
This is a repository copy of Modelling second-order uncertainty in state machines.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/196630/

Version: Accepted Version

Article:

Walkinshaw, N. and Hierons, R. orcid.org/0000-0002-4771-1446 (2023) Modelling second-
order uncertainty in state machines. IEEE Transactions on Software Engineering, 49 (5).
pp. 3261-3276. ISSN 0098-5589

https://doi.org/10.1109/TSE.2023.3250835

© 2023 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in IEEE Transactions on Software Engineering is made available via the
University of Sheffield Research Publications and Copyright Policy under the terms of the
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Modelling Second-Order Uncertainty in State
Machines

Neil Walkinshaw, Robert M. Hierons

Abstract—Modelling the behaviour of state-based systems can be challenging, especially when the modeller is not entirely certain

about its intended interactions with the user or the environment. Currently, it is possible to associate a stated level of uncertainty with a

given event by attaching probabilities to transitions (producing ‘Probabilistic State Machines’). This captures the ‘First-order uncertainty’

- the (un-)certainty that a given event will occur. However, this does not permit the modeller to capture their own uncertainty (or lack

thereof) about that stated probability - also known as ‘Second-order uncertainty’. In this paper we introduce a generalisation of

probabilistic finite state machines that makes it possible to incorporate this important additional dimension of uncertainty. For this we

adopt a formalism for reasoning about uncertainty called Subjective Logic. We present an algorithm to create these enhanced state

machines automatically from a conventional state machine and a set of observed sequences. We show how this approach can be used

for reverse-engineering predictive state machines from traces.

Index Terms—State machine, Second order uncertainty, Subjective logic, Inference, Test prioritization

✦

1 INTRODUCTION

State machines are commonly used to model systems where
the behaviour can be characterised in terms of sequences of
steps. These systems tend to encompass network protocols,
GUIs, and the behaviour of reactive systems such as cyber-
physical systems. The presence of a state machine model
allows the application of powerful algorithms to a range
of verification and testing approaches [1]. Numerous lan-
guages and notations have been developed for a variety of
domains. Popular tools such as Simulink StateFlow1, CDP
Studio2, and Eggplant3 are based on state machines, and
are used to model systems ranging from low-level control
systems to high-level business processes.

In their recent review of uncertainty representation in
software models [2], Troya et al. emphasise the importance
of being able to capture uncertainty: “Uncertainty is an in-
herent property of any system that operates in a real environment
or that interacts with physical elements or with humans.”. They
note that there is a need for software engineers to be able to
express uncertainty within a model in a suitable way. They
also note the need to be able to explicitly analyse uncertainty
within these models, so that it can be handled appropriately.

In state machines uncertainty might arise if the system
being modelled uses probabilistic algorithms or the system’s
environment is stochastic or poorly understood. Such sys-
tems are conventionally represented as probabilistic state
machines [3], where transitions are labelled with probabil-
ities. This information can be leveraged to, for example,
verify probabilistic properties [4], or to tailor test sets [5].

If we have a state with two outgoing transitions, and the
modeller knows that the choice of transition comes down

• Department of Computer Science at The University of Sheffield, Sheffield,
UK. E-mail: {n.walkinshaw,r.hierons}@sheffield.ac.uk

1. https://uk.mathworks.com/products/stateflow.html
2. https://cdpstudio.com/
3. https://www.eggplantsoftware.com/

to a random process that amounts to a fair coin-flip (c.f. the
IEEE1394 FireWire root contention protocol [6]), it is clear
that each transition has a probability of 0.5. This sort of
uncertainty is referred to as ‘first-order uncertainty’ [7].

It can, however, easily be the case that such probabilities
are subject to uncertainty. The modeller might not have
prior knowledge or empirical observations upon which to
gauge the probabilities of events in a given state (epistemic
uncertainty [8]). Even if they have plenty of observations,
these might be subject to random effects that make it dif-
ficult to definitively pin-down a specific uncertainty value
(aleatory uncertainty [8]). In either case, there is uncertainty
surrounding the probability in question. This is generally
referred to as ‘second-order uncertainty’ [7].

There is a qualitative difference between probabilities
that are well-founded (based on, for example, 15,000 obser-
vations) and probabilities that are speculative and uncertain
(a guess that each transition has a likelihood of 0.5, based on
no prior knowledge). However, Probabilistic FSMs (PFSMs)
do not capture such second-order (un-)certainties. As a
result, if we are using a PFSM, we can only approximate the
trustworthiness of a prediction if we understand how it was
generated (obtaining associated execution samples if these
were used to estimate the probabilities). This could at best be
used to produce a generic assessment of trustworthiness of
the PFSM, but there is no apparent means of deriving levels
of trustworthiness for specific paths through the model.

Subjective Logic [9] is a relatively recent framework
that was developed to reason about such uncertainties. It
provides a formalism that captures a probability and asso-
ciated uncertainty as a ‘subjective opinion’. It also provides
a variety of operators that enable us to combine subjective
opinions (conjunction, disjunction, fusion, etc.), whilst also
computing the associated uncertainty.

In this paper we use Subjective Logic to reason about the
uncertainty pertaining to probabilities of events occurring at
different states in a state machine. We show how Subjective

2

Logic can be used to reason about the cumulative uncer-
tainty of sequences of events in a model. As a result, any
path through a model corresponding to a sequence of events
can be explicitly associated with a corresponding probability
and a level of ‘trustworthiness’ in this probability.

The paper is motivated by a specific scenario: We have
an FSM model of a system and a set of traces corresponding
to system execution sequences (e.g. execution logs). This
situation arises in most settings where Machine Learning is
used to infer a model from traces (examples from adaptive
GUI / Android app testing are cited here [10], [11], but
there are similar approaches for other areas). The ability
to associate trustworthiness with predicted likelihoods of
sequences would enable us to leverage this additional in-
formation, to avoid acting on untrustworthy predictions, or
even to correct predictions. As an example of a potential
application area, in their work on Android testing, Choi
et al. [10] trace paths across inferred FSMs to identify test
sequences that are as long as possible (to avoid frequent
expensive restarts). In this setting, one might leverage the
second-order uncertainty surrounding the feasibility of a
sequence to avoid attempting impossible paths.

To enable this we propose Subjective Opinion State Ma-
chines (SOSMs). We show how these can be automatically
derived from a state machine and an accompanying set of
traces. In an SOSM, for state q, there is a subjective opinion
that captures probability, coupled with a degree of second-
order uncertainty, of a given event occurring in state q.

The contributions of this paper are as follows:

• We introduce SOSMs, which generalise PFSMs by re-
placing probabilities by subjective opinion, enabling the
‘belief’ corresponding to a transition to be accompanied
by an explicit level of uncertainty. (Section 3)

• We produce an algorithm that generates an SOSM from
a traditional (non-probabilistic) state machine and a
set of traces. This makes our approach applicable to a
broad range of Software Engineering settings.

• We show how Subjective Logic multiplication can be
used to reason about the likelihood (and corresponding
uncertainty) of paths through SOSMs. (Section 3.3)

• We show how SOSMs can be used to improve predic-
tions from reverse-engineered models (Section 4).

• We present an empirical study that evaluates the ap-
proach on 47 published state machine models.

2 BACKGROUND

We start with definitions of state machines and probabilistic
state machines and then describe Subjective Logic.

2.1 State Machines and Probabilistic State Machines

Definition 2.1. A Finite State Machine (FSM) is defined by a
tuple (Q, q0, A, δ,QF). Q is the finite set of states, q0 ∈ Q
is the initial state, A is the finite alphabet. δ : Q×A → Q
is the state transition function, and QF ⊆ Q represents
the set of accepting states.

An FSM processes a sequence of elements from A; we
use A∗ to denote the set of such sequences. Given FSM F

and string x ∈ A∗, x is accepted if there exists a correspond-
ing path (q0, x0, q1, x1, . . . , xn, qn), such that qn ∈ QF . If
there is no such path, or qn /∈ QF then x is ‘rejected’.

Observe that the FSMs used here are deterministic: for
each state and event, there is at most one possible next state.
However, a non-deterministic FSM can always be mapped
to an equivalent deterministic FSM.

Definition 2.2. A Probabilistic Finite State Machine (PFSM)4

is defined by a tuple (Q, q0, A, δ,QF , P). Q, q0, A, δ and
QF are defined as in Definition 2.1. The additional
element P is a transition probability function Q × A →
[0, 1]. For all q ∈ Q, Σa∈AP (q, a) = 1.

Probabilities model how likely it is that a particular event
a occurs in state q. We can define a function PT that gives
the probability of a transition occurring from a given state.

PT (q, a, q
′) =

{

P (q, a) if δ(q, a) = q′;
0 otherwise.

Given PFSM PF and string x ∈ A∗, one can de-
rive probability p(x) by tracing the corresponding path
(q0, x0, q1, x1, . . . , xn, qn). If no such path exists, or qn /∈
QF , then p(x) = 0. Otherwise, p(x) =

∏n
i=1 PT (qi−1, xi, qi).

2.2 First- and Second-Order Probabilities

There have been many attempts to offer different tax-
onomies of uncertainty, several of which are discussed
by Troya et al. in their survey of uncertainty in software
models [2]. Perhaps the most common way of classifying
uncertainty is to divide it into ‘epistemic’ or ‘aleatory’
uncertainty [8]. Epistemic uncertainty refers to the situation
where uncertainty arises because of a fundamental lack
of information or knowledge about the phenomenon in
question. Aleatory uncertainty [8] on the other hand refers
to the intrinsic variability or randomness of a phenomenon.

The uncertainty intrinsic to a probabilistic statement (e.g.
“I believe that there is a 60% chance my local team will win
the match today.”) is captured as a ‘first-order’ probability
(this is irrespective of whether the uncertainty is aleatory or
epistemic [9]). However, our interpretation of that statement
might change if we learn that it is made by somebody who
has never seen the team in question play, as opposed to
someone who has coached the team for many years. This
degree of trust (or lack thereof) in a first-order probability is
referred to as a ‘second-order probability’ [9].

This notion, that first-order probabilities can be subject
to uncertainty is well established. The question of how to
reason about probabilities that are subject to different levels
of uncertainty is a longstanding one. In Boole’s 1854 “An
Investigation of the Laws of Thought” [12], he criticises the
assumption that it is possible to “... assign the probabilities
with perfect rigour ...” even when the problem “... admits only
of an indefinite solution”.

4. This is a restricted version of the PFAs of Vidal et al. [3], where
there can be multiple initial states. In such models, each initial state is
given a probability and each final state is again mapped to a probability.

