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The projected future degradation in air quality is
caused by more abundant natural aerosols in a
warmer world
James Gomez 1, Robert J. Allen 1✉, Steven T. Turnock 2, Larry W. Horowitz 3, Kostas Tsigaridis 4,

Susanne E. Bauer4, Dirk Olivié5, Erik S. Thomson 6 & Paul Ginoux3

Previous studies suggest that greenhouse gas-induced warming can lead to increased fine

particulate matter concentrations and degraded air quality. However, significant uncertainties

remain regarding the sign and magnitude of the response to warming and the underlying

mechanisms. Here, we show that thirteen models from the Coupled Model Intercomparison

Project Phase 6 all project an increase in global average concentrations of fine particulate

matter in response to rising carbon dioxide concentrations, but the range of increase across

models is wide. The two main contributors to this increase are increased abundance of dust

and secondary organic aerosols via intensified West African monsoon and enhanced emis-

sions of biogenic volatile organic compounds, respectively. Much of the inter-model spread is

related to different treatment of biogenic volatile organic compounds. Our results highlight

the importance of natural aerosols in degrading air quality under current warming, while also

emphasizing that improved understanding of biogenic volatile organic compounds emissions

due to climate change is essential for numerically assessing future air quality.
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A ir quality is an important aspect of human health1 and of
Sustainable Development Goals involving good health
and well-being2,3. Surface-level fine (diameter ≤2.5 μm)

particulate matter (PM2.5) is a form of air pollution that is a
known carcinogen4,5, is tied to higher infant mortality rates6,7,
causes adverse respiratory affects in children6, and leads to a
worldwide excess mortality rate of 8.8 million per year from all
sources, including 5.5 million due to anthropogenic sources and
3.3 due to natural sources8.

Owing to multiple interactions involving emissions, chemical
processes, deposition and other physical factors (e.g., tempera-
ture, precipitation and atmospheric circulation), both the sign
and magnitude of PM2.5 changes under GHG-induced warming
are uncertain9–12. Several studies have emphasized the impor-
tance of altered wet removal to increased aerosol burden13–16,
through changes in precipitation type (large-scale versus con-
vective) and distribution (e.g., decrease in wet-day frequency).
Degraded air quality under warming will likely yield an increase
in premature mortality associated with lung cancer and cardio-
pulmonary disease in most world regions17,18. Such impacts may
be exacerbated due to an increased chance of compound extreme
events, including concurrent heat waves and air quality
extremes11,19.

GHG-induced warming will also impact the emissions of
natural aerosols and precursor gases, including biogenic volatile
organic compounds (BVOCs), which can oxidize into secondary
organic aerosols (SOA). As the production of BVOCs requires
carbon obtained from the breakdown of CO2, BVOC production
is tied to photosynthesis20,21. Rising atmospheric CO2 con-
centrations are likely to increase the productivity and standing
biomass of plants, which allows for an increase in photosynthesis
rates22, and thus an increase in the available carbon for BVOC
production. An increase in atmospheric CO2 concentrations,
however, can inhibit the production of the BVOC isoprene23. The
biochemical basis for these observations is not fully resolved, but
may include CO2-mediated variations of key substrates such as
pyruvate24. Prior modeling studies show that taking this inhibi-
tion into account still results in a net increase in isoprene emis-
sion, and a relatively large (25%) increase in SOA under future
climate change25. Higher atmospheric CO2 concentrations also
promote higher global temperatures, which enhance the enzy-
matic activities of synthesis that produce isoprene and most other
BVOCs20,26. Warming also increases the atmospheric vapor
pressure of certain BVOCs surrounding vegetation27,28. As vapor
pressure of the BVOCs rise, more can exist in the gaseous phase
in the surrounding air, allowing for more oxidation to SOA.

Through altered atmospheric circulation and land change,
increasing atmospheric CO2 concentrations can also influence
dust emissions, another important component of PM2.5. The
overall response of dust aerosol to climate change, however,
remains uncertain. Observations from the Terra and Aqua
satellites from 2001-2018 over northern Africa, which is the lar-
gest source of dust in the world29, have shown an uncertain
response in dust aerosol optical depth (Terra shows a decrease,
Aqua an increase), motivating additional analysis30. Longer-term
dust depositional records, however, suggest that dust is highly
sensitive to climate, with up to a doubling of dust since the
preindustrial31–33.

If anthropogenic sources were to be reduced to preindustrial
levels ("pristine" air quality), many parts of the world—up to 4.5
billion people—would still be exposed to poor air quality (largely
due to dust)34 based on the World Health Organization’s (WHO)
updated (and more stringent) annual mean PM2.5 threshold1 of
5 μg m−3. Unlike anthropogenic sources, natural aerosol emis-
sions are highly variable across different regions and not as easily
controlled through clean air policies. Moreover, as natural aerosol

emissions are tied to climate (e.g., temperature, winds), continued
climate change may have substantial impacts on air quality via
altered emissions of natural aerosols and precursor gasses.

Here, we use the most recent state-of-the-art climate and Earth
system models, many of which include aerosol and chemistry
components that interact with each other and with the biosphere,
to quantify the impact of increasing CO2 on PM2.5-based air
quality. Our analysis therefore focuses on CO2-induced impacts
(including temperature, precipitation, etc.) to air quality. We do
not address possible reductions of anthropogenic aerosol/pre-
cursor gas emissions, which would act to improve air quality.
Furthermore, we only address PM2.5-related air quality and do
not consider other pollutants such as ozone, which may also
respond to climate change. We find a robust increase in PM2.5,
largely due to an increase in natural aerosol emissions, including
biogenic SOA, dust and sea salt.

