of the Linux Foundation. DPDK aims to offer an easy-to-use framework
for developing data plane applications for a wide variety of targets including x86_64 Central

Processing Units (CPUs), Smart Network Interface Cards (NICs), and Network Processing

Units (NPUs). Network administrators can implement their own network protocol stacks without
the need for specialized hardware. DPDK applications are essentially C programs that run on user
space and reserve all necessary resources in advance.
XDP [65] and eBPF [111] are software frameworks that when combined offer high performance

networking and a highly programmable data plane expressed in C language. The eXpress Data

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:5

Path (XDP) framework provides access to the lowest layer of the Linux networking stack and
is executed in the earliest possible stage of the packet processing pipeline. Extended Berkeley

Packet Filter (eBPF) is small virtual machine structure in the Linux Kernel that allows the exe-
cution of C code in a secured and isolated environment. eXpress Data Path (XDP) is a module
that offers network programmability to the lowest possible layer of the Linux networking stack.
Open Data Plane (ODP) [126] is an open source project for development of data plane appli-

cations through a common API in C language. ODP separates the data plane from the hardware
heterogeneity through the implementation layer. The implementation layer is target-specific and
optimized implementation of these API. The developer develops platform independent applica-
tions using these APIs and a compiler maps these high-level programs to the multiple targets.
PX language is a domain-specific DSL designed by Xilinx to program FPGA boards [16]. PX

follows an object oriented C++ like style to define the packet processing pipeline. Using PX, the
network operator can define packet parsing, header fields update, and deparsing.

3 P4 DOMAINS OF APPLICATION

The simplicity of P4 might arise the question of what can someone do with such a language. Net-
working devices though implement relatively simple operations on packets, for example, TTL val-
ues are decreased, IP address might change due to NAT and Cyclic Redundancy Check (CRC)

checks are recalculated. P4 is by far capable to fulfill these requirements and also offer additional
functionality. The literature in this survey has been categorised in six main categories with many
sub-categories as shown in Figure 2. All domains of application make use of all available features
of the language.
The parser and the deparser are two important features of the language. If used properly,

then one can define custom protocols that meet the requirements and constraints of many
environments.
In-band Network Telemetry (INT) [50, 71] is one example of P4 potential to disrupt the

networking ecosystem offering new functionalities. Using INT network statistics are appended
to an application packet when traversing the network. Before reaching its final destination the
INT metadata are stripped from the packet and are delivered to the controller or any other device
while the packet remained unchanged from the applications point of view. Sketch-based methods,
however, attempt to maintain an estimate of the real state using internal counters and hash-arrays
[56].
P4 has made possible another set of applications. Using the offered tools of P4 tasks that were

traditionally run in middleboxes or expensive equipment can now be offloaded to the data plane.
Certain Network Functions (NFs) can be implemented directly in the data plane, whereas a
programmable data plane can also assist higher-level applications.

3.1 Network Monitoring

Network Monitoring refers to processes of statistics collections or perform certain actions when
an event is triggered. The monitoring process is a crucial part of modern networks. An efficient
monitoring solution can minimize communication overhead, leading to less computational tasks
for the controller, and help security tools identify anomalies faster and more accurately.
Thanks to P4, the development of high precision monitoring algorithms is made possible. The

ability to piggyback metadata and statistic collected from data plane devices to packets is proven
quite useful. Moreover, using efficiently the available memory, it is possible to identify abnor-
malities, monitor overall performance of keep track of paths on a packet level with little perfor-
mance loss. Table 3 contains a summary of the surveyed work. Niou et al. [123] developed a flex-
ible Mutlilayer In-band Network Telemetry (ML-INT) system for IP-Over-Optical networks.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:6 A. Liatifis et al.

Table 3. Network Monitoring Solutions

Solution
Monitoring
Technique

FPGA Software ASIC Simulation Validation

Niou et al. [123] INT No No Tofino, NFP-4000 NPU No
Measure INT header overhead and the effectiveness of the
sampling method

Hanf et al. [56] Sketch No No Tofino No
Measure memory throughput and compare them against similar
solutions

SWAP [54] — No BMv2 No No The authors measure the relative error SWAP introduces

Pereira et al. [133] — No BMv2 No No
Measure latency, throughput, estimations error against similar
approaches

TurboFlow [155] — No No Tofino, NFP-4000 No
Cost estimation of monitoring, overhead introduced on various
load scenarios

Elastic Sketch [177] Sketch Stratix V OvS Tofino No
Compare to state-of-the-art solution, measure error rate,
accuracy and time delays

BitMatrix [110] Sketch No BMv2 No No Measure the accuracy of BitMatrix approximation
BurstRadar [74] — No No Tofino No Compare agains INT and Oracle, measure RAM utilization
Gent et al. [47] INT No BMV2 No No Compare estimated congestion with actual value
UniROPE [46] INT-like No PISCES No No Evaluate on multiple topologies, compare against CherryPick
Khan et al. [83] INT No No No No —
InOpt [10] INT NetFPGA No No No Measure latency and delays introduced
Choi et al. [26] INT No No No No —

FlowSpy [51] — No BMv2 No No
Measure the mean deviation and completeness rate for various
evaluation metrics

Wang et al. [169] INT No No Tofino No
Measure the reduction rate of INT reports in various threshold
values

P4-InTel [21] INT No No BMv2 No
Throughput variation when the number of switches in a path
increases

FS-INT [159] INT No No No Yes
Compare the INT header in varaying path lengths using FS-INT
and alternative methods

TBSW [55] — No BMv2∗ No No Accuracy loss in each stage and resource consumption

Elastic Trie [94] —
Xilinx Virtex, Xilinx Ul-
trScale+

No No No Measure accuracy in detecting variations in traffic patterns

SpreadSketch [160] Sketch No No Tofino No
Measure preceision, recall, f1 score and relative error against
state-of-the-art solutions

FEAL [139] — No BMv2 No No Measure precision, recall
∗Flow [156] — No No Tofino No Resource utilization and throughput
Laraba et al. [98] — No BMv2 No No Fair Bandwidth sharing and switch processing time

Hyun et al. [70] INT No BMv2 No No
CPU usage, processing time of INT data and bandwidth
overhead of INT appended data

∗ Entries with ∗ are not clearly stated in the text document.

ML-INT selects a small number of packets to insert INT headers. Additionally, to minimize the
overhead of the INT data, INT headers of the involved packets contain part of the statistical data.
To have meaningful data the disaggregated data need to be collected before being presented. To
solve this problem authors developed a parser able to analyze the INT packets and extract the
required information. To evaluate the ML-INT system the authors experimented on a real world
small scale IP-over-Optical network.
Hanf et al. [56] developed the interleaved sketch, a network telemetry system that is decentral-

ized across all switches. The main idea of their system is the existence of two sketch pipelines that
are interchanged between the control and the data plane to avoid delays caused by flushing the
data. Using P4, the authors were able to express the decentralized nature of their approach and
interchange the available sketches automatically in line-rate. SpiderMon [170] is a network-wide
diagnosis system designed for data center networks. The key idea of SpiderMon is to maintain per
flow telemetry data on switches for short time periods and upon detection of unusual behavior a
debugging mechanism is triggered to identify the root cause of performance degradation. Proto-
type implementation on BMv2 software switch showed that SpiderMon can quickly identify the
problem with minimal overhead.
SlidingWindow Algorithm for Packets (SWAP) [54] is a counting mechanism designed for

statistics counting using P4 registers and metadata. SWAP operates on every single packet with no
performance penalty thanks to P4 requiring few hardware resources. Authors of Reference [166]
develop an event detection framework for INT data and an XDP module able to parse the INT data
and forward them to Kafka for further analysis. The framework is also able to modify its detection
mechanisms, through the SDN controller, by analyzing the INT collected data. Evaluation results
show that the proposed framework can easily scale to hundreds of INT monitored flows.
Authors of Reference [133] propose a secure sketch-based monitoring algorithm that runs on

programmable switches. Sketch-based techniques rely on aggregated data statistics of packet in-
stead of sampling them. The algorithm can prevent an attacker from performing various attacks
that can falsify the collected data. Keys are used during the hashing processes and they are periodi-
cally changed. This leads to unpredictable behavior of the algorithm from the hackers point of view.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:7

TurboFlow [155] is a flow record generator tool that can operate on high traffic rates with no
need of sampling and produce feature-rich Flow records the same time. To achieve fine-grained
measurements, TurboFlow uses microflows that are essentially summaries of flows for a small
time windows embedded in table pipeline using P4. These micro flows are later aggregated and
forwarded to the control plane. Yang et al. [177] developed Elastic Sketch, a network monitoring
method that avoids the introduction of additional load to the network by adapting its behavior in
three traffic characteristics, namely, bandwidth, packet rate, and network flow size. Elastic Sketch
consists of two parts: (1) the heavy-part where Elephant flows data reside and (2) the light-part
where mouse flows data reside. This separation helps to quickly identify elephant flows in the
network. Additionally, an eviction mechanism (called ostracism) is introduced. This mechanism
will move a flow from the heavy-part to the light-part if certain conditions are met.

Martins et al. [110] propose propose a new skteching structure called BitMAtrix suitable for
multi-tenant networks. BitMatrix combines bitmaps and counter-arrays defined and operating in
the switchmemory using P4. More specifically BitMatrix uses bitmaps ability to efficientlymonitor
packet arrivals using hashing techniques and also uses counter-arrays ability to count bytes. The
end result is able to measure traffic information on networks with multiple tenants. The authors
evaluate BitMAtrix on an emulated network using Mininet, BMv2, and an external server that
acted as the collector of the data.
Dealing with microbursts BurstRadar [74] is a monitoring tool that operates in the data plane

and collects telemetry information of microbursts flows only. BurstRadar consists of threemodules.
First, the snapshot algorithm designates if a packet belongs to a micro burst and marks it using
P4 primitives. Second, for each packet, a courier packet is sent to monitoring servers for further
analysis by cloning and inserting it to the pipeline anew. Finally, a ring buffer is used as a temporary
storage space for all marked packets.
Gent et al. [47] developed P4-based monitoring and scheduling architecture leveraging INT. The

proposed architecture consists of two modules: the monitoring module responsible for collect-
ing information from each switch and the network-management module responsible for traffic
forwarding, traffic scheduling, and additional tools provisioning. To efficiently capture informa-
tion from the switches the monitoring module leverages In-band Network Telemetry. The traffic-
management module takes advantage of the information offered by the monitoring module to
schedule traffic through the available paths. To evaluate their proposed architecture the authors
develop a fat-tree topology using Mininet and BMv2.
Universal and Robust in-band PackEt (UniROPE) [46] is a path tracing approach for SDN-

networks that supports arbitrary topologies. UniROPE uses In-band Network Telemetry to effi-
ciently encode information on a packet and uses one of the two path tracing algorithms devel-
oped by the authors based on flow characteristics. Results from tests run on Mininet showed that
UniROPE is effective in path reconstruction with small overhead and is an ideal solution for de-
bugging and management tasks.
Authors of Reference [83] propose a simple query language to assist network diagnostics us-

ing In-band Network Telemetry. Queries are written in a topology-agnostic format and sent to
the Query Controller, an entity responsible for communicating with the network. The Query Con-
troller is assisted by the Network Controller to retrieve the actual network topology and sent the
appropriate commands to the P4 switches. Once all the data retrieved from the network, a reply
returned to the administrator. The primary objective of this approach is to reduce the amount of
traffic collected without reducing global accuracy. To achieve this the switches make use of INT
framework.
Bahmare et al. [10] developed InOpt, a VNF chain monitoring system that uses heuristics to

minimize the overhead introduced by the INT collection process. InOpt determines the locations

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:8 A. Liatifis et al.

of INT sources and sinks to collect the required statistics and constructs a path to collect these
statistics.
Authors of Reference [26] propose a verification transverse methodology based on metric dy-

namic logic using INT framework. The proposed methodology performs real time collection of
network statistics, verifies the SLA requirements are met and performs correction actions in case
they are not met.
FlowSpy [51] is a monitoring framework that attempts to distribute the computational load of

monitoring evenly in the data plane. FlowSpy formulates the assignment problem as an Integer
Linear Problem to find the optimal assignment of tasks per switch. Using P4 the control plane
can dynamically decide the behaviour of each node without the need of updating the data plane
behaviour of individual devices. The evaluation of FlowSpy was done using Mininet and BmV2
reference software switch and the results indicate that FlowSpy is able to load balance the tasks
better than traditional approaches.
Wang et al. [169] developed an INT system able to monitor the rules a flow triggers that utilizes

the available bandwidth efficiently. More specifically the proposed system assigns an id to each
rule and using INT collects these values. Moreover, the authors designed a traffic reduction scheme,
since the computational overhead introduced by the method overwhelmed the performance of a
typical server.
P4-InTel [21] is a framework for monitoring in-network computational tasks using INT. Ca-

pacity and Available Bandwidth Estimation method (CAPEST) [76] is a passive method for
estimation of available bandwidth based on packet dispersion. To collect all the required data from
the data plane CAPEST uses INT.
Authors of Reference [159] propose a flexible sampling-based INTmechanism to overcome large

INT headers that introduce additional overhead. Flexible Sampling INT (FS-INT) uses two sam-
pling methods, the first is the rate-based method where one in every R packets contains an INT
header and the event-based method where each intermediate switches decide when to append INT
data or not to each individual packet.
Time-based SlidingWindow (TBSW) [55] is a novelmeasurement algorithm designed to fully

exploit the programmable data plane. TBSW measures every packet over a specified time-based
sliding window in line-rate speed using . The authors implement TBSw on a Barefoot Tofino ASIC
chip to demonstrate its feasibility.
In Reference [94] authors propose a push-based network monitoring method using a new data

structure called Elastic Trie (ET). Taking into consideration the hardware limitations authors im-
plemented ET via a P4 program that utilizes hardware registers and built functions of the evaluated
target. Using ET the authors can detect hierarchical heavy hitters or superspreaders. To evaluate
their proposed monitoring method the authors implement it on two different FPGA boards.
SpreadSketch [160] is an invertible sketch data structure for detecting superspreaders.

SpreadSketch has low memory usage and utilizes standard P4 operations and primitives enabling
easy deployment on multiple hardware and software targets with a simple backend compilation.
Framework for Efficient Anomaly Localization (FEAL) [139] is a monitoring framework that
use source routing when probes are routed over the network. The framework consists of two mod-
ules, the probing cycle module, responsible for placing the minimal number of monitors that cover
the network, and the anomaly detection module, responsible for identifying link anomalies using
statistical methods.
In References [97, 98] Laraba et al. make use of Extended Finite-state Machines (EFSMs) to

model stateful monitoring of protocol abuse and enforcing security actions in the data plane. An
EFSM is a generalisation of FSM able to use variables and actions and support complex operations
without resulting in a large number of states. The proposed system, first, models a protocol into an

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:9

EFSM, then translates the EFSM model into P4 primitives and finally, translates the P4 code into
target-specific binary. To validate the proposed system the authors model Explicit Congestion
Control (ECN) and run several tests using BMv2 switch to measure throughput gain, processing
time and memory usage.
Hyun et al. [70] proposed a network architecture able to perform closed-loop management. The

proposed architecture consists of four planes, namely, (a) the programmable Data plane able to sup-
port In-band Network Telemetry (INT), (b) the control plane responsible for deploying the INT
functionality to the Data Plane and, (c) the Management Plane where the INT data are collected,
transformed, analyzed and finally sent to the control and Knowledge planes, and (d) the Knowledge
Plane that utilized ML algorithms onto the INT data and extracts knowledge, which is fed back
to the network through the control plane. The authors evaluate their system through a Mininet
testbed with BMv2 P4 reference switches and ONOS as the controller of their choice. Performance
metrics for their evaluation included CPU usage, the processing time of INT data, and the band-
width overhead introduced by the INT headers. Their evaluation results reveal that INT header can
significantly increase a packet’s size and analysis of such data is a computationally intensive task.

3.2 Applications in Traffic Engineering

Traffic Engineering (TE) [6], according to the Internet Engineering Task Force (IETF), is a
method of optimizing the overall performance of a computer network through dynamic adjust-
ments. Intelligent algorithms that utilize data collected from network devices classify traffic, make
decisions regarding next hops of packets to avoid congestion or quickly reroute traffic to meet
Quality-of-Service (QoS) requirements.
Offering the ability to express the behaviour of a switch through a common API (i.e., P4), net-

work operators and researchers have introduced several new algorithms and methods. A key as-
pect of every approach is the efficient utilization of the available resources. It is evident that a good
understanding of the features offered by each target is important to achieve high speed networking.
Table 4 offers an overview of the surveyedwork regarding TE solutions that leverage P4’s features.