3

2.3 Subjective Logic

There have been numerous efforts over the last 60 years
to capture second-order probabilities and to reason about
them. Notable examples include Dempster Shafer Theory
[13], Evidential Reasoning [14], the Imprecise Dirichlet
Model [15], and Fuzzy Logic [16]. In recent years Subjective
Logic has emerged as a particularly flexible and general
basis upon which to reason about probabilities and their
respective uncertainties. It subsumes Dempster-Shafer the-
ory, and incorporates a range of operators that make it a
generalisation of traditional probabilistic logic [9].

Subjective Logic is based on the premise that it is possi-
ble to associate traditional propositions with a belief that the
proposition is true and a level of uncertainty, representing
the epistemic uncertainty in the assessment of the proposi-
tion. These ‘subjective opinions’ can be reasoned about and
combined with a variety of operators. Below we introduce
the fragments of Subjective Logic used in this paper (a more
complete reference is available in Jøsang’s book [9]).

2.3.1 Subjective Opinions

Subjective opinions express beliefs about the truth of propo-
sitions. The key difference between subjective opinions and
conventional probabilistic statements is the ability to asso-
ciate them with an explicit level of second-order uncertainty.
With reference to the statement of confidence in the perfor-
mance of a local team (Section 2.2), a subjective opinion can
also capture a level of second-order uncertainty associated
with that statement: I believe that there is a 60% chance my local
team will win the match today, but I only give my assessment
a 10% chance of being accurate [perhaps because I have no
experience of watching them or their opposition play]”.

There are three types of subjective opinion [9]: Binomial
opinions, multinomial opinions, and hypernomial opinions.
Binomial opinions capture a belief (and associated uncer-
tainty) regarding a single proposition that can be true or
false. Multinomial opinions generalise this: the proposition
in question can take on one of several possible values (not
just true or false). Hypernomial opinions further generalise
this to enable the expression of a belief that one of a set of
values is true, without the need to identify a particular value
which is believed to be true. In this paper we use the first
two types: binomial and multinomial opinions. Throughout
this paper we base our notation on Jøsang’s notation [9].

Definition 2.3. A binomial subjective opinion is an opinion
over a binary domain X = {x, x̄}, where x is a random
variable in X. A binomial opinion about the truth of x is
the ordered tuple: ωx = (bx, dx, ux, ax), where:

• bx is a belief mass in support of x being true.
• dx is a belief mass in support of x being false (i.e. x̄

being true).
• ux is a scalar uncertainty mass representing the ‘vacuity

of evidence’.
• ax is a ‘base rate’ - a prior probability of x without any

evidence.

For an opinion to be valid, the following ‘additivity require-
ment’ must hold: bx + dx + ux = 1.

The ‘base rate’ is akin to the ‘prior probability distribu-
tion’ in a Bayesian setting. To use our earlier example, it may

be common knowledge that our local team has traditionally
won 90% of its games, so that the ‘a-priori’ probability of
a win can be taken as 0.9 (ax = 0.9). However, we might
also know that for this match one of our key players is
injured, which changes our assessment of the chances of
a win, and introduces a high degree of uncertainty. We
might only give a 15% chance that whatever we estimate
is accurate (ux = 0.85), but still marginally favour a win
with a probability of 60%, which results in the remaining
belief mass of 0.15 (1-ux) being split bx = 0.09, dx = 0.06.

It is worth highlighting two notable opinions. First,
ux = 1 is a ‘vacuous opinion’ - nothing is known about
x (there is zero belief mass). Second, bx = 1 or dx = 1: x is
dogmatically true or false respectively (and so ux = 0).

Definition 2.4. The ‘projected probability’ [9] for x is defined
as: P (x) = bx+axux. This represents the overall belief in
x, factoring in the prior probability and the uncertainty.

In multinomial opinions, a belief is a distribution (across
propositions) with an uncertainty in the whole distribution:

Definition 2.5. For a multinomial subjective opinion, let X
be a domain, where |X| > 2. Let X be a random variable
in X. A multinomial opinion over the random variable
X is the ordered triplet: ωX = (bX , uX , aX), where:

• bX is a belief mass distribution over X.

• uX is a scalar uncertainty mass representing the ‘vacu-
ity of evidence’.

• aX is a prior probability distribution over X.

For an opinion to be valid, the following ‘additivity require-
ment’ must hold: uX +Σx∈XbX(x) = 1.

A vacuous opinion can be expressed by using uX = 1
and ∀x ∈ X : b(x) = 0. A traditional probability distribu-
tion occurs when uX = 0.

Sometimes it can be helpful to ‘extract’ a belief about a
single proposition from a multinomial opinion. This process
is referred to as ‘coarsening’ [9], and works as follows.

Definition 2.6. Given a multinomial opinion ωX =
(bX , uX , aX) where X is some random variable in X,
it is possible to coarsen it to a binomial opinion ωx =
(bx, dx, ux, ax) for some x ∈ X such that:

• bx is the singleton belief of x in bX .

• dx = 1− (uX + bx)

• ux = uX

• ax is the singleton apriori belief of x in aX .

A binomial opinion can be visualised as an equilateral
barycentric triangle [17]. Here, each of the vertices in the
triangle represents a maximum value for belief, disbelief
and uncertainty respectively, with the minimum value sit-
ting on the opposite axis. For example, the maximum value
for Uncertainty is at the top vertex of the triangle, and the
lowest value is on the mid-point of the Disbelief-Belief axis
of the triangle. All possible binomial opinions sit within this
triangle (this is ensured by the inherent constraint that all
values sum to 1). Examples of barycentric triangles for two
subjective logic opinions are shown in Figure 1.

4

(bx = 0.6, dx = 0.1, ux = 0.3, ax = 0.7)

(bx = 0.1, dx = 0.2, ux = 0.7, ax = 0.4)

Fig. 1. Barycentric triangles and corresponding beta-distributions for two
binomial subjective opinions. An opinion is captured by a coordinate
within the triangle, where the distance from each edge represents the
degree of uncertainty, belief and disbelief. The red line represents the a-
priori probability, and the blue line represents the projected probability.

2.3.2 Subjective Opinions as Probability Distributions

When it comes to reasoning about uncertain, it is common-
place to visualise and understand them in terms of proba-
bility distributions. In the context of Software Engineering,
for example, Duan et al. have shown how to represent
safety properties as beta-distributions [18]. One limitation
of distributions is that there is no established basis upon
which to analytically combine them or reason about them.

One useful attribute of Subjective Logic is the capability
to map opinions to probability distributions [9]. The com-
ponents of a binomial opinion can be mapped to the pa-
rameters that are used to express beta-distributions, and the
components of multinomial opinions can be mapped to the
parameters that are used to express Dirichlet distributions.
We will be largely concerned with binomial opinions, and
so focus on using beta-distributions.

Definition 2.7. The beta-distribution refers to a family of dis-
tributions that are a continuous version of the binomial
distribution, which make them appropriate for mod-
elling probabilities [18]. Its probability density function
is defined by two ‘shape’ parameters α and β, and is:

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1

where α > 0, β > 0 and B(α, β) is the beta function.

As α increases (and β is held constant), the mode of the
distribution shifts to the right (towards 1). As β increases
(and α is held constant), the mode shifts to the left (towards

0). When α and β are equal we get a symmetric distribu-
tion representing an approximate Gaussian shape. When
α = β = 1 we get a uniform distribution. When modelling
a belief, a relative increase in α can be interpreted as an
increase in supportive evidence, whereas a relative increase
in β can be interpreted as an increase in evidence to the
contrary. A distribution with a well-defined peak indicates
that the probability is highly concentrated around a point,
whereas a flatter distribution indicates higher uncertainty.

Jøsang has shown that there is a bijective mapping
between subjective opinions and beta-distributions [17].
It is therefore possible to interpret a subjective opinion
‘coordinate’ as a continuous distribution, where ‘density’
represents probability. This mapping (with respect to some
x) is achieved by reformulating the definition of α and β,
so that these are explicitly linked to evidence that either
supports or contradicts a belief:

Definition 2.8. Jøsang considers the following parameters
rx, sx, ax, and W [9]. rx represents the number of
observations in support of x, sx represents the number
of observations that contradict x. ax is the a-priori belief
in x as defined above. Finally W is the weighting to be
given to ax. The α and β parameters are defined by:
α = rx + axW and β = sx + (1− ax)W .

From this, the bijective relation derived by Jøsang [9] is
shown5 in Definition 2.9. The non-informative prior weight
W is set to W = 2, because of the requirement that a
vacuous opinion is mapped to a uniform beta-distribution
in the case of a default base rate ax = 1

2 [9].

Definition 2.9. The bijective mapping between a
binomial opinion (bx, dx, ux, ax) and a beta-
distribution as expressed by the parameters rx,
sx, ax and W (see Definition 2.8) is as follows.

Binomial subjective opinion beta distribution

bx = rx
W+rx+sx

rx = bxW
ux

dx = sx
W+rx+sx

sx = dxW
ux

ux = W
W+rx+sx

1 = bx + dx + ux

This relationship between subjective opinions and the
beta-distribution has been explored within Software Engi-
neering. In work on reasoning about uncertainty in safety
cases, Duan et al. [18] consider the setting where different
safety requirements are subject to varying degrees of evi-
dence. They show how the beta-distribution can capture the
relationship between evidence and uncertainty.

In Figure 1, the distributions corresponding to the two
sample opinions are shown on the right. This illustrates how
a higher level of belief will end up with a higher peak in the
distribution towards a probability of 1. A higher level of
uncertainty will result in a ‘flatter’ distribution.

2.3.3 Multiplying Subjective Opinions

Subjective Logic is associated with operators that combine
subjective opinions. All of the traditional probabilistic logic
operators have corresponding operators in Subjective Logic,
making it possible to factor second-order uncertainty into

5. For space reasons we restrict ourselves to the case where ux 6= 0.
The other case can be found in [9].

5

traditional probabilistic reasoning techniques. Subjective
Logic also has additional ‘fusion’ operators, making it pos-
sible to combine subjective opinions more flexibly [9]. We
use the binomial multiplication operator [9].

Definition 2.10. Given binomial opinions ωx = (bx, dx, ux,
ax) and ωy = (by, dy, uy, ay), the binomial opinion ωx∧y

on the conjunction (multiplication) (x ∧ y) is:

ωx∧y =

bx∧y = bxby +
(1−ax)aybxuy+ax(1−ay)uxby

1−axay
,

dx∧y = dx + dy − dxdy,

ux∧y = uxuy +
(1−ay)bxuy+(1−ax)uxby

1−axay
,

ax∧y = axay

The operator involves the multiplication of the respec-
tive belief values. However, this product is then modulated
according to the respective uncertainties and a-priori proba-
bilities of the two beliefs. A more elaborate discussion of this
operator is available elsewhere6 [9]. One useful note pertain-
ing to the validity of the operator is the property, observed
by Jøsang, that the projected probability of a subjective
opinion (Definition 2.4) of the product computed from this
operator is always equal to the expected probability of the
product of the equivalent beta-distributions [9].