Results
Figure 1 a shows a shows a spatial map of the multi-model annual
mean PM2.5 response in years 100–140 from 1% per year CO2

simulations (relative to the corresponding preindustrial control
simulations; Methods) using 13 state-of-the-art CMIP635 models
(Supplementary Tables 1 and 2). In years 100–140, the global
annual mean warming is 3.8 ± 0.4 K. A relatively large and robust
signal exists, as the global multi-model annual mean increase is
0.62 ± 0.26 μg m−3, or a percent change of 10.8 ± 3.9% (uncer-
tainties are based on the 90% confidence interval; Methods). All
13 models yield a global mean increase, but with large spread,
ranging from 0.001 μg m−3 in MPI-ESM1-2-HAM (statistically
insignificant) to 1.73 μg m−3 in CESM2-WACCM. Most latitude-
longitude grid boxes experience an increase in PM2.5, and model
agreement on the increase (Fig. 1b) is generally ~75–85% (sig-
nificant at the 90% confidence level based on a two-tailed bino-
mial test; Methods). We note that our approximation of PM2.5,
and the corresponding response, represents a conservative
estimate34 (e.g., climate-dependent changes in fire emissions—
which are projected to increase under warming36–39—are not
included; Methods).

Figure 1d shows the PM2.5 change for each world region (see
Fig. 1c for region definitions), and the average over all 12 regions
(i.e., global land, abbreviated “Ld" in Fig. 1d). Over global land,
the multi-model mean PM2.5 increase is 0.83 ± 0.49 μg m−3

(13.7 ± 6.3%). All but one model yields an increase, but again with
large inter-model spread ranging from −0.52 μg m−3 in MPI-
ESM1-2-HAM to 3.1 μg m−3 in CESM2-WACCM. Ten of the 12
world regions exhibit significant PM2.5 increases (the exceptions
being Australia at 0.50 ± 0.51 μg m−3 and central/north Asia at
0.19 ± 0.22 μg m−3), with some regions yielding much larger
increases. For example, South America (sAM) experiences the
largest PM2.5 increase at 2.0 ± 1.5 μg m−3 (42.2 ± 23.6%). Large
increases, especially in terms of absolute change, also occur in
northern (nAF) and southern (sAF) Africa at 1.7 ± 1.1 μg m−3

and 1.3 ± 1.1 μg m−3, respectively. The U.S. also experiences large
relative increases in PM2.5 at 26.6 ± 13.7%.

Although these changes are in response to a large warming
signal (3.8 ± 0.4 K), we find that PM2.5 increases linearly with
global mean temperature (Supplementary Note 1; Supplementary
Figs. 1 and 2). The real-world evolution of CO2 is likely to be less
aggressive that the 1% per year increase in CO2 case; as such, the
PM2.5 increase will likewise be muted relative to that reported
here, based on the time of CO2 quadrupling (years 100–140).
Given the linear scaling, however, we expect a 3–4% increase in
PM2.5 per degree K of warming (this appears unrelated to the rate
of warming, as we obtain a similar scaling from the abrupt-4xCO2

experiments). This estimate is based on CO2- and vegetation-
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induced climate change impacts alone, and does not address
possible decreases in anthropogenic aerosol/precursor gas emis-
sions (e.g., via clean air policies). Thus, the newest global climate
and Earth system models yield a robust PM2.5 increase across
most world regions under increasing CO2 concentrations, that
linearly scales with the amount of warming.

As with the total PM2.5 response, individual PM2.5 components
also show robust increases over most locations (Supplementary
Fig. 3). The largest contributors to the increase in PM2.5 over land
are organic aerosol (i.e., the sum of primary and secondary
organic aerosol; OA PM2.5) at 63.7% contribution to the total
PM2.5 increase; followed by dust (DU PM2.5; 26.8%) and sea salt
(another natural aerosol) at 6.6%. The other components—sulfate
and black carbon—contribute 2.9% and <1% to the increase,
respectively. As only two models include nitrate, it is not con-
sidered in this analysis (Methods). Furthermore, biomass burning
emissions are prescribed in our simulations and thus are not
considered further as they are not able to change in response to
the increase in CO2 (Methods). The large contributions of OA
PM2.5 and DU PM2.5 provide an explanation for the larger
increase of total PM2.5 over the Americas and Africa (Fig. 1;
Supplementary Fig. 3). A significant increase in DU PM2.5 over
both northern (i.e., Sahara Desert) and southern Africa occurs at
1.1 ± 0.9 and 0.19 ± 0.15 μg m−3 (7.7 ± 6.6 and 22.4 ± 19.3%),
respectively. Similarly, an increase in OA PM2.5 occurs for both
regions at 0.5 ± 0.4 for nAF and 1.0 ± 0.9 μg m−3 for sAF

(20.4 ± 15.7 and 18.9 ± 15.4%, respectively). Over the US and
South America, the relatively large increase in total PM2.5 is due
to large increases in OA PM2.5 at 0.5 ± 0.3 μg m−3 (29.4 ± 19.2%)
and 1.6 ± 1.4 μg m−3 (51.9 ± 32.8%), respectively. Although not
significant, DU PM2.5 also contributes to the US increase at
0.10 ± 0.13 μg m−3, and in particular for the relative increase at
42.8 ± 38.8%. Similarly large relative DU PM2.5 increases also
occur for Central America (71.7 ± 25.0%), Canada (57.7 ± 39.0%),
and South America (36.2 ± 16.2%). Much of this DU PM2.5

increase over the Americas appears to be transported Saharan
dust (e.g., Supplementary Fig. 3c). We note that although the
increase in SS PM2.5 is the third most important contributor to
the increase in PM2.5 over global land (which is most important
for human-relevant air quality) with a percent increase of
11.6 ± 5.0%, the increase in SS PM2.5 becomes more important
when considering the global mean (Supplementary Fig. 4; Sup-
plementary Note 2).