3.2.1 Load Balancing and Routing. Load-balancing is the process of distributing traffic accross
multiple communication paths. The goal of load-balancing is the best possible utilization of
network resources in a network. Olteanu et al. [125] developed a stateless load-balancer called
Beamer that is able to overcome common limitations of traditional stateful load balancers.
Incoming traffic is hashed based on a set of header fields extracted from packet headers using P4
and sent to one bucket. Each bucket is assigned to one server, and one server can have multiple
buckets. Additionally, the server has knowledge of the buckets’ assignment. To avoid potential
connection reset due to server number change, a daisy chain mechanism is implemented. If a
packet that is not part of an active connection triggers the daisy chain process which forwards
the packet to the proper destination.
Ye et al. [180] developed weighted ECMP (wECMP) a variation of ECMP that takes into con-

sideration the path utilization for the selection of the next hop. More specifically each leaf switch
stores utilization information of all paths to other leaf switches in a table and uses these infor-
mation to calculate a weight. wECMP also uses INT to transfer congestion information instead of
probes. After evaluating wECMP’s performance, the authors conclude that it is an effective load
balancing technique.
SHELL [136] is a stateless application-agnostic and load aware load balancer. Using consistent

hashing each connection is mapped to an application and the packets are delivered using seg-
ment routing. The server agent is responsible for accepting a new flow or redirect it to another
application. SHELL can achieve performance similar to other proposed methods. Additionally, the

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:10 A. Liatifis et al.

Table 4. Traffic Engineering Solutions

TE Subdomain Solution FPGA Software ASIC Simulation Evaluation

Routing & Load Balancing

BEAMER [125] NetFPGA BMv2 No No Twice the performance of Google Maglev
wECMP [180] No BMv2 No No Addresses limitations of HULA and CONGA
SHELL [136] NetFPGA No No No Packet Throughput and latency

Kawaguchi et al. [80] No BMv2∗ No No Throughput when congestion is identified
GRED [175] No BMv2∗ No No evaluate how network size impacts routing stretch
DASH [68] No BMv2 No ns-3 Compared against HULA, ECMP
HULA [78] No No No ns-3 Addresses limitations of ECMP and CONGA

MP-HULA [9] No No No ns-2 Overcomes limitation of HULA
Paolucci et al. [130] No BMv2 No No Masure latency and scalability of the system

Olteanu et al. [125] No BMv2 No No
Measure the amount of dropped connections compare
Beamer with state-of-the-art software solution

Miguel et al. [114] No BMv2 No No
Compare throughput and latency against an ethernet
switch

Bhat et al. [11] No BMv2 No No
Measure dowload and throughput values against baseline
scenatio

Contra [67] No BMv2 No ns-2 Compare against HULA

QROUTE [165] No BMv2 No No
Tets included large topologies and multiple applications,
multiple QoS metrics were measured during the tests.

Foes et al. [45] No BMv2 No No
Comparison scenarios against MPLS equivalent
implementation

Luiz R. Madureira et al. [109] No BMv2 No No Compare payload of IoTP against a baseline scenario

Failure Detection

Blink [66] No BMv2 Tofino No Measure time frame required to restore connectivity
Wharf [49] Xilinx ZU9EG No Tofino ns-3 Latency and throughput were measured

Hirata et al. [64] No BMv2∗ No No Measure throughput of multiple flows when a link fails

Qu et al. [138] No No No Tofino
Measure the effectiveness of sQR in concealing the link
failure from the end hosts

Congestion Control

P4QCN [48] No BMv2∗ No No Test scenarios against TCP and UDP protocols

AAW [72] No BMv2∗ No No
Compare AAW against HSTCP and Reno, throughput,
goodput and retransmission rate

He et al. [63] No No No No
Measure mean throughput against various transmission
rates

Turkovic et al. [163] No BMv2 Netronome SmartNIC No
Measure average delay, jitter and packet loss of network
flows

ABC [113] No BMv2 No No
Measure goodput in cases where ABC is present against
case where it is not

Kfoury et al. [82] No BMv2 No No Measure overall throughput of TCP sessions

Shahzad et al. [153] No BMv2∗ No No
Comparison scenarios against plain TCP congestion
mechanism and ECN-based TCP mechanism

Tokmakov et al. [161] No BMv2 No No Compare against other scheduling mechanisms
QoSTCP [22] No BMv2 No No Comparison tests against ECN and DTCP

Heavy-hitter Detection
Lin et al. [101] No No Tofino No Compare performance against HashPipe

Harrison at al. [58] No No Tofino No Measure sensitivity

Damu et al. [35] No BMv2 No No
Measure detection accuracy, communication overhead
and memory consumption

Elephant Flow Detection
IDEAFIX [30] No BMv2 No No

Compare against an Openflow/Sflow wtestbed, accuracy,
reaction time, excess data exchange adn monitoring traffic
volue were measured

Hashflow [189] No BMv2 No No
Compare HashFlow against mutliple alternative solution,
throughput and network flow coverage

Active Queue Management P4-CoDel [90] No BMv2 No No Measure delay and throughput from ingress to egress

ConQuest [23] No No Tofino No
Measure the precision and recall of contributing flows to
the queue

∗Entries with ∗ are not clearly stated in the text document.

proposed hashingmethod results in few network-flows drops, due to rehashing, even inworst-case
scenarios.
Authors of Reference [80] formulate the load balancing of data plane traffic as an Unsplittable

flow Edge Load factor Balancing (UELB) problem and solve it using linear programming. The
proposed solution performs well on small scale networks, though cannot scale to large network
topologies due to data plane to control plane communication overhead.
Greedy Routing for Edge Data (GRED) [175] is an efficient data placement and retrieval

algorithm for edge computing environments. CRED utilizes the SDN paradigm to load balance and
minimize route paths in edge environments. Experimental results show that GRED has superior
performance in contrast to similar solutions like Chord.
Data-plane Adaptive Spliting with Hash threshold (DASH) [68] is a partitioning mech-

anism for Weighted Cost MultiPath load balancing. DASH partitions the hash space in regions
and based on the computed hash value a path is chosen. Additionally, these regions are dynami-
cally adjusted to achieve more efficient load balancing with less modifications of tables. Evaluation
results on BMv2 switch indicated that DASH performs better compared to other load balancing
techniques.
HULA [78] is a distance vector and memory efficient load-balancing algorithm, designed to

take advantage of programmable switches. A switch running HULA maintains information about
the best next hop only, and special probes are exchanged between switches. An enhancement of
HULA, called MP-HULA [9] generalization of HULA that keeps track of k best paths. Paolucci

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:11

et al. [130] demonstrated how P4 stateful constructs can be leveraged to perform traffic shaping
in optical networks, an important task in Traffic Engineering. Stateful networking refers to the
ability of nodes to maintain information regarding the state of a flow (e.g., if TCP handshake
is realised). However, stateless networking nodes do not store any information. By defining
threshold values the data plane is able to offload traffic to other ports with no intervention of
the Controller. Additionally, the authors demonstrated how P4 can be used to implement security
functions directly in the data plane.
Miguel et al. [114] propose a Named Data Networking (NDN) router for P4 switches. NDN

is an alternative networking architecture where a data-centric approach is favored instead of a
host-centric. In a NDN network routing is achieved using a named string instead of the traditional
IP address. The proposed design uses match-action tables to map names to interfaces. NDN names
are split in substring and hashes for each one are calculated and stored in hashtrays, data structures
used to store the computed hashes of substrings in an NDN name. The appropriate egress interface
is indicated using hashtrays and the longest prefix match. The proposed scheme is implemented
in BMv2 software switch.
Bhat et al. [11] propose a hybrid OpenFlow-P4 architecture for traffic routing in SDN-WAN. P4

is used to transform ingress and egress packets of an OpenFlow core network. In Reference [137],
a hybrid multipath routing strategy was developed thanks to the programmability offered by the
P4 language. Using P4, switches are programmed for fast decision making regarding the next hop,
while the control plane can periodically update network global state and make changes that affect
switches decisions.
Contra [67] is a system designed for performance-aware routing. Unlike previous solutions Con-

tra can operate on any network topology and adapts to traffic changes. Network administrator
express desired policies and Contra compiler undertakes the task to generate switch-local P4 pro-
grams. The data plane, as a whole implements a distant vector protocol that forwards traffic based
on the current network state and the constraints the administrator provided.
QROUTE [165] is an efficient QoS scheme for SDN overlay networks able to satisfy many

constraints. QOSROUTE use a DAG-based routing algorithm and always keeps a secondary DAG
for resilience.
Foes et al. [45] propose the Programmable Labels (ProgLab), a novel approach to support

traffic differentiation with QoS. ProgLab is based on a minimalist model of the Residue-defined
Networking Architecture (RDNA). In RDNA core nodes forward packets based on modulo op-
erations. This results in tableless nodes at the core network and simplifies the routing process in
the data plane. The label is embedded in the packet similar to the Multi-Protocol Label Switching
approach. Finally, in Reference [109] the authors present the Internet of Things Protocol (IoTP),
a Layer 2 communication protocol for IoT-enabled programmable data planes. IoTP is capable of
performing aggregations on IoT data and achieve high efficiency of network resources.

3.2.2 Failure Detection. Blink [66] is a failure detection system that operates in the data plane
without the intervention of the control plane. Blink leverages the mechanisms of the TCP protocol
to quickly identify failures in the data plane. More specifically Blink selects the most suitable
network flows for the monitoring process.
Wharf [49] is a Link Layer Forward Error Correction (FEC) mechanism able to infer failing

links. By continually polling port statistics in the network Wharf can identify the faulty links
and when possible perform frame classification on incoming network traffic to the network. To
evaluate their proposed mechanism the authors implemented Wharf on a Xilinx Zynq board. The
results of their experiments show that Wharf was able to benefit TCP protocol to achieve higher
throughput.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:12 A. Liatifis et al.

Authors of Reference [64] install multiple routing configurations on the data plane to achieve
high availability in the data plane. The proposed technique offer fast recovery in case of a link-
failure, whereas in Reference [138] the authors developed a Shared Queue Mechanism that caches
packets for a specified amount of time and sends them over alternative paths in case of a link
failure detection. Since hardware switches often do not provide flexible queuing methods this is a
challenging task to accomplish.

3.2.3 Congestion Control. Yan et al. [48] proposed a new protocol based on Quantizied Con-

gestion Notification (QCN) protocol called P4QCN. P4QCN is compatible with IP networks and
mitigates many problems of the Priority Flow Control (PFC) mechanism used in QCN. The au-
thors tested P4QCN usingMininet and BMv2 software switch. Using INT authors in Reference [72]
developed an Explicit Congestion Control mechanism named Adjusting Advertised Windows

(AAW). AWW achieved 5%–10% higher throughput in contrast to HSTCP and RENO.
Authors of Reference [63] take into consideration the constraints of the hardware switches and

implement a traffic rate limiter. The proposed system is implemented using two known methods,
namely, token bucket and policing in case of excessive traffic.
Authors of Reference [163] developed a congestion avoidance method suited for programmable

data planes using P4. The data plane keeps track of critical flows on a network and applies precon-
figured actions in case of congestion. More specifically, each switch is configured with a disjoint
predefined set of paths and based on collected statistics it chooses the appropriate path. In case no
path is available a special packet is sent to the previous switch to inform about potential conges-
tion. To evaluate their proposed system authors implement it on Mininet network emulator and
on a Netronome Agilio CX SmartNIC.
Activity-base Congestion (ABC) [113] management QoS mechanism in P4. According to au-

thors the implementation of ABC in hardware targets is a feasible task but requires many extern
objects. In Reference [82], authors propose a scheme that dynamically adjusts TCP pacing rates.
The switches store the network state and notify end hosts to update their pacing rate when the
network state is altered. To achieve this though the authors inserted a custom header after the IP
header. Shahzad et al. [153] propose an enhanced Explicit Congestion Control Mechanism using
P4 language. P4 switches store in their registers ECN information and when congestion is detected
the ECN-capable header is altered to notify the sender of congestion. The proposed scheme is able
to respond faster compared to default ECN mechanism.
Authors of Reference [161] developed a novel traffic management algorithm that combines the

Rate-Limited Strict Priority and Deficit round Robin policies and results in a latency aware and
quite fair scheduling approach for virtualized environments like Data Centers. QoSTCP [22] is able
to slightly adjust the TCP window value to avoid unnecessary drops. To achieve this, two kinds
of threshold values are measure for each flow: the peak threshold rate (PTR) and theMarking

Threshold Rate (MTR). The first one indicate an absolute limit above which any packet will be
dropped by the switch, while the alter indicates a warning.

3.2.4 Heavy-hitter Detection. Heavy-hitter traffic is characterised as traffic that consumes a lot
of bandwidth for a short period of time often remaining undetected by conventional solutions. Au-
thors of Reference [101] modify the HashPipe algorithm, an algorithm for heavy-hitter detection,
to meets the requirements and the constraints of a Tofino hardware switch.
Utilizing P4 registers authors of Reference [58] developed an efficient network-wide algorithm

for detection of heavy-hitter flows. A central entity called the coordinator sets threshold values
on the switches for a specific set of flows. The switches are configured via P4 to count incoming
traffic for these flows and report their values upon reaching or surpassing this threshold value to

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:13

the coordinator. To minimize inaccuracies a global threshold is defined and upon reaching it the
coordinator explicitly requests current counter values.
Damu et al. [35] propose a new algorithm for heavy-hitter detection in wide area networks, like

Internet Service Provider (ISP) networks, since the current solutions were not able to achieve
high enough accuracy. To evaluate their proposed algorithm the authors run simulations and de-
veloped it using P4 and Mininet.

3.2.5 Elephant Flow Detection. Elephant Flows refer to network flows that consume significant
portion of bandwidth. In contrast mice flows are flows that are characterised by a small number of
packets and consequently bandwidth. Identifying these flow early lead to higher overall network-
ing resources utilisation.
Using P4 registers IDEAFIX [30] can quickly identify elephant flow in the data plane with

little intervention by the controller. Instead of sampling traffic in regular intervals and balanc-
ing between CPU usage and accuracy, IDEAFIX uses in-memory hash tables in combination
with bloom filters classifiers to identify elephant flows. The authors test IDEAFIX with other
known sampling techniques and conclude that IDEAFIX is able to outperform them using less
memory.
Hashflow [189] is flow collection tool that maintains accurate records for elephant flows and

summarized records for mice flows. Additionally, HashFlow applies a novel collision resolution
record strategy using hash tables and a promotion strategy for elephant andmice flows. Evaluation
results show that HashFlow performance is superior to similar methods.

3.2.6 ActiveQueue Management. Active Queue Management (AQM) is the process of smart
and efficient usage of the internal packet queue. AQM can benefit other TE applications, though
given the fact that most switches have a black-box AQM module some workarounds have been
proposed over the years. Kundel et al. [90] implementControlled Delay (CoDel)AQM algorithm
in P4 to address the bufferbloat problem. CoDel reference algorithm as described in RFC 8287 is
translated to P4. To evaluate the P4 program the authors develop aMininet testbed andmeasure the
delay between hosts. The P4 CoDel was able to keep delay below the target value set by the authors.
ConQuest [23] is a data structure that estimates flows size in a queue and is able to estimate which
flows contribute the most in queue delays. ConQuest is meant to be used as the basis for Active
Queue Measurement (AQM) schemes according to authors. *Flow [156] is a switch accelerated
framework that offers efficient and dynamic measurement of packets. Additionally, *Flow supports
concurrent measurements and dynamic queries by lifting selected operations from the data plane
and implement them in software.

3.3 Function Offloading

The programmability of the data plane has set the stage for new applications. Certain applications
like load-balancers are now easier to offload to the data plane thanks stateful data structures (e.g.,
registers) offered. While existing solutions like OpenState [12] offer similar capabilities, they in-
herit all the limitation of OpenFlow. Offering highly programmable data plane also enables offload-
ing of application directly to it. Before the advent of P4, VNFs run on dedicated hardware devices
or traditional servers with high overall coast and low throughput. Molero et al. [116] noted that
modern hardware solutions in the networking industry are able to perform complex operations
without sacrificing throughput and are highly programmable. The aforementioned factors have
enabled certain control plane tasks to drift to the data plane introducing benefits and new chal-
lenges. They conclude that future network designs are highly possible to be influenced by this
shift. Table 5 contains information about the work surveyed in the following subsections. In Ref-
erence [39], authors developed a logically centralized yet physically distributed wireless access

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:14 A. Liatifis et al.