3 SUBJECTIVE OPINION STATE MACHINES

Probabilities in a PFSM can be associated with a consid-
erable amount of second-order uncertainty. For example,
where the state machine is created by a human modeller,
they might be less sure about the probabilities governing
some aspects of system behaviour than others. In a setting
where the state machine is inferred by some inference algo-
rithm [19], the probabilities labelling transitions would be
entirely dependent on the quality and amount of training
data, which will vary from one transition to another.

In both cases, it would be helpful to convey the level
of second-order (un-)certainty alongside the probability for
a transition, or a path through the machine. If an inferred
state machine was used in an operational (e.g. automotive
[20]) context, it would be helpful to distinguish between
predictions with a low degree of uncertainty, and those
that are entirely speculative (and thus entirely uncertain).
Conventional PFSMs do not offer such a distinction.

In this section we introduce Subjective Opinion State
Machines (SOSMs), where transitions can be associated with
explicit levels of uncertainty. We also introduce a technique
whereby traditional FSMs that are accompanied by a set
of traces can be used to automatically derive SOSMs. This
means that our approach can be used as a post-processing
step for any technique that seeks to reason about a state
machine with respect to a set of observations, such as testing
techniques or state machine inference techniques.

For the sake of illustration, we use a toy example of a
simple editor, where the basic FSM is shown in Figure 2. A
goal in this scenario could, for example, be to probabilisti-
cally model a user’s interaction with the editor in a similar
vein to the work on PFSM inference for GUIs [21], [22].

6. A visual demo of the multiplication operator, along with others, is
available here: https://folk.universitetetioslo.no/josang/sl/Op.html

A B

C

exit

open

edit

close

D
save

edit

close

Fig. 2. Toy example of an editor, represented as a traditional FSM.

TABLE 1
Example of a multinomial subjective opinion for state D.

open close edit save exit

aDA 0 0.33 0.33 0.33 0

bDA 0 0.1 0.6 0.3 0

uD
A 0.2

3.1 Definition of Subjective Opinion Machines

A Subjective Opinion State Machine (SOSM) combines an
FSM structure with subjective opinions. Each state is linked
to a multinomial subjective opinion, which captures the
belief that a given element of the alphabet can be consumed
at that state. Being a subjective-opinion, this includes an
explicit level of second-order uncertainty.

Definition 3.1. An SOSM is defined as a tuple
(Q, q0, A, δ,QF ,Ω, S). Elements Q, q0, A, δ and QF are
defined as in an FSM (Section 2.1). Ω is a set of multi-
nomial subjective opinions where X = A (Definition
2.5). S : Q → Ω is a function from states to subjective
opinions over elements in A and is defined for all q ∈ Q,
where q has at least one outgoing transition. The subjec-
tive opinion for state q ∈ Q is denoted ωq . By default,
we assume a uniform distribution of prior probabilities
over the elements in A that label transitions from q.

As with PFSMs, we are interested in the likelihood of an
event in A occurring when in a state s. However, we also
want to capture the associated second-order uncertainty.

As an example, consider state D in our editor example
(Figure 2). We know that some events in A (exit and open)
are impossible from state D, so their a-priori probabilities
and their belief values are 0. Let us suppose that we have
no prior reason to believe that one of the remaining possible
events would be more likely than the other in state D. This
means that the events save, close, and edit have an a-priori
possibility of 1

3 each. During operation of the program, how-
ever, we observe that when in state D the edit event occurs
with 60% probability, the save event with a 30% probability,
and the close event with a 10% probability. However, we
have only observed state D a small number of times and
would only rate our certainty in these probabilities at 20%.
The corresponding subjective opinion is shown in Table 1.

3.2 Derivation of SOSMs from FSMs and Traces

Given an FSM M , there is a well-established method for
taking a set of observations of sequences accepted by M and
deriving probabilities for each transition [23] (Chapter 17.1).
This can be achieved by counting the number of times each

6

A B

C

exit

(6)

open

(6)
edit

(4)

close

(5)

D

save

(3)

edit

(5)

close

(2)

A B

C

exit

0.5

open

0.5
edit

(0.44)

close

(0.56)

D

save

(0.3)

edit

(0.5)

close

(0.2)

Fig. 3. Calculating traditional transition probabilities from frequencies.

transition is traversed and dividing a transition’s frequency
by the sum of frequencies across all transitions from its
source state. The process is illustrated in Figure 3 in which,
for a state q and event a, the machine on the left gives the
number of times that the traces included a occurring in q;
the machine on the right is the result of normalising these
for each state so that they form probabilities (ie the sum of
the values, over transitions leaving q, is 1).

As an example, let us assume that we have observed the
following sequences for the FSM in Figure 2.

open,edit,edit,edit,edit,save,close,exit

open,close,exit

open,edit,edit,close,exit

exit

open,edit,edit,save,close,exit

open,edit,save,close,open,close,exit

Figure 3 gives frequencies and probabilities. These are
based on a small sample and so there is significant second-
order uncertainty: an additional sequence could lead to very
different probabilities. In addition, usage can vary signifi-
cantly between users, leading to aleatory uncertainty [8].

Our approach of deriving SOSMs from traces is simi-
lar to the approach for PFSMs described above. However,
instead of using trace data to derive a simple probability
(which cannot capture second-order uncertainty), we use
the same data to produce a subjective opinion for each state.

The approach described here was devised with a specific
application in mind: The derivation of SOSMs to make pre-
dictions of software behaviour. Thus, certain design choices
(particularly around the derivation of a-priori distributions
for subjective opinions and the calculation of uncertainties)
might not be appropriate for other applications.

We start by providing an overview of the algorithm,
following this by elaborating on (1) the parameter α used
to calculate the uncertainty for each subjective opinion, and
(2) the a-priori distributions for each subjective opinion.

The algorithm: The process is captured in Algorithm
1. We start in lines 3-11 by creating, for each state, a distri-
bution of frequencies spanning the alphabet of the machine
(lines 4-6) and an a-priori distribution that attributes an
equal probability to all outgoing transitions (lines 7-10). In
lines 11-13 we calculate the uncertainty by dividing the sum
of transition frequencies by parameter α and subtracting
from 1 (line 11); if the resultant value is negative then we
assign zero to the uncertainty (line 13). We then calculate the
belief distribution from the frequency values, normalising
with respect to uncertainty (lines 14-16). The update only
happens if there is at least one observation (total 6= 0). The

Algorithm 1: Computing the SOSM from traces.

Input: An FSM F = (Q, q0, A, δ,QF), a multiset Traces of strings such
that Traces ⊆ A∗, and a certainty threshold α.

Output: An SOSM O = (Q, q0, A, δ,QF ,Ω, S)
1 begin

/* Iterate through each state. */

2 for q ∈ Q do
3 total ← 0;

/* Initialise frequency and apriori maps */

4 for a ∈ A do
5 Freq(a)← 0;
6 Apriori(a)← 0;

7 for (q, a, q′) ∈ δ do
/* A uniform a-priori distribution across

all outgoing transitions. */

8 Apriori(a)← 1
|δ(q)|

;

/* Record frequencies with which transitions

are traversed by traces. */

9 Freq(a)← Count(q, a, F,Traces);
10 total ← total + Freq(a);

/* calculate the uncertainty */

11 uncertaintyq ← 1− total
α

;
12 if uncertaintyq < 0 then
13 uncertaintyq ← 0;

14 for a ∈ A, total > 0 do
/* Calculate Belief value by dividing the

frequency of a by the total if total > 0.

*/

15 Belief q(a)←
Freq(a)
total

;
/* Factor in the uncertainty. */

16 Belief q(a)← Belief q(a)× (1− uncertaintyq)

17 ωq ← (Belief q, uncertaintyq,Aprioriq);
18 Ω← Ω ∪ {ωq};
19 S(q)← ωq ;

20 return O;

belief distribution, uncertainty value and a-priori distribu-
tion form a subjective opinion for the state (lines 17-19).

The α parameter to calculate uncertainty: The tra-
ditional approach to deriving probabilities for FSMs from
observations involves calculating the relative frequencies
(i.e. the distribution) of elements in A from each state. If we
rely entirely on the resulting probability distribution over
A, it is impossible to distinguish whether the distribution is
the result of 10 data-points or 1000. If it is the result of 1000
data-points we would consider it to be much more reliable
(i.e. have a much lower level of second-order uncertainty).

We incorporate a user-defined parameter α that repre-
sents the number of times a state must be traversed by a set
of traces for the probabilities to be deemed to be certain. The
value of α determines the balance between the probability
mass that is associated with belief or disbelief, and the
probability mass that is associated with uncertainty.

The choice of α depends to an extent on an understand-
ing of the underlying model and on an intuition of what
a sufficient number of observations should be for a given
state. In practice, this may vary depending on usage context
(e.g. the amount of data that is realistically available) and
on the domain (e.g. with a particularly high threshold for
safety-critical systems). For the models we refer to in our
evaluation, our preliminary study on the selection of α
(described in Appendix B) also suggests that it is safer to
use higher values. Whereas selecting values of α that are
too low can hide differences in terms of uncertainty between
sequences, selecting high values of α (perhaps higher than
they need to be) does not affect the relative balance between
belief and disbelief and ensures that different levels of un-

7

TABLE 2
Example distributions for traces and corresponding frequencies used in

Figure 3, with α = 20.

State Uncertainty Distribution open edit save close exit
A 0.4 Freq 6 0 0 0 6

Belief 0.3 0 0 0 0.3
Apriori 0.2 0.2 0.2 0.2 0.2

C 0.55 Freq 0 4 0 5 0
Belief 0 0.2 0 0.25 0
Apriori 0.2 0.2 0.2 0.2 0.2

D 0.5 Freq 0 5 3 2 0
Belief 0 .25 0.15 0.1 0
Apriori 0.2 0.2 0.2 0.2 0.2

certainty can be established for a larger range of sequences.
Distributions of a-priori probabilities: The distribu-

tions of a-priori probabilities for each state enable us to ex-
press any prior knowledge about the relative likelihoods of
events occurring at a state. As with any Bayesian approach
[24], these could be specified up-front (e.g. if our domain
knowledge of the program suggests that ‘save’ operations
occur much less frequently than ‘edit’ operations). As a
default, we presume that there is no such prior knowledge
and so we use a ‘uniform’ prior distribution across elements
in A that are possible from that state. Any element in A
that is not possible from a given state is given an a-priori
probability of 0. For any n remaining outgoing elements,
the respective a-priori probabilities are set to 1

n
.