Of the 13 models, five (UKESM1-0-LL, NorESM2-LM, GFDL-
ESM4, GISS-E2-1-G and CESM2-WACCM) include climate-
dependent emissions of BVOCs (Supplementary Table 2; addi-
tional discussion below), including monoterpenes and isoprene,
which can be oxidized to form SOA. Figure 2a, c shows the PM2.5

response in the five models with climate-dependent BVOC
emissions (BVOC models) and the eight models without climate-
dependent BVOC emissions (NOBVOC models; Supplementary
Fig. 5 shows model agreement on the sign of the response). The
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Fig. 1 PM2.5 response to GHG-induced warming. aMulti-model mean annual mean PM2.5 response [μg m−3]; b model agreement on the sign of the PM2.5
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and nm is the number of models. The following abbreviations are used: Canada (Can; black), United States (US; magenta), Central America (cAm; sky
blue), South America (sAm; purple), south Africa (sAf; yellow), north Africa (nAf; green), Europe (Eu; pink), central and north Asia (cnA; orange), east
Asia (eA; navy), south Asia (sA; red), southeast Asia (seA; gray), and Australia (Au; beige). The average over these 12 land regions is abbreviated as “Ld".

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00688-7 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2023) 4:22 | https://doi.org/10.1038/s43247-023-00688-7 | www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


multi-model annual mean increase over land for the BVOC
models is 1.7 ± 0.9 μg m−3 (23.0 ± 11.0%); the corresponding
increase for the NOBVOC models is much smaller at
0.28 ± 0.27 μg m−3 (5.4 ± 5.2%). Thus, BVOC models yield a
much larger (5-6 times) increase in PM2.5—this accounts for
much of the inter-model spread previously discussed. Nearly all
of the enhanced PM2.5 response is due to OA PM2.5 (and more
specifically SOA PM2.5), particularly over South America and
central Africa, as well as east and southeast Asia (Fig. 2b, d). The
multi-model annual mean OA PM2.5 increase over land for the
BVOC models is 1.4 ± 0.8 μg m−3 (66.3 ± 36.9%); the corre-
sponding increase for the NOBVOC models is much smaller and
not significant at 0.003 ± 0.05 μg m−3 (0.17 ± 2.4%). Thus, con-
sistent with prior studies25,40,41, models with climate-dependent
BVOC emissions simulate larger increases in OA PM2.5, and in
turn, larger and more robust increases in PM2.5.

We note that the magnitude of the global mean PM2.5 increase
found here—particularly based on the BVOC models—is compar-
able to the corresponding end-of-the twenty-first century decrease in
PM2.5 under near-term climate forcer (NTCF; aerosols and pre-
cursor gases) mitigation42,43. Comparing twenty-first century
simulations in five climate models (including several used here)
driven by SSP3-7.0 (a future emission scenario that lacks climate
policy and has weak levels of air quality control measures) relative to
SSP3-7.0-lowNTCF (an analogous future emission scenario but with
strong levels of air quality control measures), the decrease in global
mean PM2.5 by 2090–2099 relative to 2005–2014 is
−0.93 ± 0.07 μgm−343. Here, in this analysis, we find global mean
PM2.5 increases of 0.62 ± 0.26 μgm−3, which increases to
1.06 ± 0.49 μgm−3 in BVOCmodels. Thus, we find that CO2-caused
degradation of air quality—under relatively large global mean
warming of 3.8 ± 0.4 K (which is similar to end-of-century warming
under SSP3-7.0)—is comparable to improvements in air quality due
to strong air quality control measures (i.e., NTCF mitigation).

Mechanisms of increased Sahara Dust. The main location of the
DU PM2.5 increase is over the Sahara Desert and northern Africa
(Supplementary Fig. 3c, d). The multi-model annual mean DU
PM2.5 increase over the region is 1.1 ± 0.9 μg m−3, with 10 of 13
models (77%) yielding an increase. The largest increase occurs
during Northern Hemisphere wintertime (January–February–
March, JFM), but this is not significant at 1.5 ± 1.9 μgm−3. As
summertime (July–August–September, JAS) also yields a large (and
significant) increase at 1.3 ± 0.9 μgm−3, we focus on the annual
and JAS responses. Figure 3a, b shows the corresponding change in
annual and JAS dust emissions (Supplementary Fig. 6 shows model
agreement on the sign of the change). Significant increases occur
throughout the Sahara region, particularly the western Sahara
during JAS. The multi-model annual mean increase over the entire
nAF region is 17.3 ± 17.6 kg km−2 day−1, with 10 of 13 models
(77%) yielding an overall increase. Larger (and significant)
increases occur during JAS at 38.8 ± 27.4 kg km−2 day−1 with 77%
model agreement. Furthermore, the spatial correlation over nAF
between the multi-model mean change in dust emissions and DU
PM2.5 is 0.79 for the annual mean and 0.84 for JAS (both sig-
nificant at the 99% confidence level). Thus, the increase in nAF DU
PM2.5 is related to increased dust emissions. We note both wet and
dry dust removal increase over nAF (Supplementary Fig. 7). As this
is likely related to increased dust emissions, we also analyze the wet
and dry dust removal efficiencies, and find that a decrease in wet
removal efficiency also contributes to the increase in dust and
other aerosol species (Supplementary Note 3; Supplementary
Figs. 8 and 9).