Table 5. VNF Offloading

Category Solution FPGA Software ASIC Simulation Evaluation

VNF Offloading

Engelhard et al. [39] No BMv2 No No
Measure throughput of the proposed solution against
traditional approaches

HyMoS [3] No No NFP-4000 No Measure latency against load and packet size
DPPx [127] NetFPGA No No No Response time distribution of

Ripple [172] No No Yes∗ No
Measure the receiving throughput rate during
reconfiguration process

P4NFV [115] No No Netronome Agilio4000 CX No Measure resource consumption and compare against UNO

P4-BNG [91] NetFPGA No No No
Measure latency and throughput, compare against
traditional approach

Moro et al. [119] No BMv2 No No
Measure the effectiveness of decomposition during the
arrival of multiple requests

FOP4 [117, 118] No BMv2 No No Measure initialization delay and consumption delay
P4SC [24, 187] No BMv2 No No Efficiency of service chain creation
INI [107] No No Tofino No minimize delay and congestion when processing data

∗Entries with ∗ are not clearly stated in the text document.

system that introduces network slicing in Wireless Sensor Networks. Since wireless protocols dif-
fer from the wired ones, P4 language is used to bridge this gap. The system is able to run Network
Functions and scale accordingly to meet the current requirements.
Hybrid Modular Switch (HyMoS) [3] aims to meet the requirements of the the modern NFV

applications by utilizing software and hardware components. More specifically the CPU acts as
the scheduler orchestrating the memory. P4-enabled Smart Network Interface Cards (NICs)

are used to perform lookup operations and perform ingress and egress processing, since they are
optimized for this kind of operations. Finally, PCI-e interface is used as the communication bus for
its high throughput capacity.
In Reference [127], authors propose the Data Plane Programmability and Exposure frame-

work (DPPx), a P4-based framework that enhances NFV services. DPPx overcomes many limita-
tions of the traditional deployment methods of VNFs and offloads them to the data plane achieving
line-rate processing. Ripple [172] is a reconfigurable runtime framework for VNFs that avoids re-
compilation of P4 programs and thus offers near zero downtime. P4NFV [115] is a framework that
offers a unified view of a P4-based data plane to the SDN controller and aims to ease the config-
uration and management of the data plane. Additionally, P4NFV performs several optimizations
usingMixed Integer Linear Programming Optimization (MILP) methods.
Authors of Reference [91] analyze the requirements of a BNG environment and design a P4-

based data plane for such environments. They further extend their work by implementing the data
plane on an FPGA board [92] and achieve better coverage of QoS requirements. Authors of Refer-
ence [119] propose a framework that decomposes NFs and offloads them partially to the data plane.
The data plane can accommodate different programmable elements both software and hardware
that support different protocols and frameworks. An orchestrator receives as input the network
topology with its constraints, the NFs alongside with their traffic constrains and uses mixed linear
programming to find an optimal decomposition of them to maximize the traffic offloaded to the
hardware elements of the network.
Function Prototyping with P4 (FOP4) [117, 118] is an extension of containernet [135]. It is

designed for rapid prototyping of heterogeneous scenarios where offloading of task is assigned
to the data plane. Zhang et al. developed P4SC [24, 187] a P4-based framework for developing
Service Function chains that run directly in the data plane. P4SC offers a set of primitives to ease
the process of defining SFCs and all the necessary tools to translate these primitives in P4 code.
Additionally, the authors developed a Longest Common Sequence (LCS) algorithm to combine
multiple SFCs in one P4 program without causing any discrepancies and a management tool for
automation and ease of management. The authors evaluated P4SC with six real-word scenarios.
Finally, authors of Reference [107] present a new architecture, called Intra-network Inference

(INI), that combines SDN and NFV technologies to minimize delay and congestion when process-
ing data.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:15

Table 6. Cross-cutting Domains

Category Solution FPGA Software ASIC Simulation Evaluation

In-network Computations
Sakakibara et al. [144] NetFPGA No No No

Measure latency, throughput during blockchain
operations

λ − N IC [28] No No Netronome Agilio No Multiple scnarios where latency was measured

P4DNS [171] NetFPGA No No No
Latency and throughput during DNS queries were
measaured

ARGUS [27] No No Netronome Agilio CX No
Measure perfromance improvement in replication
processes

Industrial Control Systems
FastReact [167] No BMv2 No No Delay for failover detection was measured

Rüth et al. [143] No XDP-based No No
Visual comparison of diagrams representing the error
margin prove the effectiveness of the system

Internet Of Things BLESS [164] No No No No
measure the average round-trip delay against a traditional
system

Next Generation Cellular

Networks

Ricart-Sanchez et al. [142] NetFPGA No No No Measure the effectiveness of isolation during congestion

TurboEPC [151] No No Netronome Agilio card No
Measure the throughput scalability when the number of
user increases and the performance benefits control plane
is introduced to

Aghdai et al. [2] No No Netronome NFP-4000 No Measure latency of end-to-end communication

SMARTHO [128] No BMv2 No No
compare SMARTHO’s handover latency against the
traditional approach

Traffic Generators
Hyper-Gen [173] No No Tofino No

Measure the packet generation rate, accuracy and
precision

P4STA [93] No BMv2 Tofino, Netronome Agilio No
Average latency of P4STA platform on various targts was
measured

P4TrafficTool [73] No No No No measure the amount of generated plugin code

∗ Entries with ∗ are not clearly stated in the text document.

3.4 Cross-cutting Domains

P4 has also proven useful in accelerating or assisting other applications. Programmable targets can
partially help other services or act as a unifying factor between multiple technologies. Such exam-
ples include network-assisted computations, Internet of Things protocols, and traffic generators,
to name a few. Table 6 describes the surveyed work.

3.4.1 In-network Computations. In Reference [144], the performance of blockchain-based ap-
plication was accelerated using the programmable plane P4 offers. More specifically the authors
developed a system that support basic blockhain commands in NetFPGA SUME board. The end
result is considerably faster and on typical blockchain operations.
lambda-NIC [28] is a framework for serverless computing using smart NICs. Using the

Finite-state Machine of the P4 parser lambda-NI can identify the lambda actions a packet should
pass through and thanks to the high number of processing units it can achieve high processing
throughput.
P4DNS [171] is an in-network DNS server that introduces significant performance gains when

compared to traditional DNS services. ARGUS [27] is a system that improves the performance of
replication protocols by caching clients requests using the processing power of Smart NICs instead
of x86 servers. ARGUS caches client requests, thus offering immediate responses by removing the
communication delays of servers. The preliminary evaluation of ARGUS shows that it offers higher
throughput and achieves lower latency compared to similar solutions.

3.4.2 Industrial Control Systems. FastReact [167] is a tool fashioned for Industrial Control
Networks (ICN) that offers in-network monitoring, caching and control of actuators. The control
plane pushed the logic to the P4 switches via the controller and install the appropriatematch/action
table entries. Since P4 is a domain-specific language and lacks some features present in traditional
programming languages the controller translates the ICN program login into a P4 equivalent pro-
gram that utilizes registers using Conjunctive Normal Form (CNF). FastReact also passively
monitors the traffic exchanged between the actuators and the industrial controllers. Assuming
there is continuous communication between them if a certain time frame passes with no reply
from one of the sides the switch forward traffic to backup entities ensuring the industrial system
is up all the time. Finally, FastReact uses switches as caching memory for sensor data, the sensor
value along with a timestamp are stored and are updated frequently. To evaluate FastReact, the
authors create two network topologies using the CORE software tool. The first network is a tradi-
tional one, while the other is a P4-enabled one that implements FastReact. The results show that

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:16 A. Liatifis et al.

FastReact can significantly reduce response time and offer enhanced resilience. For future work,
the authors plan to evaluate FastReact’s performance on NetFPGA cards.
Rüth et al. [143] developed an in-Network Control System (NCS) that performs control com-

putations directly in the data plane. P4 programs are written and pushed to switches to offload
control function in the data plane. Utilizing the data plane any delays and jitter are eliminated. To
evaluate their proposed system authors use to emulate a network using Mininet and simulate a
pendulum system. The goal for the pendulum is to reach in equilibrium and the results indicate
this approach is one worthy of further investigating.

3.4.3 Internet of Things. Bluetooth Low Energy Service Switch (BLESS) [164] is a software
switch based on PISCES able to forward BLE data packets through IP networks, bypassing the
physical limits of the BLE protocol. BLESS has three components that offer the above function-
alities. First, the connectivity modules receive and transmit all the Bluetooth traffic between the
peers. Second, the packet-switching module responsible for enforcing the forwarding policy of
the controller. Finally, the IP connectivity module offers connectivity beyond the physical lim-
its of the BLE. The authors present and evaluate a prototype implementation in PISCES and
P4.

3.4.4 Next Generation Cellular Networks. In Reference [142], a novel a slicing framework is
developed for 5G MEC environments able to meet the strcit requirements set by the 5G stan-
dard. The proposed system use 6-tuple list of header fields to determine the output queue and
enforce QoS policies. The implementation of this systemwas done in NetFPGA SUME FPGA board.
TurboEPC [151] is a redesign of the mobile packet core. It offloads tasks to the data plane to reduce
communication overheads and achieve higher overall throughput.
Aghdai et al. [2] propose a P4-based Edge Gateway (EGW) for MEC environments in Mobile

Networks and more specifically in LTE ones. EGW is backward compatible with protocols used
in LTE networks thanks to the P4 language. In essence, EGW consists of four modules: (1) the
L3-switches module, (2) the Load-balancer module, (3) the Service Offloader module, and (4) the
S1AP Processor module. The L3-switches perform L3 routing and choose the appropriate egress
port. The Load Balancer modules choose the appropriate application by performing the ECMP
load balancing method. The Service Offloader handles S1 messages. Finally, the S1AP Processor is
a control plane application that populates tables of the switches. The authors implement EGW as a
P4 application using a Netronome NFP4000 card. EGWwas incorporated on the LTE network with
no major modification required. Also, EGWwas able to reduce the core network load by offloading
traffic to MEC applications in the edge.
Authors of Reference [128] propose a Smart Handover system for fixed-path mobile devices

called SMARTHO. More specifically, SMARTHO operates on a Central Unit level, spoofing user
traffic and proactively allocating resources. Authors validate SMARTHO using Mininet emulator
and BMv2 software switch. Their results show that the proposed approach has several benefits
over traditional.

3.4.5 Traffic Generators. In Reference [173], HyperGen was developed, a paket generator that
uses a the P4 ASIC of a switch or a smartNIC to generate traffic in the Tbps scale. P4STA [93] can
reduce the overall cost of traffic load generators by offloading the processes of traffic generation
and timestamping to the data plane. P4STA is available on many P4 targets. Finally, P4TrafficTool
[73] is a tool designed specifically to generate plugin code for many common traffic generators
and analyzers. P4TrafficTool uses the intermediate P4 code to identify headers or defined new
ones prioritizing builtin structures.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:17

Table 7. Security Solutions

Category Solution FPGA Software ASIC Simulation Evaluation

Data plane Firewall
Paolucci [129] No BMv2 No No

measure overall latency introduced by the proposed
solution

StateFit [69] No BMv2 No No
measure consistancy and latency of updates to the ONOS
SDN controller

CoFilter [18] No No Tofino Yes Compare latency of Colfilter against OVS-ConnTrack

Ricart-Sanchez [140, 141] NetFPGA No No No
Latency and throughput depending on the number of
users

P4ID [99] No BMv2 No No measure percentage of traffic not redirected to IDS
Almaini et al. [4] No BMv2 No No Throughput and latency

FrameRTP4 [13] No No No No
efficiency of hardware resources utlization in rules
produced

DoS Detection

TDoSD@DP [40] No BMv2∗ No No CPU utlization was compared against a baseline solution

Lapolli et al. [95] No BMv2 No No
Entropy estimation accuracy and detection accuracy were
measured, comparison was made with a baseline solution

P4knocking [182] No BMv2 No No
evaluate various deployments and compare them in terms
of usability

Kuka et al. [89]
Xilinx Virtex UltraScale+, Intel
Stratix 10

No No No Throughput on 2 FPGA targets was measured

Dimolianis et al. [34] No No Netronome Agilio CX No Accuracy and Forwarding capacity were measured

Friday et al. [44] No No No No
Sensitivity, precision and accuracy were amongst the
evaluation metrics

Alsadi et al. [5] No BMv2 No No
measure link delay and flow detection rate of the
proposed solution

POSEIDON [188] No No Tofino No
measure effectiveness against high volume attacks and
ability to adapt in various attack patterns

Flow Security

LANIM [104] No No BMv2 No
System performance under attack was measured and the
results were compared against traditional solutions

SPINE [33] No No BMv2 No —

P4NIS [103] No No BMv2 No
Probability of eavesdropping, throughput and network
RTT were measrued during the expiriments

Lin et al. [102] No No Tofino No Encoding and Decoding speeds were measured
P4-MacSec [61] No BMv2 NetFPGA SUME No Googput, RTT depending on the number of hops
P4-IPSec [60] No No No No —

Zhu et al. [193] No BMv2 No No
measure encryption/decryption time against traditional
solutions

Yazdinejad [179] Xilinx Zynq-7000 No No No
measure detection accuracy and hardware resources
consumption

IoT Security POISE [120] No No No No Overhead introduced by the POISE system
NETHCF [100] No No Tofino No measure resource utilization and latency

∗Entries with ∗ are not clearly stated in the text document.

3.5 Security

Securing a computer network is a challenge for organisations of any size. SDN as a management
approach enhances security policy enforcement though the unified control plane. Using program-
ming language like P4 can further assist enforcing policies or detect anomalies with zero latency
in line-rate. In this section applications of P4 related to security are presented. Table 7 list security
solution that utilize a P4 data plane to achieve their goal.

3.5.1 Data Plane Firewall. In Reference [129], P4 was used for Deep Packet Inspection and
packet processing in line-rate speeds. In particular the authors propose a P4-enabled node able
to perform traffic offloading and operate as a DDoS firewall in packet-over-optical networks. To
validate their system authors implemented it both in BMv2 software switch and in an FPGA board.
Authors of Reference [121] study popular spoofing attacks and their countermeasure mechanisms.
Afterwards, implementations of these countermeasure mechanisms are realised using P4. Evalua-
tion results using Mininet and BMv2 software switch in terms of throughput prove the efficiency
of data plane offloading for security solutions.
StateFit [69] is a security framework able to detect and filter out malicious traffic at the data

plane. StateFit consists of two parts: (1) the StateFit App, an ONOS application acting as the man-
aging component of StaFit, and (2) the StateFit Interpreter, which is responsible for translating
policies originating from (1) and applying them to data plane devices. Evaluation results using
Mininet and BMv2 show that StateFit can push rules timely with no disturbances in network’s
operation.
CoFilter [18] is a hybrid stateful packet filter that uses hash tables to store data. Hash collisions

are calculated by a server in the control plane. Doing so, CoFilter can lower the communication
load between the Network Elements and control plane. To evaluate their proposed solution two
tests were conducted. The first measured the offloading capacity of the proposed system and the
second measured the latency between server and switch.
In References [140, 141] authors propose a 5G hardware firewall able to meet the KPIs of 5G net-

works. The proposed firewall is implemented using the Xilinx NetFPGA board and programmed

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:18 A. Liatifis et al.

using P4. The prototype testbedwas empirically testedwith generated pcap files that containedma-
licious traffic. The proposed firewall was able to block traffic before entering the core network and
can achieve high throughput. Finally, the authors show that the proposed system can be deployed
in real testbeds. P4ID [99] is a P4-based intrusion detection system that consists of rule generator
that translates known IDS rule sets in P4. This approach results in high packet processing directly
in the data plane.
Akmaini et al. [4] developed two lightweight authentication mechanisms and delegate them

to data plane devices. The first method is a port-knocking mechanism based on FSMs while the
second one is a one-time password. The controller can dynamically change the port sequence
by issuing an update on switch tables and registers values. Evaluation results indicate that the
proposed solution has no significant negative impact.
Bonfin et al. [13] developed FrameRTP4, a P4-based framework for real-time detection and

mitigation of 5G Network Slicing (NS) scenarios offering efficient and scalable wildcard ACL
rules and a monitoring system to reduce overhead. Moreover, it delivers an orchestrator to control
switches enabling lifecycle management of NSs. Taking into account the complexity of 5G envi-
ronments, the orchestrator exposes an interface to developers and operators for easier deployment
of new features and management. Since data plane devices have limited resources at their disposal
and must operate at line rate, FrameRTP4 uses Bloom Filters (BFs) to quickly identify attacks
and generates the ACL rules dynamically for efficient use of the available memory. The detection
rate of BFs and the compression ratio of wildcard rules were measured and analysed during their
evaluation. Results indicate that FrameRTP4 is a feasible and extensible solution suitable for 5G
environments.

