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Reviews

Zebrafish as a model to investigate the CRH axis and
interactions with DISC1
Helen Eachus1, Soojin Ryu1,2, Marysia Placzek3 and Jonathan Wood4

Abstract

Release of corticotropin-releasing hormone (CRH) from CRH

neurons activates the hypothalamo–pituitary–adrenal (HPA)

axis, one of the main physiological stress response systems.

Complex feedback loops operate in the HPA axis and under-

standing the neurobiological mechanisms regulating CRH

neurons is of great importance in the context of stress disor-

ders. In this article, we review how in vivo studies in zebrafish

have advanced knowledge of the neurobiology of CRH neu-

rons. Disrupted-in-schizophrenia 1 (DISC1) mutant zebrafish

have blunted stress responses and can be used to model

human stress disorders. We propose that DISC1 influences

the development and functioning of CRH neurons as a

mechanism linking DISC1 to psychiatric disorders.
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Introduction: zebrafish as a model to
investigate the CRH axis
Corticotropin-releasing hormone (CRH), also known
as corticotropin-releasing factor, is a 41-amino acid

peptide. While produced in diverse tissues in many
parts of the body, the most studied role of CRH is its
function as a releasing hormone involved in the hypo-
thalamoepituitaryeadrenal (HPA) axis (or hypothal-
amoepituitaryeinterrenal, (HPI) axis in fish)-
mediated stress response. When the HPA axis is acti-
vated by a stressor, CRH is released from parvocellular
neurons of the hypothalamic paraventricular nucleus
(PVN) which project to the median eminence; here,
CRH enters the portal system and is transported via
small capillary vessels to the anterior pituitary gland. In
fish, HPI axis activation induces the secretion of CRH
from neurons of the neurosecretory preoptic area
(NPO), the fish equivalent of the mammalian PVN [1]:
these cells send direct neuronal projections to the
rostral pars distalis of the anterior pituitary gland
(Figure 1a). In the corticotroph cells of the anterior
pituitary gland, CRH binds to its receptor. In both fish
and mammals, two receptors exist, CRH receptor 1 and
CRH receptor 2 (CRHR1 and CRHR2, respectively),
with CRHR1 being the primary receptor in the fish
HPI axis [2]. Receptor binding then initiates the syn-
thesis and release of ACTH (adrenocorticotropic hor-
mone), which reaches the adrenal gland or interrenal
gland (the fish counterpart of the adrenal gland) via the
circulation. ACTH binds its receptor MC2R (melano-
cortin 2 receptor) in the steroidogenic cells of the
interrenal gland, which initiates synthesis of cortisol,
the key stress hormone in both fish and humans
(Figure 1a).

In mouse, lesion studies and genetic studies show that
CRH neurons are pivotal to the stress response [3e5].
However, the difficulty in accessing the mammalian
hypothalamus, which lies deep within the brain, has
limited such studies. The zebrafish brain is much
smaller and lends itself well to in vivo neurophysio-
logical experiments. Zebrafish provide a genetically
tractable high-throughput system for investigating
neurodevelopmental and neurophysiological mecha-
nisms underpinning behavioural phenotypes [6e8]. In
this review, we will discuss the zebrafish CRH system,
focusing on the hypothalamic CRH neurons. Further,
we discuss interactions of CRH with disrupted-in-
schizophrenia 1 (DISC1), a risk factor for psychiatric
disease, for which animal models indicate alteration of
the CRH system.
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CRH neurons in the zebrafish
hypothalamus
CRHneurons in the zebrafish are distributed throughout
the brain, in a reasonably well conserved manner be-
tween zebrafish and mammals [9]. In mammals, CRH is
encoded by a single gene. In teleosts, two CRH genes,
crha and crhb, evolved via genome duplication [10]. The
crha and crhb genes encode 162 and 132 amino acid
polypeptides, respectively, sharing 44% identity and 56%
similarity. crhb is considered orthologous to the
mammalian CRH gene, and has been far more widely
studied than crha, whose expression is restricted to the
periventricular hypothalamus [10]. crhb is first expressed
at around 24 h post fertilization (hpf) and from 3 days
post fertilization (dpf) can be detected in multiple re-
gions of the brain, including the subpallium, preoptic
region, posterior tuberculum, hypothalamus, ventral

thalamus and hindbrain, as well as in the retina [11,12]
(Figure 1b).