What causes the increase in northern Africa dust emissions?
All 13 models used here parameterize dust emissions based (in
part) on surface winds (Supplementary Table 2; see also ref. 44),
but the degree of coupling to land surface properties and
vegetation varies. For example, land cover change impacts dust
emissions in GFDL-ESM4, but soil moisture is not directly

ΔPM2.5 [μg m-3]                           ΔOA_PM2.5 [μg m-3] BVOC Models

NOBVOC Models

a b

c d

Fig. 2 PM2.5 response to GHG-induced warming and the contribution from organic aerosol in two model subsets. Multi-model mean annual mean
a PM2.5 and b OA PM2.5 response [μgm−3] in five models with climate-dependent BVOC emissions (BVOC models); and c, d the corresponding response
in eight models that lack climate-dependent BVOC emissions (NOBVOC models). Dots represent a significant response at the 90% confidence level based
on a two-tailed pooled t-test.
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Fig. 3 Response of dust emissions and atmospheric circulation to GHG-induced warming over Africa. Multi-model mean annual mean change in a dust
emissions [kg km−2 day−1]; c surface wind vectors and wind speed [m s−1]; e sea level pressure [hPa]; g surface temperature [K]; and i surface soil
moisture [kg km−2]. Corresponding multi-model mean July–August–September (JAS) responses for b dust emissions [kg km−2 day−1]; d surface wind
vectors and wind speed [m s−1]; f sea level pressure [hPa]; h surface temperature [K]; and j surface soil moisture [kg km−2]. Dots represent a significant
response at the 90% confidence level based on a two-tailed pooled t-test.
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used45. In GISS-E2-1-G, dust emissions are impacted by
irrigation (and soil moisture), but not vegetation46,47. In contrast,
CESM2-WACCM uses vegetation, as well as soil moisture, to
simulate dust emissions48. NorESM2-LM uses a fixed map of soil
erodibility and clay content, but includes interactive vegetation
(and soil moisture) effects on dust emissions, such as leaf area
index and canopy height49. UKESM1-0-LL also includes the
effects of interactive vegetation on dust emissions, and a prior
analysis showed good agreement between UKESM1-0-LL simu-
lated and observed dust changes50.

Figure 3c, d shows a multi-model mean increase in surface
wind speed throughout most of the region, with enhanced
westerly/southwesterly flow, particularly during JAS (Supplemen-
tary Fig. 6 shows model agreement). Over the entire region, the
multi-model annual mean surface wind speed increase is
0.07 ± 0.05 m s−1, with 10 of 13 (77%) models yielding an
increase. As with most of the responses discussed in this section,
the increase in surface wind speed is larger (0.16 ± 0.05 m s−1)
and more robust (92% model agreement on the increase) during
JAS. Figure 3e, f shows a multi-model mean decrease in sea level
pressure exists over most of the Sahara region. This strengthens
the climatological pressure gradient (i.e., the Sahara is dominated
by relatively low sea level pressure, especially during JAS), which
is consistent with the enhanced surface winds. The decrease in sea
level pressure is related to enhanced surface warming (Fig. 3g, h)
—the spatial correlation over nAF between the multi-model mean
changes in sea level pressure and surface temperature is −0.68 for
the annual mean and −0.87 for JAS (both significant at the 99%
confidence level). Consistent with these dynamical changes, there
are also significant increases in precipitation throughout most of
northern Africa at 0.12 ± 0.06 mm day−1 (8.5 ± 4.6%) and
0.27 ± 0.17 mm day−1 (10.7 ± 6.2%) for the annual and summer-
time (Supplementary Fig. 7) mean, with 10 of 13 (77%) models
yielding an increase for both seasons. Changes in surface soil
moisture are less robust and not significant, likely due to the
offsetting effects of warming and increased evaporative demand,
relative to the increase in precipitation. For example, nAF annual
mean surface soil moisture decreases by −0.08 ± 0.19 kg m−2 (6
of 12 models agree on the decrease); during JAS, the decrease is
−0.11 ± 0.24 kg m−2 (8 of 12 models agree on the decrease).
Overall, however, these changes suggest increasing CO2 drives an
enhanced West African Monsoon, which is characterized by
northward migration of the tropical rain band during the summer
months, and strong southwesterly flow from the south.

Figure 4 shows a scatter plot of the nAF annual mean change in
dust emissions versus the corresponding change in near-surface
wind speed for each model. With a correlation of 0.57 (significant
at the 95% confidence level), models that simulate a larger
increase in nAF surface wind speeds also tend to yield a larger
increase in nAF dust emissions (and vice versa). The correspond-
ing JAS correlation is 0.50, significant at the 90% confidence level.
Another way of quantifying this relationship is by calculating the
spatial correlation coefficient (over nAF) between the multi-
model mean change in dust emissions and surface wind speed.
This approach also yields significant (at the 99% confidence level)
correlations, at 0.55 for the annual mean and 0.63 for JAS. Other
climate parameters related to dust emissions show weaker
correlations (see also Supplementary Note 4). For example,
although consistent with expectations (i.e., drier soil is more
easily mobilized) the inter-model correlation between the change
in nAF surface soil moisture and dust emissions is −0.50 and
−0.20 for the annual and summertime mean (the latter
correlation is not significant at the 90% confidence level). The
corresponding spatial correlation between the multi-model mean
change in nAF dust emissions and surface soil moisture is also
weak (and not significant) at −0.08 and −0.01 for the annual and

summertime mean. This is consistent with visual interpretation,
which shows a relatively large decrease in soil moisture in western
nAF (Fig. 3i, j), near Nigeria and moving west through Ghana,
Ivory Coast, Sierra Leone and Guinea. The bulk of the increase in
dust emissions (Fig. 3a, b), however, is to the north of this (where
there are also strong increases in surface winds). Furthermore, in
northern Africa (e.g., Algeria, Libya, Egypt), there are general
decreases in soil moisture but mixed changes in dust emissions
(for the annual mean, there are decreased dust emissions near
Libya; Fig. 3a). Thus, we conclude that the bulk of the increase in
nAF dust emissions is associated with the increase in near-surface
wind speeds. The importance of surface winds is consistent with
prior studies51,52, including a recent analysis of historical CMIP6
prescribed sea surface temperature (SST) experiments ("AMIP";
SSTs do vary but not interactively) that showed changes in
surface winds were the primary driver of changes in dust
emissions44.