3.5.2 DoS Detection. TDoSD@DP [40] is a tool developed to mitigate Telephony DoS attacks
at the edge of the network, thus preventing needless resource utilization. TDoSD@DP enforces
limits on each port regarding the maximum number of allowed SIP sessions. Performing Deep

Packet Inspection (DPI) on SIP protocol headers, the switch extracts related fields and counts
the number of active sessions. Each session start message increases the session counter by one and
each session termination message decreases the session counter by one. For their evaluation, the
authors compared their proposed system against a legacy system. The proposed system protects
efficiently by dropping the excess DoS traffic. Additionally, the SIP server shows no CPU spikes,
thus it can service other SIP clients without disruptions.
Lapolli et al. [95] developed an in-network DDoS attack detectionmechanism. The proposed sys-

tem is developed using P4 and is able to filter trafficwithout affecting overall network performance.
The evaluation of the proposed mechanism included CAIDA data set traces. In Reference [182],
authors investigate the benefits of offloading port knocking mechanism to the data plane and its
constraints on various levels of offloading. In particular, the authors present four different offload-
ing variations, two full data plane offloading mechanisms and two hybrid control plane and data
plane offloading mechanisms. An important design aspect of the proposed methods is the index-
ing of IP addresses. Fully offloaded methods offer higher autonomy of data plane devices, since
they operate on the data plane, at the costs non optimal resource utilization or multiple collisions.
However, hybrid methods offer more flexibility at cost of dependency over the control plane. The
authors offers a detailed comparison study of the proposed methods and conclude that offloaded
port knocking is effective though data plane constraints need to be taken into consideration.
In Reference [89], the authors design a hardware-based firewall using P4 and Xilinx Virtex

UltraScale+ FPGA board able to counter amplification attacks. They compare its throughput with
a hand crafted VHDL.
In Reference [34], a Distributed Denial of Service (DDoS) detection system is developed that

operates in the data plane. More specifically the proposed system inspects network traffic and

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:19

computes some metrics, evaluates these metric to detect potential malicious traffic and, last, in-
forms external systems in case a malicious traffic is detected. To evaluate the proposed system, a
Netronome SmartNIC is used. Moreover, Friday et al. [44] developed a novel DDoS attack detection
and mitigation scheme able to identify attacks of various sizes. The proposed scheme is capable of
overcoming known SDN vulnerabilities caused by DDoS attacks.
Alsadi et al. [5] present a security monitoring solution for programmable data plane that con-

sists of three modules. The first module is responsible to perform real time deep packet inspection,
the second one is responsible to measure latency using probes, and the third module is responsi-
ble to monitor flow behaviour without risking the control plane’s stability. Similarly Zhang et al.
[188] developed POSEIDON, a DDoS mitigation system that makes efficient use of programmable
data plane high throughput capabilities. POSEIDON provides a modular developer-friendly policy
expression language similar to NetCore [150]. To make efficient use of the data plane the authors
developed an orchestrating component responsible to translate and partition the policy to themost
suitable switches and commodity servers using integer linear programming to maximize the over-
all throughput. To validate their design, the authors implemented POSEIDON in an actual Tofino
P4 ASIC switch and DPDK for commodity servers. The extended suite of DDoS attacks POSEIDON
undergo proves its efficiency compared to traditional methods in terms of throughput and power
consumption.

3.5.3 Flow Security. Liu et al. in Reference [104] propose a new mechanism of eavesdropping
attack identification and prevention called LANIM. An attacker has to bypass three defence lines
before being able to successfully land an attack. First, LANIM uses minimum risk Machine Learn-
ing algorithms to identify abnormal network behavior and take actions. Second, traffic is encrypted
using a novel stasteful encryption scheme that involves hosts timestamps in the selection of an
encryption policy from a pool of available ones. Lastly, the programmable network devices various
policies. P4 was chosen for its ability to store information using the registers data structure. To
evaluate LANIM authors rely on network entropy and their results show that LANIM can be de-
ployed on various networks, adapts easily to various security scenarios and enhances the transport
security.
Surveillance Protection in the Network Elements (SPINE) [33] is a traffic encryption ap-

proach targeted for Large networks and does not require the collaboration of the end hosts, instead
only the two end Autonomous Systems (ASs) need to collaborate between each-other. SPINE
encrypts IP and TCP packet headers before leaving the initial AS and decrypts them in the last AS
before being deliverd to the end host. To demonstrate SPINE’s effectiveness authors implement it
on a P4 PISA hardware switches and the results they concluded to show that SPINE can easily be
deployed in real world networks.
P4NIS [103] is a three-layer defence system against eavesdropping attacks. The first layer lever-

ages the security of the existing encryption schemes, the second layer encrypts a subset of header
fields using various encryption methods, and the final layer forwards traffic using various forward-
ing techniques and algorithms making it difficult for the attacker to capture all the traffic of a flow.
Lin et al. [102] developed a permutation algorithm that make us of P4’s ability to manipulate

packets to enhance the security of 5G and IoT applications. Thanks to line-rate processing offered
by the switches the performance penalties are minuscule compared to software-based solutions.
P4-MacSec [61] is an implementation of the IEEEMacSec specification in a P4-based data planes.

P4-MacSec architecture consists of a two-tier control plane, one controller that has a global view
of the network and switch-local controllers. Additionally, authors propose a secure link discovery
mechanism that uses this two-tier controller architecture. The evaluation process was done using
BMv2 software switch. Attempts were made to realize P4-MacSec on a NetFPGA SUME FPGA

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:20 A. Liatifis et al.

board too. P4-IPSec [60] is the first attempt to integrate IPSec VPN tunnels and an SDN-enabled
data plane. To realize though Ipsec function extern P4 objects are required. Extern objects though
often lead to portability issues when deployed on different targets.
Zhu et al. [193] design a dynamic multi-path and multi-protocol communication mechanism

that encrypts traffic as they traverse data plane devices. The proposed mechanism consists of four
modules. First, the information collection module is responsible the collect and analysing user
traffic. Second, the use requirement storagemodule is responsible for sore encryption requirements
of user flows. Third, the encryption and transmission decision module is tasked with choosing
the most appropriate encryption schemes using fuzzy logic and constructing the path a network
flow will follow. Finally, the mapping module acts as a database storing all necessary information.
To evaluate the proposed mechanisms authors implemented them in the ONOS controller and
validated in using the BMv2 target switch. The authors conclude that the proposed mechanism is
resource-efficient and requires less time than traditional schemes.

3.5.4 IoT Security. Programmable In-network security (POISE) [120] is a security solution
for custom made devices. Consisting of three modules, namely, the client module, which collects
device-specific data and encapsulated them in special packets, the POISE compiler receives a policy
configuration program and outputs a P4 program able to enforce these policies and parse the
packets correctly, and finally the POISE runtime environment, which acts as the controller of the
network. POISE enforces policies in the data plane ensuring a more robust security model but
requires client side modifications to function properly.
NETHCF [100] is an in-network filtering system for spoofed traffic that take full advantage

of programmable data planes. It overcomes the limitations of traditional Hop Count Filtering

(HCF) techniques by utilizing the data plane as a cache for line-rate processing of traffic while the
control plane is considered as an HCF mirror handling non-heavy-hitter network flows. Moreover,
to make use of the limited memory of programmable switches the authors suggest an IP hop

count design (IP2HC) leveraging binary trees. To evaluate NETHCF a testbed consisting of a
Tofino hardware switch and two servers using CAIDA traffic. The results demonstrate NETHCF’s
ability to process flows in line rate and maintain heavy-hitter statistics in the data plane.

3.6 Target-specific Optimizations

As a high-level DSL P4 can be compiled in multiple target-specific configuration formats. Each
target though may differ considerably compared to other targets. Target-specific compilers pro-
duce optimised solutions, though for optimal data plane utilization knowledge of target-specific
details is needed.
Cabal et al. [17] developed a novel packet parser design for FPGA targets able to achieve high

raw throughput by expoiting the enormous processing parallelism offered by FPGA boards. The au-
thors divide the bus in logical areas called regionswhere one is each able to store a packet. This way
more packets can be processed in a single cycle. Additionally, using pipeline stages the underlying
hardware is usedmore efficiently. The P4 code is transformed into aParseGraphRepresentation

(PGR) and topological ordering is applied. Finally, the VHDL code is generated and is pushed to
the FPGA board. The design in validated through two FPGA boards scenarios and the results show
1 Tbps of raw throughput and significantly higher throughput in more complex protocol stacks.

Cheng-Hung et al. [62] proposed an alternative method of rule removal in programmable
switches. In contrast to OpenFlow switches where two timeout counters are utilized for this op-
eration, P4 switches can automatically remove entries by inspecting the payload. Regarding the
TCP the switch removes a flow entry when the session termination flags are existent. For UDP
connections and half-closed TCP sessions, an idle timeout counter is used. The evaluation results
show better TCAM utilization and less overhead for the controller.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:21

Yazdinejad et al. [178] propose a new highly flexible architecture for programmable network
devices that support all operations a switch is supposed to offer and a two step preprocessing
framework suitable for FPGA boards. The proposed architecture promises to alleviate the designer
of theHardware Description Languages (HDL) details and accelerate the development process.
Recursive InterNetwork Architecture (RINA) is an alternative network architecture based on
Inter-Process Communication (IPC). Authors of Reference [41] developed a RINA compatible
Interior router using BMv2 software switch and P4.
COIN [176] is a data indexingmechanism for edge servers that is implemented in P4. The control

plain maintains a two-dimensional space for associating the P4 switches with the cached data.
When a query is related to cached data an immediate response is sent.

4 P4 AS A DATA PLANE LANGUAGE

Introducing programmability through a DSL raises many benefits and concerns as well. The devel-
oper can be more expressive when using a programming language instead of a fixed functionality
interface. Though the developer is a human being and risk of bugs are always existent. This Sec-
tions devoted to techniques and tools used to debug, optimize and extend the P4 as a programming
language.

4.1 Code Validation

Netdiff [37] is a framework built on top of Synmet symbolic execution engine that performs sym-
bolic execution of two data plane configurations expressed in SEFL language and decides if they
are equivalent or not. This process can act as a validation mechanism. Netdiff was able to identify
many bugs in various data plane configurations.
KeySight [174, 191] is a three-module systemP4 Programmable Data Plane that aims tominimize

postcard packet processing. Using Packet Equivalence Class abstraction KeySight forwards and
processes postcard packets when necessary. To evaluate KeySight, authors deployed it on a Tofino
ASIC and on a smartNIC.

Freire et al. [42] proposed a simple yet powerful assertion language called ASSERT-P4 built on
top of the KLEE tool and the P4 reference compiler able to identify bugs. Provided a P4 annotated
program ASSERT-P4 produces a C-based model and performs symbolic execution to identify any
assertion failures. To validate their design 4 P4 application from recent literature, the results of
which show that ASSERT-P4 can identify bugs in common P4 applications in a reasonable time
even though the assertion time grows exponentially with the of the tables and the number of
assertion inserted to the P4 program.
Kohler et al. [87] developed an in-network complex event processing system called P4CEP using

P4. Instead of performing these tasks on dedicated servers, P4CEP performs them directly in the
data plane. P4CEP offers a compiler that integrates a user-provided P4 program written in any
version of P4, adds its P4 code additions, and generates a final P4 target program. Additionally,
P4CEP runtime offers the operator a control plane interface. Complex Event Processing operations
are expressed using a rule-based specification language. Their evaluation was performed using a
Netronome Agilio Smart NIC card and BMv2 P4 reference switch. Their results show that P4CEP
achieves good performance. Finally, the authors present the limitations of P4 regarding performing
in-network computations.
Vera [158] is a verification tool that performs symbolic execution on P4 programs to identify

bugs. P4 code is translated to Symnet’s SEFL language and is symbolically evaluated by the Symnet
software tool. An innovative contribution the Vera tool introduces is that it goes a step further
and extends its evaluation process on table entries (tables rules), structures that are dynamically
populated by the control plane.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:22 A. Liatifis et al.

P4Box [122] is a P4 verification system that leverages the benefits dynamic enforcement and
deploys run-time monitors in the data plane. These monitors are essentially P4 constructs that do
not modify the intended behavior of the P4 code and introduce insignificant delay to the pipeline.
Developers can use these constructs to verify the behavior of their P4 program.
SAFEP4 [38] is a type-safe version of P4 that eliminates many errors P4 is prone to. SAFEP4

tracks header dependencies and use many domain-specific optimizations to minimize the amount
of bugs.
P4RL [154] is a system that adopts Reinforcement Learning to verify switches at runtime. More

specifically P4RL use a reinforcement learning assisted fuzzy testing method to verify the switch
behavior and uses a query language to specify the desired behavior of the switch. Tests on existing
P4 application show the superior performance of P4RL against baseline approaches.
Freire et al. [43] explore the many C-like features of P4 to produce a C equivalent programs and

then perform symbolic analysis to find violations and possible security concerns.

4.2 Code Optimization

As in all modern programming languages, the compiler undertakes the optimization of the code for
the respective architecture. As a programming language P4 is able to exploit the knowledge of all
these years. MATReduce framework [25] intends to produce a more efficient P4 pipeline by elim-
inating duplicate match operations. MATReduce is of two modules, the preprocessor module and
the runtime-management module. The preprocessor is responsible for identifying dependencies
between MATs, the desing of an improved compound MAT and finally the generation of an infor-
mation file that is feeded to the second module. The runtime-management module is responsible
for transforming user rules into the compound equivalent commands. For each rule the runtime-
management modules considers the information-file to generate and unambiguous equivallent
rule. Evaluation of the proposed system is done in both software and hardware implementation
and the results show that the compound pipeline is more efficient.
pcube [152] is a preprocessor that offers primitives for easier development of P4 applications.

pcude primitives include loops, min, and max operations. To evaluate pcube the authors imple-
ment two applications. In both applications, the lines of code and the correctness of the developed
applications were measured. The results indicate that pcude is capable of reducing the overall size
of the code.
P4LLVM [31] is an LLVM-based compiler that performs further optimizations in contrast to

the default P4 compiler. The intermediate state is translated to LLVM-IR and target-independent
optimization operations are performed. The results demonstrate that LLVM’s minor optimizations
lead to more optimized output when compared to P4 default compiler output. P4HL [57] a set of
tools that accelerate the development of P4 programs. P4HL consists of two components, namely,
E-Domino a high-level language, the P4HLC the compiler that translates E-Domino code in P4.
B-cache [186] is a behavior caching framework that supports stateful as well as stateless be-

haviors. B-Cache reduces the processing time of packets that traverse through complex pipelines
by caching the behavior of the pipeline in a single cache MAT. The authors present optimized
methods for cache MAT entries generation, take into consideration the limited memory offered by
the data plane elements and device a method to keep in sync the expected output of the pipeline
with the cache MAT. The authors claim that B-Cache can minimize the delay by 50% and increase
throughput by 200% on BMv2 software switch.
Patra et al. [132] developed a compiler system called Multi-Architecture Compiler System

for Abstract Dataplanes (MACSAD). MACSAD combines the P4 language with OpenData-

Plane (ODP) API to offer a high-level and cross-platform compiler. The MACSAD compiler con-
sists of three components: (1) the auxiliary fronted, (2) the auxiliary back end, and (3) the core

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:23

compiler. MACSAD was extensively evaluated with different target platforms and under several
processing pipelines. The performance and the scalability of it were extensively measured too. The
results show that MACSAD performs match state of the art solutions. Authors of Reference [181]
develop a compositional abstraction model using Boolean formulas. The proposed system includes
a compiler that translates the P4 input program in boolean formulas. PRIME [131] is an interpreter
that parses and merges P4 programs in a sequence specified by the administrator. A verification
phase is also added to avoid any unnecessary loops.

4.3 Testing and Debugging

Troubleshooting a network is a difficult and error prone task. When including programmability to
the network, this task may turn into a more complex problem. The research community has pro-
posed several debugging tools and solutions to mitigate this problem. PFPSim [1] is a simulator for
programmable data planes that uses SystemC framework to build a model of the target hardware
and software modules. PFPSim links the P4 program to this model and associates the control plane
model to the hardware. Finally, a traffic generator feeds the model while the PFPSim collects the
events that are generated.
P4pktgen [124] is a tool that automatically generates test cases for P4 programs using the BMv2

target’s json configuration file as input. Using satisfiability modulo theories (SMT) solvers and
theory of bit vectors p4pktgen attempts to find a packet that satisfies all these constrains. Although
p4pktgen support a subset of P4 language specification it proves that P4 programs introduce bugs
like conventional programs written in languages like C.
NS4 [8] is a P4-based simulator that aims to bridge the gap between simulation and emulation

tools. NS4 translates P4 code into discrete events and loads them in their respected modules. Do-
ing so NS4 avoids the limitation of an emulation tool. To evaluate NS4 authors create a flat tree
topology, simulate SilkRoad, and afterward compare it with a Software Load Balanced developed
in ns-3 simulator. The final results show the NS4 is less computational heavy than its ns-3.
P4Tester [190] is an efficient testing system designed for programmable data planes able to find

bugs in run time rules faults. To achieve this P4Tester proposes a new intermediate representation
of the P4 program based on the Binary Decision Diagram and offers a source routing forwarding
probing model. Similarly P4DB [192] is a debugger designed for P4-enabled networks. Using P4DB
operators have access to a primitive set of commands similar to ones that offer traditional tools
like GNU Debugger.