Example: Table 2 contains the subjective opinions
derived from the traces for the accepting states in the
example (Figure 3). To take state A as an example, there
are 12 observations of outgoing transitions. The a-priori
belief is uniformly distributed; 0.2 per event. Uncertainty
(line 11, Algorithm 1) is 1 − 12

20 (for α = 20), which is 0.4.
The remaining belief mass (0.6) is used to define the belief
distribution. For A, ‘open’ and ‘exit’ are executed the same
number of times, so we split this belief mass evenly between
them (0.3 each), having a belief of 0 for other events. Note
that, although we attribute a belief of 0 to edit, save, and
close, this does not mean that they cannot happen. The
uncertainty mass accounts for the possibility that they could
occur - that we might have been mistaken in our attribution
of beliefs. This is not captured in conventional PFSMs.

3.3 The Subjective Opinion of a Sequence of Events

Given an SOSM, Subjective Logic operators can be used
to reason about the likelihood and uncertainty associated
with events in different states. As with PFSMs, we can use
multiplication to reason about the likelihood of sequences
of events. Here we provide a relatively brief and formalised
description of how these operators can be applied to SOSMs.

Given a PFSM, one can follow the path corresponding
to a sequence and multiply together the probabilities that
label the transitions. In an SOSM, it is possible to achieve
the equivalent by multiplying together the multinomial
opinions on the states of a path. However, if the alphabet has
size greater than one then the multiplication of multinomial
opinions is exponential in terms of the sequence length [9].

Fortunately, there is a work-around. When we encounter
a state, we are only concerned with the probability of a single
outgoing transition corresponding to the current symbol in

Fig. 4. Inferred state machine with probabilities and frequencies.

the sequence. As such, we can always coarsen a multinomial
opinion to the Binomial opinion for the given event (Defini-
tion 2.6). Multiplying binomial opinions (Definition 2.10) is
computationally much more efficient.

Given string x0, x1, . . . , xn ∈ A∗ and SOSM SO, we
trace the path (q0, x0, q1, . . . , xn, qn+1). For a transition
(q, x, q′), we obtain (multinomial) subjective opinion S(q)
for q, and then apply the binomial extraction procedure with
respect to x (Definition 2.6). This leads to a sequence of bino-
mial opinions ωq0

x0
, ωq1

x1
, . . . , ωqn

xn
. The result can be obtained

by multiplying these together with the binomial multiplica-
tion operator (Definition 2.10) as ωq0

x0
× ωq1

x1
× . . .× ωqn

xn
.

4 UNCERTAINTY IN INFERRED STATE MACHINES

State machine inference [23] has become an active area
of research within Software Engineering, especially within
the context of mining software or hardware specifications
[20], [21], [22], [25], [26]. State machines are inferred from
samples of observed sequences of events. Although the task
of inferring a state machine is NP-hard [27], [28], numerous
approaches have been developed that are capable of infer-
ring approximately correct models [29] in polynomial time.

Before we describe our use of SOSMs with FSM infer-
ence, it is worth setting this into the context of existing
similar approaches for inferring PFSMs. The task of PFSM
inference can be split into two families [23], [30]: (1) aug-
menting a given FSM with probabilities to enable probabilis-
tic predictions (also referred to as ‘probability estimation’
[23]), or (2) inferring the PFSM structure by taking into
account the distributions of sequences in the trace data.

We focus on probability estimation (Section 3.2): to take
an inferred FSM and its training set and estimate the
probabilities (and in our case uncertainties) for different
paths through the model. We use the approach described
in Section 3.2 to convert an inferred FSM into an SOSM.
We show how subjective opinions can help one interpret
uncertain predictions and correcting incorrect predictions.

4.1 Motivation for the use of SOSMs

Probabilities in PFSMs are first-order. As discussed in Sec-
tion 2.2, they are ‘point-values’ that capture the likelihood of
a transition, but do not convey (second-order) uncertainty.
In other words, if a state has two outgoing transitions, each
of which has a probability of 0.5, we cannot tell from these
numbers alone whether the probabilities are the guaranteed

8

equivalent of a fair coin-flip, or whether they are equal
because there is no information to suggest otherwise.

Let us consider the model in Figure 4 – this was in-
ferred by the EDSM state merging algorithm7 [31] from
the traces used for Figure 3. Superficially, the probabilities
look sensible. However, there are some striking features. For
example, from state E (entered via a save event) there is a
100% probability that the next event will be close. This is
consistent with the observations: only three of the six traces
involve state E, and none of the traces feature the scenario
where a file is saved and subsequently edited.

In practice we know that this does not reflect the actual
system (see Figure 2): it is possible to carry on editing the
document after saving but the sample of sequences used
missed this scenario. There is a high degree of epistemic
uncertainty [2]; having only observed the state three times,
we lack sufficient evidence to conclude that there are no
missing transitions from that state. As a result, this value of
100% is subject to a high degree of second-order uncertainty
and should be treated with a substantial degree of caution.

This is where subjective opinions can play an important
role. In the rest of this section we show how SOSMs can
be computed from the same trace data. These make it
possible to explicitly factor-in and reason about underlying
uncertainties when referring to a prediction made.

4.2 Computing an SOSM for an Inferred State Machine

Uncertainty in subjective opinions conveys the extent to
which probabilities for a given state should be trusted. The
approach of deriving an SOSM from an FSM and a set of
traces (Algorithm 1) can be easily used as a post-processing
technique for any model (not just an inferred model). The
underlying inference algorithm does not matter (it could
be a ‘passive’ state merging algorithm [26] or an ‘active’
algorithm in the Angluin L∗ style [32]).

The only requisite is that we have the FSM and the traces
used. Commonly these include a set of ‘positive’ examples
accepted by the inferred FSM (T+) and (optionally) a set
of ‘negative’ examples rejected by the inferred FSM (T−).
For the sake of simplicity we restrict ourselves to the sce-
nario where traces are prefix-closed. In other words, no sub-
sequences of any sequence in T+ should be rejected, and
for sequences in T− only the final element of any sequence
should cause the sequence to be rejected.

Once an FSM has been inferred, to obtain an SOSM,
we apply the process described in Algorithm 1. The set
Traces used is the union of T+ and the set T−, with T−

stripped to the accepting prefixes. The input FSM used in
the algorithm corresponds to the FSM inferred from Traces.

Once the SOSM has been derived, it is possible to
compute the second-order uncertainty associated with a
path (Section 3.3). To illustrate this, consider the sequence:
open,edit,save,close. Using the probabilities in Fig-
ure 4 (and treating the machine as a PFSM), this sequence
would yield probability 0.67 × 0.6 × 0.2 × 1 = 0.0804, or
8.04%. This conveys nothing about the ‘trustworthiness’ of
the probabilities.

7. We prevented over-generalisation by only commencing a merge
and subsequent determinisation merges if a pair of states had 5 over-
lapping elements in their outgoing trees.

TABLE 3
Multinomial subjective opinions associated with each state in the

inferred machine (see Figure 4), for α = 20.

State Multinomial Opinion
Uncertainty open edit save close exit

A 0.55 0.3 0 0 0 0.15
B 0.25 0 0.45 0.15 0.15 0
D 0.85 0 0 0 0 0.15
E 0.85 0 0 0 0.15 0

TABLE 4
Binomial opinions corresponding to transitions, extracted from

multinomial opinions in Table 3.

Transition Binomial Opinion
Belief Disbelief Uncertainty A-priori

A
open
−−−→ B 0.3 0.15 0.55 0.2

B
edit
−−−→ B 0.45 0.3 0.25 0.2

B
save
−−−→ E 0.15 0.6 0.25 0.2

E
close
−−−→ A 0.15 0 0.85 0.2

Product 0.01 0.76 0.23 < 0.01

Suppose we choose α = 20 for Algorithm 1; we assume
that 20 observations of a state is sufficient. The resulting
subjective opinions are shown in Table 3 (recall from Defini-
tion 3.1 that we do not define subjective opinions for states
without outgoing transitions, so C and F are omitted).

We obtain binomial opinions by coarsening the multino-
mial opinions. The resultant opinions are shown in Table

4. Whereas the probability E
close
−−−→ A was 1 in the PFSM,

our binomial opinion differs. Only a small amount of belief
mass (0.15) is attributed to close. The bulk of the belief
mass (0.85) is attributed to uncertainty; there may be other
events that are possible, but haven’t occurred in our sample.

Multiplying binomial opinions (Definition 2.10) gives
the opinion shown in Table 4 (bottom row), and visualised
in Figure 5. The PFSM probability (8.04%) is close to the
peak of the beta-distribution. However, uncertainty is also
captured and is visualised in the beta-distribution (right of
Figure 5). This shows that the probability could be signifi-
cantly higher - the tail only levels off at 0 when p > 0.5.

4.3 Correcting Predictions

Inferred FSMs can be error-prone [26]: they can be too
general (accept too many sequences) or too specific (reject

Fig. 5. Barycentric triangle and beta-distribution for opinion computed
for path in Table 4.

9

Algorithm 2: Training a classifier from subj. opinions.

Input: An SOSM SOSM = (Q, q0, A, δ,QF ,Ω, S), two sets of
sequences T+ and T−, respectively the sets of positive and
negative sequences that were used to infer the underlying FSM.

Output: A binary classifier CL
1 begin
2 TS ← ∅;

// TS is a list of tuples, storing the subjective

opinion and accept / reject decision.

3 index ← 0;
// Iterate through the set of positive sequences.

4 for t ∈ T+ do
5 BinOpinions ← extractOpinions(t,SOSM);
6 opinion ← multiply(BinOpinions);
7 TSi ← (opinion.belief , opinion.uncertainty,ACCEPT);
8 i← i + 1;

// Iterate through the set of negative sequences.

9 for t ∈ T− do
10 BinOpinions ← extractOpinions(t,SOSM);
11 opinion ← multiply(BinOpinions);
12 TSi ← (opinion.belief , opinion.uncertainty,REJECT);
13 i← i + 1;

14 Cl← train(TS);
15 return Cl;

too many sequences). Once an FSM has been converted
to an SOSM, however, a prediction of whether a sequence
should be accepted is given a (second-order) uncertainty. If
a sequence is classified as ’Accept’, but has high uncertainty,
there is a greater chance that it is actually a ‘Reject’.

The relationship between the subjective opinions calcu-
lated for sequences and the (in-)correctness of the corre-
sponding prediction depends on the training data. In this
subsection we show how it is possible, for an SOSM and
associated sequence data, to infer a classifier. This makes
it possible to improve the classification (accept/reject deci-
sion) accuracy for future sequences that we have not yet
encountered and to correct any incorrect classifications that
would have been made by the underlying FSM.

The training set for this classifier is ‘recycled’ from the set
of sequences used to derive the SOSM. Instead of labelling
sequences as ‘accept’ or ‘reject’, we label the correspond-
ing subjective opinions (i.e. belief and uncertainty). The
classifier trained on this set of decisions can then be used
to provide an accept/reject decision on the basis of the
underlying subjective opinion for sequences, even if they
are not part of the original set of traces.