Mechanisms of increased organic aerosol. As mentioned above,
models with climate-dependent BVOC emissions yield larger
increases in PM2.5, mostly due to larger increases in OA PM2.5

(and in particular SOA). The relatively large increase in OA PM2.5

in these models is consistent with enhanced BVOC emissions
(Supplementary Fig. 10). GISS-E2-1-G, however, is an exception,
as it yields strong increases in BVOC emissions but a weak
increase in OA PM2.5. The OA PM2.5 increase over global land is
2.7, 0.9, 0.01, 2.2, and 1.0 μg m−3 (125.8%, 42.5%, 0.9%, 95% and
35.8%) for CESM2-WACCM, GFDL-ESM4, GISS-E2-1-G,
NorESM2-LM and UKESM1-0-LL, respectively.

CMIP6 models use relatively simplistic parameterizations for
BVOC emissions, with some models’ BVOC emissions dependent
on the climate (e.g., temperature; Supplementary Table 2).
BVOC-SOA treatment also varies between the models53,54. For
example, three of the five BVOC models parameterize SOA
formation as a fixed yield from BVOC emissions. UKESM1-0-LL
has a fixed SOA yield of 26% from gas-phase oxidation reactions
involving interactive land-based monoterpene emissions from a
dynamic vegetation and land surface model55,56. NorESM2-LM
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Fig. 4 Change in dust emissions versus the change in surface wind speed
over northern Africa in individual models. Scatter plot of the change in
dust emissions [kg km−2 day−1] versus the change in surface wind speed
[m s−1] over northern Africa for each model (color coded as defined in the
legend). Black line shows the least squares regression slope. The
correlation coefficient (r) is 0.57, significant at the 95% confidence level.
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has fixed SOA yields of 15% and 5% from oxidation of
monoterpenes and isoprene emissions from dynamically evolving
vegetation40,49,57. GFDL-ESM4 has a fixed SOA yield of 10%
from isoprene and terpene emissions from static present-day
vegetation conditions58. In contrast, GISS-E2-1-G (OMA;
Supplementary Note 5) includes gas-particle partitioning of
semi-volatile species (they are able to condense on and evaporate
from pre-existing aerosols) that form SOA47,53. Emissions of
isoprene from dynamically evolving vegetation are calculated
interactively, whereas terpene emissions are prescribed. CESM2-
WACCM also explicitly calculates SOA using the volatility basis
set (VBS), where aromatic species including terpenes and
isoprene (from dynamically evolving vegetation) are oxidized to
produce a range of gas-phase SOA precursors with different
volatilities59,60.

The strong BVOC increase in GISS-E2-1-G, but relatively weak
increase in OA PM2.5 suggests weak SOA formation from the
oxidation of BVOCs. This finding is consistent with a prior GISS
ModelE2 study53, where SOA was mostly affected by the pre-
existing non-volatile primary OA (POA), as opposed to the strong
increase in BVOC emissions. Although available in only two
models, weak SOA formation in GISS-E2-1-G is supported by the
change in chemical SOA production (Supplementary Fig. 11). In
GFDL-ESM4 (which experiences relatively large increases in both

BVOC emissions and OA PM2.5), chemical SOA production
increases by 0.63 kg km−2 day−1 (49.6%); the corresponding
increase in GISS-E2-1-G is much weaker at 0.003 kg km−2 day−1

(8.1%). The GISS-E2-1-G result highlights the possible role of pre-
existing aerosols on SOA formation—under the assumption that
SOA is able to evaporate under favorable conditions. We note that
the 1% per year CO2 simulations were all conducted with
preindustrial anthropogenic aerosols (i.e., low pre-existing aerosol).
In addition, other anthropogenic pollution such as nitrogen oxides
(NOx) impact SOA yield from BVOCs61.

The good correspondence between the change in BVOC
emissions and OA PM2.5 (except in GISS-E2-1-G) is also
exhibited by their spatial correlation over global land—the
correlation is 0.69, 0.89, 0.91, and 0.15 for UKESM1-0-LL,
NorESM2-LM, GFDL-ESM4, and GISS-E2-1-G, respectively (all
are significant at the 99% confidence level due to the large
number of data points). Similar results exist based on the global
land time series (over years 1–140) for each model (Supplemen-
tary Fig. 12). Here, the correlations (over time) are even stronger
for most models at 1.0 for GFDL-ESM4 and NorESM2-LM; 0.97
for UKESM1-0-LL; but 0.27 for GISS-E2-1-G. Detrended
correlations are weaker, but still significant at the 90% confidence
level outside of GISS-E2-1-G. Thus, the increase in BVOC
emissions is a dominant driver of the increase in OA PM2.5 in 3 of

GFDL-ESM4                                           GISS-E2-1-G

NorESM2-LM                                         UKESM1-0-LL

a b

c d

Fig. 5 Global land mean time series of surface temperature and BVOC emissions. Surface temperature (TAS; blue) [K] and BVOC emissions (EMIBVOC;
red) [kg km−2 day−1] for four models that include climate-dependent BVOC emissions, including a GFDL-ESM4; b GISS-E2-1-G; c NorESM2-LM; and
d UKESM1-0-LL. Solid, dotted and dashed lines show results from the 1% per year CO2, 1% per year CO2-rad, and 1% per year CO2-bgc experiments (only
three models, GFDL-ESM4, NorESM2-LM and UKESM1-0-LL, performed the latter two experiments). Also included is the correlation coefficient (r),
followed by the detrended correlation, the percent change and the absolute change in BVOC emissions (years 100–140 relative to 40 years from the
preindustrial control).
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the 4 BVOC models. For CESM2-WACCM (which lacks BVOC
emissions data), the increase in OA PM2.5 is also likely driven by
increased BVOC emissions, due to the similarity of the spatial
pattern of the increase in OA PM2.5 with the other models (e.g.,
Supplementary Fig. 10).