4.4 P4 Target Optimizations

A high-level language as P4 aims to abstract away target dependant details and offer a generic
means to express the desired behaviour of a device. In the end, though the target-specific result s
what matters the most. An improperly utilised target may lead to diminished performance. Smart
and efficient allocation of P4 data structures to physical hardware components is important to gain
the most of the data plane devices. Taking into consideration target-specific features is equally
important.
Silva et al. [146] proposed the Heterogeneous Data Plane (HDP) platform, a platform that

according to authors can further extend the programmable of data planes. HDP combines tradi-
tional x86 servers, FPGA boards, and Smart NICs and aims to eliminate hardware limitations by
combining the aforementioned P4 targets effectively and efficiently.
Authors of Reference [81] propose a new architecture for mapping P4 match/actions operation

to FPGA boards utilizing DCFL algorithm. The architecture is further optimized by introducing
memory duplication for more memory accesses per clock cycle and TCAM rule offloading for
rules that degrade the performance of the CDFL output.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:24 A. Liatifis et al.

Authors of Reference [19] present a P4 to VHDL translation framework. During the compilation
process a set of optimized templates are used to translate the P4 code and output result is further
optimized by the compiler using a pre-built evaluation library.

4.5 Virutalization of Data Plane

The purpose of the virtualization is the logical partitioning of resources. These virtualized re-
sources are then lent to other users and utilized as seen fit by them. Many virtualization solution
have been proposed by the research community over the past years.
Hyper4 [53] is a virtualization solution for programmable data planes that supports functions

such as slicing and virtual networks. On a high level, a compiler translates a P4 input program into
table entries that emulate the behavior of the original P4 program. Hyper4 though lacks support
of P4 native actions and is slower that native solutions. MPVisor [184] is a Network Functions hy-
pervisor able to decouple the tables NFs use and rearrange them in such a way that the underlying
hardware is optimally utilized.
HyperVDP [183, 185] is a P4 hypervisor able to fully virtualize the underlying PDP while being

resource-efficient and achieves high throughput. HyperVDP offers a dynamic compiler responsible
for carrying out various novel techniques to optimize the output. Moe specifically the compiler
receives multiple P4 programs as inputs and produces a unified output for multiple targets. To
validate its performance, the authors implemented two prototypes, one based on BMv2 and one
based on DPDK. VirtP4 [147, 148] is a P4 virtualization architecture that offers parallel execution of
independent switches. A proof-of-concept implementation was done using NetFPGA SUME board
where the performance exhibits that of similar solutions. P4MT [29] is an attempt to introduce
multitenancy in the control plane of the P4Rutime. An experimental international network, called
i-P4EN, demonstrated its feasibility.

5 DISCUSSION

It should be clear by now that P4 language has a wide range of applications and has gained a lot
popularity over recent years. One survey article is unable to cover all these fields in detail, since its
domains of application span across many fields of networking. In the field of Traffic Engineering,
P4 is used for its ability to manipulate packet headers. INT is a heavily used concept that allows
the transfer of network metadata across the networks using the user-generated traffic. Many new
algorithms have been proposed over the years like HULA to load-balance the traffic between links,
or detect link failures.
The security domain also benefits greatly by using P4. Hardware-based firewall were black box

devices with little configuration options. Programmable switches can be tasked with firewall re-
sponsibilities and be highly flexible the same time. Taking advantage of the real time and enriched
statistics novel AI-based solutions can be designed and offloaded directly to the data plane operat-
ing in line-rate speed. Moreover, the flexible programmable devices can easily be reconfigured to
offer upgraded security services or different ones depending on the needs of each organization.
One other important category is task offloading to the data plane. VNFs were traditionally run

on dedicated server, though this process was under utilizing the resources and resulted in low
throughput. Programmable hardware can implement a wide variety of applications without the
penalties of commodity server. Tasks that were not thought of also arose. For example, traffic
generators receive a small payload and amplify it to produce artificial traffic with a fraction of the
cost of dedicated traffic generators.
As a programming language, P4 has both benefits and challenges. Flexibility and expressiveness

are amongst the most important benefits, while verification and bug identification are amongst

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:25

the most unwanted features. Especially for bugs, their identification in the early stages of devel-
opments can prevent network outages or unexpected behaviors.

6 FUTURE DIRECTIONS

In recent years, P4 has met the acceptance of both academia and industry. This trend is very likely
to continue for the following years with more vendors, network providers and researchers em-
bracing what P4 has to offer. The increasing number of interested parties will inevitably lead to
new domains where P4 will be used. Moreover, these new domains will also lead to needs that the
current specification does not cover. In the following subsections, future directions are presented
in the form of new application domains and challenges.

6.1 Integrating In-network Computing to Data Plane Processes

In-network computing is a direct result of the programmability introduced to the data plane
through languages like P4. As discussed in previous sections (Section 3.4.1) in-network computing
enables data plane devices to partially or fully perform computations as the packets traverse the
programmable fabric. This results in to assuming programmable devices as computing nodes with
special capabilities like Tensor Proccessing Units (TPUs) [75]. Data plane devices though have
a primary function of forwarding traffic but the opportunity of performing computations on the
fly is a promising feature for future offloading techniques. To better exploit data plane offloading
existing resource allocation algorithms should be developed and existing ones properly adjusted to
into consideration the twofold nature of the data plane (traffic forwarding and data computations).
Regarding traffic under QoS restriction, new routing algorithms should be developed to efficiently
guide traffic through the appropriate nodes performing computations without interrupting the
normal operation of the network.

6.2 Multi-protocol Stack Deployments

Multiple internet architectures have been proposed over the years promising to replace IP/TCP
(e.g., RINA, NDN). The transition from one architecture to another is a challenging task though.
The need for coexistence between multiple architectures will eventually emerge, since each one
has benefits and limitations compared to others. Offering a programmable fabric P4 can help
telecommunication providers implement multiple architectures and offer them as a service to
stakeholders. Based on individual organisation needs one ormany internet architecturesmay seem
fit.

6.3 End-to-End Fine-grained Monitoring

The next generation of cellular networks (B5G/6G) [20, 108] aim for seamless connectivity, higher
density than previous generations, and a more robust network relying heavily on AI to perform
several operations. To achieve the mentioned above goals 6G will leverage the available aerial
space through Unmanned Aerial Vehicles (UAVs) [145] and Low Earth Orbit (LEO) Satellites
[85]. Programmable data planes can boost the accuracy in measuring delays, offer fast-failover
mechanisms and even implement solutions previsously not posible to do so [105, 106]. Current
solutions though are not designed to exploit the rich statistics offered by P4-based data planes. It
is evident that efforts should be made in standardising the monitoring mechanisms with respect
to metrics monitored and the structure of information.

6.4 Verification of Data Plane Behaviour

Introducing such a level programmability to the data plane in the form of abstractions introduces a
series of challenges as well. One of themost important on of these challenges is the verification of a

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:26 A. Liatifis et al.

P4 program. As P4-based deployments will gradually replace traditional ones and OpenFlow-based
ones they will becomemore complex, a need to verify their proper behaviour will arise. Thankfully
P4 in its latest version is not a Turing complete language, but this statement may not hold true for
future versions of the language or data plane programmability in general. Moreover, transpilation
of one language to another is still facingmany limitations due to lack of tools and proper validation
methods. The need of such tools will arise in the near future taking into consideration the rapid
evolution of network programming DSLs.

6.5 Generalisation of Network Programming

P4 is a DSL for network programming. Despite that fact though, P4 is not capable of carrying
out any network related computation. For example, the language cannot perform deep packet
inspection in its current version (P416). Future services and infrastructure deployments expect a
network that can accommodate multi-criteria needs (e.g., deep packet inspection, bizzare flow-
prioritization polines, etc.) Future versions of the language should take into consideration current
limitations and needs of the community. Offering control through P4 to scheduling and queuing
policies of switches can further assist the design and development of custom solutions. Addition-
ally, introducing loops to the language specification can help in many protocols (e.g., MPLS).

6.6 Requirements of New Hardware Devices

Programmable devices should offer a high level of flexibility and programmability to the develop-
ers without sacrificing throughput. Software targets are easy to extend and deploy, a statement
not true for hardware ones. Hardware targets often lack many features due to ASIC design con-
strains. Hardware design often ends up in a compromise between set of features and processing
speed. Future hardware designs should take into consideration limitations of existing solutions
(e.g., inability to manipulate certain pipeline stages) without sacrificing throughput. Moreover,
all hardware targets available today offer Tbps scale throughput. To boost the adoption of P4 in
smaller scale networks 10 and 1 Gpbs variants of these ASICs should be designed.

7 CONCLUSION

In this survey, we presented the P4 programming language, a high-level domain-specific program-
ming language for programmable networks. We begun by providing a historical overview of the
Computer Network evolution dating back to their first appearance until today. This made clear
that programmable networks are the next logical evolution of computer networks.
An overview of the P4 language followed. First, the two major versions of the language were

presented, P414 and P416, with the latter being the latest. Emphasis was given to the latest version of
the language, since it emended on many design choices of the previous version. The basic building
blocks, alongside the various additional tasks that are often omitted but are equally important,
were presented. The applications of P4 span across many sub-fields of computer networks. Traffic
load-balancing and congestion control are only two of many examples in the domain of Traffic
Engineering. Flexible hardware-based firewall systems are also a good example of P4’s application
in the domain of security.
P4 is also used to perform network-assisted tasks and in-network tasks. For example, Network

Functions, like application-level load-balancers were originally executed in commodity servers
with low-performance gains relative to cost. Programmable networks alleviate the server from
these highly specialized and application-specific tasks. Finally, the concerns around P4 as a pro-
gramming language were presented. Like conventional languages, P4 requires the debugging and
optimization of the final binary file.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:27

REFERENCES

[1] S. Abdi, U. Aftab, G. Bailey, B. Boughzala, F. Dewal, S. Parsazad, and E. Tremblay. 2016. PFPSim: A programmable
forwarding plane simulator. In Proceedings of the ACM/IEEE Symposium on Architectures for Networking and Commu-

nications Systems (ANCS’16). ACM/IEEE, 55–60. https://doi.org/10.1145/2881025.2881029
[2] A. Aghdai, M. Huang, D. Dai, Y. Xu, and J. Chao. 2018. Transparent edge gateway for mobile networks. In Proceedings

of the IEEE 26th International Conference on Network Protocols (ICNP’18). IEEE, 412–417. https://doi.org/10.1109/ICNP.
2018.00057

[3] A. Aghdai, Y. Xu, and H. J. Chao. 2017. Design of a hybrid modular switch. In Proceedings of the IEEE Conference

on Network Function Virtualization and Software Defined Networks (NFV-SDN’17). IEEE, 1–6. https://doi.org/10.1109/
NFV-SDN.2017.8169825

[4] Amar Almaini, Ahmed Al-Dubai, Imed Romdhani, Martin Schramm, and Ayoub Alsarhan. 2021. Lightweight edge
authentication for software defined networks. Computing 103, 2 (Feb. 2021), 291–311. https://doi.org/10.1007/s00607-
020-00835-4

[5] Amir Alsadi, Davide Berardi, Franco Callegati, Andrea Melis, and Marco Prandini. 2021. A security monitoring archi-
tecture based on data plane programmability. In Proceedings of the Joint European Conference on Networks and Com-

munications and 6G Summit (EuCNC/6G’21). IEEE, 389–394. https://doi.org/10.1109/EuCNC/6GSummit51104.2021.
9482549

[6] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. 2002. Overview and Principles of Internet Traffic Engineering.
Technical Report RFC3272. RFC Editor. RFC3272 pages. https://doi.org/10.17487/rfc3272

[7] A. Azzouni, N. T. Mai Trang, R. Boutaba, and G. Pujolle. 2017. Limitations of openflow topology discovery protocol.
In Proceedings of the 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net’17). IEEE, 1–3. https:
//doi.org/10.1109/MedHocNet.2017.8001642

[8] Jiasong Bai, Jun Bi, Peng Kuang, Chengze Fan, Yu Zhou, and Cheng Zhang. 2018. NS4: Enabling programmable data
plane simulation. In Proceedings of the Symposium on SDN Research (SOSR’18). Association for ComputingMachinery,
New York, NY, Article 12, 7 pages. https://doi.org/10.1145/3185467.3185470

[9] CristianHernandez Benet, Andreas J. Kassler, Theophilus Benson, andGergely Pongracz. 2018.MP-HULA:Multipath
transport aware load balancing using programmable data planes. In Proceedings of the Morning Workshop on In-

network Computing (NetCompute’18). Association for Computing Machinery, New York, NY, 7–13. https://doi.org/10.
1145/3229591.3229596

[10] D. Bhamare, A. Kassler, J. Vestin, M. A. Khoshkholghi, and J. Taheri. 2019. IntOpt: In-band network telemetry opti-
mization for NFV service chain monitoring. In Proceedings of the IEEE International Conference on Communications

(ICC’19). IEEE, 1–7. https://doi.org/10.1109/ICC.2019.8761722
[11] D. Bhat, J. Anderson, P. Ruth,M. Zink, and K. Keahey. 2019. Application-based QoE support with P4 andOpenFlow. In

Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOMWKSHPS’19). IEEE, 817–823.
https://doi.org/10.1109/INFCOMW.2019.8845180

[12] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. 2014. OpenState: Programming platform-
independent stateful openflow applications inside the switch. SIGCOMM Comput. Commun. Rev. 44, 2 (Apr. 2014),
44–51. https://doi.org/10.1145/2602204.2602211

[13] Michel Bonfim, Marcelo Santos, Kelvin Dias, and Stênio Fernandes. 2020. A real-time attack defense frame-
work for 5G network slicing. Software: Pract. Exper. 50, 7 (2020), 1228–1257. https://doi.org/10.1002/spe.2800
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2800

[14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,
Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.1145/2656877.2656890

[15] Wolfgang Braun and Michael Menth. 2014. Software-defined networking using OpenFlow: Protocols, applications
and architectural design choices. Future Internet 6, 2 (2014), 302–336. https://doi.org/10.3390/fi6020302

[16] Gordon Brebner andWeirong Jiang. 2014. High-speed packet processing using reconfigurable computing. IEEEMicro

34, 1 (2014), 8–18. https://doi.org/10.1109/MM.2014.19
[17] Jakub Cabal, Pavel Benáček, Lukáš Kekely, Michal Kekely, Viktor Puš, and Jan Kořenek. 2018. Configurable FPGA

packet parser for terabit networks with guaranteed wire-speed throughput. In Proceedings of the 2018 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA’18). Association for Computing Machinery, New
York, NY, 249–258. https://doi.org/10.1145/3174243.3174250

[18] Jiamin Cao, Jun Bi, Yu Zhou, and Cheng Zhang. 2018. CoFilter: A high-performance switch-assisted stateful packet
filter. In Proceedings of the ACM SIGCOMM Conference on Posters and Demos (SIGCOMM’18). Association for Com-
puting Machinery, New York, NY, 9–11. https://doi.org/10.1145/3234200.3234251

[19] Z. Cao, H. Su, Q. Yang, J. Shen, M. Wen, and C. Zhang. 2020. P4 to FPGA-A fast approach for generating efficient
network processors. IEEE Access 8 (2020), 23440–23456. https://doi.org/10.1109/ACCESS.2020.2970683

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:28 A. Liatifis et al.