The training process is shown in Algorithm 2. First, each
positive trace in T+ is traced in the SOSM (line 5), the
subjective opinion is calculated (line 6), and the resulting
belief is linked to an ‘ACCEPT’ (line 7). This is repeated
for the traces in T−, with the resulting opinions linked to
‘REJECT’ (lines 9-13). The resulting set is used to train a
classifier (line 14). The choice of classifier is flexible. In our
evaluation we opt for a Random Forest classifier [33].

5 EVALUATION

The use of SOSMs for inferred automata is based on the
rationale that the additional information in subjective opin-
ions should be useful for interpreting their predictions.
Subjective opinions should convey the trustworthiness of
a prediction. Here we explore whether this is the case:

Research Question 1: Does the level of uncertainty as-
sociated with a prediction tend to be higher when a smaller
number of traces has been used to derive the SOSM?

When working with inferred models on software engi-
neering tasks, the second-order uncertainty pertaining to
their predictions should reflect the amount of evidence from
which the underlying model has been derived.

Research Question 2: To what extent, and in what
respect, are the computed subjective opinions able to dis-
criminate between correct and incorrect predictions?

If, as we expect, subjective opinions are able to discrim-
inate between correct and incorrect predictions, this gives
rise to the question of whether this ability is useful.

Research Question 3: Does the use of a classifier (as
detailed in Algorithm 2) lead to more accurate predictions?

5.1 Methodology

5.1.1 RQ1 - Does the level of uncertainty increase as the

number of traces used to derive SOSMs decreases

5.1.1.1 Subjects: For this RQ we applied the ap-
proach to log data recorded from a production system. For
this we use the Android trace from the LogHub data set [34].
This consists of 1,555,005 OS-level messages.

An Android log comprises a list of events. Each event
is associated with a process identifier, a thread identifier
within that process, and the name of a function, along
with other logging data. For this RQ we inferred an SOSM
corresponding to each process, where the sequence of events
for each thread within the process is treated as a trace.

Splitting the LogHub trace in this way led to 643 sets of
traces (i.e. 643 processes) containing a total of 10,917 traces
(sequences of events belonging to different threads). The
number of traces per process forms a long-tailed distribu-
tion. The largest set had 2001 traces (followed by a process
that had 1021 traces and another that had 527), and 187
processes had only one trace. We omitted single-trace state
machines from this experiment, as explained below.

5.1.1.2 Analysis: For each Android process we in-
ferred a state machine from the underlying trace set. For this
we used the Evidence Driven State Merging (EDSM) algo-
rithm with the Blue-Fringe search window [31], a baseline
that is commonly used to evaluate passive state machine
inference approaches [26]. In state merging algorithms it
is possible to set a “minimal state match” score threshold,
where a pair of states are only merged if a given number
of transitions in their outgoing state transition structures
overlap. We chose a threshold of 10, because values below
10 would tend to ‘collapse’ into trivial single-state machine.

We used the Leave One Out k−folds cross validation
approach. One trace was kept aside, and the remainder
was used to infer the machine. The trace left-out was used
to compute a walk over the inferred machine, to produce
the final uncertainty value for that walk. This process was
repeated for all traces in the set. Since this process requires
at least two traces in a set, we omitted models for which
there was only a single trace (187 of the 643 processes).

5.1.2 RQ2 - Are the computed subjective opinions able to

discriminate between correct and incorrect predictions?

5.1.2.1 Subjects: To answer this question (and RQ3),
we required a set of reference models. We identified two sets
of state machines that have been used in the state machine
literature (mainly related to testing and verification). We

10

TABLE 5
Subject models. Models from the same source are grouped together,

then ordered alphabetically.

Model States Transitions Alphabet Source
ActiveMQ 18 689 40 [37]
bbara 11 140 14 [35]
bbsse 17 448 28 [35]
bbtas 7 42 7 [35]
beecount 8 63 9 [35]
coffeemachine 7 48 8 [38]
cse 17 864 54 [35]
dk14 8 189 27 [35]
dk15 5 64 16 [35]
dk16 28 513 19 [35]
dk17 9 112 14 [35]
dk27 8 42 6 [35]
dk512 16 120 8 [35]
donfile 25 96 4 [35]
ex1 21 1580 79 [35]
ex4 15 240 16 [35]
ex6 9 216 27 [35]
keyb 20 1672 88 [35]
libressl 8 196 27 [39]
lion 5 36 9 [35]
lion9 10 72 8 [35]
OpenSSH 32 2480 80 [40]
planet 49 4560 95 [35]
planet1 49 4560 95 [35]
pma 25 1752 73 [35]
QUIC 8 70 10 [41]
s1 21 1860 93 [35]
s1488 49 10272 214 [35]
s1494 49 10128 211 [35]
s1a 21 1360 68 [35]
s27 7 132 22 [35]
s298 219 8066 37 [35]
s386 14 585 45 [35]
s510 48 2162 46 [35]
s8 6 20 4 [35]
s820 26 3575 143 [35]
s832 26 3750 150 [35]
sand 33 4576 143 [35]
shiftreg 9 32 4 [35]
sse 17 448 28 [35]
styr 31 2520 84 [35]
tav 5 88 22 [35]
tbk 33 2177 68 [35]
TCP Client 16 450 30 [42]
TCP Server 58 1710 30 [42]
tma 21 880 44 [35]
train11 12 88 8 [35]
train4 5 32 8 [35]

used the ACM/SIGDA benchmarks [35], a set of FSMs used
in workshops between 1989 and 1993. We also used some
machines from a collection curated by Neider et al. [36].

We used Mealy machines that were not inferred, but
represented a genuine ’ground truth’. We excluded those
where we could not generate suitable traces. In total, 11
models were left out. These are listed in Appendix A. The
final set of 47 models is listed in Table 5.

5.1.2.2 Generating traces: For each model we cre-
ated a set of positive traces (sequences ending in a final
state) and a set of negative traces (the final element was not
accepted). For both sets, the maximum length was the depth
of the machine (the length of the longest shortest-path) +
5. Traces were generated as random walks. We generated
200 random walks that were accepted, and 200 that were
rejected. We omitted walks that were prefixes of existing
sequences, ensuring that each sequence added information.

The ACM/SIGDA benchmark machines were fully-
specified (every state had an outgoing transition for every
element in the alphabet). In such machines, elements in
the alphabet for which there should be no response by the
machine tend to be modelled by silent loops. For these
machines, we removed the silent self-loops, so that the
corresponding sequences involving them would be rejected.

5.1.2.3 Model Inference and Accuracy Evaluation:
Since the objective was to investigate whether subjective
opinions can provide information about (in-)accuracies, we
used sets of traces that were not likely to be sufficient to
infer an accurate model. We used k−folds cross validation
for k = 10 to partition the set of traces into ten different
batches of training and testing samples. To ensure that
inferred models were inaccurate, we reduced the proportion
of negative training sequences to 10% of what they should
have been8, but used the full set of negative traces when
testing the model (evaluating its accuracy) as part of the
cross-validation process. For the inference step we used the
same EDSM algorithm as was used for RQ1.

To measure model-accuracy, we used the following [43]:

• Sensitivity, also known as ‘Recall’, measures the pro-
portion of sequences that were correctly accepted
against the set of sequences that should have been ac-
cepted (including the set of False Negatives FN):

Sensitivity = |TP |
|TP∪FN | .

• Specificity measures the ability of the model to cor-
rectly reject sequences by measuring the proportion of
true negatives (TN) against the total set of sequences
that should have been rejected (including false positives):

Specificity = |TN |
|TN∪FP | .

• BCR (Balanced Classification Rate) is the har-
monic mean of Sensitivity and Specificity: BCR =
2(Sensitivity∗Specificity)
Sensitivity+Specificity

.

5.1.2.4 Method: To choose a suitable value of α,
for use in Algorithm 1, we carried out a small preliminary
study (see Appendix B). This indicated that, for our model
inference setting, α = 2000 is appropriate. We will return to
a more detailed study of how to calibrate α in future work.

We used the training set partitions (from the k-folds
cross validation) to calculate the differences in uncertainty
and belief with respect to sequences that are correctly or
incorrectly classified. To measure this difference we used the

Vargha-Delaney Â12 effect size [44]. This is a non-parametric
measure, where the size is between 0 and 1 and represents
the probability that two sets of classifications are equivalent.

The Â12 score related sequences correctly classified
against sequences incorrectly classified. We calculated the
score in terms of Belief and Uncertainty. For example, if we

are measuring uncertainty, and we get Â12 = 0.7, this can
be interpreted as ‘70% of correctly classified sequences have a
higher uncertainty score than incorrectly classified sequences’. To
be discriminative, effect size for either belief or uncertainty
should be higher or lower than 0.5 (indicating no effect),
with the utility increasing as the distance from 0.5 increases.

We divided the set of sequences into sequences classified
by the inferred FSM as “reject” and sequences classified as

8. We found that 10% was the lowest limit for which none of the
target models led to a trivial state machines with only one state.

11

“accept”. Bearing in mind that the level of belief specifically
refers to the proposition that a sequence should be accepted,
we would expect correctly accepted sequences to have a
high level of belief, and correctly rejected sequences to
have a low level of belief. For sequences that are accepted
but should be rejected, there should be a lower level of
belief than for sequences that are correctly accepted (i.e.

Â12 > 0.5). Sequences that are incorrectly rejected should
have a higher belief value than sequences that are correctly
rejected. It was not clear what to expect of uncertainty.

We plotted the Â12 values on two charts: one for be-
lief and one for uncertainty. For each model (x−axis), we

plotted the Â12 for sequences that had been accepted and
rejected. For subjective opinions to effectively discriminate
between correct and incorrect predictions, we would expect

Â12 to be ‘medium’ or ‘high’ for belief, uncertainty or both.
We adopted the thresholds by Vargha and Delaney [44] for

a “medium” effect size: Â12 > 0.71 or Â12 < 0.29 (0.5
represents a negligible effect size). To visualise the results

we subtracted 0.5 from the Â12 value.

5.1.3 RQ3 - Does the use of a classifier lead to more

accurate predictions?

The setup for RQ3 was identical to that of RQ2. However,
we applied Algorithm 2 to produce a classifier from the
SOSM and the original training set. We again used k−folds
cross validation, with stratified sub-sampling to ensure that
we properly distributed ‘ACCEPT’ and ‘REJECT’ sequences.
We used a Random Forest classifier [33] to relate subjective
opinions to classifications. For every evaluation phase in
k−folds cross validation, we retained the classifications
made by the inferred model against the training set. We
compared the prediction made by our classifier against
the ground truth and the prediction made by the original
inferred FSM, computing the BCR for each case.