What causes the increase in BVOC emissions? Warming is
expected to increase BVOC emissions55,62, although this has been
questioned63. Temperature increases the emission rates of most
BVOCs exponentially by enhancing the enzymatic activities of
synthesis, by raising the BVOC vapor pressure, and by decreasing
the resistance of the diffusion pathway26. Observational support
for this relationship is based on synoptic and interannual
timescales; the response on climate change timescales, however,
is more uncertain. Rising atmospheric CO2 concentrations are
also likely to increase the productivity and standing biomass of
plants, which allows for an increase in photosynthesis rates22, and
thus an increase in the available carbon for BVOC production.
Figure 5 shows time series over years 1–140 of the global land
surface temperature versus BVOC emissions in the 1% per year
CO2 simulations for the four BVOC models that archived the
data. As previously discussed, BVOC emissions increase in all
four models, with the largest increase in NorESM2-LM at
13.0 kg km−2 day−1 (137.8%) and the weakest increase in
UKESM1-0-LL at 3.1 kg km−2 day−1 (23%). There is also a very
strong correlation between surface temperature and BVOC
emissions. In GFDL-ESM4, GISS-E2-1-G and NorESM2-LM,
the correlation is 0.99 (0.68–0.92 using detrended values), all
significant at the 99% confidence level. The relationship is also
significant in UKESM1-0-LL, but somewhat weaker with a
correlation of 0.97 (0.52 using detrended values). This shows
the importance of surface warming to the increase in BVOC
emissions, and also supports the linear scaling of warming with
changes in PM2.5 (e.g., Supplementary Note 1; Supplementary
Fig. 1).

Three of the five BVOC models—GFDL-ESM4, NorESM2-LM
and UKESM1-0-LL—also conducted 1% per year CO2-rad
(radiatively coupled) and 1% per year CO2-bgc (biogeochemically
coupled) simulations (Methods). In the former, the increase in CO2

only impacts the physical climate via radiation; in the latter, the
increase in CO2 only impacts biogeochemical processes64. In the
context of BVOC emissions, the 1% per year CO2-rad experiments
largely isolate the temperature and precipitation impacts; the 1%
per year CO2-bgc experiments isolate the increased biomass
productivity (i.e., CO2 fertilization effects, and the CO2 isoprene
suppression effects for models that include it). In NorESM2-LM,
global land BVOC emissions increase under both 1% per year
CO2-rad (3.3 kg km−2 day−1; 34.4%) and 1% per year CO2-bgc
(5.5 kg km−2 day−1; 58.2%). GFDL-ESM4 also yields an increase in
BVOC emissions under both experiments, largely under 1% per
year CO2-rad (3.5 kg km−2 day−1; 42.2%), with smaller increases
under 1% per year CO2-bgc (0.61 kg km−2 day−1; 7.3%). In
UKESM1-0-LL, BVOC emissions also (strongly) increase under
1% per year CO2-rad (7.3 kg km−2 day−1; 54.8%), but decrease
under 1% per year CO2-bgc (−3.1 kg km−2 day−1; −23.3%).

Thus, all three models simulate an increase in BVOC emissions
in response to CO2-induced changes in the physical climate (i.e.,
warming). The magnitude of the increase, however, varies by
more than a factor of 2; the stronger increase in UKESM1-0-LL
suggests this model’s BVOC emissions are more sensitive to
warming than the other two models. In response to CO2-induced
changes in biogeochemistry, models simulate different signed
responses. The UKESM1-0-LL decrease in BVOC emissions
under 1% per year CO2-bgc is consistent with its strong inhibition
of isoprene emissions (Supplementary Note 6; Supplementary
Fig. 13) under increasing CO2 concentrations23,55. Although
NorESM2-LM also includes this effect (Supplementary Table 2)

the strong BVOC (and isoprene) increase in NorESM2-LM (and
also likely CESM2-WACCM) implies weak isoprene inhibition
and/or compensating effects. For example, all BVOC models
except GISS-E2-1-G yield increases in leaf area index (LAI) (and
net primary productivity of land biomass, NPP) in both 1% per
year CO2 and 1% per year CO2-bgc (the increase is largely due to
biogeochemical CO2 effects). In models where dynamic vegeta-
tion influences BVOC emissions (not GFDL-ESM4), this likely
leads to increased isoprene emissions62. The increase in LAI and
NPP under 1% per year CO2 is also robust over a larger number
(ten) of models (Supplementary Fig. 14), where the global land
increase is 0.82 ± 0.29 (50.7 ± 19.7%) for LAI and
721.7 ± 101.1 kgC km−2 day−1 (80.7 ± 11.2%). All world regions
experience an increase in both quantities under the multi-
model mean.

Discussion
Our results show that improved understanding of climate-
dependent BVOC emissions—including the response to increas-
ing temperature and carbon dioxide (CO2), as well as the for-
mation of SOA from BVOCs65—is critical to numerical
assessments of future air quality, and for reducing the uncertainty
in the magnitude of the PM2.5 increase under climate change.
Earth system model development should focus on these types of
processes and feedbacks (i.e., chemistry-climate-biosphere) to
represent more comprehensive CO2-induced impacts on air
quality (and climate). Although our experiments are idealized
(i.e., 1% per year CO2), uncertainties exist, and we do not address
possible reductions of anthropogenic aerosol/precursor gas
emissions, this study emphasizes an increased importance of
natural aerosols to air quality under warming. This “climate
penalty" will impact a region’s ability to attain a specified air
quality standard. In fact, CO2-caused degradation of air quality—
under relatively large global mean warming of 3.8 ± 0.4 K (which
is similar to end-of-century warming under SSP3-7.0)—is com-
parable to 21st century improvements in air quality due to strong
air quality control measures (i.e., NTCF mitigation)42,43. For a
future with clean air, it is thus imperative to decrease CO2 (and
other GHG) emissions.