[20] David Carrascal, Elisa Rojas, Joaquin Alvarez-Horcajo, Diego Lopez-Pajares, and Isaías Martínez-Yelmo. 2020. Anal-
ysis of P4 and XDP for IoT programmability in 6G and beyond. IoT 1, 2 (2020), 605–622. https://doi.org/10.3390/
iot1020031

[21] Lucas Castanheira, Alberto Schaeffer-Filho, and Theophilus A. Benson. 2019. P4-InTel: Bridging the gap between
ICF diagnosis and functionality. In Proceedings of the 1st ACM CoNEXTWorkshop on Emerging In-network Computing

Paradigms (ENCP’19). Association for Computing Machinery, New York, NY, 21–26. https://doi.org/10.1145/3359993.
3366648

[22] C. Chen, H. Fang, and M. S. Iqbal. 2020. QoSTCP: Provide consistent rate guarantees to TCP flows in software
defined networks. In Proceedings of the IEEE International Conference on Communications (ICC’20). IEEE, 1–6. https:
//doi.org/10.1109/ICC40277.2020.9148715

[23] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstreich, Steven A. Monetti, and Tzuu-Yi
Wang. 2019. Fine-grained queue measurement in the data plane. In Proceedings of the 15th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT’19). Association for Computing Machinery, New York,
NY, 15–29. https://doi.org/10.1145/3359989.3365408

[24] X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou. 2019. P4SC: Towards high-performance service function chain
implementation on the P4-capable device. In Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service

Management (IM’19). IEEE, Arlington, VA, 1–9.
[25] X. Chen, D. Zhang, and H. Zhou. 2018. MATReduce: Towards high-performance P4 pipeline by reducing duplicate

match operations. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’18). IEEE, 1–7. https:
//doi.org/10.1109/GLOCOM.2018.8647320

[26] N. Choi, L. Jagadeesan, Y. Jin, N. N. Mohanasamy, M. R. Rahman, K. Sabnani, and M. Thottan. 2019. Run-time perfor-
mance monitoring, verification, and healing of end-to-end services. In Proceedings of the IEEE Conference on Network

Softwarization (NetSoft’19). IEEE, Paris, France, 30–35. https://doi.org/10.1109/NETSOFT.2019.8806660
[27] Sean Choi, Seo Jin Park, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosenblum. 2019. Toward scalable

replication systems with predictable tails using programmable data planes. In Proceedings of the 3rd Asia-Pacific

Workshop on Networking 2019 (APNet’19). Association for Computing Machinery, New York, NY, 78–84. https://doi.
org/10.1145/3343180.3343181

[28] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosenblum. 2019. λ-NIC: Interactive serverless com-
pute on SmartNICs. In Proceedings of the ACM SIGCOMM Conference Posters and Demos (SIGCOMM’19). Association
for Computing Machinery, New York, NY, 151–152. https://doi.org/10.1145/3342280.3342341

[29] B. Chung, C. Tseng, J. H. Chen, and J. Mambretti. 2019. P4MT: Multi-tenant support prototype for international P4
testbed. In Proceedings of the ACM/IEEE Symposium on Architectures for Networking and Communications Systems

(ANCS’19). ACM/IEEE, Cambridge, UK, 1–2. https://doi.org/10.1109/ANCS.2019.8901869
[30] M. V. B. da Silva, A. S. Jacobs, R. J. Pfitscher, and L. Z. Granville. 2018. IDEAFIX: Identifying elephant flows in P4-

based IXP networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM). IEEE, 1–6. https:
//doi.org/10.1109/GLOCOM.2018.8647685

[31] T. K. Dangeti, V. Keerthy Soundararajan, and R. Upadrasta. 2018. P4LLVM: An LLVM-based P4 compiler. In Proceed-

ings of the IEEE 26th International Conference on Network Protocols (ICNP’18). IEEE, 424–429. https://doi.org/10.1109/
ICNP.2018.00059

[32] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti. 2017. A survey on the security of stateful SDN data
planes. IEEE Commun. Surveys Tutor. 19, 3 (2017), 1701–1725. https://doi.org/10.1109/COMST.2017.2689819

[33] Trisha Datta, Nick Feamster, Jennifer Rexford, and Liang Wang. 2019. SPINE: Surveillance protection in the network
elements. In Proceedings of the 9th USENIX Workshop on Free and Open Communications on the Internet (FOCI’19).
USENIX Association. Retrieved from https://www.usenix.org/conference/foci19/presentation/datta.

[34] M. Dimolianis, A. Pavlidis, and V. Maglaris. 2020. A multi-feature DDoS detection schema on P4 network hardware.
In Proceedings of the 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN’20). IEEE,
Paris, France, 1–6. https://doi.org/10.1109/ICIN48450.2020.9059327

[35] D. Ding,M. Savi, G. Antichi, andD. Siracusa. 2020. An incrementally-deployable P4-enabled architecture for network-
wide heavy-hitter detection. IEEE Trans. Netw. ServiceManage. 17, 1 (2020), 75–88. https://doi.org/10.1109/TNSM.2020.
2968979

[36] DPDK. 2022. Data Plane Development Kit. Retrieved from https://www.dpdk.org/.
[37] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2019. Dataplane equiv-

alence and its applications. In Proceedings of the 16th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI’19). USENIX Association, 683–698. Retrieved from https://www.usenix.org/conference/nsdi19/
presentation/dumitrescu.

[38] Matthias Eichholz, E. Campbell, Nate Foster, G. Salvaneschi, and M. Mezini. 2019. How to avoid making a billion-
dollar mistake: Type-safe data plane programming with SafeP4. Retrieved from https://arxiv.org/abs/1906.07223.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:29

[39] P. Engelhard, A. Zachlod, J. Schulz-Zander, and S. Du. 2019. Toward scalable and virtualized massive wireless sensor
networks. In Proceedings of the International Conference on Networked Systems (NetSys’19). IEEE, München, Germany,
1–6. https://doi.org/10.1109/NetSys.2019.8854518

[40] A. Febro, H. Xiao, and J. Spring. 2018. Telephony denial of service defense at data plane (TDoSD@DP). In Proceed-

ings of the IEEE/IFIP Network Operations and Management Symposium. IEEE, 1–6. https://doi.org/10.1109/NOMS.2018.
8406281

[41] Carolina Fernández, Sergio Giménez, Eduard Grasa, and Steve Bunch. 2020. A P4-enabled RINA interior router for
software-defined data centers. Computers 9, 3 (2020). https://doi.org/10.3390/computers9030070

[42] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-Filho, and Marinho Barcellos. 2018. Un-
covering bugs in P4 programs with assertion-based verification. In Proceedings of the Symposium on SDN Research

(SOSR’18). Association for Computing Machinery, New York, NY, Article 4, 7 pages. https://doi.org/10.1145/3185467.
3185499

[43] Lucas Freire, Miguel Neves, Alberto Schaeffer-Filho, and Marinho Barcellos. 2017. POSTER: Finding vulnerabilities
in P4 programs with assertion-based verification. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security (CCS’17). Association for Computing Machinery, New York, NY, 2495–2497. https://doi.
org/10.1145/3133956.3138837

[44] K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno. 2020. Towards a unified in-network DDoS detection and mit-
igation strategy. In Proceedings of the 6th IEEE Conference on Network Softwarization (NetSoft’20). IEEE, 218–226.
https://doi.org/10.1109/NetSoft48620.2020.9165336

[45] Wallas Froes, Lucas Santos, Leobino N. Sampaio, Magnos Martinello, Alextian Liberato, and Rodolfo S. Villaca. 2020.
ProgLab: Programmable labels for QoS provisioning on software defined networks. Comput. Commun. 161 (2020),
99–108. https://doi.org/10.1016/j.comcom.2020.07.026

[46] Yi Gao, Yuan Jing, andWei Dong. 2018. UniROPE: Universal and robust packet trajectory tracing for software-defined
networks. IEEE/ACM Trans. Netw. 26, 6 (Dec. 2018), 2515–2527. https://doi.org/10.1109/TNET.2018.2871213

[47] Junjie Geng, Jinyao Yan, Yangbiao Ren, and Yuan Zhang. 2018. Design and implementation of network monitoring
and scheduling architecture based on P4. In Proceedings of the 2nd International Conference on Computer Science

and Application Engineering (CSAE’18). Association for Computing Machinery, New York, NY, Article 182, 6 pages.
https://doi.org/10.1145/3207677.3278059

[48] Junjie Geng, Jinyao Yan, and Yuan Zhang. 2019. P4QCN: Congestion control using P4-capable device in data center
networks. Electronics 8, 3 (2019). https://doi.org/10.3390/electronics8030280

[49] Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth Prabhu, Nik Sultana, Latha Kant, Anthony J
McAuley, Alexander Poylisher, André DeHon, and Boon Thau Loo. 2018. In-network computing to the rescue of
faulty links. In Proceedings of the MorningWorkshop on In-network Computing (NetCompute’18). Association for Com-
puting Machinery, New York, NY, 1–6. https://doi.org/10.1145/3229591.3229595

[50] The P4.org ApplicationsWorking Group. 2021. In-band Network Telemetry (INT) Dataplane Specification. Retrieved
from https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf.

[51] B. Guan and S. Shen. 2019. FlowSpy: An efficient network monitoring framework using P4 in software-defined
networks. In Proceedings of the IEEE 90th Vehicular Technology Conference (VTC’19). IEEE, 1–5. https://doi.org/10.
1109/VTCFall.2019.8891487

[52] Joel M. Halpern, Robert Haas, Avri Doria, Ligang Dong, Weiming Wang, Hormuzd M. Khosravi, Jamal Hadi Salim,
and Ram Gopal. 2010. Forwarding and Control Element Separation (ForCES) Protocol Specification. RFC 5810. (Mar.
2010). https://doi.org/10.17487/RFC5810

[53] DavidHancock and Jacobus van derMerwe. 2016. HyPer4: Using P4 to virtualize the programmable data plane. In Pro-
ceedings of the 12th International on Conference on Emerging Networking EXperiments and Technologies (CoNEXT’16).
Association for Computing Machinery, New York, NY, 35–49. https://doi.org/10.1145/2999572.2999607

[54] Zijun Hang, Yang Shi, Mei Wen, Wei Quan, and Chunyuan Zhang. 2019. SWAP: A sliding window algorithm for
in-network packet measurement. In Proceedings of the 3rd International Conference on High Performance Compilation,

Computing and Communications (HP3C’19). Association for Computing Machinery, New York, NY, 84–89. https://doi.
org/10.1145/3318265.3318280

[55] Z. Hang, Y. Shi, M. Wen, and C. Zhang. 2019. TBSW: Time-based sliding window algorithm for network traf-
fic measurement. In Proceedings of the IEEE 21st International Conference on High Performance Computing and

Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Sci-

ence and Systems (HPCC/SmartCity/DSS’19). IEEE, 1305–1310. https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.
00182

[56] Z. Hang,M.Wen, Y. Shi, and C. Zhang. 2019. Interleaved sketch: Toward consistent network telemetry for commodity
programmable switches. IEEE Access 7 (2019), 146745–146758. https://doi.org/10.1109/ACCESS.2019.2946704

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:30 A. Liatifis et al.

[57] Zijun Hang, Mei Wen, Yang Shi, and Chunyuan Zhang. 2019. Programming protocol-independent packet processors
high-level programming (P4HLP): Towards unified high-level programming for a commodity programmable switch.
Electronics 8, 9 (2019). https://doi.org/10.3390/electronics8090958

[58] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018. Network-wide heavy-hitter detection with com-
modity switches. In Proceedings of the Symposium on SDN Research (SOSR’18). Association for Computing Machinery,
New York, NY, Article 8, 7 pages. https://doi.org/10.1145/3185467.3185476

[59] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner, Vladimir Gurevich, Florian Zeiger, Reinhard Frank,
and Michael Menth. 2021. A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied
Research. Retrieved from https://arxiv.org/abs/2101.10632.

[60] F. Hauser, M. Häberle, M. Schmidt, and M. Menth. 2020. P4-IPsec: Site-to-site and host-to-site VPN with IPsec in
P4-based SDN. IEEE Access 8 (2020), 139567–139586. https://doi.org/10.1109/ACCESS.2020.3012738

[61] F. Hauser, M. Schmidt, M. Häberle, and M. Menth. 2020. P4-MACsec: Dynamic topology monitoring and data layer
protection with MACsec in P4-Based SDN. IEEE Access 8 (2020), 58845–58858. https://doi.org/10.1109/ACCESS.2020.
2982859

[62] Cheng-Hung He, Brian Y. Chang, Suchandra Chakraborty, Chien Chen, and Li Chun Wang. 2018. A zero flow entry
expiration timeout P4 switch. In Proceedings of the Symposium on SDNResearch (SOSR’18). Association for Computing
Machinery, New York, NY, Article 19, 2 pages. https://doi.org/10.1145/3185467.3190785

[63] Yongchao He andWenfei Wu. 2019. Fully functional rate limiter design on programmable hardware switches. In Pro-

ceedings of the ACM SIGCOMM Conference Posters and Demos (SIGCOMM’19). Association for Computing Machinery,
New York, NY, 159–160. https://doi.org/10.1145/3342280.3342344

[64] K. Hirata and T. Tachibana. 2019. Implementation of multiple routing configurations on software-defined networks
with P4. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Confer-

ence (APSIPA ASC). IEEE, Lanzhou, China, 13–16. https://doi.org/10.1109/APSIPAASC47483.2019.9023230
[65] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend, Tom Herbert, David Ahern,

and David Miller. 2018. The EXpress data path: Fast programmable packet processing in the operating system
kernel. In Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies

(CoNEXT’18). Association for Computing Machinery, New York, NY, 54–66. https://doi.org/10.1145/3281411.3281443
[66] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti, Stefano Vissicchio, and Laurent Van-

bever. 2019. Blink: Fast connectivity recovery entirely in the data plane. In Proceedings of the 16th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI 19). USENIX Association, 161–176. Retrieved from
https://www.usenix.org/conference/nsdi19/presentation/holterbach.

[67] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and DavidWalker. 2020. Contra: A programmable system
for performance-aware routing. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI’20). USENIX Association, 701–721. Retrieved from https://www.usenix.org/conference/nsdi20/
presentation/hsu.

[68] Kuo-Feng Hsu, Praveen Tammana, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker. 2020. Adaptive
weighted traffic splitting in programmable data planes. In Proceedings of the Symposium on SDN Research (SOSR’20).
Association for Computing Machinery, New York, NY, 103–109. https://doi.org/10.1145/3373360.3380841

[69] R. Hwang, V. Nguyen, and P. Lin. 2018. StateFit: A security framework for SDN programmable data plane model.
In Proceedings of the 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN’18). IEEE,
168–173. https://doi.org/10.1109/I-SPAN.2018.00035

[70] J. Hyun, N. Van Tu, and J. W. Hong. 2018. Towards knowledge-defined networking using in-band network telemetry.
In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS’18). IEEE, 1–7. https://doi.
org/10.1109/NOMS.2018.8406169

[71] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim, and David Mazières. 2014. Millions
of little minions: Using packets for low latency network programming and visibility. SIGCOMM Comput. Commun.

Rev. 44, 4 (Aug. 2014), 3–14. https://doi.org/10.1145/2740070.2626292
[72] J. Jiang and Y. Zhang. 2019. An accurate congestion control mechanism in programmable network. In Proceedings

of the IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC’19). Las Vegas, NV, IEEE,
0673–0677. https://doi.org/10.1109/CCWC.2019.8666502

[73] Deepanshu Jindal, Raj Joshi, and Ben Leong. 2019. P4TrafficTool: Automated code generation for P4 traffic gener-
ators and analyzers. In Proceedings of the ACM Symposium on SDN Research (SOSR’19). Association for Computing
Machinery, New York, NY, 152–153. https://doi.org/10.1145/3314148.3318047

[74] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018. BurstRadar: Practical real-time mi-
croburst monitoring for datacenter networks. In Proceedings of the 9th Asia-Pacific Workshop on Systems (APSys’18).
Association for Computing Machinery, New York, NY, Article 8, 8 pages. https://doi.org/10.1145/3265723.3265731

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:31

[75] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, GauravAgrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James
Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire
Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gre-
gory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-datacenter performance analysis of a tensor processing unit. SIGARCH Comput. Archit. News 45, 2 (June 2017),
1–12. https://doi.org/10.1145/3140659.3080246

[76] N. S. Kagami, R. I. T. da Costa Filho, and L. P. Gaspary. 2020. CAPEST: Offloading network capacity and available
bandwidth estimation to programmable data planes. IEEE Trans. Netw. Service Manage. 17, 1 (2020), 175–189. https:
//doi.org/10.1109/TNSM.2019.2934316

[77] E. Kaljic, A. Maric, P. Njemcevic, and M. Hadzialic. 2019. A survey on data plane flexibility and programmability in
software-defined networking. IEEE Access 7 (2019), 47804–47840. https://doi.org/10.1109/ACCESS.2019.2910140

[78] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rexford. 2016. HULA: Scalable load
balancing using programmable data planes. In Proceedings of the Symposium on SDN Research (SOSR’16). Association
for Computing Machinery, New York, NY, Article 10, 12 pages. https://doi.org/10.1145/2890955.2890968

[79] Sukhveer Kaur, Krishan Kumar, and Naveen Aggarwal. 2021. A review on P4-Programmable data planes: Architec-
ture, research efforts, and future directions. Comput. Commun. 170 (2021), 109–129. https://doi.org/10.1016/j.comcom.
2021.01.027

[80] E. Kawaguchi, H. Kasuga, and N. Shinomiya. 2019. Unsplittable flow edge load factor balancing in SDN using P4
runtime. In Proceedings of the 29th International Telecommunication Networks and Applications Conference (ITNAC’19).
IEEE, 1–6. https://doi.org/10.1109/ITNAC46935.2019.9077984

[81] M. Kekely and J. Korenek. 2017. Mapping of P4 match action tables to FPGA. In Proceedings of the 27th Interna-

tional Conference on Field Programmable Logic and Applications (FPL’17). IEEE, 1–2. https://doi.org/10.23919/FPL.
2017.8056768

[82] E. F. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, and G. Srivastava. 2019. Enabling TCP pacing using programmable
data plane switches. In Proceedings of the 42nd International Conference on Telecommunications and Signal Processing

(TSP’19). IEEE, 273–277. https://doi.org/10.1109/TSP.2019.8768888
[83] Jehandad Khan and Peter Athanas. 2018. Query language for large-scale P4 network debugging. In Proceedings of

the Symposium on Architectures for Networking and Communications Systems (ANCS’18). Association for Computing
Machinery, New York, NY, 162–164. https://doi.org/10.1145/3230718.3232108

[84] Sajad Khorsandroo, Adrián Gallego Sánchez, Ali Saman Tosun, JM Arco, and Roberto Doriguzzi-Corin. 2021. Hybrid
SDN evolution: A comprehensive survey of the state-of-the-art. Comput. Netw. 192 (2021), 107981. https://doi.org/10.
1016/j.comnet.2021.107981

[85] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C. M. Duncan, D. Spano, S. Chatzino-
tas, S. Kisseleff, J. Querol, L. Lei, T. X. Vu, and G. Goussetis. 2021. Satellite communications in the new space era:
A survey and future challenges. IEEE Commun. Surveys Tutor. 23, 1 (2021), 70–109. https://doi.org/10.1109/COMST.
2020.3028247

[86] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. 2000. The click modular router.
ACM Trans. Comput. Syst. 18, 3 (Aug. 2000), 263–297. https://doi.org/10.1145/354871.354874

[87] Thomas Kohler, Ruben Mayer, Frank Dürr, Marius Maaß, Sukanya Bhowmik, and Kurt Rothermel. 2018. P4CEP: To-
wards in-network complex event processing. In Proceedings of the Morning Workshop on In-network Computing (Net-

Compute’18). Association for Computing Machinery, New York, NY, 33–38. https://doi.org/10.1145/3229591.3229593
[88] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig. 2015. Software-defined

networking: A comprehensive survey. Proc. IEEE 103, 1 (2015), 14–76. https://doi.org/10.1109/JPROC.2014.2371999
[89] M. Kuka, K. Vojanec, J. Kučera, and P. Benáček. 2019. Accelerated DDoS attacks mitigation using programmable

data plane. In Proceedings of the ACM/IEEE Symposium on Architectures for Networking and Communications Systems

(ANCS’19). ACM/IEEE, 1–3. https://doi.org/10.1109/ANCS.2019.8901882
[90] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, and R. Steinmetz. 2018. P4-CoDel: Active queue management in

programmable data planes. In Proceedings of the IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN’18). IEEE, 1–4. https://doi.org/10.1109/NFV-SDN.2018.8725736
[91] R. Kundel, L. Nobach, J. Blendin, H. Kolbe, G. Schyguda, V. Gurevich, B. Koldehofe, and R. Steinmetz. 2019. P4-

BNG: Central office network functions on programmable packet pipelines. In Proceedings of the 15th International

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:32 A. Liatifis et al.