In zebrafish, crh-expressing neurons in the preoptic
region are found in the NPO. Within this region, crh-
expressing neurons form a dense intermingled cluster
with other neurons that express oxytocin (oxt), arginine
vasopressin (avp), proenkephalin a (penka), neurotensin (nts)
and somatostatin (sst1.1) [1,13]; whilst neurons that ex-
press cholecystokinin (cck), proenkephalin b (penkb) and
vasoactive intestinal peptide (vip) are found in separate NPO
subregions [13]. Within the NPO cluster, crh shows a
high degree of co-expression with avp, which similarly to
crh also stimulates ACTH secretion, and shows a low
degree of co-expression with penka and penkb [13].
Outside of the NPO, crh-expressing cells can be found in
other regions of the hypothalamus [11,12], especially in

Figure 1

The hypothalamo–pituitary– interrenal (HPI) axis in zebrafish, its regulation and cell types. (a) A schematic showing the HPI axis in a zebrafish

larva with its key anatomical centres and molecular pathways. Environmental stress leads to release of Crh from the neurosecretory preoptic area (NPO)

of the hypothalamus. Crh induces the synthesis and release of ACTH from the pituitary gland, which initiates synthesis of the key stress hormone cortisol

in the interrenal gland. Negative feedback to crh and ACTH (pomc) occurs via cortisol binding to its receptors GR (glucocorticoid receptor) and MR

(mineralocorticoid receptor). (b) A cartoon of a 2–3 dpf zebrafish brain showing the locations of crhb and disc1 expression. crh-expressing cells are found

in the telencephalon (V), posterior tuberculum and tuberal hypothalamus (PT/H), neurosecretory preoptic area (NPO), thalamus (Th), tegmentum (Teg),

rostral hindbrain (MO) [45]. Within the 2–3 dpf brain, disc1 expression is observed in the hypothalamus (H), especially the tuberal region [39]. d, dorsal, c,

caudal. (c) A schematic depicting the regulation of the CRH-mediated stress response. Adapted from Amir-Zilberstein et al., 2012 [18]. Stress activates

Otp-mediated transcription of crh, and of rbfox1 which regulates alternative splicing of the pac1 gene. Otp and the PAC1-short variant both upregulate crh

transcription, whilst the PAC1-long isoform is required for termination of crh transcription.
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the tuberal region, as is also the case in mouse [9]. Here,
their functions are less clearly understood.

Functional studies in fish support a role for
CRH neurons of the NPO in stress
regulation
Work in zebrafish has revealed how CRH neurons of the
NPO respond to acute stress exposure in vivo in an intact
animal [14]. Using two-photon calcium imaging, vom
Berg-Maurer et al. showed that stressor exposure in the
form of salinity or pH alteration leads to an increased
pool of active CRH NPO cells, via recruitment of pre-
viously inactive cells. The number of responsive CRH
NPO cells also increased with stressor intensity and
those cells also exhibited an increase in the number of
Ca2þ events. These data suggest that CRH cell activity
is tightly regulated and varies in accordance with
stressor intensity, to ensure that the HPA axis response
is proportionate to the threat severity.

Building on this, a subsequent study has investigated
the role of various NPO neuropeptides in the behav-
ioural response to stress, using molecular, imaging and
computational techniques [15]. To a greater extent than
some other NPO peptidergic populations, crh-express-
ing neurons showed specialisation in their responsive-
ness to specific threats. For example, many crh-
expressing neurons responded purely to heat, salinity or
acidity, rather than responding to a combination of
threats. Interestingly, while ablation of either crh or oxt-
expressing neurons had no effect on the behavioural
response to a threat, combined ablation of both signifi-
cantly reduced the behavioural response to the aversive
stimuli, suggesting that these separate neuronal clusters
work together to promote stress-induced behaviour.
Subsequent experiments indicated that the oxt and crh-
expressing NPO clusters are largely glutamatergic and,
in addition to projecting to the pituitary, both project to
a specific set of spinal-projecting neurons in the brain-
stem, which are essential for the motor response to
stress. The observed behavioural responses to the
aversive stimuli were observed over a very short time
period, suggesting a role for CRH NPO neurons in rapid
locomotor responses to various stressors.