Methods
CMIP6 simulations. We use 13 state-of-the-art CMIP6 climate models (Supple-
mentary Tables 1 and 2). Our primary analysis focuses on the fully coupled 1% per
year CO2 simulations, where atmospheric CO2 concentrations increase from the
preindustrial value (~284 ppm) by 1% per year. Both biogeochemical and radiative
processes respond to the increasing atmospheric CO2 concentrations. These
experiments are integrated for 140–150 years. Based on a ~70 year doubling time,
this implies atmospheric CO2 concentrations have doubled by year 70 and quad-
rupled near the end of the simulation in year 140.

Preindustrial control and 1% per year CO2 experiments have natural and
anthropogenic emissions (including agriculture and wildfire emissions).
Anthropogenic emissions are prescribed based on year 1850 of the CMIP6
emission inventory, the Community Emissions Data System (CEDS)35,66. CMIP6
models, and more specifically the experiments analyzed here including the
preindustrial control and 1% per year CO2, do not include interactive wildfire OA/
BC emissions (i.e., those that respond to climate change). Both sets of simulations
therefore include anthropogenic and biomass burning emissions, but they are
unchanging on interannual times scales (they do have seasonal variation). Natural
aerosol emissions are parameterized based on simulated climate parameters (e.g.,
surface winds for dust emissions; Supplementary Table 2). Most models include a
representation of BVOC emissions from vegetation. Even with some of the
NOBVOC models, BVOC emissions exist but they are prescribed (Supplementary
Table 2). For example, MIROC6 uses prescribed (interannually fixed and unable to
respond to CO2 increases) isoprene and terpene emissions from the Global
Emissions Initiative (GEIA). In BVOC models, BVOC emissions respond to
climate change (e.g., changes in CO2, temperature, etc.) and, in most cases,
vegetation change too. Dynamically evolving vegetation means that vegetation
changes in response to climate change. This will impact BVOC emissions. Thus,
anthropogenic emissions are the same in the preindustrial control and 1% per year
CO2 experiments; they are not the cause of any increase in PM2.5. CO2-induced
warming, however, will impact natural aerosol emissions (dust and BVOCs in
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BVOC models) in 1% per year CO2; warming will also impact temperature, clouds,
precipitation and circulation—all of which could impact PM2.5 via chemistry,
removal, transport, etc.

Two sets of additional 1% per year CO2 simulations were also analyzed for three
models, including the biogeochemically (1% per year CO2-bgc) coupled simulation
and the radiatively (1% per year CO2-rad) coupled simulation. In the former,
biogeochemical processes over land and ocean respond to increasing atmospheric
CO2 concentration, but the atmospheric radiative transfer calculations use a CO2

concentration that remains at the initial, preindustrial value. Although climate
change is largely muted in these simulations, small changes do occur in response to
changes in latent and sensible heat fluxes resulting from changes in vegetation
structure and stomatal closure, as well as changes in vegetation coverage in models
with dynamic vegetation64. In radiatively coupled simulations, increasing
atmospheric CO2 concentration impacts atmospheric radiative transfer and thus
climate, but not the biogeochemical processes directly over land and ocean (which
see the preindustrial atmospheric CO2 concentration). These two sets of
simulations are used to better understand the drivers of changes in BVOC
emissions (i.e., biogeochemical drivers versus physical climate drivers). Of the five
models with climate-dependent BVOC emissions, only three (GFDL-ESM4,
NorESM2-LM and UKESM1-0-LL) performed the 1% per year CO2-rad and 1%
per year CO2-bgc simulations and archived the data relevant to this analysis. In all
experiments used, biomass burning emissions of aerosols and precursors are
prescribed (i.e., they are not coupled to climate-change induced fire changes).

It should be noted that NorESM2-LM, GFDL-ESM4, and CESM2-WACCM
utilize the Model of Emissions of Gases and Aerosols from Nature (MEGAN67;
Supplementary Table 2), which may in part explain the similarity of the results in
these three models (note, however, that GFDL-ESM4 lacks the CO2-isoprene
inhibition). MEGAN BVOC emissions are based on a mechanistic model that
includes the major processes driving BVOC emission variations. This includes a
light response based on electron transport28, a temperature response based on
enzymatic activity28, and a CO2 response based on changes in metabolite pools,
enzyme activity and gene expression68. The emission activity factor (γi) for each
compound class i (e.g., isoprene, β-Pinene, α-Pinene, etc.) accounts for the
processes controlling emission responses to environmental and phenological
conditions. This includes the emission response to light (γP), temperature (γT), leaf
age (γA), soil moisture (γSM), leaf area index (LAI), and CO2 inhibition (γC), i.e.,
γi= (LAI) × (γP,i) × (γT,i) × (γA,i) × (γSM,i) × (γC,i) × (CCE), where CCE is the the
canopy environment coefficient.

The temperature emission activity factor (γT,i) is the weighted average of a light-
dependent (LDF) and light-independent fraction (LIF= 1− LDF) according
to: γT,i= (1− LDFi) × γTLIF,i+ LDFi × γTLDF,i. The light-dependent fraction
response is calculated following: γTLDF,i= Eopt × [CT2 × exp(CT1,i × x)/(CT2− CT1,i ×
(1− exp(CT2 × x)))], where x= [(1/Topt)− (1/T)]/0.00831, T is leaf temperature
(K), CT1,i and CT2 (=230) are empirically determined coefficients, Topt= 313+
(0.6 × (T240− Ts)) and Eopt= Ceo,i × exp(0.05 × (T24− Ts)) × exp(0.05 × (T240− Ts)).
Here, Ts represents the standard conditions for leaf temperature (=297 K), T24 is the
average leaf temperature of the past 24 h, T240 is the average leaf temperature of the
past 240 h, and Ceo,i is an emission-class dependent empirical coefficient67. The
response of the light-independent fraction follows the monoterpene exponential
temperature response function69 as γTLIF,i= exp(βi × (T− Ts)), where βi is an
empirically determined coefficient67.