Conference on Network and Service Management (CNSM’19). IEEE, 1–9. https://doi.org/10.23919/CNSM46954.2019.
9012666

[92] Ralf Kundel, Leonhard Nobach, Jeremias Blendin, Wilfried Maas, Andreas Zimber, Hans-Joerg Kolbe, Georg
Schyguda, Vladimir Gurevich, Rhaban Hark, Boris Koldehofe, and Ralf Steinmetz. 2021. OpenBNG: Cen-
tral office network functions on programmable data plane hardware. Int. J. Netw. Manage. 31, 1 (2021),
e2134. https://doi.org/10.1002/nem.2134 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2134 e2134 nem.
2134.

[93] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe. 2020. P4STA: High performance packet timestamping
with programmable packet processors. In Proceedings of the IEEE/IFIP Network Operations and Management Sympo-

sium. IEEE, 1–9. https://doi.org/10.1109/NOMS47738.2020.9110290
[94] Jan Kučera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kořenek, and Gianni Antichi. 2020. Enabling

event-triggered data plane monitoring. In Proceedings of the Symposium on SDN Research (SOSR’20). Association for
Computing Machinery, New York, NY, 14–26. https://doi.org/10.1145/3373360.3380830

[95] Â. C. Lapolli, J. Adilson Marques, and L. P. Gaspary. 2019. Offloading real-time DDoS attack detection to pro-
grammable data planes. In Proceedings of the IFIP/IEEE Symposium on Integrated Network and Service Management

(IM’19). IEEE, Arlington, VA, 19–27.
[96] A. Lara, A. Kolasani, and B. Ramamurthy. 2014. Network innovation using OpenFlow: A survey. IEEE Commun.

Surveys Tutor. 16, 1 (2014), 493–512. https://doi.org/10.1109/SURV.2013.081313.00105
[97] Abir Laraba, Jérôme François, Shihabur Rahman Chowdhury, Isabelle Chrisment, and Raouf Boutaba. 2021. Mitigat-

ing TCP protocol misuse with programmable data planes. IEEE Trans. Netw. Service Manage. 18, 1 (2021), 760–774.
https://doi.org/10.1109/TNSM.2021.3054528

[98] Abir Laraba, Jérôme François, Isabelle Chrisment, Shihabur Rahman Chowdhury, and Raouf Boutaba. 2020. Defeat-
ing protocol abuse with P4: Application to explicit congestion notification. In Proceedings of the IFIP Networking

Conference (Networking). IEEE, 431–439.
[99] B. Lewis, M. Broadbent, and N. Race. 2019. P4ID: P4 enhanced intrusion detection. In Proceedings of the IEEE Con-

ference on Network Function Virtualization and Software Defined Networks (NFV-SDN’19). IEEE, Dallas, Texas, 1–4.
https://doi.org/10.1109/NFV-SDN47374.2019.9040044

[100] Guanyu Li, Menghao Zhang, Chang Liu, Xiao Kong, Ang Chen, Guofei Gu, and Haixin Duan. 2019. NETHCF: En-
abling line-rate and adaptive spoofed IP traffic filtering. In Proceedings of the IEEE 27th International Conference on

Network Protocols (ICNP’19). IEEE, 1–12. https://doi.org/10.1109/ICNP.2019.8888057
[101] Y. Lin, C. Huang, and S. Tsai. 2019. SDN soft computing application for detecting heavy hitters. IEEE Trans. Industr.

Inform. 15, 10 (2019), 5690–5699. https://doi.org/10.1109/TII.2019.2909933
[102] Y. Lin, T. Huang, and S. Tsai. 2019. Enhancing 5G/IoT transport security through content permutation. IEEE Access

7 (2019), 94293–94299. https://doi.org/10.1109/ACCESS.2019.2926479
[103] G. Liu, W. Quan, N. Cheng, N. Lu, H. Zhang, and X. Shen. 2020. P4NIS: Improving network immunity against eaves-

dropping with programmable data planes. In Proceedings of the IEEE Conference on Computer Communications Work-

shops (INFOCOM’20). IEEE, 91–96. https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162975
[104] M. Liu, D. Gao, G. Liu, J. He, L. Jin, C. Zhou, and F. Yang. 2019. Learning-based adaptive network immune mecha-

nism to defense eavesdropping attacks. IEEE Access 7 (2019), 182814–182826. https://doi.org/10.1109/ACCESS.2019.
2956805

[105] Diego Lopez-Pajares, Joaquin Alvarez-Horcajo, Elisa Rojas, Juan A. Carral, and Isaias Martinez-Yelmo. 2020. One-
shot multiple disjoint path discovery protocol (1S-MDP). IEEE Commun. Lett. 24, 8 (2020), 1660–1663. https://doi.org/
10.1109/LCOMM.2020.2990885

[106] Diego Lopez-Pajares, Elisa Rojas, Juan A. Carral, Isaias Martinez-Yelmo, and Joaquin Alvarez-Horcajo. 2021. The
disjoint multipath challenge: Multiple disjoint paths guaranteeing scalability. IEEE Access 9 (2021), 74422–74436.
https://doi.org/10.1109/ACCESS.2021.3080931

[107] Y. Lu and K. C. Lin. 2019. Enabling inference inside software switches. In Proceedings of the 20th Asia-Pacific Net-

work Operations and Management Symposium (APNOMS’19). ACM/IEEE, 1–4. https://doi.org/10.23919/APNOMS.
2019.8893042

[108] Yang Lu and Xianrong Zheng. 2020. 6G: A survey on technologies, scenarios, challenges, and the related issues.
J. Industr. Info. Integr. 19 (2020), 100158. https://doi.org/10.1016/j.jii.2020.100158

[109] André Luiz R. Madureira, Francisco Renato C. Araújo, and Leobino N. Sampaio. 2020. On supporting IoT data aggre-
gation through programmable data planes. Comput. Netw. 177 (2020), 107330. https://doi.org/10.1016/j.comnet.2020.
107330

[110] R. F. T. Martins, F. L. Verdi, R. Villaça, and L. F. U. Garcia. 2018. Using probabilistic data structures for monitoring of
multi-tenant P4-based networks. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC’18).
IEEE, 00204–00207. https://doi.org/10.1109/ISCC.2018.8538352

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:33

[111] Steven McCanne and Van Jacobson. 1993. The BSD packet filter: A new architecture for user-level packet capture.
In Proceedings of the USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993 Conference Proceedings

(USENIX’93). USENIX Association, 2.
[112] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,

and Jonathan Turner. 2008. OpenFlow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev.

38, 2 (Mar. 2008), 69–74. https://doi.org/10.1145/1355734.1355746
[113] Michael Menth, Habib Mostafaei, Daniel Merling, and Marco Häberle. 2019. Implementation and evaluation of

activity-based congestion management using P4 (P4-ABC). Future Internet 11, 7 (2019). https://doi.org/10.3390/
fi11070159

[114] R. Miguel, S. Signorello, and F. M. V. Ramos. 2018. Named data networking with programmable switches. In Proceed-

ings of the IEEE 26th International Conference on Network Protocols (ICNP’18). IEEE, 400–405. https://doi.org/10.1109/
ICNP.2018.00055

[115] A. Mohammadkhan, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan, and L. N. Bhuyan. 2019. P4NFV: P4 enabled
NFV systems with SmartNICs. In Proceedings of the IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN’19). IEEE, 1–7. https://doi.org/10.1109/NFV-SDN47374.2019.9040000
[116] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. 2018. Hardware-accelerated network control planes.

In Proceedings of the 17th ACMWorkshop on Hot Topics in Networks (HotNets’18). Association for Computing Machin-
ery, New York, NY, 120–126. https://doi.org/10.1145/3286062.3286080

[117] D. Moro, M. Peuster, H. Karl, and A. Capone. 2019. Demonstrating FOP4: A flexible platform to prototype NFV
offloading scenarios. In Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN’19). IEEE, 1–2. https://doi.org/10.1109/NFV-SDN47374.2019.9040056
[118] D. Moro, M. Peuster, H. Karl, and A. Capone. 2019. FOP4: Function offloading prototyping in heterogeneous and pro-

grammable network scenarios. In Proceedings of the IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN’19). IEEE, 1–6. https://doi.org/10.1109/NFV-SDN47374.2019.9040052
[119] D. Moro, G. Verticale, and A. Capone. 2020. A framework for network function decomposition and deployment. In

Proceedings of the 16th International Conference on the Design of Reliable Communication Networks (DRCN’20). IEEE,
1–6. https://doi.org/10.1109/DRCN48652.2020.1570613823

[120] Adam Morrison, Lei Xue, Ang Chen, and Xiapu Luo. 2018. Enforcing context-aware BYOD policies with in-network
security. In Proceedings of the 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’18). USENIX As-
sociation. Retrieved from https://www.usenix.org/conference/hotcloud18/presentation/morrison.

[121] Niranjhana Narayanan, Ganesh C. Sankaran, and Krishna M. Sivalingam. 2019. Mitigation of security attacks in the
SDN data plane using P4-enabled switches. In Proceedings of the IEEE International Conference on Advanced Networks

and Telecommunications Systems (ANTS’19). IEEE, 1–6. https://doi.org/10.1109/ANTS47819.2019.9118071
[122] M. Neves, B. Huffaker, K. Levchenko, and M. Barcellos. 2019. Dynamic property enforcement in programmable data

planes. In Proceedings of the IFIP Networking Conference (IFIP’19). IEEE, 1–9. https://doi.org/10.23919/IFIPNetworking.
2019.8816830

[123] B. Niu, J. Kong, S. Tang, Y. Li, and Z. Zhu. 2019. Visualize your IP-over-optical network in realtime: A P4-based
flexible multilayer in-band network telemetry (ML-INT) system. IEEE Access 7 (2019), 82413–82423. https://doi.org/
10.1109/ACCESS.2019.2924332

[124] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas. 2018. P4pktgen: Automated test
case generation for P4 programs. In Proceedings of the Symposium on SDN Research (SOSR’18). Association for Com-
puting Machinery, New York, NY, Article 5, 7 pages. https://doi.org/10.1145/3185467.3185497

[125] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. 2018. Stateless datacenter load-balancing
with beamer. In Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation

(NSDI’18). USENIX Association, 125–139. Retrieved from https://www.usenix.org/conference/nsdi18/presentation/
olteanu.

[126] OpenDataPlane. 2022. OpenDataPlane. Retrieved from https://opendataplane.org/.
[127] T. Osiński, H. Tarasiuk, L. Rajewski, and E. Kowalczyk. 2019. DPPx: A P4-based data plane programmability and

exposure framework to enhance NFV services. In Proceedings of the IEEE Conference on Network Softwarization (Net-

Soft’19). IEEE, 296–300. https://doi.org/10.1109/NETSOFT.2019.8806625
[128] P. Palagummi and K. M. Sivalingam. 2018. SMARTHO: A network initiated handover in NG-RAN using P4-based

switches. In Proceedings of the 14th International Conference on Network and Service Management (CNSM’18). IEEE,
Rome, Italy, 338–342.

[129] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and P. Castoldi. 2019. P4 edge node enabling stateful
traffic engineering and cyber security. IEEE/OSA J. Optic. Commun. Netw. 11, 1 (2019), A84–A95.

[130] F. Paolucci, F. Cugini, and P. Castoldi. 2018. P4-based multi-layer traffic engineering encompassing cyber security.
In Proceedings of the Optical Fiber Communications Conference and Exposition (OFC’18). IEEE, 1–3.

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:34 A. Liatifis et al.

[131] R. Parizotto, L. Castanheira, F. Bonetti, A. Santos, and A. Schaeffer-Filho. 2020. PRIME: Programming in-network
modular extensions. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS’20).
IEEE, 1–9. https://doi.org/10.1109/NOMS47738.2020.9110355

[132] P. G. K. Patra, F. E. R. Cesen, J. S. Mejia, D. L. Feferman, L. Csikor, C. E. Rothenberg, and G. Pongracz. 2018. Toward a
sweet spot of data plane programmability, portability, and performance: On the scalability of multi-architecture P4
pipelines. IEEE J. Select. Areas Commun. 36, 12 (2018), 2603–2611. https://doi.org/10.1109/JSAC.2018.2871288

[133] F. Pereira, N. Neves, and F. M. V. Ramos. 2017. Secure network monitoring using programmable data planes. In
Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN’17).
IEEE, 286–291. https://doi.org/10.1109/NFV-SDN.2017.8169867

[134] Larry Peterson. 2021. Retrieved from https://opennetworking.org/news-and-events/blog/openflow-catalyst-that-
kickstarted-the-sdn-transformation/.

[135] M. Peuster, H. Karl, and S. van Rossem. 2016. MeDICINE: Rapid prototyping of production-ready network services
in multi-PoP environments. In Proceedings of the IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN’16). IEEE, 148–153. https://doi.org/10.1109/NFV-SDN.2016.7919490
[136] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and T. Clausen. 2018. Stateless load-aware load balancing

in P4. In Proceedings of the IEEE 26th International Conference on Network Protocols (ICNP’18). IEEE, 418–423. https:
//doi.org/10.1109/ICNP.2018.00058

[137] M. Pizzutti and A. E. Schaeffer-Filho. 2019. Adaptive multipath routing based on hybrid data and control plane
operation. In Proceedings of the IEEE Conference on Computer Communications. IEEE, 730–738. https://doi.org/10.
1109/INFOCOM.2019.8737398

[138] T. Qu, R. Joshi, M. Chan, B. Leong, D. Guo, and Zhong Liu. 2019. SQR: In-network packet loss recovery from link
failures for highly reliable datacenter networks. In Proceedings of the IEEE 27th International Conference on Network

Protocols (ICNP’19). 1–12.
[139] M. Rahali, J. Sanner, and G. Rubino. 2020. FEAL: A source routing Framework for Efficient Anomaly Localization.