5.2 Results and Discussion

The software used to infer state machines, along with the
target state machines used for RQs 2 and 3 is available
online9.

5.2.1 RQ1: Relating uncertainty to amount of evidence

Figure 6 shows an apparent relationship between the num-
ber of traces used to infer a model, and the uncertainty
computed for sequences. When fewer than 20 traces were
involved in the inference, the uncertainty tends to be high.
For all models that involved over 20 traces, the uncertainty
is below 0.5 (mostly below 0.25). The Spearman-rank corre-
lation coefficient is -0.68 (a ‘strong’ correlation).

RQ1: Uncertainty values tend to be higher for state
machines inferred from low numbers of traces.

5.2.2 RQ2: Discriminating between correct and incorrect

predictions

The Â12 results are shown in Figure 7. We separate the
statistics for the accept- and reject-sequences because they

9. https://figshare.shef.ac.uk/articles/dataset/Modelling
Uncertainty in State Based Systems/14287040

Fig. 6. Relationship between the number of traces used to infer a SOSM,
and the uncertainty computed for sequences across it (restricted to
models with 400 traces or fewer).

Fig. 7. Â12 effect sizes for belief and uncertainty (accepting and rejecting
sequences). Dashed lines show thresholds for a medium effect size.

are different (for reasons which we discuss below). As a re-
minder of how to interpret them, consider the “Accept” and
“Reject” bars for ActiveMQ in the ’Uncertainty’ chart. The
dashed horizontal bars indicate the threshold for ‘medium’
effect size in either direction. The red bar for ActiveMQ can
be read as “The majority of sequences correctly classified as “ac-
cept” have a lower level of uncertainty than sequences that were

incorrectly classified as “accept”. Only 28% (Â12 = 0.28) had a
higher level of uncertainty)”. The blue bar can be interpreted

as “57% (Â12 = 0.57) of sequences correctly classified as ’reject’
have a higher level of uncertainty than sequences incorrectly
classified as ‘reject”’. In both cases the effect sizes would count
as “low” [44] – they are not either above the 0.75 or below
the 0.25 threshold to count as “medium”.

In 98% (46/47) of the subject systems, accepted se-

quences have an Â12 value of ≤ 0.5 for uncertainty (i.e.,
in the majority of cases, sequences that are correctly clas-
sified as accept have a lower level of uncertainty than
sequences that are incorrectly classified). In 53% (25/47)

12

Â12 ≤ 0.25. Thus, for sequences accepted by the inferred
model, uncertainty tends to be a good indicator for whether
the ‘accept’ classification is correct (incorrect classifications
are associated with higher uncertainty).

For sequences rejected by the inferred model, uncer-
tainty is a less reliable indicator. There is no obvious trend

- Â12 values are > 0.5 in 68% (32/47) of models; they are
≤ 0.5 in 34% (16/47) of cases. The magnitude of the effect is
only ‘medium’ (i.e. ≤ 0.25 or ≥ 0.75) in three instances.

Looking at levels of belief, in 87% (41/47) of cases,

accept sequences have an Â12 value of ≤ 0.5, and in 81%
of cases (38/47) this is ≤ 0.25. In other words, sequences
that are correctly classified as accepts have a lower level
of belief than incorrectly classified sequences. In summary,
accept sequences that are incorrectly classified will tend to
be associated with a higher level of belief as well as a higher
level of uncertainty than correctly classified sequences.

For rejecting sequences, the inverse tends to true (i.e.
incorrectly classified sequences tend to have a lower level of
belief than correctly classified sequences). In 74% (35/47) of

subjects, Â12 > 0.5 and in 30% of cases (14/47) Â12 > 0.75.

RQ2: Subjective opinions are capable of discrim-
inating between correct and incorrect predictions.
Incorrect predictions of accept sequences tend to be
associated with a higher level of uncertainty, as well
as a higher level of belief. There is a less apparent
effect for sequences that should be rejected.

Although the uncertainty results are intuitive (correctly
accepted sequences have lower uncertainty than incorrectly
accepted ones), the results for belief are somewhat coun-
terintuitive. Correctly accepted sequences have lower belief
values than incorrectly accepted ones (and correctly rejected
sequences have higher belief values than incorrectly rejected
ones). This can be explained by the fact that the EDSM
algorithm (used to infer the models) always merges together
states for which there is the most evidence in the underlying
trace-sets. In the resulting state machine, we can always
expect an especially high level of belief for any accepted
sequence, and an especially low level of belief for any
incorrect sequence. When the algorithm is inaccurate, and
incorrectly merges together states, this will be reflected in
levels of belief that are too high for sequences that should be
rejected, and too low for sequences that should be accepted.

Recall that we deliberately used a setting where the
the inferred models are inaccurate (see Section 5.1.2.3). Al-
though the belief values can be misleading (reflecting infer-
ence mistakes made by the EDSM algorithm), second-order
uncertainty values are more intuitive; correctly classified
“accept” sequences tend to have a lower level of uncertainty
than incorrectly classified ones. This gives rise to the ques-
tion of whether the differentiation between correctly and
incorrectly classified sequences can be exploited (RQ3).

5.2.3 RQ3: Correcting incorrect predictions

Here we face the question of whether we can use the
additional information available from subjective opinions
to predict when a classification is incorrect, and correct the
prediction? The results are shown in Table 6; the left half

TABLE 6
The Sensitivity, Specificity and BCR scores for the FSM, and equivalent
scores produced with the Subjective-Opinion trained classifier (RQ2).

Uncorrected Corrected
Model Sens. Spec. BCR Sens. Spec. BCR
ActiveMQ 0.94 0.54 0.68 0.79 0.81 0.80
bbara 0.93 0.69 0.79 0.94 0.97 0.95
bbsse 0.98 0.65 0.78 0.96 0.94 0.95
bbtas 0.92 0.65 0.76 0.96 0.99 0.98
beecount 0.99 0.66 0.79 0.98 0.96 0.97
coffeemachine 1.00 0.82 0.90 1.00 0.99 0.99
cse 0.97 0.72 0.83 0.97 0.99 0.98
dk14 0.95 0.60 0.73 0.94 0.95 0.95
dk15 0.96 0.70 0.81 0.97 1.00 0.98
dk16 0.88 0.21 0.34 0.69 0.63 0.66
dk17 0.97 0.55 0.70 0.94 0.91 0.93
dk27 1.00 0.61 0.76 0.98 0.95 0.97
dk512 0.98 0.58 0.73 0.97 0.97 0.97
donfile 0.99 0.53 0.69 0.92 0.76 0.83
ex1 0.92 0.60 0.72 0.82 0.81 0.81
ex4 1.00 0.70 0.83 1.00 0.99 0.99
ex6 0.98 0.67 0.80 0.97 0.93 0.95
keyb 0.96 0.78 0.86 0.96 0.98 0.97
libressl 0.98 0.82 0.89 0.98 0.99 0.99
lion 1.00 0.82 0.90 0.99 0.97 0.98
lion9 0.99 0.70 0.82 0.97 0.91 0.94
OpenSSH 0.96 0.76 0.85 0.92 0.91 0.92
planet 0.96 0.51 0.66 1.00 1.00 1.00
planet1 0.97 0.50 0.66 1.00 1.00 1.00
pma 0.95 0.57 0.72 0.92 0.90 0.91
QUIC 0.98 0.67 0.80 0.98 0.98 0.98
s1 0.90 0.48 0.63 0.73 0.74 0.73
s1488 0.96 0.82 0.88 0.98 0.99 0.98
s1494 0.95 0.82 0.88 0.98 1.00 0.99
s1a 0.90 0.48 0.63 0.74 0.76 0.75
s27 0.98 0.77 0.87 0.98 0.97 0.97
s298 0.81 0.47 0.59 0.94 0.97 0.95
s386 0.98 0.71 0.82 0.97 0.95 0.96
s510 1.00 0.63 0.77 1.00 1.00 1.00
s8 0.99 0.70 0.82 0.97 0.94 0.96
s820 0.97 0.85 0.90 0.96 0.97 0.96
s832 0.93 0.82 0.87 0.93 0.96 0.95
sand 0.91 0.69 0.78 0.90 0.90 0.90
shiftreg 0.98 0.45 0.61 0.97 0.90 0.93
sse 0.98 0.65 0.78 0.96 0.94 0.95
styr 0.94 0.65 0.77 0.93 0.93 0.93
tav 0.84 0.18 0.29 0.96 0.98 0.97
TCP Client 0.95 0.70 0.81 0.91 0.94 0.93
TCP Server 0.95 0.69 0.80 0.96 0.98 0.97
tma 0.98 0.56 0.71 0.97 0.94 0.95
train11 1.00 0.57 0.73 0.99 0.98 0.99
train4 1.00 0.66 0.79 0.99 0.97 0.98
Mean 0.96 0.64 0.76 0.93 0.94 0.94

of the table contains the ‘uncorrected’ results, and the right
half contains the corrected counterparts.

The uncorrected scores show the prediction accuracy of
using just the inferred FSM. These show, as expected, that
there has been a significant degree of over-generalisation
in FSM inference. Accepting too many sequences leads to a
high Sensitivity (a mean of 0.96), but a low Specificity (mean
of 0.64), with a mean BCR of 0.76.

The uncorrected mean BCR is high because Sensitivity
tends to be in the high 90s. Specificity scores can be very
low. There are 16 Specificity scores < 0.6. For dk16 there
is Specificity of 0.21. For planet and planet1 there is a
Specificity of 0.51 and 0.5 respectively; both have a BCR of
0.66. For tav there is a Specificity of 0.18 and a BCR of 0.29.

With the use of the classifier trained on the subjective
opinions, there is a marked improvement. Mean Sensitivity

13

slightly decreases by 0.03 to 0.93, but mean Specificity
increases by a very large margin from 0.64 to 0.94, leading to
an increase in mean BCR from 0.76 to 0.94. There is no trade-
off; BCR increases for every model, and often by a significant
margin. This extends to the cases mentioned above for
which the initial inference produced especially inaccurate
results. For example for tav the original BCR score is 0.29
(arising from a poor Specificity score of 0.18). The corrected
model produces a BCR of 0.97, with a Specificity of 0.98.

RQ3: Subjective opinions can be used to correct
incorrect predictions from inferred state machines.

The extent to which the additional information offered
through subjective opinions can improve predictions is
worth highlighting. The mean improvement of the BCR
score is 18% (minimum of 6% and maximum of 67%). In
the case of planet and planet1, BCR improves from 0.66 to 1.

Increases in accuracy result from improved Specificity.
The inferred state machines tended to over-generalised.
However, for the ‘corrected’ versions, a larger propor-
tion of sequences that had been falsely accepted (false-
positives) were instead correctly rejected (true-negatives). In
a software-engineering context where, for example, the in-
ferred models are used to identify candidate test cases [10],
[11], this would lead to a more focussed set of candidates,
avoiding candidates that are infeasible in practice.