Approximation of PM2.5. Air quality is quantified in terms of fine particulate
matter, PM2.5. Few models directly archive PM2.5 (for those that do, see Supple-
mentary Notes 7–9 for a comparison to our approximated PM2.5) and not all models
include the same aerosol species (e.g., nitrate aerosol)42,43. We therefore use the
following PM2.5 approximation70: PM2.5= SO4+OA+ BC+ 0.10 × DU+
0.25 × SS, where SO4 is sulfate aerosol, OA is organic aerosol (the sum of primary and
secondary organic aerosol, i.e., POA+SOA), BC is black carbon, DU is dust and SS is
sea salt. Monthly mean fields from the model level closest to the surface are used. This
formula assumes 100% of the BC, OA, and SO4 is fine mode, whereas 25% of the sea
salt and 10% of the dust is fine mode. The SS and DU factors will be dependent on the
model and its size distribution. In the case of CNRM-ESM2-1, sensitivity tests were
used to estimate a much smaller SS factor of 0.01. This smaller factor addresses the
large SS size range of up to 20 μm in this model42. To convert PM2.5 from a mass
mixing ratio to a concentration (units of μgm−3), we multiply by air density,

PS
TAS ´Rd

´ 109, where PS is surface pressure in Pascals, TAS is surface temperature in

Kelvin, and Rd is the dry gas constant equal to 287 J K−1 kg−1. Upon multiplying by
any factors (i.e., for SS and DU), and converting to concentration, individual PM2.5

components are abbreviated as e.g., OA PM2.5 and DU PM2.5 for the organic aerosol
and dust components, respectively.

Although this approach likely introduces some uncertainties, it provides an
estimate of PM2.5 for all models, as well as a consistent estimate for all models. It
also allows us to decompose the total PM2.5 into its individual components.
Previous work has shown this approach to be a conservative way of estimating
PM2.5 from CMIP model output34. As previously quantified (using the same PM2.5

approximation), CMIP6 models generally underestimate PM2.5 over most regions
relative to ground-based (e.g., GASSP) observations and the MERRA-2 aerosol
reanalysis product34,71. Additional details—including analyses of archived PM2.5,
an alternative PM2.5 approximation with a larger dust factor (i.e., 0.3 as opposed to

0.1), analysis of nitrate and ammonium in the two models (GFDL-ESM4 and GISS-
E2-1-G) that include it, and the likely importance of increased natural fire
emissions to degraded air quality under warming (which are not included here)—
can be found in Supplementary Notes 7–9 and Supplementary Figs. 15 and 16.

Data processing and statistics. We use monthly mean CMIP6 data and spatially
interpolate all model data to a 2.5∘ × 2. 5∘ grid using bilinear interpolation. The
climate response is estimated as the difference in years 100–140 (e.g., from the 1%
per year CO2 experiments) relative to 40 years from the preindustrial control
simulation corresponding to years 100–140 of the 1% per year CO2 experiment.
Preindustrial control simulations feature fixed (to the preindustrial value) atmo-
spheric CO2 concentration and other climate drivers (e.g., other GHGs, solar
irradiance, aerosols). The multi-model mean is estimated from the average of each
individual model. Only one run for each model and experiment is used.

Statistical significance of the climate response is calculated using two different
methods. In the first method (e.g., Fig. 1a), the multi-model mean time series is
calculated for both the experiment and the control, and a difference is calculated. A
two-tailed pooled t-test is used to assess significance, where the null hypothesis of a
zero difference is evaluated, with n1+ n2− 2 degrees of freedom, where n1 and n2
are the number of years in the experiment and control (i.e., 40 years each). Here,

the pooled variance, ðn1�1ÞS21þðn2�1ÞS22
n1þn2�2 , is used, where S1 and S2 are the sample

variances. Statistical significance assessed using this method shows that the multi-
model mean response at nearly all grid boxes (e.g., Fig. 1a) is significant at the 90%
confidence level.

We also quantify the significance of the multi-model mean response relative to
each individual model response (e.g., Fig. 1d and quoted throughout the text to
quantify global and regional uncertainty). Here, the multi-model mean response is
calculated as the average of the individual model responses and its uncertainty is
estimated as plus/minus 1.65 × standard error (i.e., the 90% confidence interval)
according to 1:65 ´ σffiffiffiffi

nm
p , where σ is the standard deviation across models and nm is the

number of models. If this confidence interval does not include zero, then the multi-
model mean response is significant at the 90% confidence level. This approach
shows most world regions yield a significant increase in PM2.5 (e.g., Fig. 1d).

We also estimate the model agreement on the sign of the model-mean response
(e.g., Fig. 1b), which is estimated at each grid box (or world region) as the
percentage of models that yield a positive or negative response. Grid points for
which 10 out of 13 models (~75%) agree on sign pass a 2-tailed binomial test to
reject the null hypothesis of equal probability of positive or negative sign at the 90%
confidence level. Under such conditions, there is good agreement on the sign of the
response across the models. This approach shows high model agreement (75–85%)
on the sign of the PM2.5 response (i.e., an increase) at most grid boxes (e.g., Fig. 1b)
and world regions (as discussed in the main text).

Significance of correlations (r) is estimated from a two-tailed t-test as: t ¼ rffiffiffiffiffiffi
1�r2
N�2

p ,

with N− 2 degrees of freedom. Here, N is either the number of grid boxes (for a
spatial correlation) or the number of years (for a correlation over time).

Data availability
CMIP6 data can be downloaded from the Earth System Grid Federation at https://esgf-
node.llnl.gov/search/cmip6/.

Code availability
Code used to analyze model data is available upon request from rjallen@ucr.edu.
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