In Proceedings of the IEEE International Conference on Communications (ICC’20). IEEE, 1–7. https://doi.org/10.1109/
ICC40277.2020.9148725

[140] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q.Wang. 2018. Hardware-accelerated firewall for 5G mobile
networks. In Proceedings of the IEEE 26th International Conference on Network Protocols (ICNP’18). IEEE, 446–447.
https://doi.org/10.1109/ICNP.2018.00066

[141] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang. 2019. NetFPGA-based firewall solution for 5G
multi-tenant architectures. In Proceedings of the IEEE International Conference on Edge Computing (EDGE’19). IEEE,
132–136. https://doi.org/10.1109/EDGE.2019.00037

[142] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang. 2019. P4-netfpga-based network slicing solution
for 5G MEC architectures. In Proceedings of the ACM/IEEE Symposium on Architectures for Networking and Commu-

nications Systems (ANCS’19). IEEE/ACM, Cambridge, UK, 1–2. https://doi.org/10.1109/ANCS.2019.8901889
[143] Jan Rüth, René Glebke, Klaus Wehrle, Vedad Causevic, and Sandra Hirche. 2018. Towards in-network industrial

feedback control. In Proceedings of the Morning Workshop on In-network Computing (NetCompute’18). Association for
Computing Machinery, New York, NY, 14–19. https://doi.org/10.1145/3229591.3229592

[144] Y. Sakakibara, Y. Tokusashi, S. Morishima, and H. Matsutani. 2018. Accelerating blockchain transfer system using
FPGA-based NIC. In Proceedings of the IEEE International Conference on Parallel Distributed Processing with Applica-

tions, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable

Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom’18). IEEE, 171–178. https://doi.org/10.1109/
BDCloud.2018.00037

[145] Omar Sami Oubbati, Mohammed Atiquzzaman, Tariq Ahamed Ahanger, and Atef Ibrahim. 2020. Softwarization of
UAV networks: A survey of applications and future trends. IEEE Access 8 (2020), 98073–98125. https://doi.org/10.1109/
ACCESS.2020.2994494

[146] J. Santiago da Silva, T. Stimpfling, T. Luinaud, B. Fradj, and B. Boughzala. 2018. One for all, all for one: A hetero-
geneous data plane for flexible P4 processing. In Proceedings of the IEEE 26th International Conference on Network

Protocols (ICNP’18). IEEE, Cambridge, United Kingdom, 440–441. https://doi.org/10.1109/ICNP.2018.00063
[147] Mateus Saquetti, Guilherme Bueno, Weverton Cordeiro, and José Rodrigo Azambuja. 2019. Hard virtualization of

P4-based switches with VirtP4. In Proceedings of the ACM SIGCOMM Conference Posters and Demos (SIGCOMM’19).
Association for Computing Machinery, New York, NY, 80–81. https://doi.org/10.1145/3342280.3342314

[148] M. Saquetti, G. Bueno, W. Cordeiro, and J. R. Azambuja. 2019. VirtP4: An architecture for P4 virtualization. In Pro-

ceedings of the IEEE International Parallel and Distributed Processing SymposiumWorkshops (IPDPSW’19). IEEE, 75–78.
https://doi.org/10.1109/IPDPSW.2019.00021

[149] Surbhi Saraswat, Vishal Agarwal, Hari Prabhat Gupta, Rahul Mishra, Ashish Gupta, and Tanima Dutta. 2019.
Challenges and solutions in software defined networking: A survey. J. Netw. Comput. Appl. 141 (2019), 23–58.
https://doi.org/10.1016/j.jnca.2019.04.020

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:35

[150] Cole Schlesinger, Michael Greenberg, and David Walker. 2014. Concurrent NetCore: From policies to pipelines. In
Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP’14). Association for
Computing Machinery, New York, NY, 11–24. https://doi.org/10.1145/2628136.2628157

[151] Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulkarni. 2020. TurboEPC: Leveraging dataplane
programmability to accelerate the mobile packet core. In Proceedings of the Symposium on SDN Research (SOSR’20).
Association for Computing Machinery, New York, NY, 83–95. https://doi.org/10.1145/3373360.3380839

[152] R. Shah, A. Shirke, A. Trehan, M. Vutukuru, and P. Kulkarni. 2018. Pcube: Primitives for network data plane pro-
gramming. In Proceedings of the IEEE 26th International Conference on Network Protocols (ICNP’18). IEEE, 430–435.
https://doi.org/10.1109/ICNP.2018.00060

[153] S. Shahzad, E. Jung, J. Chung, and R. Kettimuthu. 2020. Enhanced explicit congestion notification (EECN) in TCP
with P4 programming. In Proceedings of the International Conference on Green and Human Information Technology

(ICGHIT’20). IEEE, 35–40. https://doi.org/10.1109/ICGHIT49656.2020.00015
[154] Apoorv Shukla, Kevin Nico Hudemann, Artur Hecker, and Stefan Schmid. 2019. Runtime verification of P4 switches

with reinforcement learning. In Proceedings of the Workshop on Network Meets AI & ML (NetAI’19). Association for
Computing Machinery, New York, NY, 1–7. https://doi.org/10.1145/3341216.3342206

[155] John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan M. Smith. 2018. Turboflow: Information rich flow record
generation on commodity switches. In Proceedings of the 13th EuroSys Conference (EuroSys’18). Association for Com-
puting Machinery, New York, NY, Article 11, 16 pages. https://doi.org/10.1145/3190508.3190558

[156] John Sonchack, Oliver Michel, Adam J. Aviv, Eric Keller, and Jonathan M. Smith. 2018. Scaling hardware accel-
erated network monitoring to concurrent and dynamic queries with *flow. In Proceedings of the USENIX Annual

Technical Conference (USENIX ATC’18). USENIX Association, 823–835. Retrieved from https://www.usenix.org/
conference/atc18/presentation/sonchack.

[157] Haoyu Song. 2013. Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof forwarding
plane. In Proceedings of the 2nd ACM SIGCOMMWorkshop on Hot Topics in Software Defined Networking (HotSDN’13).
Association for Computing Machinery, New York, NY, 127–132. https://doi.org/10.1145/2491185.2491190

[158] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2018. Debugging P4 pro-
grams with vera. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIG-

COMM’18). Association for Computing Machinery, New York, NY, 518–532. https://doi.org/10.1145/3230543.3230548
[159] Dongeun Suh, Seokwon Jang, Sol Han, Sangheon Pack, and Xiaofei Wang. 2020. Flexible sampling-based in-band

network telemetry in programmable data plane. ICT Express 6, 1 (2020), 62–65. https://doi.org/10.1016/j.icte.2019.08.
005

[160] L. Tang, Q. Huang, and P. P. C. Lee. 2020. SpreadSketch: Toward invertible and network-wide detection of super-
spreaders. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’20). IEEE, 1608–1617.
https://doi.org/10.1109/INFOCOM41043.2020.9155541

[161] K. Tokmakov, M. Sarker, J. Domaschka, and S. Wesner. 2019. A case for data centre traffic management on soft-
ware programmable ethernet switches. In Proceedings of the IEEE 8th International Conference on Cloud Networking

(CloudNet’19). IEEE, 1–6. https://doi.org/10.1109/CloudNet47604.2019.9064114
[162] C. Trois, M. D. Del Fabro, L. C. E. de Bona, andM.Martinello. 2016. A survey on SDNprogramming languages: Toward

a taxonomy. IEEE Commun. Surveys Tutor. 18, 4 (2016), 2687–2712. https://doi.org/10.1109/COMST.2016.2553778
[163] Belma Turkovic, Fernando Kuipers, Niels van Adrichem, and Koen Langendoen. 2018. Fast network congestion detec-

tion and avoidance using P4. In Proceedings of theWorkshop on Networking for Emerging Applications and Technologies

(NEAT’18). Association for Computing Machinery, New York, NY, 45–51. https://doi.org/10.1145/3229574.3229581
[164] M. Uddin, S. Mukherjee, H. Chang, and T. V. Lakshman. 2017. SDN-based service automation for IoT. In Proceedings

of the IEEE 25th International Conference on Network Protocols (ICNP’17). IEEE, 1–10. https://doi.org/10.1109/ICNP.
2017.8117555

[165] N. Varyani, Z. Zhang, and D. Dai. 2020. QROUTE: An efficient quality of service (QoS) routing scheme for software-
defined overlay networks. IEEE Access 8 (2020), 104109–104126. https://doi.org/10.1109/ACCESS.2020.2995558

[166] J. Vestin, A. Kassler, D. Bhamare, K. Grinnemo, J. Andersson, and G. Pongracz. 2019. Programmable event detection
for in-band network telemetry. In Proceedings of the IEEE 8th International Conference on Cloud Networking (Cloud-

Net’19). IEEE, 1–6. https://doi.org/10.1109/CloudNet47604.2019.9064137
[167] J. Vestin, A. Kassler, and J. Åkerberg. 2018. FastReact: In-network control and caching for industrial control networks

using programmable data planes. In Proceedings of the IEEE 23rd International Conference on Emerging Technologies

and Factory Automation (ETFA’18), Vol. 1. IEEE, 219–226. https://doi.org/10.1109/ETFA.2018.8502456
[168] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Elerson R. S. Santos, Eduardo P. M. Câmara Júnior,

and Luiz F. M. Vieira. 2020. Fast packet processing with EBPF and XDP: Concepts, code, challenges, and applications.
ACM Comput. Surv. 53, 1, Article 16 (Feb. 2020), 36 pages. https://doi.org/10.1145/3371038

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



186:36 A. Liatifis et al.

[169] S. Wang, Y. Chen, J. Li, H. Hu, J. Tsai, and Y. Lin. 2019. A bandwidth-efficient INT system for tracking the rules
matched by the packets of a flow. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’19).
IEEE, 1–6. https://doi.org/10.1109/GLOBECOM38437.2019.9013581

[170] Weitao Wang, Praveen Tammana, Ang Chen, and T. S. Eugene Ng. 2020. Grasp the root causes in the data plane: Di-
agnosing latency problems with SpiderMon. In Proceedings of the Symposium on SDN Research (SOSR’20). Association
for Computing Machinery, New York, NY, 55–61. https://doi.org/10.1145/3373360.3380835

[171] J. Woodruff, M. Ramanujam, and N. Zilberman. 2019. P4DNS: In-network DNS. In Proceedings of the ACM/IEEE

Symposium on Architectures for Networking and Communications Systems (ANCS’19). ACM/IEEE, 1–6. https://doi.
org/10.1109/ANCS.2019.8901896

[172] X. Wu, P. Li, T. Miskell, L. Wang, Y. Luo, and X. Jiang. 2019. Ripple: An efficient runtime reconfigurable P4 data
plane for multicore systems. In Proceedings of the International Conference on Networking and Network Applications

(NaNA’19). IEEE, 142–148. https://doi.org/10.1109/NaNA.2019.00034
[173] Zhaowei Xi, Yu Zhou, Dai Zhang, Jinqiu Wang, Sun Chen, Yangyang Wang, Xinrui Li, HaoMing Wang, and Jianping

Wu. 2019. HyperGen: High-performance flexible packet generator using programmable switching ASIC. In Proceed-

ings of the ACM SIGCOMM Conference Posters and Demos (SIGCOMM’19). Association for Computing Machinery,
New York, NY, 42–44. https://doi.org/10.1145/3342280.3342301

[174] Zhaoyue Xia, Jun Bi, Yu Zhou, and Cheng Zhang. 2018. KeySight: A scalable troubleshooting platform based on net-
work telemetry. In Proceedings of the Symposium on SDN Research (SOSR’18). Association for Computing Machinery,
New York, NY, Article 20, 2 pages. https://doi.org/10.1145/3185467.3190787

[175] J. Xie, C. Qian, D. Guo, X. Li, S. Shi, and H. Chen. 2019. Efficient data placement and retrieval services in edge
computing. In Proceedings of the IEEE 39th International Conference on Distributed Computing Systems (ICDCS’19).
IEEE, 1029–1039. https://doi.org/10.1109/ICDCS.2019.00106

[176] J. Xie, C. Qian, D. Guo, M. Wang, S. Shi, and H. Chen. 2019. Efficient indexing mechanism for unstructured data shar-
ing systems in edge computing. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’19).
IEEE, 820–828. https://doi.org/10.1109/INFOCOM.2019.8737617

[177] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig.
2018. Elastic sketch: Adaptive and fast network-wide measurements. In Proceedings of the Conference of the ACM

Special Interest Group on Data Communication (SIGCOMM’18). Association for ComputingMachinery, 561–575. https:
//doi.org/10.1145/3230543.3230544

[178] Abbas Yazdinejad, Reza M. Parizi, Ali Bohlooli, Ali Dehghantanha, and Kim-Kwang Raymond Choo. 2020. A high-
performance framework for a network programmable packet processor using P4 and FPGA. J. Netw. Comput. Appl.

156 (2020), 102564. https://doi.org/10.1016/j.jnca.2020.102564
[179] Abbas Yazdinejad, Reza M. Parizi, Ali Dehghantanha, and Kim-Kwang Raymond Choo. 2020. P4-to-blockchain: A

secure blockchain-enabled packet parser for software defined networking. Comput. Secur. 88 (2020), 101629. https:
//doi.org/10.1016/j.cose.2019.101629

[180] J. Ye, C. Chen, and Y. Huang Chu. 2018. A weighted ECMP load balancing scheme for data centers using P4 switches.
In Proceedings of the IEEE 7th International Conference on Cloud Networking (CloudNet’18). IEEE, 1–4. https://doi.org/
10.1109/CloudNet.2018.8549549

[181] Farnaz Yousefi, Anubhavnidhi Abhashkumar, Kausik Subramanian, Kartik Hans, Soudeh Ghorbani, and Aditya
Akella. 2020. Liveness verification of stateful network functions. In Proceedings of the 17th USENIX Symposium

on Networked Systems Design and Implementation (NSDI’20). USENIX Association, 257–272. Retrieved from https:
//www.usenix.org/conference/nsdi20/presentation/yousefi.

[182] E. O. Zaballa, D. Franco, Z. Zhou, and M. S. Berger. 2020. P4Knocking: Offloading host-based firewall functionalities
to the network. In Proceedings of the 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops

(ICIN’20). IEEE, 7–12. https://doi.org/10.1109/ICIN48450.2020.9059298
[183] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu. 2017. HyperV: A high performance hypervisor for virtualization of

the programmable data plane. In Proceedings of the 26th International Conference on Computer Communication and

Networks (ICCCN’17). IEEE, 1–9. https://doi.org/10.1109/ICCCN.2017.8038396
[184] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017. MPVisor: A modular programmable data

plane hypervisor. In Proceedings of the Symposium on SDN Research (SOSR’17). Association for ComputingMachinery,
New York, NY, 179–180. https://doi.org/10.1145/3050220.3060600

[185] C. Zhang, J. Bi, Y. Zhou, and J. Wu. 2019. HyperVDP: High-performance virtualization of the programmable data
plane. IEEE J. Selec. Areas Commun. 37, 3 (2019), 556–569. https://doi.org/10.1109/JSAC.2019.2894308

[186] C. Zhang, J. Bi, Y. Zhou, K. Zhang, and Z. Ma. 2018. B-Cache: A behavior-level caching framework for the pro-
grammable data plane. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC’18). IEEE,
00084–00090. https://doi.org/10.1109/ISCC.2018.8538450

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.



Advancing SDN from OpenFlow to P4: A Survey 186:37

[187] D. Zhang, X. Chen, Q. Huang, X. Hong, C. Wu, H. Zhou, Y. Yang, H. Liu, and Y. Chen. 2019. P4SC: A high perfor-
mance and flexible framework for service function chain. IEEE Access 7 (2019), 160982–160997. https://doi.org/10.
1109/ACCESS.2019.2950446

[188] Menghao Zhang, G. Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qi Li, Mingwei Xu, and
Jianping Wu. 2020. Poseidon: Mitigating volumetric DDoS attacks with programmable switches. In Proceedings of

the Network and Distributed System Security Symposium (NDSS’20). The Internet Society.
[189] Z. Zhao, X. Shi, X. Yin, Z. Wang, and Q. Li. 2019. HashFlow for better flow record collection. In Proceedings of the

IEEE 39th International Conference on Distributed Computing Systems (ICDCS’19). IEEE, 1416–1425. https://doi.org/10.
1109/ICDCS.2019.00141

[190] Yu Zhou, Jun Bi, Yunsenxiao Lin, YangyangWang, Dai Zhang, Zhaowei Xi, Jiamin Cao, and Chen Sun. 2019. P4Tester:
Efficient runtime rule fault detection for programmable data planes. In Proceedings of the International Symposium

on Quality of Service (IWQoS’19). Association for Computing Machinery, New York, NY, Article 5, 10 pages. https:
//doi.org/10.1145/3326285.3329040

[191] Y. Zhou, J. Bi, T. Yang, K. Gao, C. Zhang, J. Cao, and Y. Wang. 2018. KeySight: Troubleshooting programmable
switches via scalable high-coverage behavior tracking. In Proceedings of the IEEE 26th International Conference on

Network Protocols (ICNP). IEEE, 291–301. https://doi.org/10.1109/ICNP.2018.00045
[192] Y. Zhou, J. Bi, C. Zhang, B. Liu, Z. Li, Y. Wang, and M. Yu. 2019. P4DB: On-the-fly debugging for programmable data

planes. IEEE/ACM Trans. Netw. 27, 4 (2019), 1714–1727. https://doi.org/10.1109/TNET.2019.2927110
[193] Shaolong Zhu, Du Chen, Meiyi Yang, and Xuening Shang. 2021. Dynamic multi-path and multi-protocol encrypted

communication mechanism. In Proceedings of the IEEE 13th International Conference on Computer Research and De-

velopment (ICCRD’21). IEEE, 58–62. https://doi.org/10.1109/ICCRD51685.2021.9386407

Received 6 July 2021; revised 17 July 2022; accepted 8 August 2022

ACM Computing Surveys, Vol. 55, No. 9, Article 186. Publication date: January 2023.