Recently, the CRH system has been studied in vivo in
zebrafish using a CRISPR crhr1 knockout (KO) fish
[16]. crhr1 KO larvae were unable to respond to an acute
stressor, that is, endogenous cortisol levels did not
rapidly increase following stress exposure as would be
observed in wild types. Interestingly, crhr1 KO larvae
also exhibited altered behaviour in a lightedark loco-
motion assay in which larvae typically freeze during the
light period and swim freely during the dark period [16].
During the dark phase, crhr1 KO larvae exhibited some
hypoactivity compared with wild types at the 15 min
and 60 min time points. Further, during the light phase,

stress exposure induced hyperactivity in wild type
larvae, but this was not observed in crhr1 KO larvae.
However, further experiments suggested that stress-
induced hyperactivity is likely mediated predomi-
nantly by downstream effects of cortisol, rather than by
CRH itself. Further work with this model may shed light
on whether CRH regulates other stress-induced be-
haviours in fish, independently of cortisol, as is observed
in rodents [17].

Regulation of CRH expression in the stress
response
Regulation of CRH is critical to mount a proper stress
response. Zebrafish experiments have implicated the
homeodomain-containing protein orthopedia (Otp) in
transcriptional regulation of crh during the stress
response. Zebrafish have two othologues of OTP, otpa
and otpb. otpa null zebrafish do not upregulate crh
expression following acute stressor exposure [18].
Chromatin immunoprecipitation (ChIP) experiments
subsequently revealed that Otp protein is recruited to
the zebrafish crh promoter region following exposure to a
stressor. In a similar manner, Otp is also recruited to the
promoter of the a2bp1 (more commonly known as the
splicing regulator rbfox1) gene following stress. RBFOX1
is known to regulate the alternative splicing of neuronal
Pac1, which encodes the receptor for the pituitary
adenylate cyclase activating peptide. The authors
demonstrated that the short pac1 variant is required for
normal upregulation of crh transcription following stress,
while the pac1-hop (long) mRNA isoform is required for
normal termination of crh transcription during the re-
covery phase following stress (Figure 1c), as well as
normal regulation of initial and recovery phase levels of
endogenous cortisol. Furthermore, the pac1-hop (long)
variant was found to be important for the behavioural
response to an acute stressor in zebrafish larvae.
Together, the experiments support that alternative
splicing of pac1 is required for stressor-induced regula-
tion of crh transcription, the HPA axis and behaviour, at
least partly via Otpa-mediated transcriptional control
of rbfox1.

In addition to the identification of molecules that
appear to acutely regulate expression of crh in the
context of HPI axis regulation, animal models are also
useful in identifying molecules that may regulate the
development of CRH neurons, which in turn may affect
their function in the HPA axis. Classic knockout studies
in rodents have identified multiple players involved in
developmental regulation of CRH neurons. Terminal
differentiation of PVN neurons, including those that
express Crh, requires Otp and Single-minded 1 (Sim1) in
mouse [19], in conjunction with Aryl-hydrocarbon recep-
tor nuclear translocator 2 (Arnt2) [20]. Brn2 is also
required downstream for Crh expression [19]. Studies
in zebrafish suggest that transcriptional regulation of crh
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in development is conserved, since loss of both otp
paralogs in zebrafish leads to a complete loss of the
NPO crh cluster [21]. Additionally, the development of
crh-expressing neurons in the embryonic zebrafish NPO
is also dependent on transcription factors arnt2 and
sim1a [22].