5.3 Threats to Validity

Internal Validity: For all RQs we used the EDSM Blue-Fringe
algorithm [31] and this choice may have affected the results.
In future work we will investigate the use of different
learning algorithms to infer SOSMs.

External Validity: For RQ1 we based our findings on state
machines inferred from logs for Android processes, derived
from a single system [34]. There is the possibility that the
same findings might not hold for other classes of traces, and
exploring this will be the subject of future work.

The state machines for RQs 2 and 3 were drawn from two
collections [35], [36], raising the question of whether they are
more generally representative. This threat was mitigated by
the results being similar for the two collections. In addition,
the models are highly diverse (see Table 5). Some are small
and simple (e.g. lion has 5 states, 36 transitions and an
alphabet of 9), but others are much larger (e.g. s298 with
219 states, 8066 transitions and an alphabet of 46).

Sensitivity, Specifity, and BCR scores were calculated
with respect to 10-folds Cross-Validation, mitigating against
overfitting or selection bias. However, the results have to be
interpreted as being valid with respect to traces sampled
according to the probabilities attached to the transitions
in the models. Although there are measures that assess
the structural accuracy of inferred models (as opposed to
language accuracy) [43], these will need to be enhanced to
accommodate probabilities, and fit into future work.

6 RELATED WORK

6.1 Second-Order Uncertainty in Software Engineering

Several recent developments support reasoning about un-
certainty in Software Engineering [2], particularly uncer-

tainty arising from noisy, partial and skewed distributions
in empirical studies. The rigidity of “traditional” statistical
analyses has often led to findings that have been difficult to
justify and explain. The rise of Bayesian analysis, recently
illustrated by Furia et al. [24] and Dorn et al. [45] offers
a more robust and explainable basis for managing this
uncertainty. Several research efforts have specifically sought
to focus on representing second-order uncertainty.

Recent work by Walkinshaw and Shepperd [46] showed
how outcomes from empirical studies could be encoded
as binomial subjective opinions, and how Subjective Logic
fusion operators could be used to combine results from
multiple experiments, whilst providing an explicit measure
of uncertainty for the grouped experiments. Although we
did not use fusion operators, their ability to systematically
‘fuse’ together opinions is something that could be useful in
the context of reasoning about or manipulating SOSMs.

Software safety assessment has also seen efforts to reason
about epistemic uncertainty. Duan et al. used Subjective
Logic to reason about uncertainty in safety-cases, and em-
phasised the value of using the beta-distribution (Section
2.3.2) for capturing this uncertainty. Nair et al. [47] applied
Evidential Reasoning [14] to the same area. Evidential Rea-
soning is also founded on Dempster-Shafer theory, but does
not feature the variety of operators in Subjective Logic.

6.2 Uncertainty in Sequential Models

There is an extensive history of research into the combi-
nation of finite automata and probability theory. Although
this paper used PFSMs [3] as a baseline, there exist other
potential representations of probabilistic sequential systems.
Hidden Markov Models (HMMs) and Fuzzy Finite Au-
tomata are two notable, widely used examples.

HMMs can be seen as a form of PFSM [48], where sym-
bols label states and every state has a probability of being
the initial state. Given the equivalence with PFSMs [48],
HMMs also only model ‘first-order’ probabilities and do not
explicitly model uncertainty associated with a probability.

Fuzzy Automata map a transitions t to a value repre-
senting the degree to which t is in the automaton [49]. Initial
work used values in [0, 1] but, more generally, one can use
values from a complete lattice [50]. The value for a path is
the greatest lower bound of the values of the transitions; for
[0, 1], this is the minimum. With multiple paths, the value is
the least upper bound of the values for the individual paths
[49]; for [0, 1], the maximum, over the paths.

One might use values to represent uncertainty in prob-
abilities and we discuss two options. First, one might use a
value in [0, 1]. Consider a path t1t2, where t1 and t2 are tran-
sitions. If t1 is assigned a and t2 is assigned b then t1t2 has
value min{a, b}. Now, if a and b are identical and strictly
between 0 and 1 then t1t2 also has uncertainty a. However,
we would expect the path to have greater uncertainty than
the transitions. We obtain the same problem if we instead
give a transition a value [a, b], 0 ≤ a ≤ b ≤ 1, and we use
the subset relation as the partial order. SOSMs thus appear
to be more suitable for the work described in this paper.

6.3 Inference of Probabilistic Sequential Models

There have been several efforts to reverse-engineer proba-
bilistic models from software (and hardware) systems [51].

14

Although most concerned PFSM inference, some involved
HMMs and other probabilistic sequential models.

Efforts to infer PFSMs date back to work by Rivest and
Shapire [52], who inferred robot controllers. In 1998 Cook
and Wolf experimented with different inference approaches
to infer sequential models, one being a Markov Model10 [53].
More recent examples include PFSM inference in areas such
as Android GUI testing [22], specification mining [25], web
apps [21] and car drivers [20].

There have been recent efforts to infer HMMs. Nguyen
et al.’s DroidAssist tool [54] infers what are in effect HMMs
representing sequences of API usages in mobile apps. Emam
and Miller’s approach [25] produces PFSMs, but is under-
pinned by HMM inference. HMMs have been extensively
used to detect malware from the structure of executable
fragments of bytecode [55]. Recently, HMMs featured in eye-
tracking studies of software developers [56].

6.4 Testing Uncertain Sequential Systems

The SUT might incorporate stochastic or non-deterministic
behaviours. Elbaum and Rosenblum [57] present compelling
examples, such as services that depend on GPS location
services and so on estimated locations of a device. They
suggest HMMs as a useful basis for testing such systems.

There is also epistemic uncertainty; having observed a
set of executions (a test set), how certain can we be that
the SUT is ‘correct’? Weyuker showed that the answer to
this question can never (in the general case) be certain [58].
There is always the risk that there exists some input that is
not part of the test set that might expose new behaviours.

This has given rise to ‘learning-based testing’ [59]. Much
of the attention has been on the combination of software
testing with state machine inference; a good overview is
provided by Aichernig et al. [60]. Although uncertainty has
been exploited for non-sequential systems [61], the models
inferred have tended to be FSMs [60].

Where probabilistic models are available, authors have
explored testing from these. Much of this work concerns
probabilistic labelled transition system. In order to decide
which test cases to use, one can find tests that kill mutants
[5]. Give test case t, one can test the SUT with t multiple
times and use statistical techniques to check that the ob-
served frequencies are consistent with the specification [5].

7 CONCLUSIONS AND FUTURE WORK

We have introduced SOSMs, a generalisation of PFSMs,
where states are labelled with multinomial subjective opin-
ions. These not only capture the relative likelihoods of tran-
sitions, but also associate them with a level of uncertainty.
Thanks to Subjective Logic [9], it is possible to compute
the combined likelihood and uncertainty associated with
sequences of events. This means that predictions can be as-
sociated with a level of ‘trustworthiness’. We also provided
an algorithm that can be used to automatically generate an
SOSM from an FSM and a set of traces.

In our evaluation, we used SOSMs to infer predictive
classifiers of behaviour, showing that uncertainty captured

10. The non-hidden version of the Markov Model is equivalent to a
PFSM; probabilities are expressed on transitions as opposed to states.

within an inferred SOSM can be a strong indicator of how
(in-)accurate a prediction will be. We also showed that the
subjective opinions associated with classifications can be
used to ‘correct’ the predictions of the underlying FSM,
to the point that the predictions in our experiments were
improved from a mean BCR score of 0.76 to a score of 0.94.

We believe that there are several exciting opportunities
to apply SOSMs within software testing. There is a well
established line of work in testing from probabilistic models,
and a (currently) separate line of research into the rela-
tionship between testing and uncertainty. We believe that
the SOSM could form the basis for combining these two
strands. Finally, we have only used a relatively small subset
of Subjective Logic; there are other elements that could be
used to refine and strengthen our approach, such as the
use of hyper-opinions [9], which would enable us to model
uncertainty at individual states in more accurate terms.

Acknowledgements: We thank the reviewers for their
extensive, constructive feedback. Both authors are sup-
ported by the EPSRC CITCOM grant (EP/T030526/1). For
the purpose of open access, the author has applied a Cre-
ative Commons Attribution (CC BY) licence to any Author
Accepted Manuscript version arising.

REFERENCES

[1] D. Lee and M. Yannakakis, “Principles and methods of testing
finite state machines-a survey,” Proceedings of the IEEE, vol. 84,
no. 8, pp. 1090–1123, 1996.

[2] J. Troya, N. Moreno, M. F. Bertoa, and A. Vallecillo, “Uncertainty
representation in software models: a survey,” Software and Systems
Modeling, vol. 20, no. 4, pp. 1183–1213, 2021.

[3] E. Vidal, F. Thollard, C. De La Higuera, F. Casacuberta, and
R. C. Carrasco, “Probabilistic finite-state machines-part I,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
no. 7, pp. 1013–1025, 2005.

[4] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in International conference
on computer aided verification. Springer, 2011, pp. 585–591.

[5] R. M. Hierons and M. G. Merayo, “Mutation testing from proba-
bilistic and stochastic finite state machines,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1804–1818, 2009.

[6] M. Kwiatkowska, G. Norman, and J. Sproston, “Probabilistic
model checking of deadline properties in the IEEE 1394 firewire
root contention protocol,” Formal Aspects of Computing, vol. 14,
no. 3, pp. 295–318, 2003.

[7] P. Gärdenfors and N.-E. Sahlin, “Unreliable probabilities, risk
taking, and decision making,” Synthese, vol. 53, pp. 361–386, 1982.

[8] A. Der Kiureghian and O. Ditlevsen, “Aleatory or epistemic? Does
it matter?” Structural Safety, vol. 31, no. 2, pp. 105–112, 2009.

[9] A. Jøsang, Subjective logic. Springer, 2016.
[10] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android

apps with minimal restart and approximate learning,” Acm Sigplan
Notices, vol. 48, no. 10, pp. 623–640, 2013.

[11] N. Walkinshaw, “Improving automated gui testing by learning to
avoid infeasible tests,” in 2020 IEEE International Conference On
Artificial Intelligence Testing (AITest). IEEE, 2020, pp. 107–114.

[12] G. Boole, An investigation of the laws of thought: on which are founded
the mathematical theories of logic and probabilities. Walton and
Maberly, 1854, vol. 2.

[13] G. Shafer, A mathematical theory of evidence. Princeton university
press, 1976, vol. 42.

[14] J.-B. Yang and M. G. Singh, “An evidential reasoning approach
for multiple-attribute decision making with uncertainty,” IEEE
Transactions on systems, Man, and Cybernetics, vol. 24, no. 1, pp.
1–18, 1994.