Zebrafish studies have also identified a number of novel
potential regulators of crh in development. Zebrafish
mutants for chemokine-like gene sam2 (samdori 2)
exhibit anxiety-like behaviour in the novel tank, scoto-
taxis and shoaling assay tests, and have a significant in-
crease in crh expression in the preoptic region [23].
Sam2-KO mice also exhibited anxiety and fear behaviour
and in the PVN SAM2 appears to regulate the frequency
of GABAergic inputs onto CRH neurons. Conversely,
adult knockout fish for Down’s syndrome-associated
gene dyrk1aa have reduced expression of preoptic crh
following exposure to social isolation [24]. The authors
argue that this may indicate a low responsiveness to
stress in the context of social isolation, with an impli-
cation for human stress-associated disorders.

Zebrafish models of human stress
disorders: CRH-DISC1 connection
One of the best-described zebrafish models of a human
stress disorder is the DISC1 (Disrupted-in-schizo-
phrenia 1) zebrafish. DISC1 encodes a multifunctional
scaffold protein that shows a plethora of proteineprotein
interactions. It was first identified at the breakpoint of a
balanced (1; 11) (q42.1; q14.3) translocation segregating
with mental illness in a large Scottish family more than
twenty years ago [25]. In the decade following its dis-
covery, evidence accrued for DISC1 being a risk factor in
a range of psychiatric illnesses, and for it having roles in
neurodevelopment and neural signalling pathways [26].
Although the relevance of DISC1 to mental illness in the
wider population remains contentious [27], DISC1
mutant and transgenic mice have face validity as models
of human psychiatric disease, bringing an understanding
of the pathophysiological mechanisms underlying mental
illness [28]. Disc1 mutant mice show wide-ranging
behavioural and neural phenotypes [28e30]. These
include a defective HPA axis, which manifests as alter-
ations in the stress response. Attenuated reactivity of the
HPA axis was reported in a transgenic mouse strain car-
rying an inducible mutant human DISC1 gene prenatally
challenged with polyI:C, a preclinical model of schizo-
phrenia [31]. In a second study, a converse phenotype
was reported: plasma corticosterone levels were shown at
elevated levels after mild isolation stress in adolescent
transgenic mice carrying a mutant human DISC1 gene
[32]. These apparently conflicting results may reflect,
amongst others, the different stress paradigms utilised,
differences in the expression profile of mutant human
DISC1 through use of different promoters, or the com-
plex feedback loops that operate in the HPA axis.

Given the ease of genetic manipulation, the small
transparent brain, the opportunity to perform high-
throughput behavioural analysis and that the HPA axis
is conserved amongst vertebrates, the zebrafish offers a
powerful system in which to study the role of DISC1 in
the HPA axis. Zebrafish have a single DISC1 orthologue
on chromosome 13 in a region showing synteny with
human chromosome 1 [33]. The RNA-binding arginine-
rich motif (ARM) [34] and coiled-coil domains are
evolutionarily conserved [35] suggesting that these re-
gions are crucial for DISC1 function. While DISC1 has a
multitude of protein interaction partners, a study which
characterised the endogenous DISC1 interactome in
iPSC-derived neural progenitor cells and astrocytes
revealed that poly(A) RNA-binding and centrosomal
dynamics are core (i.e. common to both cell types)
DISC1 functions [36]. These functions can at least in
part be attributed to the evolutionarily conserved re-
gions of DISC1 [34,37,38]. DISC1 is therefore likely to
have conserved functions in neurodevelopment and
neural signalling.

In embryonic zebrafish, disc1 expression is prominent in
the ventral diencephalon, including the tuberal hypo-
thalamus [33] (Figure 1b). Here, disc1-expressing cells
lie close to crh-expressing neurons, and to neurons that
express nr5a1a and pomca (the latter, in regions that are
functionally equivalent to the mammalian ventromedial
nucleus and arcuate nucleus) (Figure 2a). Homozygous
disc1 mutants have altered expression of crh in the
tuberal hypothalamus, but also show altered expression
of crh in the preoptic hypothalamus [39]. The effects of
disc1 mutation are dynamic across the early life period:
increased crh expression is observed in the preoptic
NPO region at embryonic stages, but decreased crh
expression is detected in the larval hypothalamus in disc1
mutants. The reduction in crh-expressing neurons at
larval stages correlates with a blunted behavioural and
endocrine response to acute stress exposure in mutant
larvae, consistent with the attenuated HPA axis reac-
tivity described previously [8]. Given the essential role
of crh in stress regulation and the altered stress response
in disc1 mutant zebrafish [39], it seems likely that disc1
regulates the HPA axis via crh. At present the mecha-
nism by which disc1 regulates development of hypotha-
lamic crh neurons is unknown.

In addition, disc1mutants show altered differentiation of
pomca and nr5a1a-expressing neurons. Potentially, these
effects reflect an alteration in the maintenance of rx3-
expressing (retinal homeobox 3) hypothalamic pro-
genitors in the disc1 mutant fish. Both pomca and nr5a1a
expressing neurons arise from rx3-expressing pro-
genitors [46], which co-express disc1 in the tuberal hy-
pothalamus [39] (Figure 2b). As yet, the mechanism
responsible for the altered numbers of crh-expressing
neurons in disc1 mutants is unclear. Whilst rx3-express-
ing progenitor cells are not known to give rise to crh-
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expressing neurons, neither a lineage analysis of rx3-
expressing progenitors, nor a comprehensive analysis of
crh-expressing neurons following rx3 knockout has been
performed in zebrafish to date (see Ref. [40] for an
initial analysis). Alternatively, disc1 may regulate crh
neuron development by acting on one of the known crh
regulators such as otp [18,41], arnt2 and sim1a [22], brn2
or LIM homeobox 2 (lhx2) [42] (Figure 2b), or via an as
yet unknown pathway. In addition to regulation of crh
neuron development, disc1 may also mediate the HPA
axis via alteration of crh neuron function, but this re-
mains to be determined.

Future perspectives
Recent studies in zebrafish have indicated that activity
of CRH neurons in response to stress is complex and
tightly regulated, with diverse aspects of CRH neuron
activity varying with respect to the threatening stimulus
[14,15]. Measuring neuronal activities in zebrafish using
techniques such as in vivo calcium imaging is a powerful
tool to tease out the complex function of CRH neurons
in an intact animal. For example, calcium imaging in disc1
mutant fish with and without stressor exposure could
provide insights into whether disc1 regulates activity of
CRH neurons in vivo. Similarly, calcium imaging of CRH
neurons in animals reared under different contexts such
as early life stress exposure could reveal how develop-
ment shapes the stress response. Single cell RNA
sequencing (scRNAseq) studies in mammals indicate

that there are multiple subsets of hypothalamic Crh-
expressing cells, even within the preoptic region
[43,44]. As such, studies in zebrafish, a simpler model
organism with a smaller brain, yet a high degree of mo-
lecular conservation can be used to interrogate the
development and function of these small populations of
cells. Indeed, scRNAseq of crh-expressing cells in disc1
mutant fish could be used to tease out specific sub-
population differences in CRH neurons resulting from
a lack of disc1 function, as well as identifying molecules
linking disc1 with CRH neuron development and
function.
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Figure 2

Regulation of zebrafish hypothalamic development by Disc1. (a) A cartoon depicting the locations of potential Disc1-regulated neurons in the 2–3 dpf

zebrafish hypothalamus. crh-expressing neurons are located in the NPO and tuberal region of the hypothalamus (as well as other brain regions, not

shown). nr5a1a neurons are located in the ventromedial hypothalamic nucleus (VMN) [46]. pomca neurons are located in the arcuate nucleus (as well as

the pituitary gland, not shown) [46]. d, dorsal, c, caudal. (b) Schematic showing possible regulation of specific hypothalamic nuclei by Disc1 in zebrafish.

The development of crh-expressing neurons in the NPO is known to be regulated by Otp, Arnt2 and Sim1a [22]. Rx3 is known to regulate the development

of nr5a1a-expressing neurons in the VMN [46]. Rx3, Ascl1a and Isl1 are known to regulate the development of pomca-expressing neurons in zebrafish

[40,46–48]. Since expression of NPO crh, VMN nr5a1a and ARC pomca neurons is altered in disc1 mutant zebrafish [39], Disc1 may act as an upstream

regulator of these developmental pathways.
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