[15] P. Walley, “Inferences from multinomial data: learning about a
bag of marbles,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 58, no. 1, pp. 3–34, 1996.

[16] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

15

[17] A. Jøsang, “A logic for uncertain probabilities,” International Jour-
nal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 9,
no. 03, pp. 279–311, 2001.

[18] L. Duan, S. Rayadurgam, M. Heimdahl, O. Sokolsky, and I. Lee,
“Representation of confidence in assurance cases using the beta
distribution,” in 2016 IEEE 17th International Symposium on High
Assurance Systems Engineering (HASE). IEEE, 2016, pp. 86–93.

[19] R. C. Carrasco and J. Oncina, “Learning stochastic regular gram-
mars by means of a state merging method,” in International Collo-
quium on Grammatical Inference. Springer, 1994, pp. 139–152.

[20] S. Verwer, M. De Weerdt, and C. Witteveen, “Learning driving
behavior by timed syntactic pattern recognition,” in Twenty-Second
International Joint Conference on Artificial Intelligence, 2011.

[21] J. Borges and M. Levene, “Data mining of user navigation pat-
terns,” in International workshop on web usage analysis and user
profiling. Springer, 1999, pp. 92–112.

[22] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 245–256.

[23] C. De la Higuera, Grammatical inference: learning automata and
grammars. Cambridge University Press, 2010.

[24] C. A. Furia, R. Feldt, and R. Torkar, “Bayesian data analysis in
empirical software engineering research,” IEEE Transactions on
Software Engineering, 2019.

[25] S. S. Emam and J. Miller, “Inferring extended probabilistic finite-
state automaton models from software executions,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 27,
no. 1, pp. 1–39, 2018.

[26] N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and
P. Dupont, “Stamina: a competition to encourage the development
and assessment of software model inference techniques,” Empirical
software engineering, vol. 18, no. 4, pp. 791–824, 2013.

[27] D. Angluin, “On the complexity of minimum inference of regular
sets,” Information and control, vol. 39, no. 3, pp. 337–350, 1978.

[28] E. M. Gold, “Complexity of automaton identification from given
data,” Information and control, vol. 37, no. 3, pp. 302–320, 1978.

[29] L. G. Valiant, “A theory of the learnable,” Communications of the
ACM, vol. 27, no. 11, pp. 1134–1142, 1984.

[30] E. Vidal, F. Thollard, C. De La Higuera, F. Casacuberta, and
R. C. Carrasco, “Probabilistic finite-state machines-part ii,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
no. 7, pp. 1026–1039, 2005.

[31] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the
abbadingo one DFA learning competition and a new evidence-
driven state merging algorithm,” in International Colloquium on
Grammatical Inference. Springer, 1998, pp. 1–12.

[32] D. Angluin, “Learning regular sets from queries and counterex-
amples,” Information and Computation, vol. 75, pp. 87–106, 1987.

[33] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 8, pp. 832–844, 1998.

[34] S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: A large collection
of system log datasets towards automated log analytics,” 2020.
[Online]. Available: https://arxiv.org/abs/2008.06448

[35] F. Brglez, “ACM/SIGMOD benchmark dataset,” 1996.
[Online]. Available: https://people.engr.ncsu.edu/brglez/CBL/
benchmarks/Benchmarks-upto-1996.html

[36] D. Neider, R. Smetsers, F. Vaandrager, and H. Kuppens, “Bench-
marks for automata learning and conformance testing,” in Models,
Mindsets, Meta: The What, the How, and the Why Not? Springer,
2019, pp. 390–416.

[37] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-based testing
IoT communication via active automata learning,” in 2017 IEEE
International conference on software testing, verification and validation
(ICST). IEEE, 2017, pp. 276–287.

[38] B. Steffen, F. Howar, and M. Merten, “Introduction to active
automata learning from a practical perspective,” in International
School on Formal Methods for the Design of Computer, Communication
and Software Systems. Springer, 2011, pp. 256–296.

[39] J. de Ruiter, “A tale of the openssl state machine: A large-scale
black-box analysis,” in Nordic Conference on Secure IT Systems.
Springer, 2016, pp. 169–184.

[40] P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter, F. Vaandrager,
and P. Verleg, “Model learning and model checking of SSH imple-
mentations,” in Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, 2017, pp. 142–151.

[41] A. Rasool, “Quic patrol: Protocol analysis at the transport layer,”
2018, thesis.

[42] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager, “Combining
model learning and model checking to analyze TCP implemen-
tations,” in International Conference on Computer Aided Verification.
Springer, 2016, pp. 454–471.

[43] N. Walkinshaw and K. Bogdanov, “Automated comparison of
state-based software models in terms of their language and struc-
ture,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 22, no. 2, pp. 1–37, 2013.

[44] A. Vargha and H. D. Delaney, “A critique and improvement of the
CL common language effect size statistics of McGraw and Wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[45] J. Dorn, S. Apel, and N. Siegmund, “Mastering uncertainty in
performance estimations of configurable software systems,” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2020, pp. 684–696.

[46] N. Walkinshaw and M. Shepperd, “Reasoning about uncertainty
in empirical results,” in Proceedings of the Evaluation and Assessment
in Software Engineering, 2020, pp. 140–149.

[47] S. Nair, N. Walkinshaw, T. Kelly, and J. L. de la Vara, “An
evidential reasoning approach for assessing confidence in safety
evidence,” in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2015, pp. 541–552.

[48] P. Dupont, F. Denis, and Y. Esposito, “Links between probabilistic
automata and hidden markov models: probability distributions,
learning models and induction algorithms,” Pattern recognition,
vol. 38, no. 9, pp. 1349–1371, 2005.

[49] W. G. Wee and K.-S. Fu, “A formulation of fuzzy automata and its
application as a model of learning systems,” IEEE Transactions on
Systems Science and cybernetics, vol. 5, no. 3, pp. 215–223, 1969.

[50] Z. Li, P. Li, and Y. Li, “The relationships among several types of
fuzzy automata,” Inf. Sci., vol. 176, no. 15, pp. 2208–2226, 2006.
[Online]. Available: https://doi.org/10.1016/j.ins.2005.05.001

[51] S. Verwer, R. Eyraud, and C. de la Higuera, “PAutomaC:
a probabilistic automata and hidden markov models learning
competition,” Mach. Learn., vol. 96, no. 1-2, pp. 129–154, 2014.
[Online]. Available: https://doi.org/10.1007/s10994-013-5409-9

[52] R. L. Rivest and R. E. Schapire, “Inference of finite automata using
homing sequences,” Information and Computation, vol. 103, no. 2,
pp. 299–347, 1993.

[53] J. E. Cook and A. L. Wolf, “Discovering models of software
processes from event-based data,” ACM Transactions on Software
Engineering and Methodology, vol. 7, no. 3, pp. 215–249, 1998.

[54] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Recom-
mending API usages for mobile apps with hidden markov model,”
in 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2015, pp. 795–800.

[55] S. Attaluri, S. McGhee, and M. Stamp, “Profile hidden markov
models and metamorphic virus detection,” Journal in computer
virology, vol. 5, no. 2, pp. 151–169, 2009.

[56] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, and
M. Crosby, “A practical guide on conducting eye tracking studies
in software engineering,” Empirical Software Engineering, vol. 25,
no. 5, pp. 3128–3174, 2020.

[57] S. Elbaum and D. S. Rosenblum, “Known unknowns: Testing
in the presence of uncertainty,” in Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 833–836.

[58] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, 1982.

[59] ——, “Assessing test data adequacy through program infer-
ence,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 5, no. 4, pp. 641–655, 1983.

[60] B. K. Aichernig, W. Mostowski, M. R. Mousavi, M. Tappler, and
M. Taromirad, “Model learning and model-based testing,” in Ma-
chine Learning for Dynamic Software Analysis: Potentials and Limits.
Springer, 2018, pp. 74–100.

[61] N. Walkinshaw and G. Fraser, “Uncertainty-driven black-box test
data generation,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2017, pp. 253–263.

[62] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion
variance analysis,” Journal of the American statistical Association,
vol. 47, no. 260, pp. 583–621, 1952.

16

APPENDIX A

MODELS THAT WERE EXCLUDED FROM OUR STUD-

IES

For completeness-sake, we include a list of models for which
our trace generation algorithm was unable to produce a
diverse set of sequences that matched our requirements in
terms of size and diversity. This would either be because a
model was too small to enable a sufficiently diverse set of
traces (of the length-limits we stipulated). Alternatively, it
was because their transition structure made it difficult for
random walks to converge on sufficinetly diverse accepting
or rejecting walks. All of the models in question are in
the ACM/SIGDA benchmark set [35]: ex2, ex3, ex5, ex7,
kirkman, mark1, mc, modulo12, opus, s208, s420, and scf.

APPENDIX B

PRELIMINARY STUDY ON EFFECT OF α

We computed Â12 values for α: 250, 500, 1000, and 2000. For

each, we created two box-plots (the Â12 values for belief, the
other for uncertainty). The boxplots are shown in Figure 8,

and capture the distribution of Â12 values for accepting and
rejecting sequences, computed for all models and random
seeds. If there is a statistically significant difference between
distributions for different α, we can conclude that the choice
of α is significant. We tested for significance using the
non-parametric Kruskal-Wallis test [62], which estimates
the likelihood that samples from different groups are from
the same distribution. We adopt the convention of setting
significance to 0.05.

The p-values are shown in Table 7. The table shows that
there are no statistically significant differences between Â12

values for any values of α for rejecting sequences. There
are also no differences for accepting values for α values
below 2000. However results for α = 2000 are significantly
different from lower values for belief and uncertainty.

The choice of α = 2000 leads to Â12 that are particu-
larly distinctive (high for accepting sequences and low for
rejecting sequences), for both Belief and Uncertainty. The
differences to other choices of α are statistically significant
(as shown in Table 7).

TABLE 7
p-values for Pairwise Wilcox Tests, comparing distributions of belief and

uncertainty Â12 values for accepted and rejected sequences.

Accepting

Belief Â12 Uncertainty Â12

250 500 1000 250 500 1000
500 1.00 - - 500 1.00 - -
1000 1.00 1.00 - 1000 0.03 0.53 -
2000 0.81 1.00 1.00 2000 < 0.01 < 0.01 < 0.01

Rejecting

Belief Â12 Uncertainty Â12

250 500 1000 250 500 1000
500 1.00 - - 500 1.00 - -
1000 1.00 1.00 - 1000 0.18 1.00 -
2000 1.00 1.00 1.00 2000 0.03 0.22 1.00

Fig. 8. Distributions of Â12 scores for four values of α. 0.5 indicates no
differentiation between correctly and incorrectly classified sequences.

